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Abstract
Graph State Space Models (SSMs) have recently
been introduced to enhance Graph Neural Net-
works (GNNs) in modeling long-range interac-
tions. Despite their success, existing methods
either compromise on permutation equivariance
or limit their focus to pairwise interactions rather
than sequences. Building on the connection be-
tween Autoregressive Moving Average (ARMA)
and SSM, in this paper, we introduce GRAMA,
a Graph Adaptive method based on a learnable
ARMA framework that addresses these limita-
tions. By transforming from static to sequential
graph data, GRAMA leverages the strengths of
the ARMA framework, while preserving permuta-
tion equivariance. Moreover, GRAMA incorpo-
rates a selective attention mechanism for dynamic
learning of ARMA coefficients, enabling efficient
and flexible long-range information propagation.
We also establish theoretical connections between
GRAMA and Selective SSMs, providing insights
into its ability to capture long-range dependen-
cies. Experiments on 26 synthetic and real-world
datasets demonstrate that GRAMA consistently
outperforms backbone models and performs com-
petitively with state-of-the-art methods.

1. Introduction
Graph learning (Scarselli et al., 2008; Micheli, 2009; Bruna
et al., 2013; Defferrard et al., 2016; Kipf & Welling, 2016;
Veličković et al., 2018) has become crucial in handling
graph-structured data across various domains (Gravina &
Bacciu, 2024), such as social networks (Kipf & Welling,
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2016; Hamilton et al., 2017), molecular interactions (Xu
et al., 2019; Bouritsas et al., 2022), and more (Khemani
et al., 2024). The most popular framework of neural
graph learning is that of Message Passing Neural Networks
(MPNNs). Some prominent examples are GCN (Kipf &
Welling, 2016), GAT (Veličković et al., 2018), GIN (Xu
et al., 2019), and GraphConv (Morris et al., 2019). However,
many MPNNs suffer from a critical shortcoming of over-
squashing (Alon & Yahav, 2021; Di Giovanni et al., 2023),
that hinders their ability to model long-range interactions.
To address this limitation, several proposals were made,
from graph rewiring (Topping et al., 2022; Di Giovanni
et al., 2023; Karhadkar et al., 2023), to multi-hop MPNNs
(Gutteridge et al., 2023), weight space regularization (Grav-
ina et al., 2023; 2025), as well as Graph Transformers (GTs)
(Yun et al., 2019; Dwivedi & Bresson, 2022; Kreuzer et al.,
2021b). Specifically, GTs became popular because of their
theoretical and often practical ability to capture long-range
node interactions through the attention mechanism. How-
ever, the quadratic computational cost of full attention limits
their scalability, and in some cases, they were found to un-
derperform on long-range benchmarks when compared to
standard MPNNs (Tönshoff et al., 2023).

At the same time, State Space Models (SSMs), such as
S4 (Gu et al., 2021c) and Mamba (Gu et al., 2023), have
emerged as promising, linear-complexity alternatives to
Transformers. SSMs leverage a recurrent and convolutional
structure to efficiently capture long-range dependencies
while maintaining linear time complexity (Nguyen et al.,
2023). Contemporary models like Mamba develop selective
filters that prioritize context through input-dependent se-
lection, offering compelling advantages in processing long
sequences with reduced computational demands compared
to transformers (Gu et al., 2023). Despite these benefits,
adapting SSMs to the non-sequential structure of graphs
remains a significant challenge. Perhaps the biggest chal-
lenge in applying SSMs to graph learning tasks, lies in the
fundamental question of “how to transform a graph into a
sequence?”. To this end, several graph SSM approaches
were proposed, from a graph-to-sequence heuristic in Wang
et al. (2024a), to studying the relationship between SSMs
and spectral GNNs by pairwise interactions (Huang et al.,
2024b), as well as sample-based random walk sequencing of

1



Graph Adaptive Autoregressive Moving Average Models

the graph (Behrouz & Hashemi, 2024). More broadly, this
question has also been studied in other, non-SSM related
works, discussed in Appendix A. However, as we discuss
later, some of them lose the permutation-equivariance prop-
erty desired in GNNs, while others do not take advantage of
the sequence processing ability of SSMs. These limitations
hinder their ability to fully leverage sequence-processing ca-
pabilities, especially for addressing oversquashing in GNNs.
To resolve these issues, we propose, instead, a complemen-
tary approach – transforming a static input graph into a
sequence of graphs, combined with an adaptive neural au-
toregressive moving-average (ARMA) mechanism, called
GRAMA. We show that GRAMA is theoretically equiva-
lent to an SSM on graphs. Our GRAMA allows us to enjoy
the benefits of sequential processing mechanisms like SSMs,
coupled with any GNN backbone, from MPNNs to graph
transformers, while maintaining backbone properties, such
as permutation-equivariance.

Main Contributions. Our Adaptive Graph Autoregressive
Moving Average (GRAMA) model offers several advance-
ments in the conjoining of dynamical systems theory into
GNNs:

• Principled Integration of SSMs in GNNs. We enable
the use of sequence-based models (like ARMA) coupled
with virtually any GNN backbone, by transforming graph
inputs into temporal sequences without sacrificing permu-
tation invariance.

• Theoretical Understanding of the coupling of SSMs
and GNNs. We demonstrate that augmenting GNNs with
ARMA via our GRAMA has an equivalent SSM model.

• Mitigation of the oversquashing problem. We provide
the theoretical foundation that our GRAMA effectively
addresses the oversquashing phenomenon in GNNs and
improves the long-range interaction modeling capabilities.

• Strong Practical Performance. We demonstrate our
GRAMA on three popular backbones (GCN (Kipf &
Welling, 2016), GatedGCN (Bresson & Laurent, 2018),
and GPS (Rampášek et al., 2022)) and show the com-
pelling performance by GRAMA on 26 synthetic and
real-world datasets.

2. Related Work
We now provide an overview and discussion of related topics
and works to our GRAMA. In Appendix A, we discuss
additional related works.

Long-Range Interactions on Graphs. GNNs rely on
message-passing mechanisms to aggregate information from
neighboring nodes, which limits their ability to capture
long-range dependencies, as highlighted by Alon & Yahav
(2021); Di Giovanni et al. (2023). Models like GCN (Kipf

& Welling, 2016), GraphSAGE (Hamilton et al., 2017),
and GIN (Xu et al., 2019) face challenges such as over-
smoothing (Nt & Maehara, 2019; Oono & Suzuki, 2020;
Cai & Wang, 2020; Rusch et al., 2023), over-squashing
(Alon & Yahav, 2021; Topping et al., 2022; Di Giovanni
et al., 2023) and more generally vanishing gradients (Arroyo
et al., 2025), which hinder long-range information propa-
gation—critical in applications like bioinformatics (Baek
et al., 2021; Dwivedi et al., 2022b) and heterophilic settings
(Luan et al., 2024; Wang et al., 2024b). To address these
limitations, various methods have emerged, including graph
rewiring (Topping et al., 2022; Karhadkar et al., 2023), adap-
tive message passing (Errica et al., 2024; Finkelshtein et al.,
2024), weight space regularization (Gravina et al., 2023;
2024b; 2025), exploitation of port-Hamiltonian dynamics
(Heilig et al., 2025), and Graph Transformers (GTs). GTs,
which capture both local and global interactions, have been
particularly promising, as demonstrated by models like SAN
(Kreuzer et al., 2021c), Graphormer (Ying & Leskovec,
2021), and GPS (Rampášek et al., 2022). These models
often incorporate positional encodings, such as Laplacian
eigenvectors (Dwivedi et al., 2021) or random-walk struc-
tural encodings (RWSE) (Dwivedi et al., 2022a), to encode
graph structure. However, the quadratic complexity of full
attention in GTs presents scalability challenges. Recent
innovations like sparse attention mechanisms (Zaheer et al.,
2020; Choromanski et al., 2020), Exphormer (Shirzad et al.,
2023), and linear graph transformers (Wu et al., 2023; Deng
et al., 2024) address these bottlenecks, improving efficiency
and scalability for long-range propagation.

State Space Models (SSMs). SSMs, traditionally used
for time series analysis (Hamilton, 1994b; Aoki, 2013),
process sequences through latent states. However, clas-
sic SSMs struggle with long-range dependencies and lack
parallelism, limiting their computational efficiency. Re-
cent advances, such as the Structured State Space Sequence
model (S4) (Gu et al., 2021c; Fu et al., 2023), mitigate
these issues by employing linear recurrence as a structured
convolutional kernel, enabling parallelization on GPUs. De-
spite this, simple SSMs still underperform compared to
attention models in natural language tasks. Mamba (Gu
et al., 2023) improves the ability of SSMs to capture long-
range dependencies by selectively controlling which se-
quence parts influence model states. Mamba has shown
promising results, outperforming Transformers in several
benchmarks (Gu et al., 2023; Liu et al., 2024) while be-
ing more computationally efficient. The combination of
SSMs with graph models presents challenges, particularly
in transforming the articulated connectivity of graphs into
sequences. For instance, Graph-Mamba (Wang et al., 2024a)
orders nodes by degree, but this heuristic approach sacrifices
permutation-equivariance, a desirable property in GNNs.
Similarly, Behrouz & Hashemi (2024) propose generating
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sequences via random walks, which improves performance
but also sacrifices permutation-equivariance while adding
non-determinism to the model. Also, turning a graph into
a sequence based on a policy, such as sorting nodes by
degree, limits direct use of the input graph, as multiple
graphs can share the same node degrees and thus be indis-
tinguishable. Huang et al. (2024b) explored links between
spectral GNNs and graph SSMs, focusing on pairwise inter-
actions; however, this design choice may not fully exploit
the sequence-handling capacity of SSMs and may reach
the state of oversquahsing earlier because of the use of
powers of the adjacency matrix (Di Giovanni et al., 2023).
In this work, we harness the potential of SSMs by adopt-
ing a structure inspired by the connection between SSMs
and ARMA models. By transforming static graphs into
sequences, GRAMA maintains permutation-equivariance,
a desired property in GNNs (Bronstein et al., 2021), also
useful for long-propagation (Pan & Kondor, 2022; Schatzki
et al., 2024), while enabling effective learnable and selective
long-range propagation.

Autoregressive Moving Average Models (ARMA).
ARMA models, introduced by Whittle (1951), combine
an autoregressive (AR) component, modeling dependencies
on previous time steps, with a moving average (MA) com-
ponent, considering residuals. Widely applied in stationary
time series analysis (Box et al., 1970), ARMA models are
equivalent to state space models (SSMs) (Hamilton, 1994a).
An ARMA(p, q) model considers previous p states and q
residuals δ(·), and is governed by the following equation:

f(t) =

p∑
i=1

ϕif(t− i) +

q∑
j=1

θjδ(t− j) + δ(t), (1)

where {ϕi}pi=1, {θi}
q
j=1 are the autoregressive and moving

average coefficients, respectively.

Although ARMA models are traditionally used for process-
ing sequences, they have also been studied for classical
graph filtering (Isufi et al., 2016) and more recently for-
mulated as an MPNN in Bianchi et al. (2021). The Graph
ARMA model (Bianchi et al., 2021) introduced a learn-
able ARMA version for GCNs, using recursive 1-hop fil-
ters to create a structure resembling ARMA methods. In
this paper, we introduce GRAMA, a method that lever-
ages neural ARMA models by transforming a static input
graph into a graph sequence. Different than Bianchi et al.
(2021), which uses the static input graph and formulates a
recursive ARMA model through a spectral convolution per-
spective, our GRAMA incorporates a selective and graph
adaptive mechanism that learns ARMA coefficients along
the graph sequence. This dynamic adjustment of coefficients
directly addresses oversquashing by preserving long-range
dependencies and enabling adaptive control over feature
propagation. Additionally, Bianchi et al. (2021) uses an
ARMA(1, 1) model with non-linearities between steps, hin-

dering its direct conversion into an SSM, while we show
that our GRAMA has an equivalent SSM, providing deeper
theoretical understandings.

3. GRAMA
Although a graph is a static structure, the process of message
passing introduces a dynamic element. In message passing,
information is propagated through the graph, allowing nodes
to update their states based on the states of their neighbors.
This dynamic behavior can be viewed through the lens of
dynamical systems, where the state of each node evolves
according to certain aggregating rules, as discussed in Sec-
tion 2. This perspective is instrumental in Recurrent Neural
Networks (RNNs), which are designed to handle sequential
data and capture temporal dependencies. By treating the
message-passing process as a dynamical system, we can
leverage the strengths of RNNs to model the evolution of
node states over time. The model we propose, GRAMA,
takes inspiration from the architectural structure of the latest
generation of sequential models, like S4 (Gu et al., 2021a),
Mamba (Gu et al., 2023), LRU (Orvieto et al., 2023b), and
xLSTM (Beck et al., 2024). To import these powerful se-
quential models to graph learning, we first translate static
input graphs into sequences of graphs. Then, the GRAMA
block transforms such graph sequence into another graph
sequence, while considering the structure of the graph. Each
GRAMA block is linear, and non-linear activations are ap-
plied between GRAMA blocks to increase the flexibility of
the overall model. Below, we discuss in detail the different
aspects of our GRAMA – from its initialization to the graph
sequence processing blueprint by ARMA, to the learning of
ARMA coefficients in a graph adaptive manner. The overall
design of GRAMA is illustrated in Figure 1.

Notations. We denote a graph by G = (V,E), with |V | =
n nodes and |E| = m edges. A node v is associated with
input node features fv ∈ Rc. The node features are then
denoted by f ∈ Rn×c.

