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Abstract

Generalizing to longer sentences is important001
for recent Transformer-based language models.002
Besides algorithms manipulating explicit posi-003
tion features, the success of Transformers with-004
out position encodings (NoPE) provides a new005
way to overcome the challenge. In this paper,006
we study the length generalization property of007
NoPE. We find that NoPE can extend to longer008
sequences than the commonly used explicit009
position encodings. Moreover, we propose a010
parameter-efficient tuning for searching atten-011
tion heads’ best temperature hyper-parameters,012
which further expands NoPE’s context size.013
Experiments on long sequence language mod-014
eling and the synthetic passkey retrieval task015
show that NoPE can achieve competitive per-016
formances with state-of-the-art length general-017
ization algorithms.018

1 Introduction019

Causal Transformer has been widely applied in020

modern language models. To help models recog-021

nize the correct ordering of words, it is common to022

configure Transformers with explicit position en-023

codings (e.g., the sinusoidal embeddings in the orig-024

inal development of Transformer (Vaswani et al.,025

2017), the relative position encoding in T5 (Raffel026

et al., 2020), and the rotary position encoding in027

GPT series (Su et al., 2021)). The setup of posi-028

tion features provides flexibility to include prior029

knowledge structure on describing distance, but it030

also brings the problem of length generalization:031

language models trained with in-domain position032

features can not handle longer sentences (i.e., those033

with out-of-domain position features) in testing034

time. Generalizing to unseen sentence length is cru-035

cial in many language model applications like re-036

trieval augmented language models (Izacard et al.,037

2023), personalized language models (Wang et al.,038

2023), language-model-based agents (Park et al.,039

2023).040

Departing from the standard ways of encoding 041

positions, one may ask (following the principle 042

of parsimony) that are the explicit position fea- 043

tures necessary? The answer is no. Both empir- 044

ically (Haviv et al., 2022) and theoretically (Chi 045

et al., 2023; Kazemnejad et al., 2023), the casu- 046

ally masked Transformers are shown to be able 047

to successfully model languages without any prior 048

position encoding (NoPE). The finding calls for a 049

deeper understanding of implicit position informa- 050

tion in Transformer-based language models, and 051

also inspires a new direction for length generaliza- 052

tion: without explicit position features, can NoPE 053

generalize? 054

In this paper, we study the length generalization 055

property of NoPE. Our main findings are, 056

• When extending to unseen sentence length, NoPE 057

has less performance loss than explicit position 058

encodings. For example, when extending 50% 059

of training length (2K to 3K, Figure 5), NoPE’s 060

perplexity is 0.5x of the rotary position encoding 061

(RoPE). 062

• However, beyond a certain range, NoPE also fails 063

to extend. We analyze the failure cases of NoPE’s 064

generalization and find that they always co-occur 065

with the distraction of attention distributions: the 066

attention heads begin to allocate their weights 067

to tokens evenly when NoPE’s extension perfor- 068

mance begins to collapse. 069

The connection between NoPE’s generalization and 070

concentration of attention heads suggests control- 071

ling the behaviors of attention heads during length 072

extension. We show that by simply searching one 073

temperature hyper-parameter, NoPE’s length gener- 074

alization can be significantly improved. A similar 075

skill has been applied in Transformers with rotary 076

position encoding (Chiang and Cholak, 2022), but 077

we show that it only helps get a marginal exten- 078

sion of length there. Moreover, we developed an 079
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advanced version of this strategy by searching tem-080

