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Abstract

Proteins are the main drivers of biochemical processes and play a pivotal role in1

almost all cellular functions. Through post-translational modifications (PTMs),2

residues within a protein can be chemically modified to fine-tune the protein’s3

function in the cellular context. Despite the importance of PTMs, the plethora4

of deep learning-based de novo peptide sequencing (DNPS) models, which, in5

contrast to database searching approaches, predict peptide sequence solely from6

tandem mass spectra without any reference organism database, can only predict7

peptide sequences with a limited set of PTMs. This is because they rely on fixed8

vocabularies that map residue tokens to non-generalizable learned embeddings. To9

overcome this limitation, we propose a novel approach that leverages the fact that10

amino acids and their derivatives are characterized by their mass, a generalizable11

feature that enables zero-shot learning. Specifically, we reformulate DNPS as a12

mass prediction problem instead of a multiclass classification problem, where the13

model predicts the mass of the next residue instead of its token representation. To14

facilitate generalization to unseen PTMs, we leverage an adversarial multi-task15

learning scheme by supplementing the training data of experimental spectra with16

simulated spectra that mimic spectra containing unseen residues. We show that our17

approach allows the prediction of previously unseen PTMs, providing a promising18

proof of concept for mass-based representations as a path towards true open-search19

DNPS.20

1 Introduction21

Proteins are essential to nearly all biological processes, functioning as catalysts, structural components,22

signaling molecules, transporters, and immune effectors [1, 2]. Their functional diversity is further23

enhanced by post-translational modifications (PTMs)—chemical changes to amino acid side chains24

that influence protein structure and activity and are often linked to disease [3]. Proteomics, the study of25

proteins, depends on accurate protein identification for downstream analyses such as quantification and26

interaction mapping [4]. Bottom-up proteomics via liquid chromatography tandem mass spectrometry27

(LC-MS/MS) is the most common method for high-throughput protein identification [4, 5]. Here,28

proteins are enzymatically digested into peptides, which are analyzed in a first mass spectrometry29

scan to determine their mass-to-charge (m/z) ratios. Selected precursor ions are then fragmented, and30

the resulting fragment ions are measured in a second scan called a tandem mass spectrum [4]. Peptide31

sequences can, in principle, be inferred from m/z differences between consecutive peaks [6, 7], but32

this remains challenging due to missing or noisy peaks, co-isolated contaminants, and uncertainty33

about ion series assignment.34

Peptide sequences are typically identified using database search methods, which compare experimen-35

tal spectra to theoretical spectra derived from a reference protein database [8]. Including PTMs further36
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expands the space of candidate peptides, making exhaustive searches computationally challenging.37

De novo peptide sequencing (DNPS) bypasses the need for a reference database by inferring peptide38

sequences directly from tandem mass spectra. This makes it, in contrast to database search methods,39

well-suited for identifying novel peptides, rare or unknown PTMs, and proteins from unsequenced40

organisms. Several de novo peptide sequencing (DNPS) tools have been introduced in recent years,41

demonstrating promising performance across benchmark datasets [9–25]. However, accurately se-42

quencing post-translationally modified (PTM) peptides remains a significant challenge. Despite43

the existence of over 400 known PTM types [26, 27], Casanovo—the first transformer-based de44

novo peptide sequencing (DNPS) model—can identify only seven [11]. Improving PTM prediction45

has attracted considerable research interest, with recent advances such as AdaNovo [9]. Another46

approach is to expand model coverage by enlarging the PTM vocabulary; for example, π-PrimeNovo47

is fine-tuned to recognize 21 PTMs [28]. However, to the best of our knowledge, no current DNPS48

model can detect PTMs not seen during training in a zero-shot manner, restricting their ability to49

discover novel or rare PTMs.50

In this work, we propose a transformer-based mass prediction approach to peptide sequencing,51

enabling zero-shot inference for unseen residues, including novel PTMs. To improve generalization,52

we explore multi-task learning (MTL) with a training strategy combining experimental and simulated53

spectra. In the experimental spectra, the model encounters high spectral complexity with a limited54

set of PTMs, while in the simulated spectra, it learns to generalize to unseen PTMs with arbitrary55

peak differences. We introduce a generative adversarial network (GAN)-inspired MTL model, which56

demonstrates strong performance on simulated data and limited but encouraging generalization57

to unseen residues on experimental spectra. While not solving zero-shot residue inference on58

experimental data, we provide a framework for future research and highlight key challenges.59