Initialization. Processing information with ARMA or SSM
frameworks, by design, requires a sequence. As discussed
in Section 2, previous studies on graph SSMs have cho-
sen to transform the graph into a sequence by means of
heuristic node ordering, random walk sampling, or by con-
sidering pairwise interactions (edges) as sequences of length
2. While these choices are valid, and show strong perfor-
mance in practice, they also introduce challenges compared
to common graph learning approaches, or may not fully uti-
lize the underlying sequence processing framework. Specif-
ically, the first two approaches (node ordering and walk
sampling) do not maintain the permutation equivariance
desired in GNNs, and the third (pairwise interactions) con-
siders only very short sequences, while one key benefit of
the ARMA and SSM frameworks is their ability to cap-

3



Graph Adaptive Autoregressive Moving Average Models

Figure 1: An illustration of the GRAMA framework with L recurrences. We embed a static input graph into a sequence
of graphs. This sequence is the input for the first GRAMA block. Here, a GRAMA block is composed of a neural
ARMA(L,L) layer with adaptive autoregressive ϕ = {ϕi}Li=1 and moving average θ = {θj}Lj=1 coefficients, that weigh
previous states {fl}L−1

l=0 and residuals {δl}L−1
l=0 , and a graph-informed residual update via a GNN backbone. A GRAMA

block yields two updated state and residual sequences F(s),∆(s) for the s = 1, . . . , S block. Each GRAMA block is a
linear system, and non-linearities are applied between GRAMA blocks, as in Equation (8).

ture long-range dependencies in long sequences (Gu et al.,
2021b). To address these challenges, we propose to trans-
form a static graph into a sequence of graphs, such that
each node is equipped with a sequence of input node feature
vectors rather than a single input node feature vector. By
following this idea, we can employ sequence processing
frameworks such as ARMA on data beyond pairwise in-
teractions, while maintaining permutation-equivariance, as
we discuss later. Specifically, we first stack the input node
features f for L times, where L > 0 is a hyperparameter that
determines the length of the sequence to process, followed
by the application of a set of MLPs, {gk}L−1

k=0 , one for each
k = 0, . . . , L− 1, that embed the original c node features
into d channels:

F(0) =
[
f (0), . . . , f (L−1)

]
=
[
g0(f), . . . , gL−1(f)

]
, (2)

where F(0) ∈ RL×n×d. We refer to the sequence encoded
by F(0) as the initial input sequence, and to work with an
ARMA model, we also define the residuals sequence as
follows:

∆(0) =
[
δ(0), . . . , δ(L−1)

]
, ∆(0) ∈ RL×n×d, (3)

where δ(ℓ) = f (ℓ+1) − f (ℓ) for ℓ = 0, . . . , L− 2. Note that
by subtracting subsequent elements in the input sequence
F(0), we are left with L−1 elements. Therefore, we choose
the last residual term in ∆(0) (that is δ(L−1)) to be a matrix
of zeros at the initialization step.
We note that via this approach, we can perform sequence
modeling using ARMA on the sequence dimension (L)
while retaining the ability to use any desired backbone GNN

to exchange information between nodes, as shown in Sec-
tion 3.1, thus rendering our GRAMA a drop-in mechanism.

3.1. Graph Neural ARMA

Autoregressive (AR) Layers. An ARp captures the relation-
ship between current node features and their p > 0 previous
historical values, through the learnable coefficients {ϕi}pi=1

discussed in Section 3.2. Formally, given a sequence of
node features of length L

[
f (ℓ), . . . , f (ℓ+L−1)

]
, assuming

p ≤ L, the node features at step ℓ+ L read:

f
(ℓ+L)
ARp

= ARp(f
(ℓ), . . . , f (ℓ+L−1)) =

p∑
i=1

ϕif
(ℓ+L−i).

(4)
Moving Average (MA) Layers. Given a residuals sequence[
δ(ℓ), . . . , δ(ℓ+L−1)

]
, a MAq layer with {θj}qj=1 learnable

coefficients, captures the dependency of the latest 0 < q ≤
L residuals:

f
(ℓ+L)
MAq

= MAq(δ
(ℓ), . . . , δ(ℓ+L−1)) =

q∑
j=1

θjδ
(ℓ+L−j).

(5)
GRAMA Recurrence. Combining ARp and MAq layers,
leads to the ARMA(p, q) recurrence:

f (ℓ+L) = f
(ℓ+L)
ARp

+ f
(ℓ+L)
MAq

+ δ(ℓ+L), (6)

where δ(ℓ+L) is the residual of the last step, which is given
by a GNN backbone that is optimized jointly with the
ARMA coefficients, that is, δ(ℓ+L) = GNN(f (ℓ+L−1);G).

4



Graph Adaptive Autoregressive Moving Average Models

Here, we apply the GNN backbone without non-linearity so
that each recurrence step within a GRAMA block is a linear
function. In particular, note that the GNN can be any graph
neural network, because at each recurrence, GRAMA pro-
cesses a sequence of graphs by updating each node feature
based on its sequence via the terms f (ℓ+L)

ARp
, f

(ℓ+L)
MAq

, coupled

a with a GNN in the term δ(ℓ+L). Moreover, the structure
of the terms f (ℓ+L)

ARp
, f

(ℓ+L)
MAq

includes multiple residual con-
nections, which can implement standard skip-connections,
retaining the expressiveness of the backbone GNN. Sec-
tion 5 showcases GRAMA with various GNN backbones,
from MPNNs to graph transformers.

GRAMA Block. Equation (6) describes a single recurrence
step within a GRAMA block. Similar to other recurrent
mechanisms, we apply R recurrences, where R > 1 is a hy-
perparameter. Thus, given the initial states F(0) and residu-
als ∆(0), after R recurrences according to Equation (6), we
obtain updated states

[
f (L), . . . , f (L+R−1)

]
and residuals[

δ(L), . . . , δ(L+R−1)
]

sequences, followed by an element-
wise application of non-linearity σ:

F(1) =
[
σ(f (L)), . . . , σ(f (L+R−1))

]
,

∆(1) =
[
σ(δ(L)), . . . , σ(δ(L+R−1))

]
.

(7)

In practice, as discussed in Appendix D.6, R is chosen
such that p = q = R = L, and the obtained updated se-
quences are F(1) =

[
σ(f (L)), . . . , σ(f (2L−1))

]
, ∆(1) =[

σ(δ(L)), . . . , σ(δ(2L−1))
]
.

Deep GRAMA. In Equation (7), we describe the action
of a single, first GRAMA block. Overall, each block per-
forms R recurrence steps. As such, the first GRAMA block
yields R new states and residuals encoded in F(1) and
∆(1), respectively, that can then be processed by subse-
quent GRAMA blocks. That is, we can stack S ≥ 1
GRAMA blocks, each block with its own parameters, form-
ing a deep GRAMA network, where the updated sequences
at the s-th GRAMA block are:

F(s) =
[
σ(f (L+(s−1)R), . . . , σ(f (L+sR−1))

]
,

∆(s) =
[
σ(δ(L+(s−1)R)), . . . , σ(δ(L+sR−1))

]
,

(8)

for s = 1, . . . , S. Note that the depth of a GRAMA net-
work is therefore equivalent to the number of systems S
to be learned, multiplied by the number of recurrent steps
R. The outputs of the GRAMA network are then the final
state and residual sequences F(S), ∆(S). We illustrate this
process in Figure 1. Because in our experiments we are in-
terested in static graph learning problems, we feed the latest
state matrix within the sequence F(S) to a readout layer to
obtain the final prediction, as elaborated in Appendix C.2.
The additional processing in GRAMA introduces some
computational overhead, as detailed in Section 3.3. How-
ever, this cost remains reasonable compared to other meth-
ods and yields significant performance improvements, as
detailed in Section 5.

3.2. Learning Adaptive Graph ARMA Coefficients

We now introduce our graph adaptive approach for learning
the ARMA coefficients, which is a key component in our
approach to allow a flexible and selective GRAMA.

Naive ARMA Learning. The most straightforward way to
learn the AR and MA coefficients, {ϕi}pi=1 and {θj}qj=1, is
to consider them as parameters of the neural network and
learn them via gradient descent. However, this yields coeffi-
cients that are identical for all inputs, thereby not adaptive.
This approach is directly linked to non-selective weights in
SSM models (Gu et al., 2021c), which were shown to be
less effective compared to selective coefficients (Gu et al.,
2023).
Selective ARMA Learning. To allow selective ARMA
coefficient learning similarly to Mamba (Gu et al., 2023),
we use an attention mechanism (Vaswani et al., 2017) ap-
plied over the state and residual sequences F(s), ∆(s) at
each GRAMA block s = 1, . . . , S. The rationale behind
this construction is that an attention layer assigns scores
between elements within the sequence. Formally, we obtain
two scores matrices AF(s) ,A∆(s) ∈ [0, 1]L×L. The last row
in each matrix represents the predicted coefficients for our
GRAMA, {ϕi}pi=1 and {θj}qj=1, respectively. However, the
SoftMax normalization in standard attention layers yields
non-negative pairwise values, which is not consistent with
the usual choice of ARMA coefficients. Therefore, we fol-
low the self-attention implementation (Vaswani et al., 2017)
up to the SoftMax step, and we normalize the scores to be in
[−1, 1] while complying with a sum-to-one constraint. We
note that, this procedure facilitates learning stability, such
that ARMA coefficients do not explode or vanish, and its
design is guided by the insights from Theorems 4.3 and
4.4. We also note that this overall construction yields two-
fold adaptivity in the predicted ARMA coefficients: First,
the attention mechanism allows selectivity with respect to
inputs, which are the sequences F(s), ∆(s). Second, be-
cause these sequences are coupled with a GNN backbone,
as shown in Equation (6), it implies that the input node fea-
tures and the graph structure influence the coefficients. We
provide further implementation details in Appendix C, and
a comparison between naive and selective ARMA learning
in Appendix E.4.

3.3. Time and Space Complexity of GRAMA

We discuss the theoretical complexity of our method, show-
ing its reduced computational complexity compared with
other models, e.g., transformers. We note that, overall, our
GRAMA retains the asymptotic complexity of the under-
lying GNN backbone, assuming that the number of recur-
rences is a constant, or smaller than the number of nodes
and edges within the graph. We report empirical runtimes
in Appendix E.3, demonstrating that GRAMA offers better
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scalability and performance compared to other approaches
such as graph transformers.

Time Complexity. We analyze the case where we use an
MPNN that is linear in graph size (nodes and edges) such as
GCN is used within GRAMA. Our GRAMA is comprised
of L initial MLPs, S GRAMA blocks, each with L recurrent
steps, and a final readout layer. Note that L is the sequence
length, which is a hyperparameter and does not exceed the
value of 50 in our experiments. The initial MLPs operate on
the input f ∈ Rn×c and embed them to a hidden dimension
d. Therefore, their time complexity is O(L · n · c · d). Each
GRAMA block is comprised of two attention layers – one
for the pooled states sequence and the other for the residual
pooled sequence, and a GNN layer for predicting the current
step residual, which operates on graph node features. The
attention layer time complexity is O(L2d2) because the
pooled (across the graph nodes) sequence is of shape L× d,
and the GNN layer complexity is O(n + m), where n is
the number of nodes and m is the number of edges in the
graph. Note that usually m ≫ n, so the GNN complexity
can be rewritten as O(m). We note that, in the case of
a graph-transformer based GNN, like GPS, we have that
m = n2. In the following, we consider the more general
case. In total, we have S GRAMA blocks, where S is a
hyperparameter, and is typically small, up to 4. The final
readout layer is a standard MLP and, therefore, has the time
complexity of O(n·d·o) for node-wise tasks, and O(d·o) for
graph-level tasks. Therefore, the overall time complexity
(including initial MLPs and readout) of our GRAMA is
O
(
L · n · c · d+ SL · (n+m+ L2 · d2) + n · d · o

)
.

Space Complexity. We analyze the case where linear in
graph size (nodes and edges) complexity MPNN (such as
GCN) is used within GRAMA. The space complexity of the
initial MLPs is O(L · c · d). The space complexity for each
GRAMA block is O(d2) for the GNN layer, and similarly
O(d2) for the two attention layers. Overall, we have S such
blocks. The readout layer space complexity is O(d · o).
Thus, the overall space complexity (including initial MLPs
and readout) of GRAMA is O(L · c · d+ S · d2 + d · o).

4. Theoretical Properties of GRAMA
We now formally cast common knowledge formulated in
the context of RNNs, control theory, and SSMs (Yu et al.,
2019; Slotine et al., 1991; Khalil, 2002; Aoki, 2013) to
the realm of GNNs, aiming to adapt foundational results
from non-graph settings of SSMs and ARMA models into a
graph-learning framework. We discuss the main theoretical
properties of our GRAMA: (i) its representation as an SSM
model, (ii) its stability, and (iii) its ability to model long-
range interactions in graphs. All the proofs are provided in
Appendix B.
Connection to SSM. As discussed in Section 3, each

GRAMA block is fundamentally an ARMA model. In
Theorem 4.1, we formalize the equivalence between ARMA
models and linear SSMs. This allows us to interpret our
GRAMA model as a stack of graph-informed SSMs through
the backbone GNN encoded in Equation (6).

Theorem 4.1 (Equivalence between ARMA models and
State Space Models). For every ARMA model, there exists
an equivalent State Space Model (SSM) representation, and
conversely, for every linear SSM, there exists an equivalent
ARMA model representation.