perature parameters for each head. The procedure081

resembles a parameter-efficient fine-tuning, with082

an extremely small number of tunable parameters083

(704 delta parameters over 1B model parameters).084

We show that the proposed method can help NoPE085

to generalize further.086

We conduct length generalization experiments087

on long sequence language modeling, synthetic088

tasks (passkey retrieval), and LongBench. The re-089

sults show that NoPE enjoys a competitive exten-090

sion performances to state-of-the-art length gener-091

alization methods for explicit position encodings092

(e.g., PI (Chen et al., 2023), YaRN (Peng et al.,093

2024)).094

2 Language Modeling with NoPE095

Before diving into the length generalization prob-096

lem, we first briefly describe the NoPE models097

used in this paper. 1 Our default NoPE is trained098

from the TinyLlama (Zhang et al., 2024b) code099

base 2, with training sequence length L = 2048,100

22 layers of Transformer blocks, 32 attention heads101

per-layer, 2048 embedding size, and overall 1.1B102

parameters. The model is trained on Slimpajama103

(Soboleva et al., 2023) joint with Starcoderdata (Li104

et al., 2023) by 50K steps (≈ 100B tokens).105

We also include the original TinyLlama model106

which uses rotary position encoding (RoPE) for107

comparison. By default, both models are trained108

with identical settings.109

3 Length Generalization of NoPE110

Given a language model (LM) with pre-trained111

maximal sequence length L, the goal of length112

generalization is to expand it to length L′ > L.113

Length generalization can be tested in a zero-shot114

manner (“train short, test long”) or with some fine-115

tuning.116

Figure 1 depicts language modeling perfor-117

mances of NoPE (and RoPE). We can observe that,118

within the pre-training length (L = 2048), NoPE119

has a similar performance as RoPE, which agrees120

with existing works: casual masking can implicitly121

encode the positions of a sequence (Haviv et al.,122

2022; Chi et al., 2023).123

When the testing sequence length exceeds the124

training length, we see that 1) NoPE’s length gen-125

1For simplicity, we refer NoPE to both the implicit way of
encoding positions and the language model trained without
position encoding.

2https://github.com/jzhang38/TinyLlama
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Figure 1: Length generalization from 2K to 4K. For
different testing lengths (or, positions of sequences),
dashed lines draw the log-perplexity of models (aver-
aged on all testing samples), and solid lines represent
the entropy of attention heads (averaged on all heads
and testing samples).

eralization error (light blue dashed line, measured 126

with log-perplexity) is lower than RoPE (light red 127

dashed line). 2) vanilla NoPE still has an increased 128

perplexity than in-domain tests. Therefore, though 129

it is not a perfect solution, removing explicit po- 130

sition encoding can effectively reduce the length 131

generalization error. Next, we will try to find the 132

reason for the failure of NoPE’s length generaliza- 133

tion, and also develop algorithms for improving 134

it. 135

3.1 Extension? Attention! 136

To analyze NoPE’s generalization failure, we first 137

see that since explicit position encodings have been 138

dropped, the casual Transformer block is only left 139

with three core modules, the embedding layer, feed- 140

forward layers, and self-attention layers. The out- 141

puts of the former two modules are independent of 142

their inputs’ position in sequence (i.e., no matter 143

which position, they always have the same output). 144

Therefore, multi-head attention layers become our 145

main target. 146

We visualize the attention pattern of NoPE at 147

different lengths. Specifically, given a validation 148

set with a size n and a target position i, we define 149

the average attention entropy Hi at position i, as 150

Hi =
1

n×m

∑
x,h

H(h)
i (x) (1) 151

H(h)
i (x) = −

i∑
j=1

α
(h)
ij (x) · logα(h)

ij (x) (2) 152

where x is a sample, α(h)
ij (x) is the attention prob- 153

ability of token i focusing on token j in the h-th 154

attention head (h ∈ {1, 2, ...,m}), H(h)
i (x) is the 155
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entropy of the attention distribution α
(h)
ij (x) evalu-156

ated at position i.157

The light solid lines in Figure 1 show the average158

entropy for NoPE (light blue) and RoPE (light red).159

We can observe that, the inflection point of Hi is160

highly consistent with the inflection point of per-161

plexity. It implies that failed length generalization162

of NoPE (and RoPE) might be connected to the163

distraction of attention: attention heads begin to164

allocate attention to more tokens. To further verify165

the connection, we also draw a successful extension166

algorithm for RoPE (RoPE-NTK (bloc97, 2023b)167

which interpolates out-of-domain encodings to in-168

domain encodings). Its length generalization loss169

curve is flat, while its entropy curve also has no170

steeply increasing point.171

Unlike explicit position encodings, NoPE has no172

clear target objects to manipulate, thus it is quite173

challenging to perform length generalization with-174

out fine-tuning on longer sequences. However, the175

strong correlation between length extension and176

attention pattern transition suggests such an object,177

the entropy of attention heads.178

3.2 Uniform Attention Scale179

We write the general scaled dot-product attention180

as181

α
(h)
ij =

eλq
(h)
i ·k(h)

j∑
k e

λq
(h)
i ·k(h)

