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ABSTRACT

During zero-shot inference with language models (LMs), using hard prompts
alone may not be able to fully describe the target task. In this paper, we explore
how the retrieval of soft prompts obtained through prompt tuning can assist hard
prompts in zero-shot task generalization. Specifically, we train soft prompt em-
beddings for each prompt through prompt tuning, store the samples of the training
instances (hard prompt + input instances) mapped with the prompt embeddings,
and retrieve the corresponding prompt embedding of the training instance closest
to the query instance during inference. Results show this simple approach en-
hances the performance of T0 on unseen tasks by outperforming it on 10 out of
11 datasets as well as improving the mean accuracy of T0 on BIG-bench bench-
mark by 2.39% points while adding only 0.007% additional parameters. Also,
using interpolation of multiple embeddings and variance-based ranking further
improve accuracy and robustness to different evaluation prompts, widening the
performance gap.

1 INTRODUCTION

Recently, pretraining massive Language Models (LMs) on huge amounts of data has enabled LMs to
perform downstream tasks without any fine-tuning with the aid of natural prompts or concatenation
of a few demonstration instances (Brown et al., 2020; Rae et al., 2021; Kojima et al., 2022; Chowd-
hery et al., 2022). Additionally, recent works have shown that adding a instruction-tuning stage, an
additional training step that helps pretrained LMs understand prompts and demonstrations results in
a significant performance boost on zero-shot task generalization even for moderate-sized LMs (Min
et al., 2021; Sanh et al., 2021; Wei et al., 2021; Wang et al., 2022b; Ye et al., 2022; Chung et al.,
2022). This extra instruction-tuning stage involves explicit, multi-task prompted learning on various
tasks, enabling LMs to quickly adapt to unseen tasks at inference.

While task prompts and demonstrations enable generalization to unseen tasks, they are essentially
hard prompts: prompts consisting of natural language phrases. Recent works have shown that these
hard prompts are suboptimal to target task adaptation and soft prompts lead to better performance
(Lester et al., 2021; Liu et al., 2021). Specifically, Lester et al. (2021) have shown that updating
only the prompt embeddings while keeping the backbone LM frozen can enable storing task-specific
information and keep the number of trainable parameters extremely small. Also, Gu et al. (2022)
have shown that hybrid prompting, utilizing both soft and hard prompts, shows better performance
than applying each of them individually.

Motivated from these approaches, we introduce Retrieval of Soft Prompt (ROSPR), a method uti-
lizing both soft and hard prompts for zero-shot task generalization. As shown in Figure 1, by train-
ing prompt embeddings for each given hard prompt through prompt tuning, we construct a Source
Prompt Library consisting of samples of training instances mapped with their corresponding prompt
embeddings. Then, during inference, by using a dense retriever model, we search for training in-
stances similar to the given query instances and retrieve their corresponding prompt embeddings.
Because the backbone LM is frozen, it allows the retrieved embeddings to serve as adapters as-
sisting hard prompts. While ROSPR can be applied to any LM, in this work, we use T0 (Sanh
et al., 2021) as our initial backbone LM and perform prompt tuning on the tasks used during the
instruction-tuning stage.
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To the best of our knowledge, this work is the first to introduce prompt embedding retrieval in
the zero-shot setting. While adding only 0.007% additional parameters, ROSPR outperforms T0
on 10 out of 11 evaluation datasets. ROSPR is also effective for challenging tasks such as tasks
from BIG-bench (Srivastava et al., 2022), outperforming T0 by 2.39% mean accuracy. Furthermore,
we provide several interesting findings: (1) Instead of retrieving a single prompt embedding for a
given task, we observe that the interpolation of multiple prompt embeddings increases robustness to
different evaluation prompts, outperforming T0 on robustness (2) We observe that a novel scoring
method that considers the answer choice distribution during retrieval further increases the likelihood
of retrieving the most optimal prompt embedding for the given task.
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Figure 1: An overview of ROSPR. For each hard prompt of the source datasets, soft prompts are trained
via prompt tuning. After storing training instances as keys and corresponding prompt embedding as values,
ROSPR searches training instances similar to query set Q, retrieves the corresponding prompt embeddings, and
selects the most frequently retrieved candidate for inference.

2 ROSPR

2.1 TRAINING SOURCE PROMPT EMBEDDINGS

For training of soft prompts, we utilize the source tasks and prompts used for the instruction-tuning
phase of T0. While T0 was trained in a multi-task learning manner, we freeze the initial T0 param-
eters and train only soft prompts (source prompt embeddings) for each hard prompt of the source
task.

Among various parameter-efficient fine-tuning methods, we follow prompt tuning proposed by
Lester et al. (2021) because the number of trainable parameters is extremely small (∼204K pa-
rameters per prompt), which implies that the memory overhead of parameter retrieval at inference is
negligible.

For each source training dataset Di (i = 1, .., T ) where T is the total number of source datasets, we
train source embeddings Eij (j = 1, ..,Mi) where Mi is the number of hard prompts in Di, making
soft prompt embeddings for each individual hard prompts. Specifically, given a training instance
{xik, yik}(k = 1, ..,K) from Di where K is the number of sampled training instances per dataset,
we first convert it into its hard prompted version {hj(xik), hj(yik)} where hj(·) denotes adding the
j-th hard prompt. Next, we train the LM with the following objective:

max
Eij

P (hj(yik)|Eij ;hj(xik)) (1)

where all the parameters of the underlying backbone LM are frozen and only Eij is trainable. De-
tailed training configurations are discussed in Appendix G.

2.2 ZERO-SHOT EMBEDDING RETRIEVAL

After source prompt embedding training, we first construct a Source Prompt Library, consisting
of sentence-level representations of training instance inputs as keys and the corresponding source
prompt embedding as the values. For each available source prompt embedding, n number of samples
are stored in the library.
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At inference, we first randomly sample Q query instances from the target task, following Lin et al.
(2022). After obtaining sentence-level representations for each query through a dense T0-small
encoder, we retrieve top-N examples for each query instance using MIPS (maximum inner product
search) operation on our Source Prompt Library, retrieving a total of Q ∗ N prompt embeddings.
As the default methodology, among the retrieved embedding candidates, we simply select the most
frequently retrieved prompt embedding as our designated soft prompt for the given target task and
concatenate the embedding with each of the target task instances before feeding it to our backbone
LM. In the next two subsections, we explain different strategies for calculating the target embedding
from the Q ∗N prompt embedding candidates.

2.3 INTERPOLATION OF PROMPT EMBEDDINGS

When retrieving only a single prompt embedding for a given task (Section 2.2), it may result in
high variance across evaluation prompts when the selected prompt embedding does not fit well with
the given task. Recent works on prompt embedding retrieval have shown that the interpolation
of prompt embeddings effectively transfers to the target task (Asai et al., 2022; Vu et al., 2022).
Similarly, we also explore calculating the target embedding through interpolation of multiple source
embeddings instead of just using a single embedding. Among Q ∗N prompt candidates searched in
Section 2.2, we select top-N ′ candidate embeddings based on the frequency of the search. Then, we
calculate the weighted sum of the candidate embeddings, where the interpolation weight for each
source embedding is based on the proportion of frequency.