Stability. Representing an ARMA system as an SSM in-
volves the description of a linear recurrence equation as
f (L) =

∑p
i=1 ϕif

(L−i) +
∑q

j=1 θjδ
(L−j) + δ(L), or, alter-

natively, in matrix form as X(L) = AX(L−1) + Bδ(L),
with X(L−1) =

[
f (L−1), . . . , f (0), δ(L−1), . . . , δ(0)

]
, see

Appendix B for more details.1 In the SSM literature, the
A matrix is called the state matrix. The state matrix cor-
responding to a GRAMA block is entirely determined by
the set of autoregressive and moving average coefficients.
Thus, each GRAMA block is characterized by an adaptive
state matrix, which is especially important since it directly
governs the evolution of the node features f . In particular,
the stability of this evolution can be established by analyz-
ing the powers of the state matrix, as widely studied in the
context of RNN and SSM theory (Pascanu, 2013; Gu et al.,
2021b). Hence, the stability of a GRAMA block can be
characterized by the following Lemma 4.2.

Lemma 4.2 (Stability of GRAMA). The linear SSM cor-
responding to a GRAMA block with autoregressive co-
efficients {ϕi}pi=1 is stable if and only if the spectral ra-
dius of its state matrix is less than (or at most equal to)
1. In particular, this happens if and only if the polynomial
P (λ) = λp −

∑p
j=1 ϕjλ

p−j has all its roots inside (or at
most on) the unit circle.

We now give a sufficient condition for the stability of the
SSM corresponding to a GRAMA block.

Theorem 4.3 (Sufficient condition for GRAMA stability).
If
∑p

j=1 |ϕj | ≤ 1, then the GRAMA block with autore-
gressive coefficients {ϕi}pi=1 corresponds to a stable linear
SSM.

Long-Range Interactions. A key distinction between stan-
dard MPNNs and our GRAMA lies in its neural selective se-
quential mechanism, which uses learned ARMA coefficients
to operate across two domains: the spatial graph domain via
a GNN backbone, and the sequence domain via the ARMA
mechanism, enabling selective state updates. Remarkably,

1Note that, following the notation of Section 3, we can write
the state X(L−1) as the concatenation of F(0) and ∆(0), i.e.,
X(L−1) =

[
F(0),∆(0)

]
. For simplicity of notations, we analyze

the case where R = L.
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the state matrices of each GRAMA block play a significant
role in the propagation of the information from the first
sequence of node features, F(0) =

[
f (0), . . . , f (L−1)

]
, to

the last sequence of node features after S GRAMA blocks,
F(S) =

[
f (LS), . . . , f (L(S+1)−1)

]
, especially for large L

and S. In fact, if the entries of the k-th power of the state ma-
trix of a GRAMA block vanish, then for a stable GRAMA
it is impossible to model long-range dependencies of k hops,
in the sequence, as we show in Lemma B.1.

This fact relates to a broadly acknowledged problem in the
RNN literature, the vanishing gradient issue (Hochreiter
et al., 2001; Bengio et al., 1994; Orvieto et al., 2023a):
the entries of the powers of a matrix with a spectral radius
less than 1 can quickly vanish, making it challenging for
gradient-based algorithms to effectively long-range patterns.
Therefore, to bias the long-term propagation of the informa-
tion of a GRAMA block, we can initialize the state matrix
to have its eigenvalues close enough to the unitary circle,
following the footsteps of recent RNN methodologies (Orvi-
eto et al., 2023b; Arjovsky et al., 2016; De et al., 2024). In
fact, the closer the eigenvalues are to the unitary circle, the
slower the powers of the state matrix vanish (Horn & John-
son, 2012). The following Theorem 4.4 provides a criterion
to control the long-range interaction of GRAMA.
Theorem 4.4 (GRAMA allows long-range interactions).
Let us be given a GRAMA block with autoregressive co-
efficients {ϕi}pi=1. Assume the roots of the polynomial
P (λ) = λp −

∑p
j=1 ϕjλ

p−j are all inside the unit circle.
Then, the closer the roots P (λ) are to the unit circle, the
longer the range propagation of the linear SSM correspond-
ing to such a GRAMA block.

The results derived in this section provide the theoretical
foundation and motivation for the employment of GRAMA
as a method to address the oversquashing phenomenon in
GNNs, and to enhance long-range interaction modeling
capabilities, as we show in our experiments in Section 5.

5. Experiments
We present the empirical performance of our GRAMA
on a suite of benchmarks similar to previous graph SSM
studies. Specifically, we show the efficacy in performing
long-range propagation, thereby mitigating oversquashing.
To this end, we evaluate GRAMA on a graph transfer
task (Gravina et al., 2025) in Section 5.1. In a similar
spirit, we assess GRAMA on synthetic benchmarks that
require the exchange of messages at large distances over
the graph, called graph property prediction from Gravina
et al. (2023), in Section 5.2. We also verify GRAMA on
real-world datasets, including the long-range graph bench-
mark (Dwivedi et al., 2022b) in Section 5.3, and additional
GNN benchmarks in Appendix E.1, where we consider
MalNet-Tiny (Freitas et al., 2021), the heterophilic node

classification datasets from Platonov et al. (2023), ZINC-
12k, OGBG-MOLHIV, Cora, CiteSeer, Pubmed, MNIST
CIFAR10, PATTERN, and CLUSTER. In Appendix E.3,
we discuss the runtimes of GRAMA, and compare with
other methods. In Appendix E.4, we report ablation stud-
ies and additional comparisons to provide a comprehensive
understanding of our GRAMA, while in Appendix E.6 we
include an evaluation on temporal setting. Notably, the
performance of GRAMA is compared with popular and
state-of-the-art methods, such as MPNN-based models, DE-
GNNs, higher-order GNNs, and graph transformers, and
shows consistent improvements over its baseline models,
with competitive results to state-of-the-art methods (see
Appendix F). We note that, in the main text, we report mod-
els and variants that are state-of-the-art on the individual
benchmarks, which may lead to differences between the
tables, while more variants are explored in the appendix.
Additional details on baseline methods are presented in Ap-
pendix D.1, and the explored grid of hyperparameters in
Appendix D.6. We demonstrate GRAMA on three widely
used backbones—GCN (Kipf & Welling, 2016), GatedGCN
(Bresson & Laurent, 2018), and GPS (Rampášek et al.,
2022), highlighting its versatility across different backbone
types, including linear MPNNs and graph transformers, and
its consistently strong performance regardless of the un-
derlying backbone architecture. We release our code at
https://github.com/MosheEliasof/GRAMA.

5.1. Graph Feature Transfer

Setup. We consider three graph feature transfer tasks based
on (Gravina et al., 2025). The objective is to transfer a label
from a source to a target node, placed at a distance ℓ in the
graph. By increasing ℓ, we increase the complexity of the
task and require longer-range information. Moreover, due to
oversquashing, the performance is expected to degrade as ℓ
increases. We initialize nodes with a random valued feature,
and we assign values “1” and “0” to source and target nodes,
respectively. We consider three graph distributions, i.e.,
line, ring, crossed-ring, and four different distances ℓ =
{3, 5, 10, 50}. Appendix D.2 provides additional details
about the dataset and the task.

Results. Figure 2 reports the test mean-squared error (and
standard deviation) of GRAMA compared to well-known
models from the literature. Results show that traditional
MPNNs (GCN, GAT, GraphSAGE, and GIN) struggle to
propagate information effectively over long distances, with
their performance deteriorating significantly as the source-
target distance ℓ increases. This is evident across all graph
types. In contrast, GRAMA coupled with GCN achieves a
low error even when the source-target distance is 50. Among
the models, A-DGN, SWAN, and GPS come closest to
GRAMA performance, as they are a non-dissipative ap-
proach and a transformer-based model, respectively. How-
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(a) Line (b) Ring (c) Crossed-Ring

Figure 2: Feature transfer performance on (a) Line, (b) Ring, and (c) Crossed-Ring graphs.

ever, GRAMA still outperforms all baselines across all
graph structures, especially as the propagation distance in-
creases, thereby offering solid empirical evidence of its
ability to transfer information across long distances, as sup-
ported by our theoretical understanding from Section 4.

5.2. Graph Property Prediction

Setup. We consider the three graph property prediction
tasks presented in (Gravina et al., 2023), investigating the
performance of GRAMA in predicting graph diameters,
single source shortest paths (SSSP), and node eccentricity
on synthetic graphs. To effectively address these tasks, it
is essential to propagate information not only from direct
neighbors but also from distant nodes within the graph.
As a result, strong performance in these tasks mirrors the
ability to facilitate long-range interactions. We provide more
details on the setup and task in Appendix D.3. For the GPS
results, we use a basic GPS with no additional components
(e.g., encodings), to quantify the contribution of GRAMA.

Results. Table 1 reports the mean test log10(MSE), com-
paring our GRAMA with various MPNNs, DE-GNNs,
and transformer-based models. The results highlight that
GRAMAGPS consistently achieves the best performance
across all tasks, demonstrating significant improvements
over baseline models. For example, in the Eccentricity task,
GRAMAGPS reduces the error score by over 1.2 points com-
pared to SWAN and by over 1.7 points compared to A-DGN,
which are models designed to propagate information over
long radii effectively. Compared to ARMA (Bianchi et al.,
2021), our method demonstrates an average improvement
of 2.4 points, highlighting the empirical difference between
the methods, besides their major qualitative differences.

Overall, these results further validate the effectiveness of
our GRAMA in modeling long-range interactions and mit-
igating oversquashing. Furthermore, GRAMA not only
surpasses strong models like GPS, but also strengthens the
performance of simple MPNN backbones like GCN. For
example, GCN augmented with our GRAMA consistently
delivers better results than the baseline GCN, highlighting
its ability to enhance traditional message-passing frame-

Table 1: Mean test set log10(MSE)(↓) and std averaged on 4
random weight initializations on Graph Property Prediction
tasks. The lower, the better. First, second, and third best
results for each task are color-coded; we consider only the
best configuration of GRAMA for coloring purposes.

Model Diameter SSSP Eccentricity

MPNNs
GatedGCN 0.1348±0.0397 -3.2610±0.0514 0.6995±0.0302

GCN 0.7424±0.0466 0.9499±0.0001 0.8468±0.0028

GAT 0.8221±0.0752 0.6951±0.1499 0.7909±0.0222

GraphSAGE 0.8645±0.0401 0.2863±0.1843 0.7863±0.0207

GIN 0.6131±0.0990 -0.5408±0.4193 0.9504±0.0007

GCNII 0.5287±0.0570 -1.1329±0.0135 0.7640±0.0355

ARMA 0.7819±0.4729 0.0432±0.0981 0.2605±0.0610

DE-GNNs
DGC 0.6028±0.0050 -0.1483±0.0231 0.8261±0.0032

GRAND 0.6715±0.0490 -0.0942±0.3897 0.6602±0.1393

GraphCON 0.0964±0.0620 -1.3836±0.0092 0.6833±0.0074

A-DGN -0.5188±0.1812 -3.2417±0.0751 0.4296±0.1003

SWAN -0.5981±0.1145 -3.5425±0.0830 -0.0739±0.2190

Graph Transformers
GPS -0.5121±0.0426 -3.5990±0.1949 0.6077±0.0282

Our
GRAMAGCN 0.2577±0.0368 0.0095±0.0877 0.6193±0.0441

GRAMAGATEDGCN -0.5485±0.1489 -4.1289±0.0988 0.5523±0.0511

GRAMAGPS -0.8663±0.0514 -3.9349±0.0699 -1.3012±0.1258

works. This demonstrates that our method can effectively
leverage the strengths of simple models while overcoming
their limitations in long-range propagation.

5.3. Long-Range Benchmark

Setup. We assess the performance of our method on the real-
world long-range graph benchmark (LRGB) from (Dwivedi
et al., 2022b), focusing on the Peptides-func and Peptides-
struct datasets. We follow the experimental setting in
(Dwivedi et al., 2022b), including the 500K parameter bud-
get. All transformer baselines include Laplacian positional
encodings, for a fair evaluation. Our GRAMA does not use
additional encodings. The datasets consist of large molec-
ular graphs derived from peptides, where the structure and
function of a peptide depend on interactions between distant
parts of the graph. Therefore, relying on short-range inter-
actions, such as those captured by local message passing in
GNNs, may not be insufficient to excel at this task. More
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Table 2: Results for Peptides-func and Peptides-struct av-
eraged over 3 training seeds. Baselines are taken from
(Dwivedi et al., 2022b) and (Gutteridge et al., 2023). All
MPNN-based methods include structural and positional en-
coding. The first, second, and third best scores are colored,
and we color only the best configuration of GRAMA.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN 59.30±0.23 0.3496±0.0013

GatedGCN 58.64±0.77 0.3420±0.0013

ARMA 64.08±0.62 0.2709±0.0016

Multi-hop GNNs
DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018

MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023

DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015

DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007

Graph Transformers
Transformer+LapPE 63.26±1.26 0.2529±0.0016

SAN+LapPE 63.84±1.21 0.2683±0.0043

GraphGPS+LapPE 65.35±0.41 0.2500±0.0005

DE-GNNs
GRAND 57.89±0.62 0.3418±0.0015

GraphCON 60.22±0.68 0.2778±0.0018

A-DGN 59.75±0.44 0.2874±0.0021

SWAN 67.51±0.39 0.2485±0.0009

Graph SSMs
Graph-Mamba 67.39±0.87 0.2478±0.0016

GMN 70.71±0.83 0.2473±0.0025

Ours
GRAMAGCN 70.93±0.78 0.2439±0.0017

GRAMAGATEDGCN 70.49±0.51 0.2459±0.0020

GRAMAGPS 69.83±0.83 0.2436±0.0022

details on the setup and tasks can be found in Appendix D.4.

