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Optical coding is an essential technique in computational imaging (CI) that allows high-dimensional
signal sensing through post-processed coded projections to decode the underlying signal. Currently,
the optical coding elements (OCE) are optimized in an end-to-end (E2E) manner where a set of layers
(encoder) of a deep neural network model the OCE while the rest of the network (decoder) performs a given
computational task. However, while the training performance of the whole network can be acceptable,
the encoder layers can be sub-optimal, leading to deficient OCE designs. This sub-optimal performance
of the encoder originated from factors such as the loss function of the network does not consider the
intermedium layers separately as the output at those layers is unknown. Second, the encoder suffers
from the vanishing of the gradient since the encoder takes place in the first layers. Third, the proper
estimation of the gradient in these layers is constrained to satisfy physical limitations. In this work, we
propose a Middle Output Regularized End-to-end (MORE) optimization, where a set of regularization
functions are used to overcome the sub-optimal performance of the encoder. The significant advantage
of our regularization is that it does not require additional knowledge of the encoder and can be applied
to most optical sensing instruments in computational imaging. Instead, the regularization exploits some
prior knowledge about the computational task, the statistical properties of the output of the encoder
(measurements), and the sensing model. Specifically, we proposed three types of regularizers: The first
one is based on statistical divergences of the measurements, the second depends only on the variance of
the measurements, and the last one is a structural regularizer promoting low rankness and sparsity of the
set of measurements. We validated the proposed training procedure in two representative computational
imaging systems, the single-pixel camera (SPC), and the coded aperture snapshot spectral imager (CASSI),
showing significant improvement with respect to non-regularized designs. © 2024 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

The joint operation of optical systems and computational algo-
rithms in computational imaging (CI) has allowed the acquisi-
tion of high-dimensional signals, D > 2 where D is the signal
dimension, such as spectral imaging [1], polarization state [2],
depth imaging [3], temporal imaging [4], and angular views
in light fields [5]. A key in these systems is the optical coding
elements (OCE), which allow modulating variables of the inci-
dent light wave, such as its amplitude, using coded aperture
(CA) [6], phase using diffractive lenses [7], polarization using
micro-polarizers [2] or spectral information employing disper-
sive elements [8]. Consequently, the design of these elements
for optimal CI performance has received great attention. Partic-
ularly, the design of CA has been extensively studied based on

analytical criteria such as the Hadamard invertibility [6, 9] or
compressive sensing theory [10], such as the restricted isometry
property [11, 12]. Additionally, in the design of diffractive lenses,
methods have been proposed to reduce chromatic aberrations
and geometries [13] to improve CI systems. Moreover, these
elements have been designed for the encoding of spectral in-
formation [14, 15]. Although an increase in the performance of
the aforementioned design methods is presented with respect to
standard configurations (Bernoulli CA or Fresnel lenses), these
are based on structural assumptions of the signal or system,
which in some cases are not achieved and do not work well in
several scenarios.

With new advances in machine learning algorithms, particu-
larly those of deep learning [16], and a large number of databases
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available, the end-to-end optimization method [17] has been
proposed where the OCE is optimized taking into account prop-
erties of the training dataset. Here, the optical system is modeled
as a layer of a neural network whose trainable parameters are the
OCE, and this layer is called the optical encoder (OE). The OCE
is coupled with a network that performs the decoding task, i.e.,
reconstruction, classification, segmentation, etc., and is called
the computational decoder (CD). This way, the OCE is jointly
trained with the inference task, allowing the OCE to adapt ac-
cording to the training database and the CD. While the whole
E2E network has shown an overall good performance in several
tasks such as spectral imaging [18], classification, and depth esti-
mation [19], compressive spectral image fusion [20, 21], depth
estimation with compressive light field [22], extended chromatic
field of view and super-resolution [23], or monocular depth esti-
mation [24] among others, optimization of the OE can be subpar
due to several reasons. For instance, the OE parameters can be
only optimized with respect to the loss function computed with
the output CD network yielding, first in the gradient vanishing
on the OCE. Thus, the performance of the E2E network relies
more on optimal CD training than on optimal optical codifica-
tion design. Moreover, the output of the intermediate layer is
not considered a variable that needs to be carefully optimized
to increase the entire performance of the network. Additionally,
the OE is highly constrained to a feasible set of values due to
the physical meaning of the OCE, which reduces the degrees of
freedom in training.