2 Background and Related Work60

In bottom-up proteomics, proteins are extracted from a biological sample and enzymatically di-61

gested—typically with trypsin—into smaller peptides [4]. These peptides are separated by liquid62

chromatography (LC) and introduced into a tandem mass spectrometer (LC-MS/MS), typically63

operated in data-dependent acquisition (DDA) mode. In the first MS stage (MS1), peptide ions are64

detected to determine their precursor masses and intensities. The most intense precursors are selected65

for fragmentation in the second MS stage (MS2), generating spectra composed of fragment ion peaks66

(tandem mass spectra).[5] The mass differences between these peaks correspond to the masses of67

individual (modified) amino acids, enabling peptide sequence inference. [6, 7] Peptides are then68

identified either by matching spectra to theoretical peptides from a reference proteome with database69

search methods [29] or by interpreting spectra directly with de novo peptide sequencing (DNPS)70

methods. Identified peptides are subsequently used to infer protein presence and abundance in the71

original sample. [30]72

In the early days of DNPS-based proteomic studies, spectra were manually annotated by experts—a73

process that was both time-consuming and expensive [30]. As LC-MS/MS throughput increased,74

early computational tools such as PEAKS [31], NovoHMM [32], and PepNovo [33] were developed75

to automate de novo peptide sequencing. However, despite their theoretical potential, these methods76

were often limited in accuracy and struggled with noisy or complex spectra, making database search77

methods the preferred choice for many applications.78

The field has gained renewed momentum with the rise of deep learning. DeepNovo [34] first79

combined CNNs and LSTMs to model the peptide sequencing process directly. Following this,80

PointNovo [25] employed a pointer network approach to enhance the decoding of peptide sequences.81

Transformer-based architectures then marked a significant leap in performance, with Casanovo82

[11] introducing a streamlined, attention-based model that boosted both accuracy and inference83

speed. Several other transformer-based tools have emerged since [9, 10, 12, 17, 18, 24, 35], notably84

AdaNovo, which incorporated adaptive learning strategies to improve performance on peptides85

containing post-translational modifications (PTMs). Additionally, GraphNovo [16] introduced a86

graph-based approach to capture the relationships between peptide fragments, further improving87

sequencing accuracy and handling complex modification patterns. ContraNovo [12] enhanced the88

transformer decoder of Casanovo by incorporating mass information directly into the model, allowing89

it to better utilize the mass differences between peptide fragments and improve the accuracy of90
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peptide sequence prediction, particularly for spectra with ambiguous or overlapping peaks. Recently,91

π-PrimeNovo was proposed, a model fine-tuned on 21 PTMs, to expand PTM coverage [24].92

These advancements have greatly enhanced the accuracy, generalization, and speed of DNPS tools,93

making them more viable for applications with incomplete reference databases. However, DNPS94

models capable of generalizing beyond the amino acids and PTMs present in the training data are95

still lacking, limiting their ability to accurately discover novel peptides or uncharacterized PTMs.96

3 Methods97

3.1 Datasets98

3.1.1 Experimental Datasets99

We use the MassIVE Knowledge Base spectral library v1 (MassIVE-KB v1), originally introduced by100

Casanovo for DNPS, to train and evaluate our method [11, 36]. This extensive dataset consists of high-101

resolution HCD mass spectrometry data from diverse experimental conditions, totaling 30,504,897102

peptide-spectrum matches (PSMs) with extremely stringent false discovery rate (FDR) control [11].103

To facilitate direct comparison with Casanovo [11], we employ the same train, validation, and test104

splits used in their study. The dataset includes peptide sequences composed of the 20 canonical amino105

acids, along with eight post-translationally modified amino acids.106

3.1.2 Simulated Datasets107

To establish a model with zero-short learning capacity, we simulated synthetic spectra with a wide108

variety of possible masses. We reasoned that the simulated masses did not have to match the masses of109

existing PTM-amino acids. This incentivized models to capture the mechanisms of mass spectrometry110

rather than memorizing predefined sets of masses.111

We first generated peptide sequences as lists of residue masses, each sampled uniformly from the112

range [60, 300] Da. Peptide lengths were drawn from a uniform distribution between 5 and 20113

residues, and precursor charges z were sampled from a discrete distribution: z = 1: (0.5), z = 2:114