2.4 VARIANCE-BASED RANKING

Similar to the scoring and calibration method of Lu et al. (2022); Zhao et al. (2021), we introduce
a novel scoring method applicable to zero-shot classification tasks that allows ranking the Q ∗ N
retrieved prompt embedding candidates by considering the answer choice distribution of the given
target task as extra cues together with the original frequency cues. To accomplish this, we perform a
forward pass with the concatenation of each candidate prompt embeddings together with the given
hard prompt (only including the instruction, excluding the input instance) of the target task and give
a higher score to the embedding candidate that results in lower variance. Ideally, the combination
of soft and hard prompts should result in equal probability among the answer choices because the
actual context of the task is not included.

Specifically, when given a target task with k-th hard prompt hk, for each candidate embedding Eij ,
we calculate the scoring as follows:

Score(hk, Eij) =
freq(hk, Eij)√

Var[P (y|Eij , hk)]
(2)

where y refers to the available output options of the target task.

3 EXPERIMENTAL RESULTS

Following Sanh et al. (2021), we evaluate on 11 unseen English NLP evaluation datasets and 14
different datasets from the BIG-bench benchmark (Srivastava et al., 2022). More details on experi-
mental settings are explained in Appendix G.

ROSPR enhances accuracy of T0. Table 1 shows the zero-shot performance on the 11 evaluation
datasets. T0+ROSPR outperforms T0 on 10 datasets among the 11 evaluation datasets. Specifically,
T0+ROSPR outperforms T0 on RTE (+6.99% points), CB (+4.12% points), ANLI R1 (+3.24%
points), and COPA (+2.87% points). This shows that soft prompt retrieval assists hard prompts for
zero-shot task generalization with a negligible number of additional parameters (0.007%). Also,
applying VAR with T0+ROSPR further improves the zero-shot task generalization performance of
T0+ROSPR, showing that considering the answer choice distribution is beneficial for zero-shot set-
ting, aligned with results from Zhao et al. (2021); Shi et al. (2022). Applying both VAR+INTER
result in the highest overall average accuracy, outperforming T0 by 2.18% points. Furthermore,
while T0 outperforms GPT-3 on 3 datasets (RTE, StoryCloze, WiC), T0+ROSPR additionally out-
performs GPT-3 on 2 datasets (ANLI R1 and CB) and enlarging the score gap for RTE, StoryCloze
and WiC.
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Method NLI Sentence Completion Coreference Resolut. WSD Total Avg.

RTE CB AN. R1 AN. R2 AN. R3 COPA Hellasw. StoryC. Winogr. WSC WiC Mean STD

T0 (3B) 64.55 45.36 33.81 33.11 33.33 75.88 26.60 84.03 50.97 65.10 50.69 51.22 3.62

T0 (3B)+ROSPR 71.54 49.48 37.05 34.64 33.92 78.75 26.97 85.52 51.50 64.52 51.76 53.24 3.62
W/ INTER 70.71 52.30 37.30 34.34 33.89 78.25 26.94 85.62 51.10 64.52 50.73 53.24 3.30
W/ VAR 71.78 50.36 37.07 34.58 33.90 78.88 27.01 85.52 51.45 64.94 51.94 53.38 3.38
W/ VAR & INTER 72.60 51.98 37.25 34.31 33.95 77.83 26.84 85.58 50.93 64.97 51.18 53.40 3.47

ORACLE 73.79 58.10 37.65 34.92 34.91 81.13 27.75 87.57 52.36 68.17 55.26 55.60 3.07
GPT-3 (175B) 63.50 46.40 34.60 35.40 34.50 91.00 78.90 83.20 70.20 65.40 0 54.83 -

Table 1: Zero-shot evaluation performance on 11 different tasks. T0 (3B) (Sanh et al., 2021) refers to the
backbone LM performance without any soft prompts, ROSPR refers to our main proposed method, W/ INTER
refers to applying interpolation, W/ VAR refers to retrieval through variance-based ranking, W/ VAR & INTER
refers to applying both interpolation and variance-based ranking, and ORACLE refers performance when the
most optimal source embedding is retrieved. The best and second-best performance is shown in bold and
underline respectively. For comparison, we also show GPT-3 (175B) performance reported by Brown et al.
(2020). Visualization of the results is shown in Appendix F.

ROSPR is also effective for challenging tasks such as tasks from BIG-bench benchmark. As shown
in Figure 2, T0+ROSPR improves the mean accuracy performance of T0-3B by 2.39% points while
only adding 0.007% additional parameters. T0+ROSPR also outperforms 60 times larger zero-shot
and 1-shot GPT-3 and largely reduces the performance gap between 4 times larger T0-11B (1.84%
points) or 60 times larger 3-shot GPT-3 (0.53% points). Applying INTER with T0+ROSPR results
in additional mean accuracy enhancement, outperforming T0-3B by 2.67% points 1.
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Figure 2: Mean accuracy of 14 datasets of BIG-bench.
We evaluate on a single prompt following Sanh et al.
(2021). By only adding 0.007% parameters to T0-3B,
T0+ROSPR largely reduces the performance gap be-
tween 4 times larger T0-11B. The full result is provided
in Appendix D.

INTER and VAR enhance robustness of T0.
When evaluating zero-shot task generalization
abilities of LMs, robustness should be also con-
sidered together with the overall accuracy. As
shown in the last column of Table 1, apply-
ing INTER reduces the standard deviation of
T0 and ROSPR by 8.84% while improving the
mean accuracy of T0, indicating increased ro-
bustness to different surface forms of evalu-
ation prompts. This result supports a con-
current work by Asai et al. (2022) that also
show interpolation of multiple source embed-
dings to outperform a single source embedding
retrieval. Applying VAR also leads T0+ROSPR
to achieve lower standard deviation and higher
accuracy. This shows that considering both in-
put and answer choice distribution reduces re-
trieval failure cases.

4 CONCLUSION

In this paper, we introduce ROSPR, a method that enhances zero-shot generalization capabilities
of a instruction-tuned LM by retrieving prompt-specific source prompt embeddings (soft prompts)
for a given target task. We accomplish this by first training the soft prompts for each hard prompt
of the source tasks. After training source prompt embeddings, we construct the Source Prompt Li-
brary by storing the mean representation of training instances as keys and the corresponding prompt
embeddings as values. At inference, we search for training instances stored in the library similar
to sample instances from the target task, retrieve the corresponding prompt embedding, select the
most frequently retrieved embedding and append it to each of the target task instances for prediction.
We further propose variants of retrieved embedding selection such as the interpolation of multiple
source embeddings and a novel variance-based ranking to help improve accuracy and robustness to
various wordings of evaluation prompts.