k

(3)182

where the scaling factor λ is the temperature hyper-183

parameter of the SoftMax operator. The prevalent184

setting is λ = 1√
d

.185

Based on observations in Section 3.1, we know186

that NoPE’s failure of length generalization might187

be correlated with distracted attention, hence we188

can try to gradually increase the scale factor λ to189

reconcentrate attention, and see whether the gener-190

alization error can be reduced. Figure 2 visualizes191

the average entropy under different scale values192

and the corresponding perplexity curves.193

We first find that when increasing the scale factor194

during length generalization evaluation (e.g., the195

pre-training scale λ= 1√
d

is increased to λ= 1.2√
d
),196

the inflection points of entropy curves are shifted197

to longer lengths, at the same time, NoPE all gen-198

eralize to further positions (L=2k → L′=4k). That199

is, with all NoPE’s parameters frozen and only uni-200

formly increasing the softmax’s temperature, NoPE201

can successfully generalize to unseen lengths.202

The same conclusion doesn’t hold for RoPE (Fig-203

ure 2 Right): no matter what value the scale takes204

(from λ=0.8 to λ=1.4), the inflection points of en- 205

tropy curves remain almost unchanged, and it also 206

fails to generalize to longer lengths. On the other 207

side, successful RoPE extension algorithms (e.g., 208

RoPE-NTK in Figure 1) can control the distrac- 209

tion of entropy by explicitly manipulate position 210

encodings. Therefore, though attention scaling has 211

been used for RoPE (Su, 2021; Chiang and Cholak, 212

2022), it may contribute marginally to RoPE’s gen- 213

eration. 214

We also find that extending NoPE to more dis- 215

tant positions generally requires a larger scale (i.e., 216

a more concentrated attention distribution). As the 217

position becomes further, the number of tokens in- 218

volved in the attention calculation increases, the 219

attention is more easily scattered, and therefore, a 220

larger scaling factor is needed to concentrate the 221

attention. In particular, for our NoPE model, gen- 222

eralizing to twice the pre-training length requires 223

about 1.2 times the scale, four times the length re- 224

quires about 1.5 times the scale, and eight times 225

the length requires about 1.8 times the scale. Ap- 226

pendix A reports the fitted function of the scaling 227

factor with respect to the generalization length L′. 228

Finally, we note remark that the attention scaling 229

factor in this section takes the same value for all 230

positions, including the pre-training length (uni- 231

form scaling). We experimented with a piecewise 232

function which use the original scale within the 233

pre-training positions, and a more concentrated at- 234

tention scale for the extrapolated positions. We also 235

try position-dependent functions, where the scale 236

increases with position. However, none of these 237

methods could further improve generalization. We 238

speculate that if the attention at earlier positions is 239

not highly concentrated, the learned token represen- 240

tations may hinder the concentration of attention at 241

latter positions. We leave a deeper discussion and 242

analysis of this observation in future work. 243

4 Head-based Attention Scale 244

After verifying that the attention scaling can help 245

NoPE generalizing, we delved deeper into the 246

multi-head attention mechanism and posed a new 247

question, “Does each attention head require a 248

unique scaling factor?” 249

In this section, we first visualize the average en- 250

tropy curves for each head and find that they have 251

different attention patterns. Hence we propose to 252

replace the uniform scaling with head-based scal- 253

ing (from one factor to 22 ∗ 32 = 704 factors). To 254
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Figure 2: Attention entropy and generalization for different uniform scaling factors. Left, NoPE; Right RoPE.
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Figure 3: Attention entropy of different heads. Each
line represents a head.

address the issue of an exploding search space, we255

efficiently determine the values of scaling factors256

through automated hyperparameter search, consid-257

ering both parameter efficiency and data efficiency.258

As a result, head-based scaling generalizes better259

than uniform scaling. Moreover, correlation anal-260

ysis shows that within each layer, the smaller the261

converged entropy (i.e., the more concentrated at-262

tention), the larger the required scaling factor to263

maintain that concentration.264

4.1 Visual Analysis265

Figure 3 visualizes their head-based entropy on the266

original NoPE, uniform-scaled NoPE, and head-267

based scaled NoPE. Our NoPE has 22 layers with268

32 attention heads per layer, totaling 704 heads. To269

save space, we uniformly sampled 3 layers as well270

as 10 heads per layer. The full head visualization271

is located in Appendix B. We observed that the272

entropy values they converge to vary greatly. Some273

attention heads show a highly concentrated pat-274

tern, with entropy values converging to ≈ 1, while275

others exhibit a highly dispersed pattern, with en-276

tropy values converging to ≈ 10. This phenomenon277

casts doubt on uniform scaling — how can a sin-278

gle scaling factor cater to diverse attention heads?279

Inspired by this, we further propose a head-based280

scale method. 281

4.2 Head-based Scale 282

We reformulate the uniform attention scale as head- 283

base attention scales 284

α
(h)
ij =

eλ
(h)q

(h)
i ·k(h)