(0.25), z = 3: (0.125), and z = 4: (0.125).115

We implemented two strategies for generating the corresponding tandem mass spectra. In the first,116

simplified approach, we generated an ideal spectrum consisting of one peak per residue, corresponding117

directly to its mass over charge ratio (m/z). The second, more realistic strategy simulates peptide118

fragmentation by generating b- and y-ions. More specifically, let z be the precursor charge and119

MPep = (m1,m2, . . . ,ml) the vector of masses for a given peptide of length l, where mi is the mass120

of the i-th residue. The m/z ratios for b-ions are defined as bi = 1
z

∑i
j=1 mj +H. Analogously, the121

m/z values for y-ions are defined as yi = 1
z

∑l
j=l−i+1 mj + H2O + H. H and H2O represent the122

mass of Hydrogen and Water molecules, respectively. To introduce variability, a random number123

(uniformly drawn from 0 to 5) of peaks were removed from each ion series, while ensuring that at124

least one peak (b- or y-ion) per residue was retained to preserve full sequence information.125

To simulate more realistic spectra, we added between 0 and 10 noise peaks per spectrum, with m/z126

values sampled uniformly from the range [50, m/zmax + 300], where m/zmax is the maximal m/z127

in the simulated spectrum. Fragment ion intensities were sampled from a Gaussian distribution128

N (1.0, 0.1), while noise peak intensities were drawn from N (0.4, 0.1).129

3.2 Model Architecture130

3.2.1 Transformer-Based Mass Prediction131

Our model builds upon the transformer architecture introduced in Casanovo [11], but reformulates132

the peptide sequencing task from next-token classification over (modified) amino acid tokens to a133

continuous mass prediction task. For this, we introduce the mass regression decoder, which outputs a134

scalar value representing the mass of each peptide residue in Dalton. We implement this by extending135

Casanovo’s peptide decoder with a four-layer feed-forward network with PReLU activation and a136

single output dimension.137
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Figure 1: Adversarial multi-task Learning model architecture for mass-based peptide identi-
fication. Our model uses an encoder-decoder transformer to predict peptide sequences from mass
spectra. The decoder predicts the next residue mass based on the spectrum encoding, precursor mass,
and previous predictions. During training, the model alternates between experimental and simulated
spectra, and is optimized using MSE loss. An adversarial discriminator, trained with BCE loss,
encourages domain-invariant encodings by distinguishing simulated from experimental spectra.

For each prediction step, the decoder is conditioned not only on the encoded spectrum and precursor138

information (mass and charge) but also on the masses of previously predicted residues and the139

remaining precursor mass, similar to [12]. This setup enables autoregressive decoding of arbitrary140

residue masses consistent with the spectrum.141

To map predicted masses back to residue tokens, we use an extendable mass lookup table, similar to142

the approach in Contranovo [12]. Specifically, we map each predicted mass to the PTM–amino acid143

combination that most closely matches its value. Token probabilities are computed via a softmax144

over the negative absolute differences between the predicted mass and each entry in the table. By145

extending this set post-training (e.g., by incorporating additional PTMs), the model can predict tokens146

beyond those encountered during training.147

3.2.2 GAN-Inspired Latent Alignment148

To align representations of experimental and simulated spectra in a shared latent space, we adopt149

a generative adversarial network (GAN)-inspired framework. The generator in this setup is the150

transformer encoder, which encodes input spectra into latent vectors. These representations are151

mean-pooled and passed to a discriminator—a three-layer feed-forward neural network (FNN) with152

Leaky ReLU activations—adapted from the discriminator used by Wu et al. [37]. The discriminator153

is trained to distinguish between embeddings of experimental and simulated spectra, while the DNPS154

model is adversarially regularized by the discriminator’s loss, thereby encouraging the encoder to155

learn modality-invariant representations.156

3.3 Mulit-Task Training Strategy157

We train the model on a mixture of simulated and experimental spectra, sampling balanced batches158

from both sources. The mass prediction model is optimized using a mean squared error (MSE) loss159