Results. Table 2 provides a comparison of our GRAMA
model with a wide range of baselines. A broader comparison
is presented in Table 8. The results indicate that GRAMA
outperforms standard MPNNs, transformer-based GNNs,
DE-GNNs, SSM-based GNNs, and most Multi-hop GNNs.
Such a result highlights the competitiveness of our method
and its ability to propagate information effectively. More-
over, its empirical advantage over existing Graph SSMs em-
phasizes the strength of GRAMA in modeling long-range
interactions while maintaining permutation equivariance
and processing sequences that go beyond pairwise inter-
actions. Similarly to Section 5.2, our results show that
GRAMA strengthens the abilities of simple GNN back-
bones. Specifically, our method boosts GCN and GatedGCN
by more than 11 AP points on the Peptide-func task.

6. Conclusion
We introduced GRAMA, a novel sequence-based frame-
work that enhances the long-range interaction modeling abil-
ity and feature update selectivity of Graph Neural Networks
(GNNs) through the integration of adaptive neural Autore-
gressive Moving Average (ARMA) models with potentially

any GNN backbone. We draw a theoretical link between
SSM models and GRAMA, to build solid groundwork and
understanding of the qualitative behavior of GRAMA. Com-
pared with several existing Graph SSMs, our GRAMA al-
lows to benefit from long-range interaction modeling abili-
ties, while maintaining permutation equivariance. Through
a series of extensive experiments on 26 synthetic and real-
world datasets, we demonstrated that GRAMA consistently
offers competitive performance with well-established base-
line models, from classical MPNNs to more complex ap-
proaches such as Graph Transformers and Graph SSMs.
Overall, GRAMA offers a theoretically grounded, pow-
erful, and flexible solution that bridges the gap between
contemporary sequential models and existing graph learn-
ing methods, stepping forward towards a new family of
graph machine learning models.
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Author Contributions
AG and AC recognized the problem of developing a principled integration of State Space Models in Graph Neural
Networks. ME proposed the connection between SSMs and ARMA models, and conceptualized the methodology and
method development. ME and AG conducted the empirical evaluation. The theoretical analysis was carried out by ME and
AC. The original draft was written by ME, AG, and AC. DB, CG, and CBS contributed to the review and editing of the
manuscript and supervised the project.

A. Additional Related Work
GNNs based on Differential Equations. Building on the interpretation of convolutional neural networks (CNNs) as
discretizations of ODEs and PDEs (Ruthotto & Haber, 2020; Chen et al., 2018; Zhang et al., 2019), several works, including
GCDE (Poli et al., 2019), GODE (Zhuang et al., 2020), and GRAND (Chamberlain et al., 2021), among others, view
GNN layers as discretized steps of the heat equation. This framework helps manage diffusion (smoothing) and sheds light
on the oversmoothing problem in GNNs (Nt & Maehara, 2019; Oono & Suzuki, 2020; Cai & Wang, 2020). In contrast,
Choromanski et al. (2022) introduced an attention mechanism based on the heat diffusion kernel. Other models, such as
PDE-GCNM (Eliasof et al., 2021) and GraphCON (Rusch et al., 2022), combine diffusion with oscillatory processes to
maintain feature energy. Recent work has explored anti-symmetry (Gravina et al., 2023; 2024a; 2025), reaction-diffusion
dynamics (Wang et al., 2023; Choi et al., 2023; Eliasof et al., 2024b), convection (Zhao et al., 2023), advection (Eliasof et al.,
2023b), port-Hamiltonian systems (Heilig et al., 2025), fractional Laplacian ODEs (Maskey et al., 2023), and higher-order
methods (Eliasof et al., 2024c; Kang et al., 2024). While most of the aforementioned methods works in the setting of static
graphs, temporal aspects are addressed in (Gravina et al., 2024b;c). Overall, we refer to this family of models as DE-GNNs.
These models are related to SSM models, which are also based on ODEs. Also, some of the DE-GNNs were shown to be
effective against oversquashing as architectures, and therefore we include them in our experimental comparisons.

Multi-hop GNNs. Multi-hop GNN architectures were extensively studied in previous years, leading to several popular
architectures such as JK-Net (Xu et al., 2018), MixHop (Abu-El-Haija et al., 2019), and more recently DRew (Gutteridge
et al., 2023). These works take inspiration from earlier works like DenseNets (Huang et al., 2017), where the main idea is to
consider a combination of feature maps from multiple layers, instead of only considering the last layer feature map as in
ResNets (He et al., 2016). We now distinguish our GRAMA from JK-Net, MixHop, and DRew. First, these methods do not
stem from a dynamical system perspective that allows the construction of models like ARMA or SSM. Second, methods
like JK-Net can become computationally expensive if many layers are used within a network, as it considers all previous
layers, and it is only used within the final layer in a GNN, rather than an architecture that considers multiple past values
at each layer of the network. Third, in GRAMA we propose a selective attention mechanism to ARMA coefficients, as
described in Section 3.2. Compared with MixHop, which performs dense, non-recurrent projections, GRAMA uses a
recurrent, non-dense aggregation inspired by dynamical systems and modern RNNs. A deeper theoretical and empirical
comparison with MixHop is discussed in Appendix E.5.

Transforming Graphs to Sequences. In recent years, there has been growing interest in transforming graphs into sequences,
with a substantial body of work addressing this problem. The motivation behind this transformation is to leverage well-
established sequential learning mechanisms, such as 1D convolutions (Niepert et al., 2016; Eliasof et al., 2022; Sun et al.,
2023), RNNs (Murphy et al., 2019a; Huang et al., 2022), and GRUs and LSTMs (Murphy et al., 2019b). Overall, these works
propose various methods for converting graphs into sequences, often accompanied by theoretical insights into permutation
equivariance, typically achieved in expectation under such transformations. In contrast, our GRAMA, adopts a different
perspective: rather than mapping a graph to a single sequence, we construct a sequence of graphs. This design preserves
permutation equivariance and enables the modeling of long-range interactions through our neural ARMA framework.

Adaptivity in Graph Learning. In recent years, it has been increasingly recognized that adaptivity plays a crucial role in
graph learning, both in improving downstream performance and addressing fundamental limitations of classical GNNs, such
as oversmoothing and oversquashing. Notably, adaptive mechanisms have proven effective in graph normalization (Eliasof
et al., 2024a) and activation layers (Mantri et al., 2024), enhancing theoretical expressiveness and functional flexibility,
respectively. Adaptivity has also been applied to message-passing schemes by enabling selective updates to node features,
as explored from various perspectives in Sun et al. (2024); Errica et al. (2024). In this work, we take a different approach by
introducing selectivity through learned ARMA coefficients. Specifically, our method, GRAMA, adaptively weighs previous
states and residuals based on the input, allowing the model to dynamically modulate states and residuals dependencies.
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Expressiveness of GNNs. The expressiveness of graph neural networks (GNNs) is a central aspect of graph representation
learning, with much of the theoretical understanding framed through the Weisfeiler-Lehman (WL) test. Seminal works
by Xu et al. (2019); Morris et al. (2019) established that the representational capacity of standard message-passing neural
networks (MPNNs) is bounded by the power of the 1-WL test. This insight has motivated a broad line of research aimed
at overcoming these limitations, including the use of random node initializations (Sato et al., 2021; Abboud et al., 2021),
positional encodings (Eliasof et al., 2023a; Huang et al., 2024a), and subgraph-based architectures (Bevilacqua et al., 2022;
2024), among other approaches and methods. Within this theoretical landscape, our GRAMA is constructed to at least
match the expressiveness of its underlying GNN backbone. This is achieved through its recurrent structure, which updates
representations by aggregating both current and past hidden states along with residual correction terms. When the recurrence
is simplified to use only the current state f (ℓ) while discarding residuals δ(ℓ̃), ℓ̃ ≤ ℓ, the resulting computation reduces to
the forward pass of the backbone GNN, thereby preserving its expressiveness. Importantly, GRAMA allows more diverse
behaviors — by learning data-dependent combinations of historical states and residuals, it expands the space of representable
functions. Empirical results demonstrate that this enhanced flexibility consistently leads to improved performance over
backbone models. Understanding if, and to which extent, our GRAMA improves expressiveness beyond 1-WL, presents a
promising avenue for future theoretical investigation.

Distinguishing GRAMA from other GNNs. We now further distinguish our GRAMA from other types of existing GNNs.
compared with other graph SSMs, the main differences are (i) GRAMA can process sequences which are beyond pairwise
interactions, different from the graph SSM in (Huang et al., 2024b); and (ii) GRAMA is permutation-equivariant, while
other graph SSMs like in (Behrouz & Hashemi, 2024; Wang et al., 2024a), are not permutation-equivariant and are based
on heuristics that order the graph nodes to obtain a sequence. Compared to Ding et al. (2024), which uses an LRU-based
mechanism without selective control, GRAMA incorporates a selective mechanism, which our results in Tables 9, 11 and 12
show to be impactful. Compared with transformers like GRIT (Ma et al., 2023), we differ in both computational cost and
operation. GRIT emphasizes expressive positional encodings and is more resource-intensive than GPS, whereas GRAMA is
efficient, permutation-equivariant, and designed for long-range propagation. Compared with implicit GNNs such as IGNN
(Gu et al., 2020) and GIND (Chen et al., 2022), which model graph representations as fixed points of nonlinear equilibrium
equations over static graphs, leveraging global aggregation through learned diffusion or optimization-based formulations,
our GRAMA instead views graph modeling by constructing a sequence of graphs. This enables GRAMA to perform
explicit, state- and residual-dependent aggregation via learned adaptive ARMA dynamics, which are also equivalent to
SSMs, as we prove in Appendix B.

B. Proofs
We now provide proof to all Theorems and Lemmas shown in the paper. Without loss of generality, we analyze GRAMA in
the case of a single channel. However, note that the ARMA coefficients are shared among channels. Therefore, in the case of
multiple input channels, the proof is trivially extended by applying the same ARMA system to each channel independently.
Moreover, we will state our theoretical results considering general sequences indexed with t, which in particular can be
thought of as neural sequences of GRAMA, but, for the sake of simplicity, without involving the hyperparameters R and S,
and focusing on the dynamics of a single GRAMA block.

B.1. Proof of Theorem 4.1

Proof. We start by recapping the definition of the ARMA and linear SSM models. Then, we show how to derive an SSM
representation of an ARMA model, and vice versa, an ARMA model from a linear SSM.

ARMA Models. The ARMA(p, q) model for a univariate time series is given by:

ft = ϕ1ft−1 + ϕ2ft−2 + . . .+ ϕpft−p + δt + θ1δt−1 + θ2δt−2 + . . .+ θqδt−q, (9)

where {ϕi}pi=1 are the autoregressive coefficients, and {θj}qj=1 are the moving average coefficients.

State Space Model (SSM): A linear SSM system mapping univariate input, δt, into univariate output, ft, is defined by the
following equations:

xt = Axt−1 +Bδt. (10a)

ft = Cxt +Dδt, (10b)
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where xt is the hidden state vector at time step t, A is the state transition matrix, B is the control-input matrix, C is the
observation matrix, and D is the direct transition matrix.

Proof of ARMA → SSM. Given an ARMA(p, q) model, we can rewrite it in an SSM form by defining a state vector xt that
includes past autoregressive values and past residuals:

xt =
[
ft ft−1 . . . ft−p+1 δt δt−1 . . . δt−q+1

]⊤
(11)

and define the SSM matrices A,B,C,D, as follows:

A =



ϕ1 ϕ2 . . . ϕp−1 ϕp θ1 θ2 . . . θq−1 θq
1 0 . . . 0 0 0 0 . . . 0 0
0 1 . . . 0 0 0 0 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 1 0 0 0 . . . 0 0
0 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 1 0 . . . 0 0
0 0 . . . 0 0 0 1 . . . 0 0
...

...
. . .

...
...

...
...

. . .
...

...
0 0 . . . 0 0 0 0 . . . 1 0


(12)

B =
[
0 . . . 0 | 1 0 . . . 0

]⊤
(13)

C =
[
1 0 . . . 0 0

]
, D =

[
1
]

(14)

Using these definitions, the obtained state space model representation is equivalent to the operation of the ARMA model of
Equation (9).

SSM → ARMA. Let us assume the hidden state dimension to be p, so that A ∈ Rp×p,B ∈ Rp×1,C ∈ R1×p,D ∈ R1×1.
First, we recursively substitute the state equation into itself to express xt in terms of past states and inputs. Substituting
xt−1 into the Equation (10) yields:

xt = Axt−1 +Bδt = A(Axt−2 +Bδt−1) +Bδt (15)

= A2xt−2 +ABδt−1 +Bδt

Therefore, unfolding t steps in the past, up to the initial condition x0, we get:

xt = Atx0 +

t−1∑
k=0

AkBδt−k = Atx0 +Bδt +

t−1∑
k=1

AkBδt−k (16)

Substituting the expression in Equation (16) to obtain the SSM output from Equation (10b) yields:

ft = C

(
Atx0 +Bδt +

t−1∑
k=1

AkBδt−k

)
+Dδt (17)

= CAtx0 + (CB+D)δt +

t−1∑
k=1

CAkBδt−k

The above equation describes an ARMA(p,q) model, where p = t, and q = p− 1. In fact, once defined the initial condition
as x0 = [fp−1, . . . , f0]

T , the autoregressive coefficients can be found as the p elements of the row vector CAp ∈ R1×p.
While, the moving average coefficients are the q real numbers defined as θk = CAkB, for k = 1, . . . , q. Finally, to get
exactly the form of Equation (9), it suffices to impose that D = 1−CB.

Another proof of the equivalence between ARMA and SSM can be found in (de Jong & Penzer, 2004). We developed our
own version since it is more congenial to our discussion based on long-term propagation of the information on graphs.
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B.2. Proof of Lemma 4.2

The linear SSM corresponding to a GRAMA block with autoregressive coefficients {ϕi}pi=1 is stable if and only if the
spectral radius of its state matrix is less than (or at most equal to) 1. In particular, this happens if and only if the polynomial
P (λ) = λp −

∑p
j=1 ϕjλ

p−j has all its roots inside (or at most on) the unit circle.