j∑
k e

λ(h)q
(h)
i ·k(h)

k

(4) 285

where λ(h) is a unique attention scaling factor for 286

each head, totaling 704. Compared to a uniform 287

attention scale, 704 head-based scales make it diffi- 288

cult to determine the optimal values by grid search. 289

Similar to AutoML (He et al., 2021), we model 290

the scales’ optimal search as a parameter-efficient 291

fine-tuning task. Given a NoPE model M and a set 292

of head-based scales {λ(1), λ(2), . . . , λ(m)}, we fix 293

the model M and define the head-based scales as 294

trainable parameters θ = {λ(1), λ(2), . . . , λ(m)}. 295

We aim to find an optimal set of values θ∗ = 296

{λ∗(1), λ∗(2), . . . , λ∗(m)}, that allows the model 297

M(θ∗) to successfully extend to the target length 298

L′. To this end, we optimize the language model- 299

ing loss function LLM on the pre-training dataset 300

D with length L′ and size n′, n′ ≪ n. 301

θ∗ = minimize
x∈D

LLM (M(θ, x)) (5) 302

The search process is highly efficient. (1) The num- 303

ber of tunable parameters is extremely small, only 304

704 delta parameters over 1B model parameters; 305

2) The amount of training tokens for fine-tuning is 306

extremely small too, only 0.03% of the pre-training 307

data. 308

In addition, to ensure that none of the searched 309

attention scaling factors are less than 0, we add an 310

activation function g(·) = ReLU(·) to Equation 4, 311

α
(h)
ij =

eg(λ
(h))·q(h)

i ·k(h)
j∑

k e
g(λ(h))·q(h)

i ·k(h)
k

. (6) 312
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Figure 4: Comparing uniform and head-based scale.
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Figure 5: Correlation analysis of the converged entropy
with the searched scale.