1We observe that applying VAR results in the same performance as T0+ROSPR because frequency of re-
trieval has much more influence than variance for BIG-bench tasks.
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A ANALYSIS OF ROSPR

Zero-shot task adaptation of LMs is often seen as a problem of task location, locating the target
task to where the model can solve it using the intrinsic ability obtained at pretraining stage with
the aid of prompts and demonstrations (Reynolds & McDonell, 2021). In this section, we analyze
which factors contribute to the performance enhancement in the perspective of identifying better
task location. We find that although the target task performance depends on the source task types,
heuristic features such as the answer choice format are more important. This agrees with previous
findings that a instruction-tuned LM focuses on simple features such as the label space, the input
distribution, and sequence format, instead of complex semantics (Webson & Pavlick, 2021; Min
et al., 2022).
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Figure 3: Frequency of source task types (x-axis)
that maximizes (i.e. ORACLE) the accuracy of
each target task (y-axis).

Target task performance depends on source
task types. To analyze the effect of different
source task types on each target task, we mea-
sure the frequency ratio of each source task type
that results in the best performance (ORACLE)
for the given prompts of the target tasks (vi-
sualized in Figure 3). From this figure, we
can observe a few patterns: paraphrase task as-
sists NLI and word sense disambiguation task
while multi-choice QA (MQA) task assists sen-
tence completion task. For coreference resolu-
tion task, various source task types (paraphrase,
summarization, multi-choice QA) assist the tar-
get task.
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Figure 4: Effect of answer choice format align-
ment across different target datasets (RTE, COPA,
WiC). We report the mean accuracy of the evalua-
tion prompts and the performance of T0 is shown
in green dotted line.

Answer choice format is important for task
location. We also analyze the effect of using
different answer choice formats with the same
source task. Answer choice format decides how
the available answer choices are given to the
LM through the input. For example, a prompt
that requires classifying a movie review into
good/bad has a different answer choice format
from classifying it into positive/negative.

We experiment on 3 datasets (RTE, COPA,
WiC) which correspond to different tasks (NLI,
sentence completion, word sense disambigua-
tion) respectively. For each dataset, we select a
source dataset that is retrieved the most for OR-
ACLE. Among the source prompts of the selected source dataset, we select a prompt that has the
same answer choice format as the target task (ALIGNED) and another prompt that has a different
answer choice format (MISALIGNED). Figure 4 shows the effect of answer choice format alignment
on the target task performance by comparing ALIGNED and MISALIGNED. The result shows that for
all 3 datasets, ALIGNED significantly outperforms MISALIGNED. This result is non-trivial consid-
ering that the two prompt embeddings are trained on the same source training dataset and the same
training configuration, with the only difference in the given answer choice format, implying that
how the answer choices are given to solve a specific task is more important than the content of the
training data for task location. ROSPR is mostly comparable to ALIGNED embedding, implying that
retrieving a source prompt embedding by searching for similar input instances results in retrieving a
source embedding with similar answer choice formats.

We additionally analyze the effect of answer choice formats on RTE and WiC datasets by retrieving
prompt embeddings trained on various source tasks. Both target datasets have the answer choices
of either yes/no. Similar to the previous experiments, we retrieve ALIGNED (yes/no format) and
MISALIGNED prompt embeddings across three source tasks: paraphrase, sentiment classification,
and multi-choice QA. As shown in Figure 5, for both target datasets, ALIGNED outperforms MIS-
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Figure 5: RTE (Top) and WiC (Bottom) evaluation result by retrieving MISALIGNED and ALIGNED
answer choice format across various source tasks. We report the mean accuracy of the evaluation
prompts and the performance of T0 is shown in green dotted line.

ALIGNED across all three source tasks. This shows that aligning to the answer choice format of the
target task is crucial regardless of the retrieved source task.

Answer choice format is more important than task similarity. From Figure 5, we can see that
all three source tasks benefit from aligning to the target task answer choice format. One may think
that embeddings from source tasks requiring similar knowledge to the target task may be important.
Counterintuitively, for both RTE and WiC target tasks, when the answer choice format is aligned,
the task source embedding of sentiment classification, which is known to be irrelevant to RTE and
WiC (Pruksachatkun et al., 2020), outperforms other embeddings sourced from datasets that are
more relevant to the target datasets (paraphrase and multi-choice QA) (Appendix H). This implies
that for retrieval of source embedding for task location, answer choice format is more important than
containing similar knowledge required to solve the target task.

Role of ROSPR is similar to in-context learning. From the findings explained in previous para-
graphs, we can conclude that although the source task types influence the target task performance,
retrieving a similar answer choice format is more important for task location. Indeed, source tasks
containing similar knowledge can help target tasks only if the answer choice formats are aligned to
the target task. These findings support Min et al. (2022); Webson & Pavlick (2021) that a instruction-
tuned LM ”takes less effort” to understand the input: models exploit the simple aspects of prompts
and demonstrations such as the format and distribution instead of complex semantics. Especially,
for in-context learning, Xie et al. (2021); Min et al. (2022) show that the role of demonstrations lies
in providing the shared concept and distribution hints of the target task. From this aspect, the role
of ROSPR is similar to demonstrations. However, it is more efficient than including demonstrations
because it avoids heavy computation at inference from long sequence lengths (Liu et al., 2022a;
Choi et al., 2022) since ROSPR prepends a fixed length of prefix tokens regardless of the task. Also,
ROSPR is free from the instability of in-context learning coming from different orderings of demon-
strations (Lu et al., 2022; Zhao et al., 2021). Lastly, we conjecture that ROSPR also has the benefits
of soft prompts (Li & Liang, 2021) such as having more expressiveness.

B RELATED WORK

B.1 TASK GENERALIZATION WITH INSTRUCTION-TUNING

Prompts and demonstrations are essential for task generalization since proper explanations are re-
quired for LMs to understand an unseen task (Kojima et al., 2022; Wei et al., 2022; Lampinen et al.,
2022). Instruction-tuning, which is explicit multi-task prompted training on various downstream
tasks, is a simple but effective way to achieve this, resulting in improved zero-shot capabilities.
Zhong et al. (2021) first introduced the method of instruction-tuning by converting various tasks
into a question-answering format and finetuning the model on the aggregated dataset. Following
works (Mishra et al., 2022; Min et al., 2021; Sanh et al., 2021; Wei et al., 2021; Wang et al., 2022b;
Xu et al., 2022; Ouyang et al., 2022; Ye et al., 2022; Chung et al., 2022) extended this approach
on a larger scale and show that zero-shot task generalization could be enhanced with more diverse
prompts, a larger number of training downstream tasks, and a larger LM.
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B.2 TASK LOCATION

Different from the interpretation of Brown et al. (2020), Reynolds & McDonell (2021) imply that
the primary role of demonstrations for in-context learning is locating the target task in the space of
already learned tasks during pretraining, instead of learning the task at inference. Min et al. (2022);
Razeghi et al. (2022) support this idea by showing that disagreement of input-label does not hurt
the zero-shot performance and that term frequencies of pretraining data influence downstream task
performance, which shows that the ability to solve downstream tasks ultimately comes from suc-
cessfully memorizing pretraining data. For prompts, Webson & Pavlick (2021) show that irrelevant
prompts perform comparably to good prompts for even large LMs and doubt whether LMs truly
understand the meaning of the prompt.