To overcome the OCE training issues, we propose Middle
Output Regularized end-to-end (MORE), where a set of regular-
ization functions performed in the output of the OE are devised.
First, the proposed regularization functions can exploit prior
knowledge about the task, the dataset, and the OE to optimize
the OCE. Also, we give insights into the optimality criteria at the
intermediate layers’ output based on these outputs’ statistical
properties such as the mean and variance of the measurements
set. We show how the measurement distribution affects the CD
performance according to the tasks. Empirically, we demon-
strate that if we concentrate on the distribution of the measure-
ments (reducing the data variance), it allows a more compact
representation of the data, thus allowing better reconstruction
performance. While for the classification task, increasing the
variance improves accuracy since the classes are better identified
by the CD. Based on these criteria, three types of regulariza-
tion functions are proposed to promote these properties on the
OE. i) Kullback-Leiber divergence regularization, where these
functions aim to approximate the distribution of the intermedi-
ate output (the OE output) to a prior distribution. Particularly,
Gaussian distribution (widely used in variational autoencoders
[25]) and Laplacian distribution (employed in regression tasks
[26]) priors are employed since the KL-D has closed form so-
lution and can be efficiently implemented. This regularization
promotes a given mean and variance value on the measurement
distribution by the prior distribution. We study the effect of this
prior distribution to find the optimal configuration. Preliminary
results on the KL-D regularizer have shown promising results
in [27] for recovery tasks and also beyond computational imag-
ing in [28] where we employed this regularization to improve
the design of the geometry of acquisition in compressive seis-
mic applications. ii) Variance-based regularization in which the
variance of the coded observations is minimized or maximized.
This criterion has been studied in self-supervised representation
learning, where controlling the variance allows a more compact
representation of the data. We minimize the variance for the

reconstruction task and maximize it for classification. iii) Struc-
tural regularization, where we exploit low rank in the measure-
ment set by sparsifying the singular values of the measurements,
thus concentrating the dataset information in a few linear inde-
pendent coded measurements. And sparsity in a given basis,
e.g., wavelet along the measurement set to promote smoothness,
i.e., reduce the data variability., These regularization functions
indirectly concentrate on the distribution of the measurements.
From a learning representation point-of-view, these regulariza-
tion functions encourage invariant OE and allow contractive
representation in the data manifold, while the recovery loss
function enforces accurate image estimation [29]. Contractive
representations have been used in traditional autoencoders [30].
However, this criteria has not been proposed for sensing ma-
trix optimization. One of the main advantages of the proposed
training methodology is that it can be applied in any optical
architecture and can be adapted for any computational task. An
overview of the proposed approach is shown in Fig. 1.

Several systems were employed to validate the proposed
design criteria’s effectiveness. First, the regularization functions
were evaluated using a compressive sensing scenario; further
real imaging systems were employed, such as the single-pixel
camera (SPC) [31] for imaging, and the coded aperture snapshot
spectral imager (CASSI) [8], for spectral imaging. We showed
that decreasing the variance of the set of measurements for all
these systems allows for better reconstruction quality.

The rest of the paper is organized as follows. In section 2, the
E2E formulation is presented, section 3 presents the proposed
regularization functions to improve the E2E performance. Later
in section 4 is shown the mathematical modeling of the compres-
sive imaging systems employed to validate the proposed design.
Section 5 presents the numerical experiments. Furthermore,
section 6 reports the experimental validation of the proposed
design, and finally section 7 presents the conclusion of this work.

2. END-TO-END OPTIMIZATION

In computational imaging, a high-dimensional signal f ∈ Rn

is acquired via a low-dimensional coded projection y ∈ Rm,
with m ≪ n. In the E2E optimization framework, the sensing
procedure is modeled as a differentiable linear operator, i.e.,

y = HΦf + ω (1)

where HΦ ∈ Rn×m is the sensing matrix of the system, namely,
the OE, Φ is the OCE of the sensing system, e.g., CA or DOE,
and ω is additive noise. The OCE is then optimized jointly with
a CD network Mθ with trainable parameters θ as

{θ⋆, Φ⋆} = arg min
θ,Φ

L(θ, Φ)

= arg min
θ,Φ

1
K

K

∑
k=1

Ltask (Mθ(HΦfk), dk) + ρRi(Φ),

(2)

where {fk}K
k=1 is the training dataset, Ltask is the loss function

of desired tasks, dk corresponds to the expected output, e.g.,
classification labels [32], ground truth image [20], depth maps
[3] etc. Usually, the OCE is constrained to a set of feasible values
due to the physical limitations of the elements. To impose this
constraint, a regularization function Ri(Φ) is added to the loss
function, where ρ is the regularization parameter. This regular-
ization can also induce the desired properties on the OCE, such
as transmittance in CA, number of shots, etc., [Table II 17]. The
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Fig. 1. a) E2E scheme where the OE is optimized jointly with the CD network. b) Proposed regularization functions to improve the
design of the OE by inducing statistical priors during the training of the E2E network.

Fig. 2. Norm of the gradient of the CD parameters and the
OCE of the OE.

main goal here is that the OCE is updated according to the task
loss function and the physical constraint given by the regular-
ization. Particularly, following the chain rule, the gradient of the
loss function with respect to the OCE is

∂L
∂Φ

=
∂Ltask
∂Mθ

∂Mθ

∂y
∂y
∂Φ

+ ρ
∂Ri(Φ)

∂Φ
(3)