Initializing Head-based Scales In practice, we313

found that the initial value of head-based scales has314

a significant impact on the search of θ∗. An obvious315

approach is to use the default value λ(∗)= 1√
d

from316

the pre-training phase. However, its length general-317

ization results are quite unstable, with most being318

subpar. We propose another approach to utilize the319

best uniform scale from the grid search as the ini-320

tial value. The ablation study for the initialization321

approach is in Section 5.5.322

Figure 4 compares the two generalization meth-323

ods of NoPE, uniform scale versus head-based324

scales. Head-based scale exhibits better general-325

ization than the uniform scale, achieving a lower326

log-PPL by 0.2 at 4K positions (2×L) and by 0.8327

at 8K positions (4×L). The average entropy Hi328

of the head-based scale is higher than that of the329

uniform scale, suggesting that the uniform scale330

method over-concentrates attention, particularly for331

some heads that inherently have more distracted332

patterns.333

Figure 5 shows the correlation between the con-334

verged entropy and the searched scale. To save335

space, we uniformly sampled 7 layers and all their336

respective heads. We observed that the correlation337

is layer-dependent, within each layer, heads with338

more concentrated attention (i.e., lower entropy) 339

searched for larger scales, while heads with more 340

dispersed attention (i.e., higher entropy) searched 341

for smaller scales. The result is as expected, the 342

more concentrated the attention pattern, the larger 343

the scaling factor needed to maintain its focus. Fur- 344

thermore, we observed that attention heads in lower 345

layers are generally more dispersed, whereas heads 346

in higher layers are generally more concentrated 347

(note that this is not strictly observed). 348

5 Experiment 349

We conduct length generalization experiments on 350

long sequence language modeling, synthetic tasks 351

(passkey retrieval), and real-world long context 352

tasks (long bench). 353

5.1 Setup 354

Searching scales. We approach the search for opti- 355

mal head-based scales λ(h) by parameter-efficient 356

fine-tuning. We use a large learning rate (LR, =0.05 357

or =0.1) for fine-tuning, as λ spans a wide range, 358

(e.g., [ 1√
d
, 3√

d
], shown in Figure 5). The fine-tuning 359

data comes from the pretraining dataset (Slimpa- 360

jama (Soboleva et al., 2023) and Starcoderdata (Li 361

et al., 2023)) with a different data fetching seed 362

from the pretraining. We set the batch size to 8 363

and set the optimizer to the AdamW (β1 = 0.9, 364

β2 = 0.95) without weight decay (Loshchilov and 365

Hutter, 2017). We use a cosine LR decay from 366

LR to 0.1LR for 200 fine-tuning steps and a linear 367

warmup for the first 20 steps. We found that the 368

head-based scale searching on 16K suffers from a 369

minor PPL degradation at the end of the context 370

window. We simply expanded the length L′ to 18K 371

and then solved it. 372

RoPE baselines. To compare with mainstream 373

length generalization research, we reproduced three 374

generalization baselines on RoPE, including: 375

• PI (2023), efficiently train long, test long; 376

• NTK (2023c), zero-shot generalization; 377

• YaRN (2024), supports both settings 3. 378

For the zero-shot setting, we grid-searched the 379

baseline hyperparameters and reported their best 380

results. For the baselines that need fine-tuning, 381

we propose two settings, one for a fair compari- 382

son, with the same number of fine-tuned tokens 383

3The YaRN paper also proposes a “train short, test long”
setting with lower training costs. However, for a fair com-
parison, we relax this setting to “train long, test long” which
generalizes better.
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(0.3‰ of pre-trained data) as the head-based scales384