LReg between predicted and ground truth residue masses. To train the adversarial extension of the160

multi-task learning (MTL) model, we incorporate an additional regularization term based on the161

discriminator’s binary cross-entropy (BCE) loss LD. The MTL model is trained on a composite162

loss LAdv, defined as a linear combination of the mass regression loss LReg (weight 1) and the163

discriminator loss LD (weight -50).164

The MTL model weights are initialized with weights from a model pre-trained solely on simulated165

spectra from our simplified simulation approach for 80,000 steps. We train for 600,000 steps with a166

batch size of 64 (approximately 1.5 epochs) on a single A40 GPU with 8 CPU cores and 60 GB of167

CPU RAM for approximately 2 days. The learning rate is set to 4× 10−4 for the mass prediction168

DNPS model and 1 × 10−6 for the discriminator. The validation set was evaluated every 50,000169

training steps, and the final model corresponds to the checkpoint with the lowest validation loss.170
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Figure 2: Mass regression transformer evaluation on seen and unseen PTM-amino acid combi-
nations during training. A, Predicted masses on test set for all amino acids present in the training
split of the MassIVE-KB V1 dataset. The horizontal dashed lines indicate the target mass, i.e., the
true mass of the residue. Outliers are not displayed. B, Distribution of the predicted mass for the two
PTM-amino acid combinations, methionine oxidation and cysteine carbamidomethylation, withheld
from the training split of the MassIVE-KB V1 dataset. The vertical dashed lines indicate the target
masses.

4 Experiments171

To enable de novo peptide sequencing (DNPS) models to generalize beyond the set of amino acids172

and post-translational modifications (PTMs) observed during training, we reformulated the task173

as a continuous mass prediction problem. Instead of selecting residues from a fixed vocabulary,174

our model predicts a scalar mass for each peptide position, allowing for the potential inference of175

arbitrary or novel modifications. These predicted masses are then mapped to residue identities via176

a flexible, extendable lookup table. To encourage generalization, we adopt a multi-task training177

strategy that combines complex experimental spectra, limited to a known set of PTMs, with simulated178

spectra engineered to include a broad range of synthetic modifications. Additionally, we introduce a179

GAN-inspired architecture, which aims to align latent representations of real and simulated spectra180

and improve the model’s ability to bridge between the two domains.181

4.1 Evaluation Metrics182

To assess the model’s ability to generalize to modified amino acids not seen during training, we183

excluded all spectra containing methionine oxidation and cysteine carbamidomethylation from the184

training and validation sets—effectively treating these modifications as unseen during evaluation.185

We evaluated performance at two levels: mass accuracy and residue identification. Mass accuracy186

was measured as the absolute difference between the predicted and ground truth masses for each187

residue. Residue identification was assessed by mapping each predicted mass to the nearest entry188

in a lookup table containing all amino acid and PTM combinations present in the MassIVE-KB v1189

dataset. The predicted residue was then compared to the ground truth to compute recall at the amino190

acid level.191

For evaluation, we ran the model in inference mode using teacher forcing. In this setup, the model192

is supplied with the ground truth masses of all previously decoded residues at each prediction step.193

This prevents error accumulation from incorrect predictions and isolates the model’s ability to predict194

each residue mass independently. Additionally, by enforcing the correct number of decoding steps,195

teacher forcing ensures that the predicted and ground truth residue sequences are aligned, facilitating196

direct comparison of their respective masses.197

4.2 Main Results198

4.2.1 Mass Regression Decoder Confidently Predicts Masses Seen During Training199

Our results indicated that recasting peptide sequencing as a mass prediction task preserved the200

model’s ability to infer residue identities. The model reliably predicted the masses of unmodified201

residues seen during training on the defined test set (Fig. 2A). Across all unmodified residues seen202

during training, our model achieved a median absolute error of approximately 0.56 Da on the test203
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set (Pearson correlation coefficient: 0.89, P-value<0.05). Errors ranged from 1.10 Da for tryptophan204

(W) to 0.39 Da for glycine (G). This precision allowed the model to distinguish residues effectively,205

resulting in an overall amino acid-level recall of 62.37%. Because we assigned predicted masses206

to the closest matching residue in a lookup table, the model performed better for amino acids that207

were well-separated in mass. For example, arginine (R) was correctly recalled in approximately208