Proof. We proved in Theorem 4.1 that a GRAMA block can be described equivalently as a linear SSM of the kind of
Equation (10). The discrete-time recurrence given by Equation (10) can be completely unfolded, thanks to the lack of
nonlinearity. We can write Equation (10) in a closed formulation as

xt = Atx0 +

t−1∑
j=0

AjBδt−j . (18)

A necessary and sufficient condition to have a bounded response for the state xt is that the powers of the state matrix A do
not explode. This condition translates into a well-known inequality on the spectral radius of the state matrix, namely that the
spectral radius of A is less than (or at most equal to) 1.
Now, let us consider the state matrix as in Equation (12), i.e. divided in an upper triangular form of 4 blocks:
A11,A12,A21,A22 of dimensions p × p, p × q, q × p, q × q, where A21 is the null matrix of dimension q × p. Due
to the triangular form, we have that det(A − λI) = det(A11 − λI) det(A22 − λI) = det(A11 − λI)(−1)qλq. The
matrix A11 is a companion matrix. Its characteristic polynomial can be computed recursively using Laplace expansion of
determinants on the first row, to get that det(A11 − λI) = (−1)p

(
λp −

∑p
j=1 ϕjλ

p−j
)

. Therefore, the set of eigenvalues

of the state matrix of the linear SSM associated with a GRAMA block with autoregressive coefficients {ϕi}pi=1 is the set of
roots of the polynomial in the indeterminate λ, given by

(−1)p+qλq
(
λp −

p∑
j=1

ϕjλ
p−j
)
.

The spectral radius of A is the largest (in modulo) among all the complex roots of this polynomial. Thus, a GRAMA block
with autoregressive coefficients {ϕi}pi=1 is stable if and only if the polynomial P (λ) = λp −

∑p
j=1 ϕjλ

p−j has all its roots
inside (or at most on) the unit circle.

B.3. Proof of Theorem 4.3

If
∑p

j=1 |ϕj | ≤ 1, then the GRAMA block with autoregressive coefficients {ϕi}pi=1 corresponds to a stable linear SSM.

Proof. Consider the polynomial P (λ) = λp−
∑p

j=1 ϕjλ
p−j . The Lagrange upper bound (Hirst & Macey, 1997, Theorem 1)

states that all the complex roots of P (λ) have modulus less or equal than max{1,
∑p

j=1 |ϕj |}. Therefore, if
∑p

j=1 |ϕj | ≤ 1
then, from Lemma 4.2, we conclude that the linear SSM corresponding to our GRAMA block with autoregressive
coefficients {ϕi}pi=1 is stable.

B.4. Proof of Theorem 4.4

First, we prove the following Lemma B.1.

Lemma B.1 (Long-range interactions in GRAMA). If the k-th power of the state matrix of a GRAMA block has vanishing
entries, then for a stable GRAMA it is impossible to learn long-term dependencies of k time lags in the sequence of
residuals δ1, δ2, . . . , δt.

Proof. Assuming we want to learn patterns in the input sequence δ1, δ2, . . . , δt of length k. Referring to Equation (18), we
need the current hidden state xt to encode information that was present in δt−k. Now, if Ak has vanishing entries, i.e.,
smaller than machine precision, then the same holds for the vector AkB. Ergo, it is impossible to implement a linear SSM,
or equivalently an ARMA model, to learn dependencies in the input of length k.

Now, we can prove Theorem 4.4, whose statement we report here below for ease of comprehension.
Let us be given a GRAMA block with autoregressive coefficients {ϕi}pi=1. Assume the roots of the polynomial
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P (λ) = λp −
∑p

j=1 ϕjλ
p−j are all inside the unit circle. Then, the closer the roots P (λ) are to the unit circle, the longer

the range propagation of the linear SSM corresponding to such a GRAMA block.

Proof. Due to Lemma 4.2, the hypothesis of P (λ) having roots inside the unit circle implies that the linear SSM corre-
sponding to a GRAMA block with autoregressive coefficients {ϕi}pi=1 is a stable system. Moreover, from the proof of
Lemma B.1, we know that the long-term propagation of a stable linear SSM corresponding to a GRAMA block is prevented
by the pace to which the vector AkB converges to the zero vector, as k increases. The speed of convergence is linked to
the speed of convergence of Ak to the null matrix, which in turn depends on the modulus of the eigenvalues of A. From
Lemma 4.2, the non-zero eigenvalues of A are the roots of the polynomial P (λ). Therefore, the closer the moduli of the
complex roots of the polynomial P (λ) are to the unit circle, the longer the range propagation of the GRAMA block.

C. Implementation Details
We provide additional implementation details of our GRAMA.

C.1. Learning Selective ARMA Coefficients

We now describe the implementation of the Selective ARMA coefficients presented in Section 3.2. Namely, to learn the
dynamics between node features in different steps within the sequences L(s) and ∆(s), we utilize a multi-head self-attention
mechanism (Vaswani et al., 2017). Recall that the shape of the sequences is L× n× d, where L is the sequence length,
n is the number of nodes, and d is the number of hidden channels. To maintain computational efficiency, we first mean
pool the sequences along the node dimension (per graph), such that the input to the attention layers is of shape L × c.
We denote this operation by POOL, and it is a common operation in graph learning (Xu et al., 2019; Morris et al., 2019).
This pooling step allows our GRAMA to offer flexible behavior in terms of ARMA coefficients per graph, a property
which was recently shown to be effective in graph learning (Eliasof et al., 2024a; Mantri et al., 2024) while remaining
efficient in terms of computations. In what follows, we explain how to obtain the ARMA coefficients using an attention
mechanism. For simplicity, we describe the process in the case of p = q = L. In any other case, the exact computation
is done with a truncated version of the sequence, taking the latest p sequence elements from F(s) ∈ RL×n×d (in Python
notations, F(s)[: −p, :, :], and the last q sequence elements from ∆(s) (in Python notations, ∆(s)[: −q, :, :]) That is, the
truncated are fed to the attention layers as described below. In terms of using an attention mechanism, the main difference in
our implementation compared to a standard attention module as in Vaswani et al. (2017) is that we remove the SoftMax
normalization step, as discussed in Section 3.2. We denote a multi-head attention score module by MHAAR and MHAMA,
for the multi-head-attention for the AR and MA parts, respectively. Note that in our case, we are only interested in the
pairwise scores computed within a transformer and that we do not use the SoftMax normalization step. Then, the output of
the attention modules reads:

AF(s) = tanh
(
MHAAR(POOL(F(s)))

)
∈ RL×L, (19)

A∆(s) = tanh
(
MHAMA(POOL(∆(s)))

)
∈ RL×L. (20)

The (li, lj)-th entries in AF(s) and A∆(s) represent the score between the li-th and lj-th elements in the sequences,
respectively. Specifically, the last row of these matrices represents the connection between the current element l and the
elements L− 1 in each of the respective sequences. Therefore, we define the unnormalized AR coefficients as the last row
in AF(s) , and similarly in A∆(s) for the MA coefficients. Using Python notations, this is described as:

c̃AR(F
(s)) = AF(s) [−1, :] ∈ RL, (21)

c̃MA(∆
(s)) = A∆(s) [−1, :] ∈ RL. (22)

To normalize the coefficients, we follow the following strategy:

cAR(F
(s)) =

c̃AR(F
(s))∑

c̃AR(F(s))
, (23)

cMA(∆
(s)) =

c̃MA(∆
(s))∑

c̃MA(∆
(s))

. (24)
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Figure 3: Learned coefficients of GRAMA over layers, visualized before (a) and after (b) training.

In Figure 3, we present an example of the learned coefficients before and after training on the Questions dataset, using a
single GRAMA block with 16 recurrence steps. At initialization, the weights assigned to layerwise features—denoted by ϕ
for hidden states and θ for residuals—are predominantly concentrated on the deeper layers. This initialization resembles a
standard residual connection, where emphasis is placed on recent computations. Following training, the learned coefficients
reveal a more intricate distribution. Rather than attending primarily to the most recent layer, the model highlights a diverse
set of layers, suggesting non-trivial dependencies.

C.2. Overall GRAMA architecture

Our GRAMA is illustrated in Figure 1, and it is comprised of three main components: (i) the initial embedding, which
is described in Equation (2). The role of this part is to transform a static input graph into a sequence of graph inputs.
Namely, given features of shape n× c, it yields two sequences: A sequence of states F(0), and a sequence of residuals ∆(0),
both of shape L× n× d, where d is the embedding size of the input c channels. (ii) These sequences are then processed
by a GRAMA block, as discussed in Section 3.1. (iii) A final classifier gout : Rd → Ro that takes the last state in the
updated sequence, denoted by f (L·S−1) ∈ Rn×d, and projects it to the desired number of output channels. The classifier is
implemented using an MLP, as is standard in graph learning (Xu et al., 2019). Note that, the last state f (L·S−1) contains
node features, and therefore, in the case of a graph level task, we first pool the node features using mean pooling as in
(Xu et al., 2019), to obtain a prediction vector gout(POOL(f (L·S−1))) ∈ Ro. In the case of node-level tasks, the node-wise
prediction is obtained by gout(f

(L·S−1)) ∈ R(n×o).

D. Experimental Details
In this section, we provide additional experimental details.

Compute. Our experiments are run on NVIDIA A6000 and A100 GPUs, with 48GB and 80GB of memory, respectively.

D.1. Employed baselines

In our experiments, the performance of our method is compared with various state-of-the-art GNN baselines from the
literature. Specifically, we consider:

• classical MPNN-based methods, i.e., GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017),
GAT (Veličković et al., 2018), GatedGCN (Bresson & Laurent, 2018), GIN (Xu et al., 2019), ARMA (Bianchi
et al., 2021), GINE (Hu et al., 2020b), GCNII (Chen et al., 2020), and CoGNN (Finkelshtein et al., 2024);

• heterophily-specific models, i.e., H2GCN (Zhu et al., 2020), CPGNN (Zhu et al., 2021), FAGCN (Bo et al., 2021),
GPR-GNN (Chien et al., 2021), FSGNN (Maurya et al., 2022), GloGNN (Li et al., 2022), GBK-GNN (Du et al., 2022),
and JacobiConv (Wang & Zhang, 2022);

• DE-DGNs, i.e., DGC (Wang et al., 2021), GRAND (Chamberlain et al., 2021), GraphCON (Rusch et al., 2022),
A-DGN (Gravina et al., 2023), SWAN (Gravina et al., 2025), and PH-DGN (Heilig et al., 2025);

• Graph Transformers, i.e., Transformer (Vaswani et al., 2017; Dwivedi & Bresson, 2021), GT (Shi et al., 2021),
SAN (Kreuzer et al., 2021a), EGT (Hussain et al., 2021), GPS (Rampášek et al., 2022), GOAT (Kong et al., 2023),
Exphormer (Shirzad et al., 2023), GRIT (Ma et al., 2023), and Polynormer (Deng et al., 2024);
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• Higher-Order DGNs, i.e., DIGL (Gasteiger et al., 2019), MixHop (Abu-El-Haija et al., 2019), DRew (Gutteridge et al.,
2023), and GRED (Ding et al., 2024).

• SSM-based GNN, i.e., Graph-Mamba (Wang et al., 2024a), GMN (Behrouz & Hashemi, 2024), GSSM (Huang et al.,
2024b), and GPS+Mamba (Behrouz & Hashemi, 2024)

D.2. Graph Transfer

Dataset. We consider the graph transfer dataset from Gravina et al. (2025), which is based on the work of (Di Giovanni
et al., 2023). Unlike the original approach in (Di Giovanni et al., 2023), node features are randomly sampled from a uniform
distribution in the range [0, 0.5). In each graph, labels of value “1” and “0” are assigned to a source node and a target node,
respectively. Graphs were sampled from three different distributions: line, ring, and crossed-ring (see Figure 4 for a visual
exemplification). In ring graphs, the nodes form a cycle of size n, with the source and target placed ⌊n/2⌋ apart. Similarly,
crossed-ring graphs consisting of cycles of size n but introduced additional edges crossing intermediate nodes, while still
maintaining a source-target distance of ⌊n/2⌋. Lastly, the line graph contains a path of length n between the source and
target nodes. These experiments focus on a regression task aimed at swapping the labels of the source and target nodes
while keeping intermediate node labels unchanged. The input dimension is 1, and the distances between source and target
nodes are set to 3, 5, 10, and 50. We generated 1000 graphs for training, 100 for validation, and 100 for testing.

(a) Line (b) Ring (c) Crossed-Ring

Figure 4: Line, ring, and crossed-ring graphs where the distance between source and target nodes is equal to 5. Nodes
marked with “S” are source nodes, while the nodes with a “T” are target nodes.

Experimental Setting. We followed the experimental setting of (Gravina et al., 2025). Therefore, we design each model as
a combination of three main components. The first is the encoder which maps the node input features into a latent hidden
space; the second is the graph convolution (i.e., GRAMA or the other baselines); and the third is a readout that maps the
output of the convolution into the output space. The encoder and the readout share the same architecture among all models
in the experiments.

We perform hyperparameter tuning via grid search, optimizing the Mean Squared Error (MSE) computed on the node
features of the whole graph. We train the models using the Adam optimizer for a maximum of 2000 epochs and early
stopping with a maximal patience of 100 epochs on the validation loss. For each model configuration, we perform 4 training
runs with different weight initialization and report the average of the results. We report in Table 4 the grid of hyperparameters
exploited for this experiment.