The training of the OCE has two main issues. i) the training
is highly conditioned to the physical-limitation regularization
function, which decreases the degrees of freedom of the OCE.
ii) Gradient vanishing due to the OE being the first layer of
the E2E network, most of the optimization is performed over
the CD parameters rather than optimizing the optical coding
properly. As an illustration of this phenomenon in Fig. 2 is
plotted norm of the loss function gradient with respect to the
θ and ϕ in a logarithmic scale. This experiment is performed
with an SPC as OE; its corresponding OCE is the CA, and the
computational task is recovery via a UNET network. Here, a
significant difference (almost one order of magnitude) between
the OE gradient and the CD parameters gradient. Mainly, this
issue is because the intermediate output of the E2E (the coded
measurements) is not taken into account independently on train-
ing, and the optimization is only performed with respect to the
CD output. Thus, we provide new insights into what should be
this intermediate output based on the statistical properties of
this output. Then, based on this criterion, we propose a set of
regularization functions that control the statistical properties of
the coded measurements. Other regularization functions have

been proposed to increase the performance of the E2E network.
For instance, [19] proposes to minimize a regularization based
on concentrating the eigenvalues of the sensing matrix HΦ fol-
lowing the function ∥HT

ΦHΦf − f∥2. Similarly [33] proposes to
minimize the closed-form solution of a regularized ℓ− 2 opti-
mization problem, i.e. arg minf ∥HΦf − y∥2 + γ∥f∥2, yielding
the regularization function ∥fk − (HT

ΦHΦ + γI))−1HT
ΦHΦfk∥2,

thus promoting good invertibility properties on HΦ. These func-
tions aim to obtain an approximation of the desired image only
with the invertibility properties of the sensing matrix. However,
such invertibility is usually not met due to a highly structured
matrix and mostly due to the ill-posed nature of the problem.
Thus this regularization does not provide better optimization of
the OE. Additionally, these regularization functions only apply
to recovery and cannot be adapted to other computational tasks.
The proposed regularization functions promote a contractive
OE, which reduces the variance between training samples’ com-
pressed projections. Then, by reducing the variability on the
compressed domain, the decoder performs better in the recon-
struction. Also, for the classification task, the opposite effect is
desired, expanding the distribution of the measurements. In the
following section will be detailed the proposed regularization.

3. PROPOSED REGULARIZATION FUNCTIONS

In this paper, we propose a new type of regularization function
for E2E optimization, promoting some properties on the distri-
bution of the measurements. The optimization problem Eq. (2)
becomes

{θ⋆, Φ⋆} = arg min
θ,Φ

L(θ, Φ)

= arg min
θ,Φ

1
K

K

∑
k=1

Ltask (Mθ(HΦfk), dk) + ρRi(Φ)

+ µR(Y) (4)

where µ is the regularization parameter and Y ∈ RK×m is the
matrix containing all the training batch of compressed measure-
ments, i.e., Y = [yT

1 , yT
2 , . . . , yT

K ]
T .

A. Divergence-based regularization
This type of regularization function is based on the idea behind
variational auto-encoders [25]. Particularly, this regularization
aims to approximate the probability distribution of the measure-
ments set denoted by the posterior distribution qΦ(Y|F), where
F ∈ RK×n is a matrix with all the input training images, to a
prior distribution pβ(Y) where β is the set of parameters that
defines the prior distribution. This regularizer is defined as

RD(Y) = D
(

qΦ(Y|F)∥pβ(Y)
)

(5)
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where D denotes the divergence function. Several divergences
have been used as loss functions in neural network training.
The most common is the Kullback-Leiber divergence, employed
in variational-autoencoders [25], generative adversarial net-
works [34], self-supervised learning [35] among others. Par-
ticularly, the KL divergence is defined as follows, given two
probability distributions P(x) and Q(x), we have DKL(P∥Q) =∫

P(x) log
(

P(x)
Q(x)

)
dx. One of the main reasons the KL diver-

gence is widely used is that it has a closed-form solution when P
and Q are Gaussian or Laplacian distributions (see [25, 36]). In
these cases, the parameters for the prior distribution pβ(Y) are
β = µp, σp, where µp is the mean value and σp is the variance
of the distribution. For the distribution of the measurements
qΦ(Y∥F). The mean µY ∈ Rm and variance σY ∈ Rm

+ are com-
puted pixel-wise across the training batch. For the Gaussian
case, the KL divergence-based regularizer is defined as:

RKL−G(Y) = log
(

σY
σp

)
−

σ2
Y +

(
µY − µp

)2

2σ2
p

+
1
2

(6)

and for the Laplacian assumption, the KL divergence-based
regularizer is given by

RKL−L(Y) = log
(

σY
σp

)
−

σp + e
( −|µp−µY |

σp

)
+ |µp − µY|

σp
− 1 (7)

The effect of these regularizers depends directly on the values
of the mean and variance of the prior distribution. Thus, these
are hyperparameters of the regularizers needed to be chosen to
obtain the desired behavior.

B. Variance-Based regularization
Another way to control the measurement set distribution is to
regularize the variance directly. Here we proposed a variance
minimization regularizer. This variance-based regularization
criterion has also been used in representation learning for self-
supervised task [37], sparse-coding [38]. Here, we extrapolate
these criteria of optimal low-dimensional representation basis
optimal compressive sensing system, thus giving more inter-
pretability of the designed OCE by the E2E optimization. The
proposed regularization function is the following

RVmin(Y) = ∥σY∥2. (8)

For this regularization, to control how concentrated we want
the distribution of the measurements to be, we tune the hyper-
parameter µ on Eq. (4). In some downstream tasks, such as
classification, where we want to identify the difference from
the image of different classes, therefore, if the distribution of
the measurements is wider, i.e., greater variance, the CD could
better identify the classes. Thus, the variance maximization can
be promoted by the following regularization function

RVmax(Y) = ∥σmax − σY∥2. (9)

where σmax is a maximum variance reference, a hyperparameter
that can be tuned.