B.3 SOURCE TASK RETRIEVAL

Retrieving a source task that is relevant to the target task has shown to result in faster and better task
adaptation. For parameter-efficient fine-tuning, Vu et al. (2022) retrieve source prompt embedding
that is similar to the target prompt embedding and obtain a better initialization point for prompt
tuning. Instead of utilizing a single prompt embedding, recent works show a mixture of multiple
prompt embeddings to be effective (Asai et al., 2022; Qin & Eisner, 2021).

For instruction-tuning, Lin et al. (2022) retrieve training instances that are similar to the query
through a dense retriever and fine-tune the model using the retrieved examples. For in-context
learning, Rubin et al. (2021); Liu et al. (2022b) retrieve training data that could be used for demon-
strations. Wang et al. (2022c) show the effect of retrieving prompt embeddings in a continual learn-
ing setting. Although our proposed method is related to these works, the novelty of our work lies in
applying source task retrieval in the zero-shot setting and retrieving soft prompts instead of training
instances.

C LIMITATIONS

Although we show the effectiveness of ROSPR by applying it on T0-3B (Sanh et al., 2021), we
did not evaluate our method on different model scales such as the T0-11B variant and other LM
architectures such as decoder-only LMs due to limited computational resources. This leaves future
works on applying ROSPR to even larger LMs and diverse LM architectures (Wang et al., 2022a).
Moreover, it is hard to apply VAR to target tasks without answer choices such as free-form generation
because variance among options cannot be obtained. However, ROSPR and ROSPR+INTER can
still be utilized and we leave applying ROSPR on zero-shot task location of free-form generation as
future work (Scialom et al., 2022).

D FULL RESULT OF BIG-BENCH EVALUATION

We provide the task generalization performance result of 14 tasks from BIG-bench, shown in
Table 2. Applying ROSPR largely improves the performance for 3 datasets (Hindu Knowledge,
Novel Concepts, Misconceptions): (+17.72%, +3.12% +1.82%) compared to T0-3B and (+13.72%,
+3.12%, +2.05%) compared to T0-11B. For mean accuracy of 14 tasks, T0+ROSPR outperforms
T0-3B by 2.39% points, reducing the gap between 4 times larger T0-11B to 1.84% points. More-
over, applying INTER to T0+ROSPR enhances the performance of T0+ROSPR for most tasks, in-
dicating that interpolation of multiple embeddings is effective for challenging tasks.

E ABLATION STUDIES

We evaluate variations of our proposed methods on 4 datasets: RTE for NLI, COPA for sentence
completion, Winogrande for coreference, and WiC for word sense disambiguation task. We report
the average of the mean accuracy of all evaluation prompts for each dataset by running 3 different
runs.
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T0-3B ROSPR INTER T0-11B

Strategy. 52.79 52.05 52.23 52.75
Movie D. 52.85 51.45 52.23 53.69
Known Un. 47.83 47.83 47.83 58.70
Logic Grid 41.10 37.00 37.40 38.30
Hindu Kn. 25.71 43.43 45.71 29.71
Code D. 46.67 45.00 40.00 43.33
Concept 45.52 67.61 67.61 69.29
Language 14.84 13.68 14.40 20.20
Vitamin 58.88 53.71 54.53 64.73
Syllogism 52.94 50.64 51.34 51.81
Misconcept. 50.23 52.05 52.05 50.00
Logical 46.64 54.86 54.86 54.86
Winowhy 44.29 44.33 44.29 52.11
Novel Con. 15.63 15.63 18.75 15.63

AVG 42.56 44.95 45.23 46.79

Table 2: Evaluation result of 14 tasks from BIG-bench (Srivastava et al., 2022).

(a) Datasets vs Prompts (b) Query variation

Figure 6: (a) compares the effect of scaling the number of datasets with scaling the number of
prompts and (b) shows the effect of the number of sampled queries at inference.

E.1 SCALING NUMBER OF PROMPTS VS. NUMBER OF DATASETS.

Recent works on instruction-tuned LMs show that the number of source datasets and prompts is an
important factor for zero-shot task generalization (Sanh et al., 2021; Wei et al., 2021; Wang et al.,
2022b; Chung et al., 2022). We also show ablations for ROSPR and measure how the zero-shot
generalization performance changes when we vary the number of prompts and datasets available
during the prompt tuning stage (shown in Figure 6a). First, we vary (1) the total number of source
prompts by 60, 120, and 230 by increasing the number of prompts per dataset and (2) the number
of datasets by 8, 16, and 30 by increasing the number of datasets per task cluster.2 Note that in (1),
the total number of datasets is fixed while in (2), we use all available prompts for each dataset while
varying the number of datasets per task cluster.

In contrast to (1), (2) does not always lead to a linearly increasing performance boost; the perfor-
mance saturates as more source datasets are included. By comparing the effect of scaling datasets
and scaling prompts for similar Source Prompt Library sizes, we observe that the number of prompts
has more impact on the accuracy of the target task (Figure 6a).

This ablation study also supports the analysis of the previous section; diverse answer choice formats
of prompts, which are mostly influenced by the total number of source prompts, are more important

2Task cluster is defined as a cluster of the same task types.
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than source task types which are influenced by the number of source datasets.3 Therefore, if the
number of task clusters is sufficient to some extent, scaling the number of source prompts per dataset
is more crucial than scaling the number of source datasets per task cluster.

E.2 NUMBER OF SAMPLED QUERIES

We also analyze the effect of the number of query instances sampled at inference for retrieval. As
seen in Figure 6b, increasing the number of queries results in higher mean accuracy. This is different
from the analysis of Lin et al. (2022) that sampling more queries leads to better performance only to
some point. Because we use the frequency of each prompt embedding candidate as the default metric
for retrieval, utilizing more query instances would represent the evaluation data more accurately,
resulting in a reduced number of wrong retrievals.

Figure 7: Variation of number of prompts by increasing the number of prompts per dataset.

Figure 8: Variation of number of datasets by increasing the number of datasets per task cluster.

We provide detailed result of variation of the number of prompts (Figure 7) and the number of
datasets (Figure 8). We additionally analyze the effect of (1) different sampling methods for con-
structing the Source Prompt Library, (2) the number of instances sampled for constructing the Source
Prompt Library, (3) the number of top-N retrieval for embedding retrieval, and (4) the number of
multiple source embeddings to interpolate.

3Although the total number of prompts also increases as the number of datasets increases, we find that
answer choice formats are similar across the same task type, meaning that the diversity of answer choice
formats is not increased by increasing the number of datasets per task clusters.

16



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

59

60

62

63

64

RoSPr
W/ Inter
W/ Var
W/ Var & Inter

Random Clustering Distributed

Figure 9: Different instance sampling methods for constructing Source Prompt Library.