searching, and the other follows their original pa-385

per, which is 1.3‰ of pre-trained data.386

5.2 Long Sequence Language Modeling387

Success on long sequence language modeling tasks388

is essential for length generalization. A method that389

does not perform well in language modeling proba-390

bly won’t handle real-world long-context tasks.391

Settings. To evaluate the long sequence language392

modeling performances, we test our NoPE-based393

methods and RoPE-based baselines on PG19 (Rae394

et al., 2020) and proof-pile (Azerbayev et al., 2022)395

datasets. For each dataset, we sample a subset of396

the test set and evaluate on 2M tokens using sliding397

window evaluation (S = 256) suggested by Press398

et al. (2022). We report the perplexity (PPL) of the399

models in Table 1.400

Main results. Firstly, by comparing the original401

language models, NoPE’s perplexity (PPL) is com-402

parable to RoPE’s for lengths within the training403

distribution, confirming the findings of Haviv et al.404

(2022); Chi et al. (2023). However, both LMs fail405

to generalize out-of-the-distribution, indicating that406

explicit positional encoding is not the main reason407

for their failure in generalization. Current work on408

length generalization still focuses mainly on manip-409

ulating positional encoding. Therefore, the length410

generalization issue within causal Transformer net-411

works warrants a reanalysis and reinterpretation.412

Secondly, by comparing the two generalization413

methods for NoPE proposed in this paper, the uni-414

form scale method has significant limitations. Al-415

though using a larger scale can reduce the PPL at416

greater positions, it significantly affects the PPL417

at closer ranges. For instance, with a scale value418

of 1.8, the PPL on 2K@PG19 rises from 14.6 to419

30.4, and on 2K@Proof-pile, it rises from 3.5 to420

5.1. On the contrary, the head-based scale method421

not only successfully extrapolates to 16k but also422

has minimal impact on the PPL at closer distances423

(for 18K, increases only +3.7 on 2K@PG19, +0.5424

on 2K@Proof-pile), proving that attention heads425

with different patterns indeed require distinct scale426

values.427

Third, a full comparison with RoPE LM’s gener-428

alization method. Comparing the zero-shot gener-429

alization methods, the head-based scale has better430

generalization than NTK, but weaker than YaRN.431

Comparing the zero-shot In a fair comparison with432

the RoPE generalization methods which require433

fine-tuning, the head-based scale method is com- 434

petitive with these RoPE baselines, especially the 435

Proof-pile dataset. However RoPE baselines (PI, 436

YaRN) still benefit from more training tokens, the 437

head-based scale on NoPE reaches its upper limit. 438

In summary, the head-based scale generaliza- 439

tion method for NoPE slightly outperforms RoPE’s 440

early generalization method NTK, but still lags be- 441

hind the recently introduced YaRN, particularly in 442

near-distance PPL performance. Considering the 443

significant challenge of generalizing NoPE com- 444

pared to RoPE (due to the lack of explicit positional 445

encoding to manipulate), this work, as the first to 446

tackle length generalization for NoPE, has achieved 447

its set goals. 448

The observed gap may imply that constraining 449

the NoPE model to focus on fewer tokens could 450

detrimentally affect its efficacy. Future efforts will 451

be directed at enhancing the head-based scaling 452

method to regain the level of performance seen in 453

pretraining. 454

5.3 Synthetic Long Context Tasks 455

A synthetic task is constructed in Landmark At- 456

tention (Mohtashami and Jaggi) called "Passkey 457

Retrieval". It aims to test the effective context win- 458

dow size of the model. The task is to retrieve a 459

randomly placed passkey from a long sequence of 460

tokens, where the passkey is a randomly sampled 461

number of 5 digits and the sequence is build by 462

concatenating irrelevant sentences. We report the 463

retrieval accuracy in this task. 464

It is observed in Figure 6 that both NoPE base 465

model and head-based scale performs well even 466

when evaluating on 2× the pretraining or fine- 467

tuning context window, while RoPE models strictly 468

work inside pre-trained sequence length and imme- 469

diately fails outside. 470

5.4 Real-World Long Context Tasks 471

LongBench (Bai et al., 2023) is a comprehensive 472

assessment of the long context understanding ca- 473

pabilities of large language models. We test all 474

models using beam search decoding with beam 475

size 5. The evaluation context size is set to the 476

model context window accordingly in order to test 477

the model’s capability to utilize a longer context. 478

We only include raw PI and YaRN as the baseline 479

in this task. 480

We find that the performance of the NoPE base 481

model is better than its RoPE counterpart. Con- 482

cluding better information utilization in the origi- 483
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Model FT PG19 Proof-pile

L′ Tokens 2k 4k 8k 16k 2k 4k 8k 16k

Original LMs
RoPE - 14.5 491.4 488.5 599.5 3.5 303.0 432.1 759.5
NoPE - 14.6 326.9 > 103 > 103 3.5 117.4 > 103 > 103

Generalization for RoPE
NTK - - 14.5 14.9 22.8 80.4 3.5 3.3 4.1 13.3

YaRN - - 14.5 14.5 15.0 17.1 3.5 3.3 3.2 3.6

PIfair
4k 6M 16.0 15.9 551.9 > 103 3.8 3.4 307.9 633.8
8k 13M 17.4 17.1 17.1 752.8 4.0 3.6 3.4 406.3

16k 30M 18.7 18.4 18.3 18.2 4.3 3.9 3.6 3.6

YaRNfair
4k 6M 15.5 15.4 545.2 > 103 3.7 3.4 351.5 698.2
8k 13M 15.7 15.4 15.5 794.6 3.8 3.4 3.2 492.8

16k 30M 15.9 15.6 15.4 15.5 3.8 3.5 3.2 3.2

PIraw
4k 33M 15.2 15.0 623.8 951.7 3.6 3.3 334.4 595.5
8k 66M 15.4 15.1 15.0 909.6 3.6 3.3 3.0 463.0

16k 131M 15.6 15.3 15.0 14.9 3.7 3.3 3.0 3.0

YaRNraw
4k 33M 15.1 15.0 573.3 951.4 3.6 3.3 358.8 656.8
8k 66M 15.1 14.8 14.8 816.0 3.6 3.3 3.1 501.5

16k 131M 15.0 14.8 14.5 14.5 3.6 3.3 3.0 3.0
Generalization for NoPE

λ= 1.2√
d

- - 15.0 16.0 513.7 > 103 3.6 3.3 175.3 > 103

λ= 1.5√
d

- - 19.0 20.2 45.3 224.1 3.9 3.7 4.9 99.2
λ= 1.8√

d
- - 30.4 42.4 69.1 198.8 5.1 5.6 8.5 38.2

λ(h)
4k 6M 14.8 15.3 404.5 > 103 3.5 3.2 153.4 > 103

8k 13M 15.7 15.3 21.1 721.7 3.6 3.3 3.2 318.5
18k 30M 18.3 19.0 18.8 30.4 4.0 3.7 3.3 4.1

Table 1: Sliding window perplexity of different context window extension methods on PG19 and ProofPile.