C. Structural regularization
This type of regularization is based on the common priors of
compressed sensing recovery: low-rank and sparsity [10, 39].
Although these priors are employed over the underlining signal
f, here we employ these criteria to achieve the following effects

in the measurement space. The low-rank prior is employed to
concentrate the information of the dataset in a few representa-
tive measurements, thus reducing the projection manifold and
allowing better reconstruction by the CD. To promote the low
rankness on the measurement space, we minimize the ℓ1 norm
of the singular values of Y. Particularly, employing the singular
value decomposition (SVD) of the measurement matrix, we ob-
tain Y = UDVT where the matrices U ∈ Rm×m and V ∈ RK×K

are the left and right singular vector respectively and D ∈ Rm×K

is a rectangular diagonal matrix with the singular values in its
diagonal. The singular values are denoted by d = [di, . . . , dK ]
where di = D(i,i) for i = 1, . . . , K. Thus, our low-rank regular-
ization is the following

RLR(Y) = ∥d∥1 (10)

By applying the ℓ1 norm on the singular values, we promote
having few non-zero values on d and thus reducing the rank.

The second criterion, the sparsity-based regularization, fol-
lows the same intuition of its application in imaging inverse
problems, where sparsity over a given representation basis
(wavelet, DCT, or Fourier) is employed to promote the smooth-
ness of the images. Here we aim to promote smoothness along
the coded measurements, thus reducing the variance. Mathe-
matically, the regularizer is

RS(Y) = ∥ΨσY∥1 (11)

where Ψ is the representation basis. In this work, we consider
the Haar wavelet, which has shown good results in promoting
smoothness on signals [40].

4. COMPRESSIVE IMAGING SENSING MODELS

To validate the proposed deep optical design, we employed two
flagship CI optical architectures the CASSI and SPC.

A. Single Pixel Camera
The first optical architecture is the Single Pixel Camera (SPC)
[31], this architecture is widely used in compressive imaging
systems. This system employs an imaging lens that spatially
introduces light, which is previously modulated by an CA, and
then integrates the encoded image into a single pixel detector.
The CA can be implemented with spatial light modulators (SLM)
[41], such as a digital micro-mirror device (DMD)[42], that selec-
tively redirects parts of the light beam [43][44]. The SPC uses a
CA Φk

(i,j) that spatially modulates all the information from the
scene F(i,j) with the same pattern, where (i, j) index the spatial
coordinates, k indexes each captured snapshot. In particular, the
CA Φk

(i,j) is a binary pattern whose spatial distribution deter-
mines the performance of the reconstruction. Mathematically,
the CA effect over the scene can be represented as:

F̂k
(i,j) = F(i,j)Φ

k
(i,j) (12)

After that, the modulated scene F̂ is focused in a single spa-
tial point by the condenser lens, and captured by a single-pixel
detector. The resulting sensing matrix Ĥϕs ∈ RK×MN contains
the vectorization of the CA of each snapshot k in his rows. The
aperture codes implemented for the sensing matrix, are the de-
sign parameter from the proposed regularizers. The acquisition
system can be modeled as:

y = Ĥϕs f + ns (13)
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System Dataset Task Computational Decoder

Compressive Sensing MNIST Recovery U-NET

Single-Pixel

Fashion MNIST Recovery U-NET

Fashion MNIST Classification MobilNet-V2

CIFAR-10 Recovery U-NET

CASSI ARAD Recovery U-NET

Table 1. Experiments to validate the proposed OCE design

Where, y = [y0, ..., (yK−1)]
T is the compressed measurements,

f ∈ RMN is the vectorized image and nc is a additive Gaussian
noise.

B. CASSI
In the CASSI architecture, the input light source is first focused
by an imaging lens to a CA, which codifies the spatial informa-
tion of the image. Then, the spectral information of the coded
field is dispersed through a prism. Finally, the coded and dis-
persed information impinges on a focal plane array. Therefore,
the discrete model of the CASSI measurements yc can be formu-
lated as:

yc(i,j) =
L

∑
ℓ=1

Φc(i,j)F(i,j−ℓ,ℓ), (14)

where F ∈ RM×N×L and the CASSI measurements, Φc repre-
sents the CA. The discrete model in Eq. (14) can be expressed in
a matrix-vector product in the following expression

yc = HΦc f + nc, (15)

where yc ∈ RM(N+L−1) are the compressed measurements,
HΦc ∈ RM(N+L−1)×MNL the CASSI sensing matrix, f ∈ RMNL

is the vectorization of the high spatial-spectral resolution im-
age, and nc ∈ RM(N+L−1) is additive noise. Here the design
parameter are the CA Φc

5. SIMULATION RESULTS

To evaluate the performance of the proposed design methodol-
ogy, we perform the experiments shown in Table 1. Particularly,
we perform classification and recovery tasks, where for the first
we employ a MobilNet-V2 network [45] which is a lightweight
model widely employed for classification. For the recovery task,
it was used a U-Net model with five convolution blocks for
each downsampling and upsampling process. For all the ex-
periments, we trained the E2E network for 100 epochs, halving
the learning rate every 40 epochs. For the CASSI CA binary
constraint, the polynomial regularization in [19] was employed
i.e., R(Φ) = ∑ij(1 − Φij)

2(Φij)
2. For the SPC CA constraint, we

consider values {−1, 1} which in practice can be achieved by
following the procedure in detail in [Appendix 32] which allows
better signal-to-noise-ratio (SNR). Then, the physical constraint
regularizer is R(Φ) = ∑ij(1− Φij)

2(1+ Φij)
2. The parameter of

the physical constraint regularizer ρ was dynamically updated
during training as suggested in [19].