E.3 SAMPLING METHODS FOR SOURCE PROMPT LIBRARY

We experiment three different methods to sample instances for constructing Source Prompt Library
and analyze the effect of each method. By default, we choose RANDOM method, where we sample
100 instances by random for each prompt by assuming that each random 100 queries of instances
can represent the whole prompt. Second, we experiment CLUSTERING method, where we sam-
ple top 100 instances which has the closest mean representation from its overall average for each
prompt. If we say each instance has a distance of mean representation from its overall average as di
in increasing order, we sample {d1, d2, ..., d100}. The last method we use is DISTRIBUTED method,
where we sample 100 instances in a distributed way with respect to its distance of mean representa-
tion from its overall average. If we say each instance has a distance of mean representation from its
overall average as di in increasing order, we sample {d1, d1+N/100, d1+2∗N/100, ..., d1+99∗N/100},
assuming there are total N training instances in a dataset.

As shown in Figure 9, RANDOM method outperforms CLUSTERING and DISTRIBUTED methods.
Interestingly, CLUSTERING method significantly hurts the performance on all 4 proposed methods,
suggesting that storing similar instances per prompt results in retrieval failures more often. Also for
DISTRIBUTED method, most of the methods significantly underperform RANDOM, except INTER
and ROSPR+VAR+INTER. From these results, we can conclude that random sampling represents
the source dataset most effectively.

Figure 10: Variation of number of instances sampled for constructing Source Prompt Library. De-
fault setting is n = 100.

E.4 NUMBER OF INSTANCES SAMPLED FOR CONSTRUCTING SOURCE PROMPT LIBRARY

We analyze the effect of size of the Source Prompt Library by varying the number of instances n to
sample for each hard prompt by 100, 300, 500. Therefore, n×(number of total hard prompts) would
be the size of the Source Prompt Library. As shown in Figure 10, increasing the number of sampled
instances does not increase the performance; it hurts the performance for most cases. This suggests
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Figure 11: Variation of number of Top N instances for embedding retrieval. Default setting is
N = 10.

that only a few number of training instances are enough to represent the distribution of prompted
input (hard prompt + input instances) for each hard prompt and increasing the number sometimes
hurt the performance by adding noise to the distribution. This also supports the importance of
heuristic cues in Appendix A by showing that adding more training instances per hard prompt does
not increase the performance. Instead, adding hard prompts with diverse answer choice format is
more important.

E.5 NUMBER OF TOP N INSTANCES FOR EMBEDDING RETRIEVAL

We vary the number of top-N instances that are retrieved given each query through MIPS search. As
shown in Figure 11, varying the number of top-N instances does not have much effect compared to
increasing the number of sampled queries (Figure 6b). This implies that if the size of the evaluation
set of the target task is large, sampling more queries is effective than searching for more similar
instances per query. This is important for variance-based methods because the number of forward
passes needed before evaluation is proportional to Q∗N . Therefore, we can reduce the time latency
by reducing the number of instances retrieved per query without hurting the performance much.

E.6 NUMBER OF SOURCE EMBEDDINGS FOR INTERPOLATION

We analyze the effect of number of source embeddings for interpolation by varying top-N ′ inter-
polation from 1 (no interpolation) to 5 shown in Figure 12. By comparing between single prompt
embedding retrieval (N ′ = 1) and the interpolation of multiple embeddings (N ′ > 1), the mean ac-
curacy drops by adding multiple source embeddings for retrieval because interpolation-based meth-
ods underperform on tasks such as COPA as shown in Table 1. Mean accuracy would increase if we
add other datasets for evaluation that benefit from interpolation such as WSC and CB.

By comparing among various N ′ values, we find that for ROSPR+INTER, the accuracy substantially
decreases for K ′ = 2, implying that the possibility of a wrong retrieval varies depending on the value
of N ′. In contrast, ROSPR+VAR+INTER is more robust to the value of K ′, showing that variance-
based ranking increases robustness to different numbers of source embeddings for interpolation as
well.

F VISUALIZATION OF RESULTS

We show the visualization of the evaluation result on 11 datasets in Figure 13. Methods based on
ROSPR not only show higher accuracy, but lower variance for many datasets.
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Figure 12: Variation of number of source embeddings for interpolation based methods. Default
setting is K ′ = 3.
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Figure 13: Visualization of evaluation results of 11 datasets.

G EXPERIMENTAL SETTINGS

G.1 SOURCE TASKS

For training soft prompts through prompt tuning, we use the subset of source tasks used for the
initial T0 instruction-tuning (Sanh et al., 2021) 4. For each source task, we use the prompts for each
dataset in T0, resulting in a total of 230 prompts. Because our underlying LM, T0, already went

4We use 29 out of 38 datasets that are used to train T0. We explain the training task selection rationale in
Appendix I.1
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Question1: What are 
lanyards used for? 


Question2: What is a 
lanyard?


0

Can an answer to “What 
are lanyards used for?” 
Also be used to answer 
“What is a lanyard?”?


No

PromptSource

xik

yik hj(yik)

hj(xik)

Figure 14: Example of applying prompt to a given instance through Promptsource (Bach et al.,
2022).

He got a bang on the head.

They got a great bang out 
of it.

Question: Is the word 
'bang' used in the same 
sense in the two 
sentences above? 

the film makes a strong 
case for the importance of 
the musicians in creating 
the motown sound . Did 
the reviewer enjoy the 
movie?

 
Similar
≈  

Not

Similar

≠
Paraphrase WSD  Sentiment 

Determine if the following 
two sentences 
paraphrase each other or 
not. 
Sent 1: In 1951 , he died 
and retired in 1956 .

Sent 2: He died in 1951 
and retired in 1956 .

Mangla was summoned 
after Madhumita's sister 
Nidhi Shukla, who was the 
first witness in the case. 
Can we infer that "Shukla 
is related to Mangla.”? Yes 
or no? 

the film makes a strong 
case for the importance of 
the musicians in creating 
the motown sound . Did 
the reviewer enjoy the 
movie?

 
Similar
≈  

Not

Similar

≠
Paraphrase NLI  Sentiment 

Determine if the following 
two sentences 
paraphrase each other or 
not. 
Sent 1: In 1951 , he died 
and retired in 1956 .

Sent 2: He died in 1951 
and retired in 1956 .

Figure 15: Examples of instances of different source tasks.
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through the instruction-tuning stage, only K = 5000 training instances are randomly sampled from
each source task and used for training source prompt embeddings for a single epoch. Also, much
smaller n = 100 training instances are stored in the Source Prompt Library along with its trained
source embedding. We show a variation of n and different methods to sample n training instances in
Appendix E. We emphasize that this Source Prompt Library can be constructed with any instruction-
tuning setups with any backbone LM. Also, the training and inference process is very efficient, using
only a small amount of data instances and small training steps to train a source prompt embedding.

G.2 EVALUATION TASKS

Following Sanh et al. (2021), we evaluate on the validation set of 4 held-out tasks (natural language
inference, sentence completion, coreference resolution, word sense disambiguation) resulting in a
total of 11 evaluation datasets. We also follow Sanh et al. (2021) and evaluate on 14 different datasets
from the BIG-bench benchmark (Srivastava et al., 2022) 5. We use rank classification evaluation
method by selecting the output option with higher log-likelihood following Brown et al. (2020);
Sanh et al. (2021). For all evaluation tasks, we use accuracy as an evaluation metric and report the
mean accuracy and standard deviation of all of the evaluation prompts per given dataset (average of
∼10 prompts per evaluation dataset) 6. For BIG-bench tasks, we do not report standard deviation
because only one prompt is provided per task.