nal length. Moreover, the head-based scale at a 4k484

extension length performs the best among all base-485

lines. We attribute it to the capability of the NoPE486

base model and the successful length generation of487

the head-based attention scale method. While the488

head-based model still suffers from performance489

degradation when extending to a longer context, as490

it is stated in Section 5.2.491

5.5 Ablation Study492

We found that the two variants of the head-based493

scale perform better in language modeling than494

the head-based scale method chosen, but it doesn’t495

mean that they are better at utilizing long context496

information. They are less performant in Long-497

Bench and did poorly in passkey retrieval tasks.498

Figure 8 in the Appendix C shows detailed results499

of the passkey retrieval task of the two variants. It’s500

clear that they are completely unable to answer the501

passkey except when it is at the beginning of the502

context window, proving their inability to perform503

long context tasks.504

6 Related Work505

Transformers without position encoding Ha-506

viv et al. (2022) was the first to discover that507

causal Transformer networks could perform lan-508

guage modeling tasks successfully even without 509

explicit PE. Chi et al. (2023) provided a theoretical 510

explanation for NoPE, demonstrating that for an 511

initialized NoPE LM, the variance of the hidden 512

representations in each layer is position-dependent, 513

with variance decreasing for larger positions. Both 514

works demonstrate that the NoPE hidden layer rep- 515

resentation implies positional information through 516

the probing task. Kazemnejad et al. (2023) proved 517

through constructive methods that NoPE can learn 518

absolute PE from the first layer and relative PE 519

from the second layer. They also showed that NoPE 520

has an extremely weak length generalization ability 521

(train ∼20, test ∼40), but is slightly better than LM 522

with explicit PE. This paper first proposes length 523

generalization methods for NoPE, uniform scale 524

and head-based scale. For the first time verifies the 525

effectiveness of NoPE generalization in real LLM 526

settings. 527

Length generalization Due to high computa- 528

tional and memory requirements, LLM training 529

is usually limited to short inputs. Directly applying 530

LLMs to long inputs faces the challenge of out- 531

of-distribution (OOD) issues. Research to enable 532

LLMs to process long inputs has been extensive 533

(Huang et al., 2023; Dong et al., 2023). The earliest 534
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Figure 6: Passkey retrieval accuracy for RoPE and NoPE methods. The vertical dashed line means models’ context
length (either pre-training length or fine-tuning length). NoPE exhibits strong performance even outside the model
context window, along with a competitive performance within the context window.

Model Avg. Singl-Doc QA Multi-Doc QA Summarization Few-shot Learning Synthetic Code

NQA Qsp MulF HpQA 2WQA Musq. GRpt QSum MulN TREC TrQA SSum PsgC PsgR Lcc Re-P

Original LMs
RoPE 16.5 3.5 4.7 17.5 3.4 8.8 2.8 26.9 8.4 25.9 33.5 18.8 15.7 1.9 2.5 49.5 40.1
NoPE 18.3 6.1 7.9 22.4 6.6 10.3 3.1 28.9 8.8 25.1 41.5 30.0 3.5 1.0 3.0 48.4 46.6

Generalization for RoPE
PIraw 4k 16.7 5.4 8.6 18.6 4.5 9.1 3.9 26.4 9.9 18.5 21.5 21.2 22.2 2.7 1.5 48.5 44.6
PIraw 8k 16.7 4.7 9.6 16.3 5.4 9.3 4.0 14.6 9.4 20.7 27.0 23.1 23.5 2.1 3.4 50.0 44.7
PIraw 16k 17.2 4.8 8.1 18.6 5.4 9.4 3.8 22.9 9.9 21.3 24.0 23.9 25.4 1.6 1.8 50.5 43.8
YaRNraw 4k 16.2 6.4 8.7 18.2 4.0 11.0 3.0 17.5 9.0 15.6 27.5 21.5 20.3 1.6 0.5 49.8 45.2
YaRNraw 8k 16.4 6.0 11.4 16.0 5.0 8.3 3.5 16.3 10.3 19.6 21.0 24.9 22.1 1.3 2.0 49.6 45.3
YaRNraw 16k 17.7 4.5 10.5 17.1 5.2 8.9 4.7 18.9 9.2 19.5 38.0 24.4 25.2 1.7 1.8 49.8 44.6

Generalization for NoPE
λ(h) 4k 18.5 6.3 11.1 23.1 5.7 10.1 4.2 27.7 8.9 23.4 25.5 35.7 13.7 0.6 4.5 47.9 46.9
λ(h) 8k 17.2 5.8 11.7 21.4 6.1 10.8 3.9 24.1 8.9 18.3 31.0 31.4 4.5 0.6 3.1 47.3 46.5
λ(h) 18k 17.0 6.0 12.8 20.3 7.0 12.9 4.1 17.2 8.4 16.1 41.0 32.9 5.1 0.3 2.1 44.5 41.0

Table 2: Real-world Long-Context performance of NoPE-extension methods and various RoPE baselines with
different context window sizes.