A. Compressed Sensing Experiments
A first experiment to validate the performance of the proposed
regularized E2E network, we study a compressive imaging sce-
nario, not imposing a physical and structural meaning on the
sensing matrix HΦ. Here we use a compression ratio of 10%

Fig. 3. Recovery performance for the CS scenario employing
the KL-D regularizers with the Gaussian (left) and Laplacian
(right) cases

a c

b d

Fig. 4. Recovery performance for the CS scenario employing
the variance and structural regularizers compared with the
non-regularized E2E network. a) Performance depends on the
regularization parameter µ. First and second-pixel distribution
of the test dataset for the b) low-rank, c) minimize variance, d)
sparsity.

KL-Divergence: First, we analyze the effect of the mean and
the variance of the prior distribution (µp, σp) on the network
performance. Here, we vary the µp from -2 to 2, and σp was
changed from 0.1 to 2.0, taking five equispaced values. The
results of this experiment are shown in Fig 3 , where optimal
reconstruction PSNR values are obtained at variances close to
1.0 and for means close to 0. These results suggest better re-
construction performance is obtained by concentrating on the
measurement distribution. The main interpretation is that reduc-
ing the representation space can improve the CD performance
since the variability of the data is reduced.

Variance and structural regularizers Then, we analyze the
performance of the E2E network for the variance minimization
and structural regularization. In Fig 4(a) is shown the recov-
ery performance depending on the regularization parameter in
Eq. (4) where optimal values for the regularization suggest a
trade-off between how much concentrate the distribution and
the recovery performance. Particularly, significant recovery im-
provements are shown with the low-rank and sparsity experi-
ments with respect to the baseline (no regularization E2E). Fig
4(b-d) presents the distribution of two pixels of the test set mea-
surement with the trained system, where it depicts the distribu-
tion concentration compared with the no-regularized model.
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Fig. 5. Recovery performance for the SPC system the KL regu-
larizers with the Gaussian (left) and Laplacian (right) cases.

P
SN

R
 [d

B
]

ba

dc

Fig. 6. Recovery PSNR performance for the SPC system with
the minimum variance and structural regularizers for different
regularization parameter µp (a) measurements distribution
comparison for the non-regularized design with the sparsity
(b), variance minimization regularization (c) and low-rank (d)

B. SPC experiments
For the SPC, we performed experiments on classification and
recovery tasks. The classification is performed directly from
the compressed measurements without reconstructing the un-
derlying scene. During the training of the E2E network, the
parameter of the physical constraint regularizer ρ was dynami-
cally updated during training as suggested in [19], which in the
first epochs the ρ is very low, thus not constraining the training
of the SL and it is increased to obtain a binary CA. For both
the recovery and classification tasks, we employed the Fashion
MNIST dataset with 60000 images for training and 10000 for
testing. All images were resized to 32×32.

Recovery experiments: For this experiment, we vary the
values of µp from -2 to 2, and σp was changed from 0.1 to 2.0,
taking five equispaced values. The CD in this experiment is a
UNET [46] with five downsampling and five upsampling blocks.
The results of this experiment are shown in Fig. 5. Here, the
performance obtained is similar to that obtained in the CS case,
where lower variance yields better reconstruction performance.
Also, similar to the results in Fig. 3, the optimal performance is
obtained in µp = 0, following the concept of batch normaliza-
tion where the centered output distribution yields more stable
training and better performance.

Then, we evaluate the variance and structural regularizers
(RVmin, RLR and RS) in the recovery task for the SPC architec-
ture. To this end, a study of the hyperparameter µp was per-
formed, varying the µp from 10−8 to 100 in a logarithmic scale.

Fig. 7. Classification performance for the SPC system the KL
regularizers with the Gaussian (left) and Laplacian (right)
cases.

dc

ba

Fig. 8. Classifcation accuracy performance for the SPC system
with the minimum and maximum variance regularizers for
different regularization parameters µp (a) measurements dis-
tribution comparison for the non-regularized. Measurements
distribution of the non-regularized design (b), minimum vari-
ance (c), and maximum variance (d).

The results of this experiment are compared with the baseline
E2E (non-regularized training). The reconstruction performance
measured in PSNR of this experiment is shown in Fig. 6(a). The
results suggest that in most cases the proposed regularized out-
performs the baseline design. Later, the distribution of the first
two SPC snapshots was plotted for the best performant setting
of each regularizer, the variance minimization Fig. 6(b), spar-
sity Fig. 6(c) and low-rank Fig. 6(d). Each scatter plot is also
shown the distribution obtained by the non-regularized sensing
matrix design. In all cases, the resultant distribution employing
the regularizers is more concentrated than the non-regularized
validating.

