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ABSTRACT

Recent advancements in speech-language models have yielded significant im-
provements in speech tokenization and synthesis. However, effectively mapping
the complex, multidimensional attributes of speech into discrete tokens remains
challenging. This process demands acoustic, semantic, and contextual informa-
tion for precise speech representations. Existing speech representations generally
fall into two categories: acoustic tokens from audio codecs and semantic tokens
from speech self-supervised learning models. Although recent efforts have uni-
fied acoustic and semantic tokens for improved performance, they overlook the
crucial role of contextual representation in comprehensive speech modeling. Our
empirical investigations reveal that the absence of contextual representations re-
sults in elevated Word Error Rate (WER) and Word Information Lost (WIL) scores
in speech transcriptions. To address these limitations, we propose two novel dis-
tillation approaches: (1) a language model (LM)-guided distillation method that
incorporates contextual information, and (2) a combined LM and self-supervised
speech model (SM)-guided distillation technique that effectively distills multi-
modal representations (acoustic, semantic, and contextual) into a comprehen-
sive speech tokenizer, termed DM-Codec. The DM-Codec architecture adopts a
streamlined encoder-decoder framework with a Residual Vector Quantizer (RVQ)
and incorporates the LM and SM during the training process. Experiments show
DM-Codec significantly outperforms state-of-the-art speech tokenization models,
reducing WER by up to 13.46%, WIL by 9.82%, and improving speech quality by
5.84% and intelligibility by 1.85% on the LibriSpeech benchmark dataset.

1 INTRODUCTION

In recent years, the advent of Large Language Models (LLMs) has revolutionized various domains,
offering unprecedented advancements across a wide array of tasks (OpenAI, 2024). A critical com-
ponent of this success has been the tokenization of input data, enabling vast amounts of information
processing (Du et al., 2024; Rust et al., 2021). Inspired by these breakthroughs, significant attention
has shifted towards replicating similar successes in the realm of speech understanding and genera-
tion (Défossez et al., 2022; Hsu et al., 2021). However, tokenizing speech into discrete units presents
unique challenges compared to text, as speech is inherently continuous and multidimensional, re-
quiring various speech attributes such as acoustic properties, semantic meaning, and contextual clues
(Ju et al., 2024). Traditional approaches using feature representations such as Mel-Spectrograms
(Sheng et al., 2019), Mel-frequency cepstral coefficients (MFCCs) (Juvela et al., 2018), and Wave-
forms (Kim et al., 2021) have proven inadequate in capturing this full spectrum of information,
resulting in suboptimal performance in downstream tasks such as speech synthesis (Ju et al., 2024).

These limitations led researchers to explore various approaches, and one prominent direction lead-
ing to audio codecs (Borsos et al., 2023). Notable examples include SoundStream (Zeghidour et al.,
2021) and EnCodec (Défossez et al., 2022), which utilize Residual Vector Quantizers (RVQ) within
a neural codec framework, iteratively refining quantized vectors to discretize speech into acoustic
tokens. Concurrently, self-supervised speech representation learning models such as HuBERT (Hsu
et al., 2021) and wav2vec 2.0 (Baevski et al., 2020) facilitated extracting speech representations as
semantic tokens (Borsos et al., 2023). Efforts to unify acoustic and semantic representations have
led to two notable approaches: SpeechTokenizer (Zhang et al., 2024a), which utilizes semantic dis-
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Figure 1: An overview of speech tokenization approaches using discrete acoustic, semantic, and
contextual tokens. DM-Codec integrates these multimodal representations for robust speech tok-
enization, learning comprehensive speech representations.

tillation from HuBERT, and FACodec (Ju et al., 2024), which proposes a factorized vector quantizer
to disentangle speech representation into different subspaces using separate RVQs with supervision.

While these approaches have shown promising results, they often overlook a crucial aspect of speech
representation: the integration of contextual language information. Language models (LMs) have
demonstrated a remarkable ability to learn contextual representations that capture the meaning of to-
kens based on their broader linguistic context (Devlin et al., 2019). These contextual representations
can provide essential insights into speech representation, allowing for a more nuanced understanding
of words in varying linguistic contexts. Our empirical investigations also reveal that existing discrete
speech representation models struggle to align reconstructed speech with accurate textual form, re-
sulting in elevated Word Error Rates (WER) and Word Information Lost (WIL) scores in speech
transcription tasks. This observation underscores the need for a more comprehensive approach to
speech tokenization that incorporates contextual language information.