G.3 EXPERIMENTAL CONFIGURATIONS

As mentioned in the previous sections, we use T0-3B as our backbone instruction-tuned LM. For
prompt tuning, we fix the prefix length as 100 and the embeddings are initialized from 5,000 most
common vocabulary following Lester et al. (2021). We train each source embedding for a single
epoch with a learning rate of 0.1 and a batch size of 32. We use the Adam optimizer with weight
decay of 1e-5. For retrieval, we randomly sample Q = 32 query instances and retrieve top K = 10
examples for each query. We train a T0-small variant (∼ 35M params) as our dense retriever by
multitask prompted training on T5+LM model (Lester et al., 2021), replicating the original training
setting of T0 by training T5+LM for 8 epochs using the same training instances of Sanh et al. (2021)
with a learning rate of 1e-3, input sequence length 512, output sequence 128, and batch size of 1024.
We select model checkpoint by early stopping based on validation accuracy. We use a instruction-
tuned LM instead of a naive pretrained model (e.g. SentenceBERT) because instruction-tuned LM
is shown to be more effective for retrieval (Lin et al., 2022). For the interpolation experiment, we
set K ′ = 3 for top-K ′ prompt embedding candidates. For training source prompt embeddings, we
used 8 V100 GPUs.

H EXAMPLES OF APPLYING PROMPTS, ANSWER CHOICE FORMAT AND
SOURCE TASK TYPES

Figure 14 shows an example of applying prompt through Promptsource (Bach et al., 2022) as men-
tioned in Section 2.1.

We assert that answer choice format is more important than task similarity in Appendix A. We
further provide details of the input instances of the mentioned tasks: paraphrase, NLI, word sense
disambiguation, and sentiment classification in Figure 15. As supported in Pruksachatkun et al.
(2020), intuitively, paraphrase task is more similar to the task of word sense disambiguation task
or NLI, implying their task similarity, while the task of sentiment classification is very different.
However, our counterintuitive result shows the soft prompt to show the best performance in Figure 5
Appendix A, bolstering the claim that similar source task types are not a major factor for evaluation
performance.

5We provide the full list of evaluation datasets in Appendix I.
6For methods based on ROSPR, we report the performance average of 3 runs with different random seeds

for the sampling of evaluation queries used for the prompt retrieval.
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I FULL LIST OF SOURCE TRAINING AND EVALUATION DATASETS

All of our training and evaluation datasets are a subset of datasets used in Sanh et al. (2021). We use
Huggingface version of each dataset (Lhoest et al., 2021).

I.1 TRAINING DATASETS

Following Sanh et al. (2021), we use 8 task clusters for training of source prompt embedding:
sentiment classification, paraphrase, topic classification, summarization, struc-to-text, multiple-
choice QA, extractive QA, and closed book QA. We use imdb (Maas et al., 2011), amazon polarity
(McAuley & Leskovec, 2013), rotten tomatoes (Pang & Lee, 2005), yelp review full (Zhang et al.,
2015b) for sentiment, glue/qqp (Wang et al., 2018), paws/labeled final (Zhang et al., 2019) for
paraphrase, ag news (Zhang et al., 2015a), dbpedia 14 (Lehmann et al., 2015) for topic clas-
sification, gigaword (Graff et al., 2003), multi news citefabbri-etal-2019-multi, samsum (Gliwa
et al., 2019), xsum (Narayan et al., 2018) for summarization, common gen (Lin et al., 2020),
wiki bio (Lebret et al., 2016) for struct-to-text, cos e/v1.11 (Rajani et al., 2019), quail (Rogers
et al., 2020), social i qa (Sap et al., 2019), wiqa (Tandon et al., 2019), cosmos qa (Huang et al.,
2019), sciq (Welbl et al., 2017), wiki hop/original (Welbl et al., 2018) for multi-choice QA, adver-
sarial qa/dbidaf, adversarial qa/dbert, adversarial qa/droberta, quoref (Bartolo et al., 2020), ropes
(Lin et al., 2019), duorc/SelfRC, duorc/Paraphrase IdentificationRC (Saha et al., 2018) for extrac-
tive QA, and kilt tasks/hotpotqa (Petroni et al., 2021), wiki qa (Yang et al., 2015) for closed book
QA.

We exclude 6 datasets (MRPC, TREC, DREAM, QuaRTz, QASC, QuaRel) that have small train-
ing sets because it leads to task imbalance, which is critical for training our small dense retriever
(∼ 35M params). We also exclude CNN Daily Mail, App Reviews, and WikiQA dataset due to
dataset download issues, absence of any test or validation data, and unbalanced label distribution,
respectively.

I.2 EVALUATION DATASETS

Following Sanh et al. (2021), we include 11 evaluation datasets as follows: RTE (Dagan et al.,
2005), CB (De Marneffe et al., 2019), ANLI (Nie et al., 2020) for natural language inference task,
COPA (Roemmele et al., 2011), Hellaswag (Zellers et al., 2019), Storycloze (Mostafazadeh et al.,
2016) for sentence completion task, Winogrande (Sakaguchi et al., 2021), WSC (Levesque et al.,
2012) for coreference resolution task, and WiC (Pilehvar & Camacho-Collados, 2019) for word
sense disambiguation task.

For BIG-bench tasks, we evaluate on 14 tasks, following Sanh et al. (2021) : Known Unknown,
Logic Grid, StrategyQA, Hindu Knowledge, Movie Dialog, Code Description, Conceptual, Lan-
guage ID, Vitamin C, Syllogisms, Misconceptions, Logical Deduction, Winowhy and Novel Con-
cepts.

J FULL LIST OF RETRIEVED PROMPT EMBEDDINGS

We provide a full list of retrieved prompt embeddings of ROSPR and ORACLE for all prompts of 11
evaluation datasets. We report retrieval results of a single random seed (Table 3 ∼ Table 13).
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Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

GPT-3 style 61.37 74.01 paws/labeled final/PAWS-ANLI GPT3 74.01 paws/labeled final/context-question
MNLI crowdsource 63.53 70.04 paws/labeled final/context-question 72.20 paws/labeled final/context-question
based on the previous passage 68.23 76.53 paws/labeled final/context-question 76.53 paws/labeled final/PAWS-ANLI GPT3
can we infer 59.57 73.29 glue/qqp/meaning 73.29 paws/labeled final/PAWS-ANLI GPT3
does it follow that 61.73 71.84 paws/labeled final/context-question 71.84 paws/labeled final/context-question-no-label
does this imply 64.62 68.59 paws/labeled final/context-question 71.48 paws/labeled final/context-question
guaranteed true 68.95 75.09 paws/labeled final/context-question 75.81 paws/labeled final/PAWS-ANLI GPT3
should assume 66.43 71.12 glue/qqp/meaning 76.53 paws/labeled final/PAWS-ANLI GPT3
justified in saying 61.01 58.12 paws/labeled final/paraphrase-task 71.12 paws/labeled final/context-question
must be true 70.04 74.37 paws/labeled final/context-question 75.09 paws/labeled final/PAWS-ANLI GPT3-no-label