Classification experiments: Here, we evaluate the proposed
regularization functions on the classification high-level task. The
CD is a Mobilnet-V2 [45], which is a lightweight classification
network. The same values in the experiment of Fig. 5 of µp
and σp were used in this scenario. The results are shown in
Fig. 7, where an opposite performance is obtained compared
to the recovery case. Higher variance gives better classification
performance.

Then, employ the variance regularization (RVmin and RVmax)
in the classification task. A study of the hyperparameter µp

was performed, varying the µp from 10−8 to 100 in a logarith-
mic scale. The maximum variance value of RVmax was set to
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Fig. 9. Reconstruction PSNR performance for CASSI system varying the regularization parameter µp (a), the optimized CA for
non-regularized and regularized training (b) visual reconstruction (c), and spectral reconstruction (d). The blue highlighted values
correspond to the best results and the green to the second best.

σmax = 5 as we saw better performance with this setting. The
results of this experiment are compared with the baseline E2E
(non-regularized training). The accuracy performance of this
experiment is shown in Fig 8(a). These results show that the vari-
ance maximization regularizer outperforms the baseline and the
variance minimization regularization. Additionally, the regular-
ization RVmin underperforms the baseline validating that more
concentrated distribution negatively affects the decoder perfor-
mance. Then, the distribution of the first two SPC snapshots
was plotted for the best performant setting of each regularizer,
the non-regularized design Fig. 8(b), variance minimization Fig.
8(c) and variance maximization Fig. 8(d). The colors on the
scatter represent the corresponding class of each measurement.
While in the baseline and minimize variance distributions, the
classes are hardly identified, in the variance maximization de-
sign, the measurements of each class are clustered which helps
the decoder to classify better the data.

C. CASSI experiments
Here, we aim to design the CA of the CASSI with the proposed
regularization functions. Then, we employed the ARAD 1K
dataset [47] to train the E2E network where the spectral image
size was set to 128 × 128 × 31 by resizing the original dataset
spectral image dimension. The regularizers RVmin, RS, and RLR
were used for this scenario since we want to recover the spec-
tral image from the compressed measurements. Then, we first
evaluate the performance with respect to the regularization pa-
rameter µp compared with the non-regularization design. This
parameters was varied from 10−8 to 100 in a logarithmic scale.
The results in Fig 9(a) show that the proposed regularizer im-
proves upon the non-regularized setting where the low-rank is,
in this case, the one that provides the best performance. In Fig.
9(b) is shown the optimized CA for the non-regularized and
regularized design. Remarkably, the low-rank design conver-
gence to a uniform sampling pattern which is a highly desired
criterion in compressive imaging sensing matrix design [11, 12].
Fig 9(c) shows a visual reconstruction of a test image with its

Fig. 10. SPC acquisition system validation of proposed
method

corresponding PSNR and SSIM reconstruction values. Finally in
Fig 9(d) the reconstruction of a red spectral signature is plotted
with the corresponding SAM value. These last results show that
the best results corresponds also to the low-rank design.

6. EXPERIMENTAL VALIDATION

To perform the experimental validation of the proposed and
theoretically proven regularizers, the following optical systems
were implemented.

A. SPC Implementation
The single-pixel system (SPC) was implemented employing a
group of lenses that concentrate the light on a single pixel which
is focused at the entrance of the optical fiber. The illumination
used was a 3900E lamp from Illumination Technology, which
has a spectral range of 400-2200 [nm]. For the implementation of
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the CA generated by the regularizers, a reference DMD DLP7000
from Thorlabs was used, which has a pitch of 13.6 [µm]. In
this case, the binary levels are either 1 or -1. The modulation
effect caused by the -1 level can be implemented by acquiring a
measurement with a CA of all ones and subtracting it from each
captured snapshot. Also, two types of sensors were used, the
first of these is the side information sensor, which is a stingray
camera F-145, with a pitch size of 6.45 [µm]. On the other hand,
to acquire the SPC measurements, it was used a Flame Vis-Nir
spectrometer, which has a spectral range from 350 to 1077 [nm],
as shown in Fig. 10.

We employed this architecture to validate the performance of
the proposed method. For this experiment, three scenes of the
first five classes of the Fashion MNIST dataset were acquired
utilizing the implemented SPC system. A re-training of the net-
work was performed with the calibrated and captured CA and
using only the images from the first five classes of the Fashion
MNIST dataset. From this, the examples in Fig. 11 a) were used
as a test to evaluate the performance of the proposed method
for every one of the regularizers. Fig. 11 b) shows the confusion
matrix for the non-regularized design, the KL-Laplacian, the
KL-Gaussian, and the maximize variances regularization. The
results suggest that the variance maximization regularization
has the most accurate classification performance. Additionally,
using the other regularization functions there is an improvement
with respect to the non-regularized design.