D.3. Graph Property Prediction

Dataset. We adhered to the data generation procedure described in (Gravina et al., 2023). Graphs were randomly drawn
from several distributions, e.g., Erdős–Rényi, Barabasi-Albert, caveman, tree, and grid. Each graph contains between 25 and
35 nodes, with nodes assigned with random identifiers as input features sampled from a uniform distribution in the range
[0, 1). The target values represent single-source shortest paths, node eccentricity, and graph diameter. The dataset included a
total of 7,040 graphs, with 5,120 for training, 640 for validation, and 1,280 for testing. The tasks in this benchmark require
capturing long-term dependencies between nodes, as solving them requires computing the shortest paths within the graph.
Moreover, as described in Gravina et al. (2023), similar to standard algorithmic approaches (e.g., Bellman-Ford, Dijkstra’s
algorithm), accurate solutions depend on the exchange of multiple messages between nodes, making local information
insufficient for this task. Additionally, the graph distributions used in these tasks are sampled from caveman, tree, line,
star, caterpillar, and lobster distributions, all of which include bottlenecks by design, which are known to be a cause of
oversquashing (Topping et al., 2022).

Experimental Setting. We employ the same datasets, hyperparameter space, and experimental setting presented in Gravina
et al. (2023). Therefore, we perform hyperparameter tuning via grid search, optimizing the Mean Square Error (MSE),
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training the models using Adam optimizer for a maximum of 1500 epochs, and early stopping with patience of 100 epochs
on the validation error. For each model configuration, we perform 4 training runs with different weight initialization and
report the average of the results. We report in Table 4 the grid of hyperparameters exploited for this experiment.

D.4. Long Range Graph Benchmark

Dataset. To assess the performance on real-world long-range graph benchmarks, we considered the Peptides-func and
Peptides-struct datasets (Dwivedi et al., 2022b). The graphs represent 1D amino acid chains, with nodes corresponding
to the heavy (non-hydrogen) atoms of the peptides, and edges representing the bonds between them. Peptides-func is a
multi-label graph classification dataset containing 10 classes based on peptide functions, such as antibacterial, antiviral,
and cell-cell communication. Peptides-struct is a multi-label graph regression dataset, focused on predicting 3D structural
properties of peptides. The regression tasks involve predicting the inertia of molecules based on atomic mass and valence,
the maximum atom-pair distance, sphericity, and the average distance of all heavy atoms from the plane of best fit. Both
datasets, Peptides-func and Peptides-struct, consist of 15,535 graphs, encompassing a total of 2.3 million nodes. We used
the official splits from Dwivedi et al. (2022b), and reported the average and standard-deviation performance across 3 seeds.

Experimental Setting. We employ the same datasets and experimental setting presented in Dwivedi et al. (2022b).
Therefore, we perform hyperparameter tuning via grid search, optimizing the Average Precision (AP) in the Peptide-func
task and the Mean Absolute Error (MAE) in the Peptide-struct task, training the models using AdamW optimizer for a
maximum of 300 epochs. For each model configuration, we perform 3 training runs with different weight initialization and
report the average of the results. Also, we follow the guidelines in (Dwivedi et al., 2022b; Gutteridge et al., 2023) and stay
within the 500K parameter budget. In Table 4 we report the grid of hyperparameters exploited for this experiment.

D.5. GNN Benchmarks

Dataset. MalNet-Tiny (Freitas et al., 2021) is a graph classification dataset consisting of 5,000 function call graphs derived
from software samples in the Android ecosystem. Each graph contains at most 5,000 nodes, which represent functions.
Edges correspond to calls between functions. MalNet-Tiny is a graph classification dataset, comprising of 5 classification
labels, including 1 benign software and 4 types of malware. We used stratified splitting, following a 70%-10%-20% split, as
in Freitas et al. (2021).

In the heterophilic setting, we consider Roman-empire, Amazon-ratings, Minesweeper, Tolokers, and Questions tasks
from (Platonov et al., 2023). Roman-Empire is a dataset derived from the Roman Empire article in Wikipedia. Each node
represents a word, and edges are formed if words either follow one another or are connected syntactically. The task involves
node classification based on the syntactic role of the word, with 18 classes. The graph is chain-like, has sparse connectivity,
and potentially long-range dependencies. Amazon-Ratings is based on the Amazon product co-purchasing network. Nodes
represent products, and edges connect products that are frequently bought together. The task is to predict the average product
rating, which is grouped into five classes. Node features are derived from fastText embeddings of product descriptions.
Minesweeper is a synthetic dataset consisting of a 100x100 grid where nodes represent cells, and edges connect neighboring
cells. 20% of the nodes are randomly selected as mines. The task is to predict which nodes are mines, employing as node
features the one-hot-encoded numbers of neighboring mines. Tolokers is a dataset based on the Toloka crowdsourcing
platform (Likhobaba et al., 2023), where nodes represent workers (tolokers), and edges are formed if workers collaborate on
the same project. The task is to predict whether a worker has been banned, using features from their profile and performance
statistics. Questions is based on the data from the Yandex Q question-answering website. Nodes represent users, and edges
connect users who have interacted by answering each other’s questions. The task is to predict which users remained active
on the platform, with node features derived from user descriptions. We report in Table 3 a summary of the statistics of the
employed heterophilic datasets.

Experimental Setting. We employ the same datasets and experimental setting presented in Freitas et al. (2021) and
(Platonov et al., 2023). Therefore, we perform hyperparameter tuning via grid search, optimizing the Accuracy (Acc) in the
MalNet-Tiny, Roman-Empire, and Amazon-ratings tasks, and the ROC Area Under the Curve (AUC) in the Minesweeper,
Tolokers, and Questions task. We trained the models using AdamW optimizer for a maximum of 300 epochs. On the
heterophilic datasets, we use the official splits provided in Platonov et al. (2023) and report the average and standard
deviation of the obtained performance. For MalNet-Tiny, we repeat the experiment on 4 different seeds and report the
average performance alongside the standard deviation. We report in Table 4 the grid of hyperparameters considered for this
experiment.
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Table 3: Statistics of the heterophilous datasets.

Roman-empire Amazon-ratings Minesweeper Tolokers Questions

N. nodes 22,662 24,492 10,000 11,758 48,921
N. edges 32,927 93,050 39,402 519,000 153,540
Avg degree 2.91 7.60 7.88 88.28 6.28
Diameter 6,824 46 99 11 16
Node features 300 300 7 10 301
Classes 18 5 2 2 2
Edge homophily 0.05 0.38 0.68 0.59 0.84

D.6. Hyperparameters

In Table 4, we report the grids of hyperparameters employed in our experiments by our method. Besides typical learning
hyperparameters such as learning rate and weight decay, our GRAMA introduces several possible hypermeters: the sequence
length L, the autoregressive order p, the moving average q, the number of recurrent steps applied at each GRAMA block, and
the number of GRAMA blocks S. We now describe our choices, aiming to maintain a reasonable number of hyperparameters
and to obtain a large prediction window, which was shown to be useful in SSMs (Gu et al., 2021c). Because this paper
focuses on using a sequential model on static graph inputs, the sequence length is to be determined, and we consider different
lengths depending on the task. The ARMA orders p and q can assume any values as long as they are not larger than L, and
the most general case is when p = q = L, and this was our choice, as it covers other choices where p or q are smaller than
L. For the number of recurrence steps R, we aim to obtain a relatively large prediction window with respect to the input
sequence length, and therefore we choose to set R = L in all experiments.

Table 4: The grid of hyperparameters employed during model selection for the graph transfer tasks (Transfer), graph property
prediction tasks (GraphProp), Long Range Graph Benchmark (LRGB), and GNN benchmarks (G-Bench), i.e., MalNet-Tiny
and heterophilic datasets.

Hyperparameters Values

Transfer GraphProp LRGB G-Bench

Optimizer Adam Adam AdamW AdamW
Learning rate 0.001 0.003 0.001, 0.0005, 0.0001 0.001, 0.0005 ,0.0001
Weight decay 0 10−6 0, 0.0001 0, 0.0001
Dropout 0 0 0, 0.3, 0.5 0, 0.3, 0.5
Activation function (σ) ReLU ReLU ELU, GELU, ReLU ELU, GELU, ReLU
Embedding dim (d) 64 10, 20, 30 64, 128 64, 128, 256
Sequence Length (L) 1, 3, 5, 10, 50 1, 5, 10, 20 2, 4, 8, 16 2, 4, 8, 16
Blocks (S) 1, 2 1, 2 1, 2, 4 1, 2, 4
Graph Backbone GCN, GPS, GatedGCN

E. Additional Results And Comparisons
E.1. Additional GNN Benchmarks

Setup. To further evaluate the performance of our GRAMA, we consider multiple GNN benchmarks, including MalNet-Tiny
(Freitas et al., 2021), the five heterophilic tasks introduced in (Platonov et al., 2023), OGBG-MOLHIV (Hu et al., 2020a),
Cora, CiteSeer, PubMed (Yang et al., 2016), ZINC-12k, MNIST, CIFAR10, PATTERN, and CLUSTER (Dwivedi et al., 2023).
Specifically, MalNet-Tiny consists of relatively large graphs (with thousands of nodes) representing function call graphs
from malicious and benign software, where nodes represent functions and edges represent calls between them. Considering
the scale of the graphs and the fact that malware can often exhibit non-local behavior, we believe this task can further
reinforce the idea that GRAMA can preserve and leverage long-range interactions between nodes.

In the heterophilic node classification setting, we consider Roman-empire, Amazon-ratings, Minesweeper, Tolokers, and
Questions tasks, to show the efficacy of our method in capturing more complex node relationships beyond simple homophily
settings.

ZINC-12k and OGBG-MOLHIV are datasets where graphs represent molecules (i.e., nodes are atoms, and edges are
chemical bonds) and the objective is to predict molecular properties; while Cora, CiteSeer, and PubMed are citation networks
where each node represents a paper and each edge indicates that one paper cites another one, whose objective is to predict the
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class associated to each node. MNIST and CIFAR10 are superpixel-based image datasets where each image is represented as
a graph, and the task is to predict the digit or object class of the represented in the image; while PATTERN and CLUSTER
are datasets containing stochastic block model graphs and the goal is to identify is a node belong to a pattern and assign
community labels to nodes, respectively.

We consider the experimental setting from (Freitas et al., 2021) for MalNet-Tiny, and that from (Platonov et al., 2023) for
heterophilic tasks. On the ZINC-12k, MNIST, CIFAR10, PATTERN, and CLUSTER, we followed the official splits and
experimental protocols from (Dwivedi et al., 2023). For OGBG-MOLHIV we followed the official protocol from (Hu et al.,
2020a). On Cora, CiteSeer, and PubMed, we used the splits and experimental protocols from (Pei et al., 2020). Additional
details on the setup and tasks are in Appendix D.5.

Results. Table 5 reports the mean test set accuracy on MalNet-Tiny, Table 6 reports the test score for the heterophilic tasks,
and Table 7 the test score of the other benchmarks.

Table 5: Mean test accuracy and std averaged over 4 random weight initializations on MalNet-Tiny. The higher, the better.
First, second, and third best results. Baselines from (Wang et al., 2024a; Behrouz & Hashemi, 2024) include Laplacian
positional encodings.

Model MalNet-Tiny
Acc ↑

MPNNs
GCN 81.00
GIN 88.98±0.55

GatedGCN 92.23±0.65

ARMA 91.80±0.72

Graph Transformers
GPS+Transformer OOM
GPS+Performer 92.64±0.78

GPS+BigBird 92.34±0.34

Exphormer 94.22±0.24

Graph SSMs
Graph-Mamba 93.40±0.27

GMN 94.15

Ours
GRAMAGCN 93.43±0.29

GRAMAGATEDGCN 93.66±0.40

GRAMAGPS 94.37±0.36

For the heterophilic tasks we included baseline results from (Finkelshtein et al., 2024; Behrouz & Hashemi, 2024; Platonov
et al., 2023; Müller et al., 2024; Luan et al., 2024; Deng et al., 2024). Among all models and tasks, GRAMA achieves
competitive overall performance that often outperforms state-of-the-art methods, demonstrating that our model not only
excels at handling larger graphs than those considered in previous experiments but also under complex heterophilic scenarios.
The results underscore the ability of GRAMA to capture the dependencies characterizing malware detection tasks where
non-local behaviors are often prevalent. Overall, these findings confirm that GRAMA is a competitive and effective solution,
even when compared to state-of-the-art models like Graph Transformers and recent Graph SSM models.

E.2. Extended LRGB Comparisons

In Table 8, we report the complete results for the LRGB tasks, including more multi-hop DGNs and ablating on the scores
obtained with the original setting from (Dwivedi et al., 2022b) and the one proposed in (Tönshoff et al., 2023), which
leverage added residual connections and 3-layers MLP as a decoder to map the GNN output into the final prediction. In the
table, we color the top three methods. Different from the main body of the paper, here, we color the best methods, including
sub-variants of methods, for an additional perspective on the results.

E.3. Complexity and Runtimes

We provide runtimes for GRAMA alongside other methods, such as Graph GPS and GCN, in Tables 9 and 10. In all cases,
we use a model with 256 hidden dimensions and a varying depth (changing the sequence length L from 2 to 16 in our
GRAMA with S = 2 GRAMA blocks, recall that GRAMA depth is SL, and the number of layers is the backbone for
other methods) and report the training and inference times, as well as the performance on the Roman-Empire dataset, for
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Table 6: Mean test set score and std averaged over 4 random weight initializations on heterophilic datasets. The higher, the
better. First, second, and third best results for each task are color-coded. Baseline results are reported from (Finkelshtein
et al., 2024; Behrouz & Hashemi, 2024; Platonov et al., 2023; Müller et al., 2024; Luan et al., 2024; Deng et al., 2024).