To address these challenges, we propose DM-Codec, a novel speech tokenizer that unifies mul-
timodal language and speech representations within a comprehensive tokenizer for speech. Our
approach builds on a neural codec architecture incorporating RVQ with encoder, decoder, and dis-
criminator components. Central to our innovation is the introduction of an LM-guided distillation
method that effectively incorporates contextual representations into the speech tokenization process.
This technique allows DM-Codec capturing the nuances of linguistic context often missed by exist-
ing models. Building upon the LM-guided approach, we further propose a hybrid distillation method
combining both LM and speech model (SM)-guided techniques. To the best of our knowledge, we
are the first to attempt to integrate all three essential aspects of speech representation—acoustic,
semantic, and contextual—within a single codec. See Figure 1 for a depiction.

Through extensive experimentation on the LibriSpeech benchmark dataset (Panayotov et al., 2015),
we demonstrate the superiority of DM-Codec, which achieves significantly lower WER and WIL
compared to state-of-the-art baseline speech tokenizers. Specifically, DM-Codec achieves a WER
of 4.05 and a WIL of 6.61, outperforming SpeechTokenizer (4.49, 7.10), FACodec (4.68, 7.33), and
EnCodec (4.53, 7.17). Furthermore, DM-Codec exhibits improved speech quality, as evidenced by
its Virtual Speech Quality Objective Listener (ViSQOL) score of 3.26, surpassing the performance
of baseline models (EnCodec: 3.08; SpeechTokenizer: 3.09; FACodec: 3.13).

Our research makes the following key contributions:

• We introduce DM-Codec, a novel speech tokenizer that incorporates contextual represen-
tations via an LM-guided distillation method.

• We present a novel combined LM and SM-guided representation distillation approach, unit-
ing acoustic, semantic, and contextual representations into a unified framework.

• Through comprehensive experiments and ablation studies, we demonstrate the effective-
ness of DM-Codec in preserving increased contextual information and enhancing the re-
tention of acoustic and speech information in reconstructed speech.
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2 PROPOSED METHOD

In this section, we present DM-Codec, a novel speech tokenizer designed to encapsulate a compre-
hensive fusion of multimodal (acoustic, semantic, and contextual) representations. As illustrated in
Figure 2, we propose two distinct training approaches to incorporate these representations: (i) a lan-
guage model (LM)-guided distillation method, and (ii) a combined LM and self-supervised speech
model (SM)-guided distillation method. The first approach distills contextual representations from
the LM and integrates them with learned acoustic representations. The second approach combines
SM and LM to further incorporate semantic representations with contextual and acoustic represen-
tations. It ensures that DM-Codec captures the essential elements of speech by harmonizing the
acoustic features with contextual and semantic information. The following subsections detail our
proposed distillation methods (§2.1), model details (§2.2), and components (Technical Appendix).

2.1 SPEECH AND LANGUAGE MODEL GUIDED DISTILLATION

Our approach first transcribes the raw speech x into its corresponding text x′ using a Speech-to-
Text (STT) model MSTT , such that x′ = MSTT (x). For simplicity, we omit any post-processing
techniques on the x′. Subsequently, we pass the text x′ through a pretrained language model MLM to
obtain contextual representations of x′, tokenized into a set of tokens, T = {ti}ni=1. For each token
ti, we extract its corresponding layer-wise hidden representations {hl

i}Ll=1, where L denotes the total
number of layers in MLM . We utilize all layer representations to derive the representations for each
token, as each layer of a pre-trained language model captures hierarchical and contextually distinct
information (Niu et al., 2022; Kovaleva et al., 2019; Hao et al., 2019). To obtain the contextual
representation Si for token ti, we average the hidden representations across all layers, yielding
Si = 1

L

∑L
l=1 h

l
i, where Si ∈ RD where D is hidden dimension. Consequently, we obtain the

contextual representations S = {Si}ni=1 for the speech input x, which captures the contextually
diverse information from MLM .

Simultaneously, we process the raw speech x through an Encoder E(x) to obtain the latent feature
v. We then pass v through a Residual Vector Quantizer (RVQ) to obtain quantized features Q =

{Qk}Kk=1, where K represents the number of quantization layers in the RVQ, and Qk ∈ RD′

where D′ is hidden dimension of kth RVQ layer. These quantized features are subsequently used
to reconstruct the audio x̂ via a decoder. To align the quantized feature Qk with the LM distilled
features Si, we apply a linear transformation Q′

k = WQk, where W ∈ RD′×D, ensuring the
dimensional consistency for the distillation process.

LM Guided Distillation: In this approach, we distil the LM representations S. To calculate the
LM-guided distillation loss, we adopt a continuous representation distillation technique, similar to
the one employed by SpeechTokenizer (Zhang et al., 2024a), which maximizes the cosine similarity
at the dimension level across all time steps. In our case, we calculate the continuous representa-
tion distillation of the transformed quantized features Q′

k and the LM representation features S as
follows:

LL = − 1

D

D∑
d=1

log

(
σ

(
Q

′(:,d)
k · S(:,d)

∥Q′(:,d)
k ∥∥S(:,d)∥

))
(1)

Here, the notation (:, d) indicates a vector that includes values from all time steps at the dth dimen-
sion. The function σ(·) represents the sigmoid activation function, commonly used to squash input
values into a range between 0 and 1.