B. CASSI Implementation
On the other hand, the CASSI system was mounted, which
consists of an amici prism to perform light scattering at different
wavelengths. Additionally, a Thorlabs DLP7000 DMD was used
to perform the scene modulation, with the same specifications
mentioned above. Additionally, for acquiring this information
2 stingray cameras were used, which were placed at a distance
from the image plane of the lenses. Finally, for the spectral
illumination of the scene, a TLS Tunable QTH Light Source
monochromator was used, which allowed for illuminating the
scene in a spectral range of 400-700 [nm], obtaining 31 spectral
bands.

In this experiment Fig 13, we performed the acquisition of
several scenes by varying the CA implemented in the DMD.
These CA were generated from the proposed model by varying
the regularizers used, which are minimum variance, low-rank,
and without regularizer. From these captures the reconstruction
of the scene was performed in a range of spectral bands ranging
from 400-700 [nm], where it is observed that the behavior of the
proposed model along the spectral range produces less artifact
with the proposed design than with the base E2E design. Ad-
ditionally, a region of interest in the reconstructed images was
analyzed, where the mean spectral signature is plotted along
with the SAM metric. This result shows that with the proposed
CA design, a more accurate spectral reconstruction is obtained.

7. CONCLUSION AND DISCUSSION

We proposed a set of regularization functions over the output of
the optical encoder layer within an E2E optimization of optics
and image processing framework. These regularizations pro-
mote some statistical properties over the coded measurements
i.e. concentrate or spread the distribution of the measurements.
We found that the optimal distribution depends on the compu-
tational task; for the recovery task, a concentrated distribution
allows better performance while for optimal classification per-

a Class 0

No Regularization KL-Laplacian

Class 1 Class 2 Class 3 Class 4

KL-Gaussian Maximize Variance

b

Fig. 11. Validation of the proposed method through the SPC
acquisition system, for the classification task. (a) Scenes from
the acquired Fashion-MNIST dataset with SPC implementa-
tion. b) Classification confusion matrix for non-regularized
design and with the regularization functions.

formance, a wider distribution is desired. We validate the design
of the optical coding elements via the regularized E2E optimiza-
tion in different optical architectures showing improvement with
respect to the non-regularized design in both simulation and
experimental setups.

Here we employed optical architecture to validate the pro-
posed regularized E2E optimization, however, this methodology
can be extended to a general sensing matrix design such as the
design of geometry design in a compressive seismic acquisition
scenario [28]. Additionally, beyond the sensing matrix design,
these regularizations can also be employed in high-level tasks
such as generative models [? ] where the variance of the gen-
erated samples is maximized to have high diversity synthetic
samples.

Acknowledgments. This work was supported by project



Research Article Optica 9

Fig. 12. Experimental prototype of the CASSI acquisition Sys-
tem

110287780575 through the agreement 785-2019 between the Agencia
Nacional de Hidrocarburos and the Ministerio de Ciencia, Tecnología e
Innovacion and Fondo Nacional de Financiamiento para la Ciencia, la
Tecnología y la Innovacion Francisco José de Caldas.

Disclosures. The authors declare no conflicts of interest.

REFERENCES

1. G. R. Arce, D. J. Brady, L. Carin, H. Arguello, and D. S. Kittle, “Compres-
sive coded aperture spectral imaging: An introduction,” IEEE Signal
Process. Mag. 31, 105–115 (2014).

2. C. Fu, H. Arguello, B. M. Sadler, and G. R. Arce, “Compressive spectral
polarization imaging with coded micropolarizer array,” in Compressive
Sensing IV, vol. 9484 (SPIE, 2015), pp. 59–65.

3. J. Chang and G. Wetzstein, “Deep optics for monocular depth estima-
tion and 3d object detection,” in Proceedings of the IEEE International
Conference on Computer Vision, (2019), pp. 10193–10202.

4. K. M. León-López and H. A. Fuentes, “Online tensor sparsifying trans-
form based on temporal superpixels from compressive spectral video
measurements,” IEEE Transactions on Image Process. 29, 5953–5963
(2020).

5. M. Hirsch, G. Wetzstein, and R. Raskar, “A compressive light field pro-
jection system,” ACM Transactions on Graph. (TOG) 33, 1–12 (2014).

6. E. Caroli, J. Stephen, G. Di Cocco, L. Natalucci, and A. Spizzichino,
“Coded aperture imaging in x-and gamma-ray astronomy,” Space Sci.
Rev. 45, 349–403 (1987).

7. Y. Peng, Q. Fu, H. Amata, S. Su, F. Heide, and W. Heidrich, “Com-
putational imaging using lightweight diffractive-refractive optics,” Opt.
express 23, 31393–31407 (2015).

8. A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser
design for coded aperture snapshot spectral imaging,” Appl. Opt. 47,
B44–B51 (2008).

9. S. R. Gottesman and E. E. Fenimore, “New family of binary arrays for
coded aperture imaging,” Appl. optics 28, 4344–4352 (1989).

10. E. J. Candes and M. B. Wakin, “An introduction to compressive sam-
pling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

11. C. V. Correa, H. Arguello, and G. R. Arce, “Spatiotemporal blue noise
coded aperture design for multi-shot compressive spectral imaging,”
JOSA A 33, 2312–2322 (2016).