Model Roman-empire Amazon-ratings Minesweeper Tolokers Questions
Acc ↑ Acc ↑ AUC ↑ AUC ↑ AUC ↑

(Luan et al., 2024)
MLP-2 66.04±0.71 49.55±0.81 50.92±1.25 74.58±0.75 69.97±1.16

SGC-1 44.60±0.52 40.69±0.42 82.04±0.77 73.80±1.35 71.06±0.92

MLP-1 64.12±0.61 38.60±0.41 50.59±0.83 71.89±0.82 70.33±0.96

Graph-agnostic
ResNet 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76

ResNet+SGC 73.90±0.51 50.66±0.48 70.88±0.90 80.70±0.97 75.81±0.96

ResNet+adj 52.25±0.40 51.83±0.57 50.42±0.83 78.78±1.11 75.77±1.24

MPNNs
ARMA 87.11±0.38 49.94±0.30 91.64±1.21 82.29±0.97 77.75±0.85

GAT 80.87±0.30 49.09±0.63 92.01±0.68 83.70±0.47 77.43±1.20

GAT-sep 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

GAT (LapPE) 84.80±0.46 44.90±0.73 93.50±0.54 84.99±0.54 76.55±0.84

GAT (RWSE) 86.62±0.53 48.58±0.41 92.53±0.65 85.02±0.67 77.83±1.22

GAT (DEG) 85.51±0.56 51.65±0.60 93.04±0.62 84.22±0.81 77.10±1.23

Gated-GCN 74.46±0.54 43.00±0.32 87.54±1.22 77.31±1.14 76.61±1.13

GCN 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

GCN (LapPE) 83.37±0.55 44.35±0.36 94.26±0.49 84.95±0.78 77.79±1.34

GCN (RWSE) 84.84±0.55 46.40±0.55 93.84±0.48 85.11±0.77 77.81±1.40

GCN (DEG) 84.21±0.47 50.01±0.69 94.14±0.50 82.51±0.83 76.96±1.21

CO-GNN(Σ, Σ) 91.57±0.32 51.28±0.56 95.09±1.18 83.36±0.89 80.02±0.86

CO-GNN(µ, µ) 91.37±0.35 54.17±0.37 97.31±0.41 84.45±1.17 76.54±0.95

SAGE 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

Graph Transformers
Exphormer 89.03±0.37 53.51±0.46 90.74±0.53 83.77±0.78 73.94±1.06

NAGphormer 74.34±0.77 51.26±0.72 84.19±0.66 78.32±0.95 68.17±1.53

GOAT 71.59±1.25 44.61±0.50 81.09±1.02 83.11±1.04 75.76±1.66

GPS 82.00±0.61 53.10±0.42 90.63±0.67 83.71±0.48 71.73±1.47

GPSGCN+Performer (LapPE) 83.96±0.53 48.20±0.67 93.85±0.41 84.72±0.77 77.85±1.25

GPSGCN+Performer (RWSE) 84.72±0.65 48.08±0.85 92.88±0.50 84.81±0.86 76.45±1.51

GPSGCN+Performer (DEG) 83.38±0.68 48.93±0.47 93.60±0.47 80.49±0.97 74.24±1.18

GPSGAT+Performer (LapPE) 85.93±0.52 48.86±0.38 92.62±0.79 84.62±0.54 76.71±0.98

GPSGAT+Performer (RWSE) 87.04±0.58 49.92±0.68 91.08±0.58 84.38±0.91 77.14±1.49

GPSGAT+Performer (DEG) 85.54±0.58 51.03±0.60 91.52±0.46 82.45±0.89 76.51±1.19

GPSGCN+Transformer (LapPE) OOM OOM 91.82±0.41 83.51±0.93 OOM
GPSGCN+Transformer (RWSE) OOM OOM 91.17±0.51 83.53±1.06 OOM
GPSGCN+Transformer (DEG) OOM OOM 91.76±0.61 80.82±0.95 OOM
GPSGAT+Transformer (LapPE) OOM OOM 92.29±0.61 84.70±0.56 OOM
GPSGAT+Transformer (RWSE) OOM OOM 90.82±0.56 84.01±0.96 OOM
GPSGAT+Transformer (DEG) OOM OOM 91.58±0.56 81.89±0.85 OOM
GT 86.51±0.73 51.17±0.66 91.85±0.76 83.23±0.64 77.95±0.68

GT-sep 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

Polynormer 92.55±0.30 54.81±0.49 97.46±0.36 85.91±0.74 78.92±0.89

Heterophily-Designated GNNs
CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Graph SSMs
GMN 87.69±0.50 54.07±0.31 91.01±0.23 84.52±0.21 –
GPS + Mamba 83.10±0.28 45.13±0.97 89.93±0.54 83.70±1.05 –

Ours
GRAMAGCN 88.61±0.43 53.48±0.62 95.27±0.71 86.23±1.10 79.23±1.16

GRAMAGATEDGCN 91.82±0.39 53.71±0.57 98.19±0.58 85.42±0.95 80.47±1.09

GRAMAGPS 91.73±0.59 53.36±0.38 98.33±0.55 85.71±0.98 79.11±1.19

reference. As can be seen from the results in the Table, our GRAMA is positioned as a middle ground solution in terms
of computational efficiency, between linear complexity MPNNs like GCN and quadratic complexity methods like GPS.
Notably, our GRAMA achieves better performance than GCN and GPS, and maintains its performance as depth increases,
different than GCN. Still, in some cases, lower computational cost might be a strong requirement, for example, on edge
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Table 7: Mean test set score and std on popular GNN Benchmarks. First, second, and third best results for each task are
color-coded.

Model ZINC-12k OGBG- Cora CiteSeer PubMed MNIST CIFAR10 PATTERN CLUSTERMOLHIV
MAE ↓ AUC ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑ Acc ↑

GCN 0.278±0.003 76.06±0.97 85.77±1.27 73.68±1.36 88.13±0.50 90.71±0.22 55.71±0.38 71.89±0.33 68.50±0.98

GatedGCN 0.254±0.005 76.72±0.88 86.21±1.28 74.10±1.22 88.09±0.44 97.34±0.14 67.31±0.31 85.57±0.09 73.84±0.33

GPS 0.125±0.009 77.39±1.14 85.42±1.80 73.99±1.57 88.23±0.61 98.05±0.13 72.30±0.36 86.69±0.06 78.02±0.18

GPS + RWSE 0.070±0.004 78.80±1.01 86.67±1.53 74.52±1.49 88.94±0.49 - - - -
EGT 0.108±0.009 - - - - 98.17±0.09 68.70±0.41 86.82±0.02 79.23±0.35

GRIT 0.059±0.002 - - - - 98.11±0.11 76.47±0.88 87.20±0.08 80.03±0.28

Ours
GRAMAGCN 0.142±0.010 77.47±1.05 88.02±1.01 77.09±1.53 90.20±0.47 97.87±0.19 70.28±0.42 82.66±0.18 74.29±0.60

GRAMAGATEDGCN 0.140±0.008 77.60±0.98 88.13±0.99 77.63±1.38 90.07±0.45 98.12±0.10 74.61±0.45 86.72±0.10 76.88±0.32

GRAMAGPS 0.100±0.006 78.19±1.10 87.95±1.72 77.13±1.51 89.76±0.64 98.29±0.14 75.92±0.41 87.41±0.07 79.66±0.19

GRAMAGPS+RWSE 0.061±0.003 79.21±0.94 88.37±1.64 77.68±1.55 90.31±0.58 - - - -

devices. To this end, we can use the naive learning approach of ARMA coefficients, as discussed in Section 3.2, which
still utilizes our GRAMA but avoids the use of an attention mechanism for a selective ARMA coefficient learning. In this
case, as we show in Table 9, it is still possible to obtain significant improvement compared with the baseline performance
with lower computational time, although with less flexibility that is offered by our selective ARMA coefficient learning. In
addition, for a broader comparison, we consider the best-performing variant of GPS (GPSGAT+Performer (RWSE)), showing
that also in this case, our GRAMA offers better performance. Furthermore, the results in Table 9 offer comparisons of
GRAMA, GCN, and GPS under equivalent runtime budgets, showing that GRAMA matches or exceeds the accuracy of
GPS while being more efficient. Additionally, the non-selective GRAMA variant maintains high performance with further
reductions in computational cost, showcasing its applicability of GRAMA constrained computational scenarios. Finally, in
Table 11 we compare our GRAMA with recent state-of-the-art methods in terms of both time and downstream performance.
Our GRAMA requires similar time to other methods like GPS+Mamba and GMN, which are also selective models, while
requiring significantly less time than GPS. All runtimes are measured on an NVIDIA A6000 GPU with 48GB of memory.

E.4. Ablation Studies

To provide a comprehensive understanding of the different components and hyperparameters of our GRAMA, we now
present several ablations studies.

Selective vs. Naive ARMA Coefficients. In Section 3.2, we describe a novel, selective way to predict the ARMA
coefficients that govern our GRAMA model, as described in Section 3. We now empirically check whether the added
flexibility and adaptivity help in practice. To do that, we present the results with ’naively’ learned ARMA coefficients,
a variant denoted by GRAMA (Naive), and also report the results with our GRAMA model (these are the same results
presented in the rest of our experiments). The results are presented in Table 12. The results show that (i) our GRAMA, as
an architecture, regardless of the use of selective ARMA coefficients or not, significantly improves the baseline (GCN), and
(ii) learning selective ARMA coefficients offers further performance gains compared with naive coefficients.

Performance vs. Model Depth. We evaluate the performance of our GRAMA on varying depths. The depth is influenced
by the number of recurrences R and S GRAMA blocks. As discussed in Section 3, to reduce the number of hyperparameters
and obtain a large prediction window with respect to the input sequence, we choose R = L. That is, the number of
recurrent steps is L. Thus, the effective depth of the model is the multiplication S · L. Therefore, we test the performance of
GRAMA with varying depths, up to a depth of 128 layers, and maintain a constant width of 256. The results reported in
Table 13 demonstrate the ability of GRAMA to maintain and improve its performance with more layers.

Hyperparameter Influence. In Table 13 we showed the performance of GRAMA under varying depths. However, note
that this study also shows the influence of the number of recurrences R (which is also the length of the sequence L) and the
number of GRAMA blocks S. The results show that both are beneficial as increased in terms of added performance, and
that enlarging to a value larger than 4 maintains consistent results.

Furthermore, in Table 14, we show the performance of GRAMA with a varying with (i.e., number of hidden channels),
when choosing the other hyperparameters to be fixed, and in particular S = L = 4. From this experiment, we can see that
while some configurations offer better performance than others, overall, our GRAMA consistently improves the baseline
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Table 8: Results for Peptides-func and Peptides-struct averaged over 3 training seeds. Baseline results are taken from
(Dwivedi et al., 2022b) and (Gutteridge et al., 2023). Re-evaluated methods employ the 3-layer MLP readout proposed in
(Tönshoff et al., 2023). Note that all MPNN-based methods include structural and positional encoding. The first, second,
and third best scores are colored. Baseline results are reported from (Gutteridge et al., 2023; Tönshoff et al., 2023; Ma
et al., 2023; Ding et al., 2024; Huang et al., 2024b; Wang et al., 2024a; Behrouz & Hashemi, 2024; Gravina et al., 2025;
Heilig et al., 2025). ‡ means 3-layer MLP readout and residual connections are employed.

Model Peptides-func Peptides-struct
AP ↑ MAE ↓

MPNNs
GCN 59.30±0.23 0.3496±0.0013

GINE 54.98±0.79 0.3547±0.0045

GCNII 55.43±0.78 0.3471±0.0010

GatedGCN 58.64±0.77 0.3420±0.0013

ARMA 64.08±0.62 0.2709±0.0016

Multi-hop GNNs
DIGL+MPNN 64.69±0.19 0.3173±0.0007

DIGL+MPNN+LapPE 68.30±0.26 0.2616±0.0018

MixHop-GCN 65.92±0.36 0.2921±0.0023

MixHop-GCN+LapPE 68.43±0.49 0.2614±0.0023

DRew-GCN 69.96±0.76 0.2781±0.0028

DRew-GCN+LapPE 71.50±0.44 0.2536±0.0015

DRew-GIN 69.40±0.74 0.2799±0.0016

DRew-GIN+LapPE 71.26±0.45 0.2606±0.0014

DRew-GatedGCN 67.33±0.94 0.2699±0.0018

DRew-GatedGCN+LapPE 69.77±0.26 0.2539±0.0007

GRED 70.85±0.27 0.2503±0.0019

Transformers
Transformer+LapPE 63.26±1.26 0.2529±0.0016

SAN+LapPE 63.84±1.21 0.2683±0.0043

GraphGPS+LapPE 65.35±0.41 0.2500±0.0005

GRIT 69.88±0.82 0.2460±0.0012

Modified and Re-evaluated‡

GCN 68.60±0.50 0.2460±0.0007

GINE 66.21±0.67 0.2473±0.0017

GatedGCN 67.65±0.47 0.2477±0.0009

DRew-GCN+LapPE 69.45±0.21 0.2517±0.0011

GraphGPS+LapPE 65.34±0.91 0.2509±0.0014

PH-DGN 70.12±0.45 0.2465±0.0020

DE-GNNs
GRAND 57.89±0.62 0.3418±0.0015

GraphCON 60.22±0.68 0.2778±0.0018

A-DGN 59.75±0.44 0.2874±0.0021

SWAN 67.51±0.39 0.2485±0.0009

Graph SSMs
Graph-Mamba 67.39±0.87 0.2478±0.0016

GMN 70.71±0.83 0.2473±0.0025

GSSC 70.81±0.62 0.2459±0.0020

Ours
GRAMAGCN 70.93±0.78 0.2439±0.0017

GRAMAGATEDGCN 70.49±0.51 0.2459±0.0020

GRAMAGPS 69.83±0.83 0.2436±0.0022

methods compared with other baselines reported in Table 6.