Avg. 64.55 71.30 73.79

Table 3: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
RTE.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

can we infer 55.36 51.79 social i qa/Show choices and generate index 67.86 samsum/Write a dialogue that match this summary
based on the previous passage 44.64 58.93 social i qa/Show choices and generate index 69.64 samsum/Write a dialogue that match this summary
claim true/false/inconclusive 50.00 67.86 social i qa/Show choices and generate index 69.64 samsum/Summarize:
does it follow that 64.29 50.00 social i qa/Show choices and generate index 67.86 samsum/Summarize:
justified in saying 53.57 50.00 social i qa/Show choices and generate index 62.50 samsum/Write a dialogue that match this summary
always/sometimes/never 39.29 41.07 social i qa/Show choices and generate index 41.07 social i qa/Show choices and generate index
GPT-3 style 51.79 67.86 social i qa/Show choices and generate index 69.64 social i qa/Show choices and generate answer
consider always/sometimes/never 35.71 35.71 social i qa/Show choices and generate index 39.29 social i qa/Generate answer
guaranteed true 48.21 50.00 social i qa/Show choices and generate index 64.29 social i qa/Generate answer
must be true 53.57 50.00 social i qa/Show choices and generate index 64.29 social i qa/Generate answer
guaranteed/possible/impossible 8.93 8.93 social i qa/Show choices and generate index 8.93 -(all same)
does this imply 58.93 51.79 social i qa/Show choices and generate index 66.07 glue/qqp/duplicate
MNLI crowdsource 8.93 39.29 social i qa/Show choices and generate index 42.86 cos e/v1.11/question option description text
should assume 57.14 50.00 social i qa/Show choices and generate index 66.07 cos e/v1.11/aligned with common sense
take the following as truth 50.00 67.86 social i qa/Show choices and generate index 71.43 cos e/v1.11/description question option id

Avg. 45.36 49.40 58.10

Table 4: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
CB.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

can we infer 33.90 38.90 paws/labeled final/context-question 39.40 paws/labeled final/PAWS-ANLI GPT3
based on the previous passage 33.90 38.50 paws/labeled final/context-question 38.60 paws/labeled final/PAWS-ANLI GPT3
claim true/false/inconclusive 35.60 36.70 paws/labeled final/PAWS-ANLI GPT3 39.10 paws/labeled final/context-question
does it follow that 36.00 40.50 paws/labeled final/context-question 40.50 paws/labeled final/PAWS-ANLI GPT3
justified in saying 33.10 38.10 paws/labeled final/context-question 38.80 paws/labeled final/context-question-no-label
always/sometimes/never 33.40 33.40 paws/labeled final/paraphrase-task 33.40 -(all 33.4)
GPT-3 style 33.80 37.30 paws/labeled final/PAWS-ANLI GPT3 38.50 paws/labeled final/PAWS-ANLI GPT3-no-label
consider always/sometimes/never 33.20 33.40 paws/labeled final/PAWS-ANLI GPT3 33.50 -(all 33.4)
guaranteed true 33.70 38.50 paws/labeled final/context-question 38.70 paws/labeled final/PAWS-ANLI GPT3
must be true 34.40 39.60 paws/labeled final/context-question 39.70 paws/labeled final/context-question
guaranteed/possible/impossible 33.30 33.30 paws/labeled final/PAWS-ANLI GPT3 33.30 imdb/Text Expressed Sentiment
does this imply 33.60 38.20 paws/labeled final/context-question 38.20 paws/labeled final/context-question-no-label
MNLI crowdsource 33.60 33.80 paws/labeled final/context-question 35.40 dbpedia 14/given list what category does the paragraph belong to
should assume 33.20 38.80 paws/labeled final/context-question 39.00 paws/labeled final/PAWS-ANLI GPT3-no-label
take the following as truth 32.40 37.10 paws/labeled final/PAWS-ANLI GPT3 38.70 paws/labeled final/context-question-no-label

Avg. 33.81 37.07 37.65

Table 5: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
ANLI R1.
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Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

can we infer 30.40 35.30 paws/labeled final/context-question 35.30 paws/labeled final/PAWS-ANLI GPT3
based on the previous passage 31.40 35.40 paws/labeled final/context-question 35.40 paws/labeled final/PAWS-ANLI GPT3
claim true/false/inconclusive 34.90 35.10 paws/labeled final/PAWS-ANLI GPT3 35.90 paws/labeled final/context-question
does it follow that 34.50 36.00 paws/labeled final/context-question 36.00 paws/labeled final/PAWS-ANLI GPT3
justified in saying 33.50 35.70 paws/labeled final/context-question 35.70 rotten tomatoes/Reviewer Enjoyment Yes No
always/sometimes/never 33.40 33.40 paws/labeled final/paraphrase-task 33.50 adversarial qa/droberta/based on,
GPT-3 style 33.50 34.90 paws/labeled final/PAWS-ANLI GPT3 35.00 paws/labeled final/context-question-no-label
consider always/sometimes/never 33.70 33.40 dbpedia 14/given a choice of categories 34.50 paws/labeled final/PAWS-ANLI GPT3-no-label
guaranteed true 32.90 34.00 paws/labeled final/context-question 34.30 paws/labeled final/PAWS-ANLI GPT3
must be true 35.10 34.60 paws/labeled final/context-question 35.10 paws/labeled final/PAWS-ANLI GPT3
guaranteed/possible/impossible 33.30 33.30 paws/labeled final/context-question-no-label 33.30 imdb/Writer Expressed Sentiment
does this imply 32.70 33.90 paws/labeled final/context-question 34.10 paws/labeled final/context-question
MNLI crowdsource 33.40 34.70 dbpedia 14/given a choice of categories 34.90 dbpedia 14/given a choice of categories
should assume 32.40 35.10 paws/labeled final/context-question 35.10 paws/labeled final/PAWS-ANLI GPT3
take the following as truth 31.60 35.70 paws/labeled final/paraphrase-task 35.70 paws/labeled final/PAWS-ANLI GPT3