79.91% of cases. In contrast, the model struggled with residues whose masses are close to others,209

such as lysine (K), which had a recall of only 26.97%—despite having a lower median error (0.48210

Da) than arginine (0.61 Da). While these recall values were somewhat lower than those reported by211

classification-based transformer models such as AdaNovo [9], this was expected given the nature of212

our approach. Predicting scalar masses imposes a stricter requirement for precision: small deviations213

could lead to mismatches when mapping back to discrete residue tokens. In contrast, models like214

Casanovo [11] benefited from the flexibility of learned embedding spaces, where similar residues215

could be placed further apart to ease classification. Despite this inherent challenge, our results216

demonstrated that the mass-regression decoder effectively learned accurate mass representations for217

residues seen during training, providing a viable foundation for generalization to modified residues218

beyond the training set.219

While the model successfully predicted the masses of residues seen during training, capturing a gener-220

alizable and interpretable biochemical feature, it struggled to generalize to truly novel modifications221

(Fig. 2B). For example, predictions for cysteine carbamidomethylation showed no enrichment near222

the correct mass, with the distribution shifted toward lower values and a recall of only 0.6%. A223

contributing factor to the failed extrapolation might be that all cysteines in the data were modified,224

meaning the model never encountered an unmodified cysteine during training. In contrast, predictions225

for methionine oxidation were modestly enriched around its correct mass, achieving a recall of226

14.18%. However, this perhaps reflected a memorization artifact: the mass of methionine oxidation227

(∼147.04 Da) was only ∼0.03 Da less than phenylalanine (F), a residue included in training, indi-228

cating the model might simply be reproducing familiar masses. The observed bias toward masses229

seen during training was consistent with trends in generalized zero-shot learning [38]. Since the230

training objective does not explicitly encourage extrapolation to unseen masses, the model was not231

incentivized to learn a truly continuous mass space. Instead, it might implicitly treat the task as a232

form of multi-class classification, where the “classes” were the residue masses encountered during233

training. As a result, the model could memorize these masses and reproduce them at inference time,234

without being penalized by the loss function for failing to predict novel ones.235

4.2.2 Mass Regression Model Can Solve Simulated Open-DNPS Problem236

To mitigate the model’s bias toward training-set residue masses—an issue arising from the limited237

diversity of modifications in experimental spectra—we explored the use of simulated spectra spanning238

a broader amino acid–PTM search space. In these simulations, peptides were constructed by sampling239

random residue masses to mimic modified amino acids, thereby preventing memorization. We240

designed three simulation levels of increasing complexity and trained a separate model on each.241

Across all settings, the model successfully learned to predict the correct masses (Fig. 3A, B), though242

performance declined as simulation complexity increased (Pearson correlation coefficients of 1.0,243

0.99 and 0.97 with two-sided P-values<0.05). Introducing a variable number of peaks led to higher244

mass prediction errors compared to simulations with a fixed number of peaks (Fig. 3B), as expected245

from the increased difficulty. Interestingly, the model remained robust when noise peaks and realistic246

fragmentation processes were introduced. However, these settings caused the MSE loss to more than247

double, largely due to occasional large prediction errors (108.96 vs. 263.98). This is likely because248

the simulation emulated missing peaks (although never both of the complementary b- and y-ion),249

causing the model to infer residue masses from unrelated fragments, leading to strong deviations and250

quadratic penalties from the MSE loss.251

Although the model performed well on simulated spectra, it failed to generalize to experimental252

spectra and accurately predict real residue masses (Pearson correlation coefficients of -0.11, 0.19 and253

0.04 with two-sided P-values<0.05). We reasoned that the domain shift between simulated and real254

data was too substantial, leading models trained on simplified simulations to break down entirely255

when applied to real spectra (Fig. 3C). These models produced nearly identical mass distributions256

across all residues, indicating a lack of residue-specific signal. The model trained on the most realistic257

simulation—incorporating both noise peaks and fragmentation mechanics—showed some limited258

signs of generalization to experimental spectra (Fig. 3C). It produced slightly differentiated mass259
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Figure 3: Mass regression transformer on simulated data. A, Predicted against true underlying
simulated residue masses for three data simulation strategies (facets): (i) spectra with three peaks with
arbitrary mass distance and precursor charge=1. (ii) a variable number of peaks with arbitrary mass
distances and precursor charge=1 (iii) spectra with a variable number of peaks corresponding to b- and
y-fragments, precursor charges>1, and noise peaks. B, Absolute errors between the predicted masses
and true masses for the different data simulation strategies (facets). C, Distribution of predicted
masses for experimental data from MassIVE-KB V1 containing methionine oxidation and cysteine
carbamidomethylation residues. The vertical dashed lines indicate the target masses.