E.5. Additional Comparison with MixHop

In this section, we report a deeper comparison with MixHop (Abu-El-Haija et al., 2019). While MixHop assigns learnable
weights per layer and uses a dense layer with space complexity Ld2, GRAMA is more efficient. In the non-selective (naive)
variant, GRAMA learns only 2L parameters per block, which is highly scalable since L ≪ d and L ≪ n. In the selective
variant, parameter count depends only on d, with space complexity d2; the L dependence appears only in the L2 complexity
of the sequence input, as discussed in Section 3.3.

As shown in Tables 2 and 8 and Table 15, GRAMA outperforms MixHop. Moreover, our results in the ablation study in
Table 12 show that even without the selective mechanism, GRAMA still performs better. This highlights that the gain comes
not only from selectiveness but also from GRAMA’s overall design: unlike MixHop’s dense, non-recurrent projection,
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Table 9: Training and Inference Runtime (milliseconds) and obtained node classification accuracy (%) on the Roman-Empire
dataset. Note that in GRAMAGCN (Naive), the ARMA coefficients are learned, but not input-adaptive as in GRAMAGCN.

Metrics Method Depth

4 8 16 32

Training (ms)
GCN

18.38 33.09 61.86 120.93
Inference (ms) 9.30 14.64 27.95 53.55
Accuracy (%) 73.60 61.52 56.86 52.42

Training (ms)
GPS

1139.05 2286.96 4545.46 OOM
Inference (ms) 119.10 208.26 427.89 OOM
Accuracy (%) 81.97 81.53 81.88 OOM

Training (ms)
GPSGAT+Performer (RWSE)

1179.08 2304.77 4590.26 OOM
Inference (ms) 120.11 209.98 429.03 OOM
Accuracy (%) 84.89 87.01 86.94 OOM

Training (ms)
GRAMAGCN (Naive)

41.16 98.83 249.68 747.26
Inference (ms) 13.03 26.83 63.61 164.87
Accuracy (%) 83.23 84.72 85.13 85.04

Training (ms)
GRAMAGCN

75.75 141.79 463.76 1378.91
Inference (ms) 40.33 70.91 240.78 702.17
Accuracy (%) 86.33 88.14 88.24 88.22

Table 10: Training Runtime (milliseconds) on the Roman-Empire dataset of GRAMA and its backbone GNNs. Note that in
GRAMAGCN (Naive), the ARMA coefficients are learned, but not input-adaptive as in GRAMAGCN.

Method Depth

4 8 16 32

GCN 18.38 33.09 61.86 120.93
GatedGCN 27.57 47.98 85.36 171.27
GPS 1139.05 2286.96 4545.46 OOM

GRAMAGCN (Naive) 41.16 98.83 249.68 747.26
GRAMAGCN 75.75 141.79 463.76 1378.91
GRAMAGATEDGCN 51.49 117.01 270.64 792.32
GRAMAGPS 1162.13 2346.94 4642.19 OOM

GRAMA uses a recurrent, non-dense aggregation inspired by dynamical systems and modern RNNs.

E.6. Additional Spatio-Temporal Benchmarks

Given the inspiration of GRAMA from sequential models, by transforming a graph into sequences of the graph, it is
interesting to understand if it can be utilized for spatio-temporal datasets. In this section we preliminary results with datasets
from Rozemberczki et al. (2021). Specifically, we employ Chickenpox Hungary, PedalMe London, and Wikipedia Math,
where the goal is to predict future values given past values. In Table 16, we compare the MSE score of our method with two
state-of-the-art approaches in the spatio-temporal domain, i.e., A3T-GCN (Bai et al., 2021) and T-GCN (Zhao et al., 2020).
Our results show that our GRAMA is a promising approach for processing spatio-temporal data as well.
It is important to note that addressing spatio-temporal datasets is not the main goal of this paper. Rather, our GRAMA
addresses fundamental issues in existing methods that utilize graph SSMs and the oversquashing issue in static graphs, and
studying and extending our GRAMA to spatio-temoporal datasets is an interesting future work direction.

F. Summary of the results
In this section, we provide a summary of the results achieved by GRAMA. Specifically, we report Table 17 the performance
of our GRAMA with respect to the baseline backbone GNNs (i.e., GCN, GatedGCN, and GPS)) and in Table 18 the
comparison with the best baseline out of all methods in tables. As evidenced from both Table 17 and Table 18, our GRAMA

31



Graph Adaptive Autoregressive Moving Average Models

Table 11: Training runtime per epoch (milliseconds) and obtained node classification accuracy (%) on the Roman-Empire
dataset. Note that in GRAMAGCN (Naive), the ARMA coefficients are learned, but not input-adaptive as in GRAMAGCN.

Model Training runtime per epoch Accuracy
(ms) (%)

GatedGCN 18.38 73.69±0.74

GPS 1139.05 82.00±0.61

GPS + Mamba 320.39 83.10±0.28

GMN 387.04 87.69±0.50

GRAMAGCN (Naive) 249.68 85.13±0.36

GRAMAGCN 362.41 88.61±0.43

Table 12: The significance of learning selective ARMA coefficients. Our GRAMA architectures improve baseline
performance, and its selective mechanism further improves performance. Note that in GRAMAGCN (Naive), the ARMA
coefficients are learned, but not input-adaptive as in GRAMAGCN.

Model Roman-empire Peptides-func
Acc ↑ AP ↑

GCN 73.69±0.74 59.30±0.23

GRAMAGCN (Naive) 85.13±0.58 68.98±0.52

GRAMAGCN 88.61±0.43 70.93±0.78

offers significant and consistent improvements over the baseline backbone GNNs as well as better performance than current
state-of-the-art performing methods. Therefore, we believe that our proposed method provides a substantial improvement
not only in terms of designing a principled and mathematically sound model, which is equivalent to a Graph SSM model
that preserves permutation-equivariance and allows long-range propagation, but also in terms of downstream performance
on real-world applications and benchmarks.
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Table 13: The obtained node classification accuracy (%) with GRAMAGCN on the Roman-Empire with a varying sequence
length size L and blocks S. Our GRAMA improves with more layers, and maintains its performance with deep models.

Sequence Length L ↓ / Blocks S → 2 4 8 16

2 86.33 88.14 88.24 88.22
4 87.30 88.06 88.61 88.57
8 88.41 88.15 88.54 88.46

Table 14: Node classification accuracy (%) on Roman-Empire with varying width of GRAMA.

Model ↓ / Width → 64 128 256

GRAMAGCN 87.79 88.45 88.61
GRAMAGATEDGCN 91.79 91.66 91.68
GRAMAGPS 91.28 91.70 91.19

Table 15: Mean test set score and std on popular benchmarks comparing MixHop and GRAMA.

Model Peptides-func Peptides-struct Roman-Empire Amazon-Ratings OGBN-Arxiv
AP ↑ MAE ↓ Acc ↑ Acc ↑ Acc ↑

MixHop-GCN 68.43±0.49 0.2614±0.0023 79.16±0.70 47.95±0.65 71.29±0.29

GRAMAGCN 70.93±0.78 0.2439±0.0017 88.61±0.43 53.48±0.62 73.86±0.21

Table 16: Mean test set MSE and std on spatio-temporal datasets. The best result for each task is color-coded.

Model Chickenpox Hungary PedalMe London Wikipedia Math

Baselines
A3T-GCN 1.114±0.008 1.469±0.027 0.781±0.011

T-GCN 1.117±0.011 1.479±0.012 0.764±0.011

Our
GRAMAGCN 0.790±0.031 1.089±0.049 0.608±0.019

Table 17: Summary of the performance of our GRAMA with respect to backbone GNNs. The best result for each task is
color-coded.

Task ↓ / Model → Ours

GCN GatedGCN GPS GRAMAGCN GRAMAGATEDGCN GRAMAGPS

Diameter (log10(MSE) ↓) 0.7424±0.0466 0.1348±0.0397 -0.5121±0.0426 0.2577±0.0368 -0.5485±0.1489 -0.8663±0.0514

SSSP (log10(MSE) ↓) 0.9499±9.18·10−5 -3.261±0.0514 -3.599±0.1949 0.0095±0.0877 -4.1289±0.0988 -3.9349±0.0699

Ecc. (log10(MSE) ↓) 0.8468±0.0028 0.6995±0.0302 0.6077±0.0282 0.6193±0.0441 0.5523±0.0511 -1.3012±0.1258

Pept.-func (AP ↑) 59.30±0.23 58.64±0.77 65.35±0.41 70.93±0.78 70.49±0.51 69.83±0.83

Pept.-struct (MAE ↓) 0.3496±0.0013 0.3420±0.0013 0.2500±0.0005 0.2439±0.0017 0.2459±0.0020 0.2436±0.0022

MalNet-Tiny (Acc ↑) 81.00 92.23±0.65 92.64±0.78 93.43±0.29 93.66±0.40 94.37±0.36

Roman-empire (Acc ↑) 73.69±0.74 74.46±0.54 82.00±0.61 88.61±0.43 91.82±0.39 91.73±0.59

Amazon-ratings (Acc ↑) 48.70±0.63 43.00±0.32 53.10±0.42 53.48±0.62 53.71±0.57 53.36±0.38

Minesweeper (AUC ↑) 89.75±0.52 87.54±1.22 90.63±0.67 95.27±0.71 98.19±0.58 98.33±0.55

Tolokers (AUC ↑) 83.64±0.67 77.31±1.14 83.71±0.48 86.23±1.10 85.42±0.95 85.71±0.98

Questions (AUC ↑) 76.09±1.27 76.61±1.13 71.73±1.47 79.23±1.16 80.47±1.09 79.11±1.19

ZINC-12k (MAE ↓) 0.278±0.003 0.254±0.005 0.125±0.009 0.142±0.010 0.140±0.008 0.100±0.006

OGBG-MOLHIV (AUC ↑) 76.06±0.97 76.72±0.88 77.39±1.14 77.47±1.05 77.60±0.98 78.19±1.10

Cora (Acc ↑) 85.77±1.27 86.21±1.28 85.42±1.80 88.02±1.01 88.13±0.99 87.95±1.72

CiteSeer (Acc ↑) 73.68±1.36 74.10±1.22 73.99±1.57 77.09±1.53 77.63±1.38 77.13±1.51

PubMed (Acc ↑) 88.13±0.50 88.09±0.44 88.23±0.61 90.20±0.47 90.07±0.45 89.76±0.64

MNIST (Acc ↑) 90.71±0.22 97.34±0.14 98.05±0.13 97.87±0.19 98.12±0.10 98.29±0.14

CIFAR10 (Acc ↑) 55.71±0.38 67.31±0.31 72.30±0.36 70.28±0.42 74.61±0.45 75.92±0.41

PATTERN (Acc ↑) 71.89±0.33 85.57±0.09 86.69±0.06 82.66±0.18 86.72±0.10 87.41±0.07

CLUSTER (Acc ↑) 68.50±0.98 73.84±0.33 78.02±0.18 74.29±0.60 76.88±0.32 79.66±0.19
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Table 18: Summary of the performance of our GRAMA (best performing model out of 3 variants) with respect to the best
baseline out of all methods in Tables. The best results for each task is color-coded. The “Improvement” column reports the
difference in performance between GRAMA and the best baseline

Task ↓ / Model → Best baseline GRAMA Improvement

Diameter (log10(MSE) ↓) -0.5981±0.1145 -0.8663±0.0514 -0.2682
SSSP (log10(MSE) ↓) -3.5990±0.1949 -4.1289±0.0988 -0.5299
Ecc. (log10(MSE) ↓) -0.0739±0.2190 -1.3012±0.1258 -1.2273

Pept.-func (AP ↑) 71.50±0.44 70.93±0.78 -0.57
Pept.-struct (MAE ↓) 0.2459±0.0020 0.2436±0.0022 0.0023

MalNet-Tiny (Acc ↑) 94.22±0.24 94.37±0.36 0.15

Roman-empire (Acc ↑) 92.55±0.30 91.82±0.39 -0.73
Amazon-ratings (Acc ↑) 54.81±0.49 53.71±0.57 -1.08
Minesweeper (AUC ↑) 97.46±0.36 98.33±0.55 0.87
Tolokers (AUC ↑) 85.91±0.74 86.23±1.10 0.32
Questions (AUC ↑) 80.02±0.86 80.47±1.09 0.45

ZINC-12k (MAE ↓) 0.059±0.002 0.061±0.003 0.002
OGBG-MOLHIV (AUC ↑) 78.80±1.01 79.21±0.94 0.41
Cora (Acc ↑) 86.67±1.53 88.37±1.64 1.7
CiteSeer (Acc ↑) 74.52±1.49 77.68±1.55 3.16
PubMed (Acc ↑) 88.94±0.49 90.31±0.58 1.37
MNIST (Acc ↑) 98.17±0.09 98.29±0.14 0.12
CIFAR10 (Acc ↑) 76.47±0.88 75.92±0.41 0.55
PATTERN (Acc ↑) 87.20±0.08 87.41±0.07 0.21
CLUSTER (Acc ↑) 80.03±0.28 79.66±0.19 0.37

Chickenpox Hungary (MSE ↓) 1.114±0.008 0.790±0.031 -0.324
PedalMe London (MSE ↓) 1.469±0.027 1.089±0.049 -0.380
Wikipedia Math (MSE ↓) 0.764±0.011 0.608±0.019 -0.156
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