methods involved designing new relative PE mech-535

anisms during pre-training (Press et al., 2021; Sun536

et al., 2023). Subsequent studies focused primar-537

ily on the widely used RoPE (Su et al., 2024) and538

proposed length extension by mitigating RoPE’s539

OOD issues through interpolated positions (Chen540

et al., 2023; kaiokendev, 2023; Peng et al., 2023;541

emozilla, 2023; bloc97, 2023b,a). Other works em-542

ployed sliding window attention mechanisms to543

prevent relative positions from exceeding the max-544

imum distance seen in pre-training (Mohtashami545

and Jaggi, 2023; Han et al., 2023; Xiao et al., 2023;546

Jin et al., 2024; Zhang et al., 2024a). However,547

these models ignore information from distant to-548

kens, thus failing to capture long-distance context549

dependencies. All existing methods rely on spe-550

cific explicit PEs. However, the NoPE architecture551

is more streamlined and more aligned to the form552

of human language modeling. Exploring NoPE’s553

length generalization is therefore more intriguing 554

and attractive. 555

7 Conclusion 556

We studied the length generalization of Casual 557

Transformer without explicit position encoding. 558

We found that NoPE has a better generalization 559

ability than its explicit counterparts (e.g., the com- 560

monly applied RoPE). To further improve NoPE’s 561

length extension performance, we developed a 562

parameter-efficient tuning algorithm which aims to 563

search for the best temperature hyper-parameters 564

for attention heads. Through empirical evaluation, 565

we saw that NoPE can achieve competitive length 566

generalization and might be a promising alternative 567

for long-context language modeling. 568
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Limitation569

The length generalization algorithms discussed in570

this paper exhibit competitive performances, but571

the NoPE model itself still underperforms with572

state-of-the-art RoPE models, which makes the re-573

sults over long sequence language modeling tasks574

and LongBench tasks less competitive. NoPE still575

faces the challenges of considerable memory usage576

and computational complexity due to the quadratic577

nature of attention computation when processing578

extremely long contexts. Hardware limitations are579

likely to become a constraining factor for length580

generalization soon. We plan to further improve581

the NoPE’s performances for a fairer compari-582

son. This paper is also most an empirical one,583

which requires a deeper theoretical understanding584

of NoPE’s length generalization in the future.585
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A Fitted Function of the Uniform Scale797

In the study depicted in Figure 7, a hyper-parameter798

search was conducted for the uniform scale λ with799

an interval of 0.01√
d

. This search was applied to two800

checkpoints of the pre-trained NoPE model, with801

the aim of fitting the optimal λ at the extension802

length.803

The results of the fit, including the fitted function804

and the corresponding coefficient of determination,805

are as follows:806

• For the NoPE model at 10k steps, the coef-
ficient of determination R2 = 0.9954. The
fitted function is

λ =
0.3010 ln s+ 1√

d

• For the NoPE model at 50k steps, the coef-
ficient of determination R2 = 0.9773. The
fitted function is

λ =
0.3973 ln s+ 1√

d

In these functions, s is defined as i
L for each807

position i, representing the model’s extension ratio808

relative to its pre-training length.809

Furthermore, it is also found by Peng et al.
(2024) that the YaRN method benefits from a sim-
ilar uniform scale on LLaMA2 (Touvron et al.,
2023), although the scale does not have a direct
impact on the RoPE extension capability (refer to
Figure 2). The scale proposed by YaRN method
can be formulated as

λ =
0.1 ln s+ 1√

d

In conclusion, it is evident that the optimal uni-810

form scale varies across different models.811

Is it also observed from Figure 7 that uniform812

scale, despite being optimal, cannot flatten NoPE813

model’s perplexity within a large context window. 814

This finding underscores the importance of em- 815

ploying head-based scaling method for managing 816

model perplexity effectively across larger context 817

windows, thereby enhancing the model’s perfor- 818

mance. 819

B Entropy Visualization of All Heads 820

Figure 9 shows attention entropy for all layers and 821

all head of 8k extension head-based scale method. 822

C Ablation Study of Head-based Scale 823

Figure 8 shows the passkey retrieval task of the two 824

variations of head-based scale 825
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Figure 7: Fitted optimal uniform scale for each position. The red line indicates best log Perplexity found at each
position, the blue line plots the corresponding optimal uniform λ for that position, the black curve is the fitted
function and the vertical dotted line is pre-training length.
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Figure 8: Head-based scale variations. Although successful in PPL, they completely fails on passkey tests.
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Figure 9: Entropy for all layers and all head of 8k extension head-based scale method. The x-axis is the postion of
extension and the y-axis is entropy meaned by all samples.
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