distributions for individual residues, with subtle enrichments around masses offset by approximately260

18 Da from the target values. This offset aligned with the mass of a water molecule (∼18 Da),261

which distinguishes y-ions from b-ions, and may reflect confusion between ion series in experimental262

spectra. While this suggested that the model was extracting some transferable features from the263

realistic simulations, the extent of generalization remained minimal. Performance on experimental264

data remained inadequate, with recall for cysteine carbamidomethylation and methionine oxida-265

tion residues reaching only 0.84% and 1.19%, respectively. These results highlight that, although266

realistic simulation improved alignment with experimental characteristics, simulated data alone267

were insufficient for teaching the model to handle the complexity of real-world spectra and unseen268

modifications.269

4.2.3 Multi-Task Learning Improves Generalization270

We explored Multi-Task Learning (MTL) as a strategy to improve the model’s ability to generalize,271

particularly to unseen post-translational modifications. MTL has proven effective in various domain272

adaptation contexts [39–41], and we adapted it by training the model on a balanced combination of real273

and simulated spectra. The rationale was twofold: training on real experimental spectra encourages the274

model to learn the inherent complexity and noise characteristics of true mass spectrometry data, while275

training on simulated spectra—which include a diverse set of unrestricted residue masses—pushes276

the model to generalize beyond the limited set of modifications seen in the real data. By combining277

both sources, the model was encouraged to learn features that were robust across domains while278

being flexible enough to infer arbitrary modifications.279

The MTL model improved performance on simulated spectra (Pearson correlation coefficient: 0.98280

with two-sided P-value<0.05, Fig. 4A) but sacrificed precision on seen residues in experimental spec-281

tra compared to the model trained exclusively on experimental data (Pearson correlation coefficient:282

0.83 with two-sided P-value<0.05, Fig. 4B, median absolute errors of 3.17 Da vs. 0.56 Da). On283

the other hand, the MTL model outperformed the model trained solely on the simulated data with284

a lower median absolute error of 2.95 Da compared to 4.25 Da. The imbalance between the MTL285

model’s performance on simulated and experimental spectra might stem from the loss formulation:286
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Figure 4: Multi-task learning and adversarial-inspired model for PTM-amino acid mass predic-
tion. A, Predicted against the true masses on simulation data for the two different models (facets): (i)
model using multi-task learning scheme with a mixture of experimental and simulated spectra and
(ii) extended with an adversarial loss term that is obtained by training a discrimination module that
predicts whether a spectrum is simulated or not. B, Distribution of predicted masses for all amino
acids seen during training. The horizontal lines indicate the true target masses. C, Distribution of
the predicted masses of the two unseen residues, cysteine carbamidomethylation and methionine
oxidation, which were withheld from the training data. The vertical lines indicate the target masses.
D, Two-dimensional PCA projection of pooled spectrum encoder embeddings for the two different
models (facets).

since simulated spectra were easier to learn from, the model might prioritize reducing their loss,287

which offered a more efficient path to minimizing the overall objective, potentially at the expense of288

generalizing to real spectra. This behavior contrasted with the ideal MTL outcome, where both tasks289

mutually benefit from shared representation learning [42].290

While the MTL model showed improved performance on simulated spectra, this came at the cost of291

reduced accuracy on known residues in experimental data. However, this trade-off coincided with292

emerging signs of generalization to unseen residues excluded from training (Fig. 4C). Notably, the293

peak near the target mass for methionine oxidation was more distinct and sharper than in the model294

trained without MTL (Fig. 2B and Fig. 4C), indicating increased confidence in these predictions. For295

the unseen cystein carbamidomethylation, the MTL model’s predicted masses shifted closer to the296

target mass, with a pronounced peak just below it—contrasting sharply with the model trained only297

on experimental data. This suggests that MTL enables the model to better generalize and recover298

evidence for unseen modifications that were previously overlooked.299

Despite improved generalization, the MTL model still showed some bias toward masses seen during300

training, though to a lesser extent. For instance, the secondary peak in predicted masses for cystein301

carbamidomethylation aligned with the amino acids (iso)leucine (I, L ∼113 Da), asparagine (N ∼114302