Avg. 33.11 34.70 34.92

Table 6: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
ANLI R2.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

can we infer 33.00 34.75 glue/qqp/meaning 34.75 paws/labeled final/context-question-no-label
based on the previous passage 33.33 34.08 paws/labeled final/context-question 35.33 paws/labeled final/context-question-no-label
claim true/false/inconclusive 32.83 35.58 paws/labeled final/paraphrase-task 35.92 cos e/v1.11/aligned with common sense
does it follow that 34.08 34.67 paws/labeled final/context-question 35.33 amazon polarity/User recommend this product
justified in saying 33.58 33.00 paws/labeled final/paraphrase-task 35.42 amazon polarity/User recommend this product
always/sometimes/never 33.42 33.42 paws/labeled final/paraphrase-task 33.50 paws/labeled final/paraphrase-task
GPT-3 style 33.33 34.00 paws/labeled final/PAWS-ANLI GPT3 34.92 paws/labeled final/PAWS-ANLI GPT3
consider always/sometimes/never 33.08 32.42 ropes/plain no background 33.67 cos e/v1.11/question description option text
guaranteed true 32.58 34.08 paws/labeled final/context-question 34.83 paws/labeled final/context-question
must be true 33.83 33.75 paws/labeled final/paraphrase-task 35.42 rotten tomatoes/Reviewer Enjoyment Yes No
guaranteed/possible/impossible 33.50 33.50 paws/labeled final/paraphrase-task 33.58 social i qa/Show choices and generate answer
does this imply 32.92 33.58 glue/qqp/meaning 34.50 paws/labeled final/context-question
MNLI crowdsource 33.75 33.67 rotten tomatoes/Text Expressed Sentiment 34.00 dbpedia 14/given a choice of categories
should assume 33.25 34.67 paws/labeled final/context-question 34.92 paws/labeled final/context-question-no-label
take the following as truth 33.42 32.75 social i qa/Show choices and generate index 36.67 paws/labeled final/context-question-no-label

Avg. 33.33 33.86 34.91

Table 7: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
ANLI R3.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

exercise 80.00 79.00 cos e/v1.11/question option description text 80.00 cos e/v1.11/question option description text
plausible alternatives 84.00 83.00 cos e/v1.11/question option description text 83.00 cos e/v1.11/question option description text
”C1 or C2? premise, so/because. . . ” 61.00 67.00 social i qa/Check if a random answer is valid or not 75.00 cos e/v1.11/description question option text
best option 70.00 76.00 social i qa/Show choices and generate answer 79.00 cos e/v1.11/question option description text
more likely 79.00 83.00 cos e/v1.11/question option description text 85.00 cos e/v1.11/description question option text
cause effect 74.00 78.00 cos e/v1.11/question option description text 83.00 common gen/random task template prompt
choose 80.00 82.00 cos e/v1.11/question option description text 82.00 cosmos qa/no prompt text
i am hesitating 79.00 82.00 cos e/v1.11/question option description text 82.00 cos e/v1.11/question option description text

Avg. 75.88 78.75 81.13

Table 8: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
COPA.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

Predict ending with hint 26.83 27.70 social i qa/Show choices and generate index 29.11 cos e/v1.11/question option description text
Randomized prompts template 26.87 26.83 social i qa/Show choices and generate index 27.84 wiqa/what is the missing first step
complete first then 28.37 27.35 ropes/prompt bottom no hint 28.35 cos e/v1.11/question option description text
if begins how continues 25.28 26.58 social i qa/Show choices and generate index 26.58 cos e/v1.11/question option description text
how ends 25.67 26.86 social i qa/Show choices and generate index 26.86 cos e/v1.11/question option description text

Avg. 26.60 27.06 27.75

Table 9: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
Hellaswag.
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Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

Answer Given options 86.48 87.76 social i qa/Show choices and generate answer 87.76 social i qa/Show choices and generate answer
Choose Story Ending 86.91 88.24 social i qa/Show choices and generate answer 88.24 cos e/v1.11/question option description text
Movie What Happens Next 78.09 78.03 social i qa/Show choices and generate answer 87.33 cosmos qa/no prompt text
Story Continuation and Options 83.59 85.89 social i qa/Show choices and generate answer 86.53 social i qa/Show choices and generate answer
Novel Correct Ending 85.09 87.65 social i qa/Show choices and generate answer 87.97 social i qa/Show choices and generate index

Avg. 84.03 85.52 87.57

Table 10: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
StoryCloze.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

does underscore refer to 49.25 51.54 cos e/v1.11/question option description text 51.78 paws/labeled final/PAWS-ANLI GPT3
stand for 50.51 50.59 cos e/v1.11/question option description text 52.09 ropes/plain no background
underscore refer to 50.43 50.59 cos e/v1.11/question option description text 52.33 ropes/prompt bottom no hint
fill in the blank 52.17 51.38 cos e/v1.11/question description option text 52.01 cos e/v1.11/question description option text
Replace 52.49 53.59 cos e/v1.11/question option description text 53.59 paws/labeled final/paraphrase-task

Avg. 50.97 51.54 52.36

Table 11: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
Winogrande.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

does the pronoun refer to 68.27 66.34 social i qa/Check if a random answer is valid or not 66.35 paws/labeled final/PAWS-ANLI GPT3
by p they mean 62.50 66.35 social i qa/Check if a random answer is valid or not 69.23 glue/qqp/duplicate or not
in other words 67.31 67.31 social i qa/Show choices and generate answer 72.12 samsum/Write a dialogue that match this summary
I think they mean 69.23 68.27 social i qa/Show choices and generate answer 78.08 social i qa/Generate answer
replaced with 64.42 59.62 social i qa/Check if a random answer is valid or not 66.35 social i qa/Show choices and generate index
p is/are r 62.50 64.42 social i qa/Show choices and generate index 65.38 social i qa/Show choices and generate index
the pronoun refers to 64.42 64.42 social i qa/Show choices and generate index 67.31 social i qa/Check if a random answer is valid or not
Who or what is/are 64.42 63.46 social i qa/Show choices and generate index 65.38 samsum/To sum up this dialog
does p stand for 67.31 63.46 social i qa/I was wondering 69.23 samsum/Write a dialogue that match this summary
GPT-3 Style 60.58 67.31 social i qa/Show choices and generate index 67.31 rotten tomatoes/Reviewer Expressed Sentiment

Avg. 65.10 65.10 68.17

Table 12: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
WSC.

Prompt Name T0 RoSPr Retrieved Embedding Oracle Retrieved Embedding

question-context-meaning-with-label 50.31 53.76 glue/qqp/meaning 53.76 paws/labeled final/context-question-no-label
question-context-meaning 50.63 50.16 ropes/prompt bottom no hint 57.05 paws/labeled final/PAWS-ANLI GPT3
grammar homework 49.84 50.16 ropes/prompt bottom no hint 57.99 rotten tomatoes/Reviewer Enjoyment Yes No
affirmation true or false 49.69 51.57 paws/labeled final/Rewrite-no-label 53.92 paws/labeled final/Meaning-no-label
GPT-3-prompt 51.72 50.00 social i qa/Show choices and generate index 55.64 paws/labeled final/PAWS-ANLI GPT3
same sense 49.84 52.82 paws/labeled final/Rewrite 55.17 paws/labeled final/task description-no-label
question-context 51.88 53.29 social i qa/Check if a random answer is valid or not 57.05 amazon polarity/Is this product review positive
GPT-3-prompt-with-label 50.47 52.19 glue/qqp/meaning 52.66 glue/qqp/meaning
polysemous 50.00 52.82 paws/labeled final/Rewrite 53.29 paws/labeled final/Rewrite-no-label
similar-sense 52.51 50.00 social i qa/Show choices and generate index 56.11 paws/labeled final/task description-no-label

Avg. 50.69 51.68 55.26

Table 13: List of retrieved source prompts of ROSPR and ORACLE for each evaluation prompts of
WiC.
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