12. H. Arguello and G. R. Arce, “Colored coded aperture design by concen-
tration of measure in compressive spectral imaging,” IEEE Transactions
on Image Process. 23, 1896–1908 (2014).

13. J. N. Mait, G. W. Euliss, and R. A. Athale, “Computational imaging,”
Adv. Opt. Photonics 10, 409–483 (2018).

14. F. Heide, Q. Fu, Y. Peng, and W. Heidrich, “Encoded diffractive optics
for full-spectrum computational imaging,” Sci. reports 6, 1–10 (2016).

15. D. S. Jeon, S.-H. Baek, S. Yi, Q. Fu, X. Dun, W. Heidrich, and M. H.

Kim, “Compact snapshot hyperspectral imaging with diffracted rotation,”
Assoc. for Comput. Mach. (ACM) (2019).

16. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature 521, 436–
444 (2015).

17. H. Arguello, J. Bacca, H. Kariyawasam, E. Vargas, M. Marquez, R. Het-
tiarachchi, H. Garcia, K. Herath, U. Haputhanthri, B. S. Ahluwalia et al.,
“Deep optical coding design in computational imaging: a data-driven
framework,” IEEE Signal Process. Mag. 40, 75–88 (2023).

18. E. Vargas, J. N. Martel, G. Wetzstein, and H. Arguello, “Time-
multiplexed coded aperture imaging: Learned coded aperture and
pixel exposures for compressive imaging systems,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, (2021),
pp. 2692–2702.

19. J. Bacca, T. Gelvez-Barrera, and H. Arguello, “Deep coded aperture
design: An end-to-end approach for computational imaging tasks,”
IEEE Transactions on Comput. Imaging 7, 1148–1160 (2021).

20. R. Jacome, J. Bacca, and H. Arguello, “D 2 uf: Deep coded aperture
design and unrolling algorithm for compressive spectral image fusion,”
IEEE J. Sel. Top. Signal Process. (2022).

21. R. Jacome, J. Bacca, and H. Arguello, “Deep-fusion: An end-to-end
approach for compressive spectral image fusion,” in 2021 IEEE Inter-
national Conference on Image Processing (ICIP), (IEEE, 2021), pp.
2903–2907.

22. E. Martínez, E. Vargas, and H. Arguello, “Fast disparity estimation from
a single compressed light field measurement,” in 2022 30th European
Signal Processing Conference (EUSIPCO), (IEEE, 2022), pp. 1991–
1995.

23. V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich,
F. Heide, and G. Wetzstein, “End-to-end optimization of optics and
image processing for achromatic extended depth of field and super-
resolution imaging,” ACM Transactions on Graph. (TOG) 37, 1–13
(2018).

24. J. Chang and G. Wetzstein, “Deep optics for monocular depth estima-
tion and 3d object detection,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, (2019), pp. 10193–10202.

25. D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114 (2013).

26. G. P. Meyer, “An alternative probabilistic interpretation of the huber
loss,” in Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, (2021), pp. 5261–5269.

27. R. Jacome, A. Hernandez-Rojas, and H. Arguello, “Probabilistic reg-
ularization for end-to-end optimization in compressive imaging,” in
Computational Optical Sensing and Imaging, (Optica Publishing Group,
2022), pp. CW1B–1.

28. R. Jacome, H. Arguello, A. Hernandez-Rojas, and P. Goyes-Penafiel,
“Divergence-based regularization for end-to-end sensing matrix opti-
mization in compressive sampling systems,” SIGNAL 2023 Ed. p. 79
(2023).

29. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE transactions on pattern analysis
machine intelligence 35, 1798–1828 (2013).

30. S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin,
and X. Glorot, “Higher order contractive auto-encoder,” in Joint Eu-
ropean conference on machine learning and knowledge discovery in
databases, (Springer, 2011), pp. 645–660.

31. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,”
IEEE signal processing magazine 25, 83–91 (2008).

32. J. Bacca, L. Galvis, and H. Arguello, “Coupled deep learning coded
aperture design for compressive image classification,” Opt. express 28,
8528–8540 (2020).

33. J. Bacca, T. Gelvez-Barrera, and H. Arguello, “Invariant coded aperture
design for compressive imaging,” in Adaptive Optics and Applications,
(Optica Publishing Group, 2022), pp. JTh2A–9.

34. T. Nguyen, T. Le, H. Vu, and D. Phung, “Dual discriminator genera-
tive adversarial nets,” Adv. neural information processing systems 30
(2017).

35. W.-C. Hung, V. Jampani, S. Liu, P. Molchanov, M.-H. Yang, and J. Kautz,



Research Article Optica 10

P1

RGB Ground
Truth

470 nm 503 nm 536 nm 570 nm 603 nm 636 nm

470 nm 503 nm 536 nm 570 nm 603 nm 636 nm

470 nm 503 nm 536 nm 570 nm 603 nm 636 nm

RGB No
Regularization

RGB Minimize
Variance RGB Low-rank Spectral Reconstruction

M
in

im
iz

e
V

ar
ia

nc
e

N
o

R
eg

ul
ar

iz
at

io
n

Lo
w

-r
an

k

P1

GT SAM
No regularization
Low-Rank
Minimize Variance
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