Da), and aspartic acid (D ∼115 Da). Consequently, absolute prediction quality for unseen residues303

remained limited. While recall for cystein carbamidomethylation improved fivefold compared to the304

model trained only on experimental data, it remained low at about 3.18%. Recall for methionine305

oxidation increased only marginally, from 14.18% to 14.41%.306
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4.2.4 Adversarial Loss For Common Latent-Space For Spectrum Embedding307

Although the MTL model performed well on simulated data, it was still biased toward seen masses.308

To investigate whether simulated data was effectively leveraged during training, we analyzed the309

embeddings with a 2D PCA projection (Fig. 4D). The embeddings for experimental and simulated310

spectra formed distinct clusters, suggesting that the transformer-based mass regression decoder could311

easily differentiate between the two data types. This separation might have caused the model to treat312

simulated spectra differently, reducing their effectiveness in helping the model generalize to realistic,313

unseen masses.314

To reduce the separation between simulated and experimental spectra, we incorporated adversarial315

learning by adding a lightweight binary classifier to our MTL model that predicted whether a spectrum316

was simulated or experimental based on its encoding. The classification loss was subtracted from the317

MTL model’s MSE loss to encourage a shared latent space for both types of spectra. Following the318

addition of this adversarial loss, the embeddings of simulated and experimental spectra no longer319

separated clearly in PCA space (Fig. 4D). Moreover, the discriminator’s binary cross entropy loss320

during training plateaued at around 0.68, meaning its predicted probabilities lay consistently around321

0.5 (-log(0.5)≈0.69). However, the loss and PCA alone did not provide definitive evidence that the322

model could not still distinguish between the two spectrum types. This was further supported by the323

discriminator achieving an area under the ROC curve of around 0.78.324

Unfortunately, the addition of the adversarial loss term did not lead to a noticeable improvement325

in the MTL model’s ability to generalize to unseen residues. The distributions of predicted masses326

for unseen residues remained very similar between the MTL models with and without adversarial327

loss (Pearson correlation coefficient: 0.82 with two-sided P-value<0.05, Fig. 4C). Additionally, both328

models showed comparable recall rates for methionine oxidation (3.18% vs. 3.10%) and cystein329

carbamidomethylation (14.41% vs. 15.11%), along with similar MSE losses.330

5 Conclusion and Future Work331

We present a novel framework for de novo peptide sequencing that reformulates the task as mass332

regression rather than discrete classification. This shift enables the model to move beyond a fixed333

vocabulary of amino acids and modifications, allowing it to predict residues not encountered during334

training. Our approach combines transformer-based mass prediction with a multi-task learning setup335

trained on both experimental and simulated spectra. To encourage domain-invariant representations,336

we incorporate adversarial learning that aligns the spectrum encodings across data sources. Results337

demonstrate promising generalization to previously unseen modifications, marking a step toward338

more flexible and open-ended peptide sequencing. By enabling the discovery of novel or rare peptide339

modifications, this work may support future advancements in biomedical research.340

Limitations. This work serves as a proof of concept rather than a production-ready system. Although341

we show that mass-based modeling can overcome vocabulary constraints, the current framework342

has only been evaluated under teacher-forced decoding. Nonetheless, it provides a foundation343

for developing fully open de novo sequencing models that support more reliable and practical344

applications.345

Future directions. Several avenues merit further investigation: exploring the tradeoff between scalar346

mass prediction and vector-based encodings, improving robustness to noise in simulated spectra,347

and developing loss functions that better prioritize precision. The role of adversarial learning also348

warrants deeper analysis, particularly whether the model implicitly treats simulated data differently.349

Incorporating high-fidelity simulated spectra (e.g., from models like Prosit [43, 44]) and more350

advanced decoding strategies could further improve performance. Together, these advances could351

enable DNPS models that generalize across biological contexts, capturing both known and novel352

peptide modifications with greater reliability.353
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Justification: The paper poses no such risks.726

Guidelines:727

• The answer NA means that the paper poses no such risks.728

• Released models that have a high risk for misuse or dual-use should be released with729

necessary safeguards to allow for controlled use of the model, for example by requiring730

that users adhere to usage guidelines or restrictions to access the model or implementing731

safety filters.732

• Datasets that have been scraped from the Internet could pose safety risks. The authors733

should describe how they avoided releasing unsafe images.734

• We recognize that providing effective safeguards is challenging, and many papers do735

not require this, but we encourage authors to take this into account and make a best736

faith effort.737

12. Licenses for existing assets738

Question: Are the creators or original owners of assets (e.g., code, data, models), used in739

the paper, properly credited and are the license and terms of use explicitly mentioned and740

properly respected?741

Answer: [Yes]742

Justification: We have cited related publications.743

Guidelines:744

• The answer NA means that the paper does not use existing assets.745

• The authors should cite the original paper that produced the code package or dataset.746

• The authors should state which version of the asset is used and, if possible, include a747

URL.748

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.749
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• For scraped data from a particular source (e.g., website), the copyright and terms of750

service of that source should be provided.751

• If assets are released, the license, copyright information, and terms of use in the752

package should be provided. For popular datasets, paperswithcode.com/datasets753

has curated licenses for some datasets. Their licensing guide can help determine the754

license of a dataset.755

• For existing datasets that are re-packaged, both the original license and the license of756

the derived asset (if it has changed) should be provided.757

• If this information is not available online, the authors are encouraged to reach out to758

the asset’s creators.759

13. New assets760

Question: Are new assets introduced in the paper well documented and is the documentation761

provided alongside the assets?762

Answer: [Yes]763

Justification: We will make our GitHub repository available which includes documentation764

in our paper. Model trained weights will also become available.765

Guidelines:766

• The answer NA means that the paper does not release new assets.767

• Researchers should communicate the details of the dataset/code/model as part of their768

submissions via structured templates. This includes details about training, license,769

limitations, etc.770

• The paper should discuss whether and how consent was obtained from people whose771

asset is used.772

• At submission time, remember to anonymize your assets (if applicable). You can either773

create an anonymized URL or include an anonymized zip file.774

14. Crowdsourcing and research with human subjects775

Question: For crowdsourcing experiments and research with human subjects, does the paper776

include the full text of instructions given to participants and screenshots, if applicable, as777

well as details about compensation (if any)?778

Answer: [NA]779

Justification: The paper does not involve crowdsourcing nor research with human subjects.780

We only use publicly available mass spectrometry data.781

Guidelines:782

• The answer NA means that the paper does not involve crowdsourcing nor research with783

human subjects.784

• Including this information in the supplemental material is fine, but if the main contribu-785

tion of the paper involves human subjects, then as much detail as possible should be786

included in the main paper.787

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,788

or other labor should be paid at least the minimum wage in the country of the data789

collector.790

15. Institutional review board (IRB) approvals or equivalent for research with human791

subjects792

Question: Does the paper describe potential risks incurred by study participants, whether793

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)794

approvals (or an equivalent approval/review based on the requirements of your country or795

institution) were obtained?796

Answer: [NA]797

Justification: The paper does not involve crowdsourcing nor research with human subjects.798

Guidelines:799

• The answer NA means that the paper does not involve crowdsourcing nor research with800

human subjects.801
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• Depending on the country in which research is conducted, IRB approval (or equivalent)802

may be required for any human subjects research. If you obtained IRB approval, you803

should clearly state this in the paper.804

• We recognize that the procedures for this may vary significantly between institutions805

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the806

guidelines for their institution.807

• For initial submissions, do not include any information that would break anonymity (if808

applicable), such as the institution conducting the review.809

16. Declaration of LLM usage810

Question: Does the paper describe the usage of LLMs if it is an important, original, or811

non-standard component of the core methods in this research? Note that if the LLM is used812

only for writing, editing, or formatting purposes and does not impact the core methodology,813

scientific rigorousness, or originality of the research, declaration is not required.814

Answer: [NA]815

Justification: LLMs are used only for writing, editing, or formatting purposes.816

Guidelines:817

• The answer NA means that the core method development in this research does not818

involve LLMs as any important, original, or non-standard components.819

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)820

for what should or should not be described.821
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