Combined LM and SM Guided Distillation: To further enhance the capabilities of DM-Codec,
we propose a hybrid approach that utilizes both audio and text modalities. To derive semantic
representations from the speech model (SM), we adopt a similar distillation strategy as we used for
the LM. We first pass the raw speech x through the pretrained speech model MSM , which generates
its own set of layer-wise hidden representations {hl

j}Ll=1. The semantic features are derived by
averaging the hidden states across all layers, yielding Aj = 1

L

∑L
l=1 h

l
j , where Aj ∈ RD. This

process results in the semantic representations A = {Aj}nj=1 for the speech input x. The distillation
loss in this case considers both the LM and SM representations, jointly optimizing for the alignment
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Figure 2: DM-Codec framework consists of an encoder that extracts latent representations from
the input speech signal. These latent vectors are subsequently quantized using a Residual Vector
Quantizer (RVQ). We designed two distinct distillation approaches: (i) distillation from a language
model, and (ii) a combined distillation from both a language model (LM) and a speech model (SM).
These approaches integrate acoustic, semantic, and contextual representations into the quantized
vectors to improve speech representation for downstream tasks.

of the quantized features Q′
k with the representations A and S derived from MSM and MLM ,

respectively. Finally, the distillation loss for the SM, LSM , is first computed, followed by averaging
with the LM distillation loss, LL, to ensure a balanced contribution from both losses. The combined
distillation loss is computed as:

LSM = − 1

D

D∑
d=1

log

(
σ

(
Q

′(:,d)
k ·A(:,d)

∥Q′(:,d)
k ∥∥A(:,d)∥

))
(2)

LLS =
1

2
(LSM + LL) (3)

This formulation ensures that DM-Codec effectively integrates both acoustic and semantic knowl-
edge from SM, along with the contextual information provided by LM, resulting in a more robust
and comprehensive set of features for speech discretization.

2.2 MODEL DETAILS

Our framework builds upon the Residual Vector Quantizer with Generative Adversarial Networks
(RVQ-GAN) architecture, incorporating state-of-the-art components and novel distillation tech-
niques. The core of our model consists of an Encoder E and Decoder D with an RVQ architecture,
inspired by Encodec (Défossez et al., 2022) and SpeechTokenizer (Zhang et al., 2024a). Moreover,
we employ a multi-discriminator framework, comprising: Multi-Scale Discriminator (MSD), Multi-
Period Discriminator (MPD), and Multi-Scale Short-Time Fourier Transform (MS-STFT) Discrim-
inator, adopted from HiFi-Codec (Yang et al., 2023) and HiFi-GAN (Kong et al., 2020). Detailed
architectural specifications for these components are provided in the Technical Appendix. This
foundation provides a robust basis for speech quantization. To further enhance the quantizer with
distilled multimodal representations, we use wav2vec 2.0 (wav2vec2-base-960h) as MSTT (Baevski
et al., 2020), BERT (bert-base-uncased) as MLM (Devlin et al., 2019), and HuBERT (hubert-base-
ls960) as MSM (Hsu et al., 2021). We extract the quantized output from the first layer of the RVQ
(RVQ-1) for LM-guided distillation and the average of the quantized features across all eight layers
(RVQ-1:8) for SM-guided distillation to calculate the distillation loss.
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2.3 TRAINING OBJECTIVE

Our training strategy employs a GAN-guided framework, following methodologies established in
recent work (Zhang et al., 2024a; Yang et al., 2023). In addition to the distillation loss described in
Section 2.1, we utilize reconstruction losses, adversarial and feature matching losses, and a commit-
ment loss to guide the learning process. For the original speech x and the reconstructed speech x̂,
we calculate the losses as described below.

Reconstruction Loss. To ensure that the model preserves the key attributes of speech, we employ
both time-domain and frequency-domain reconstruction losses. The time-domain loss Lt is com-
puted as the L1 distance between x and x̂. For the frequency-domain loss Lf , we combine L1 and
L2 losses over 64-bin Mel-spectrograms Meli, with varying window sizes of 2i, hop lengths of 2i/4,
and scales e = {5, . . . , 11}.

Lt = ∥x− x̂∥1 (4)

Lf =
∑
i∈e

(∥Meli(x)− Meli(x̂)∥1 + ∥Meli(x)− Meli(x̂)∥2) (5)

Adversarial Loss. The adversarial loss promotes the generator to produce realistic and indistin-
guishable speech. We apply a hinge loss formulation to compute the adversarial loss for both the
generator Lg and the discriminator Ld. These losses are computed across all three discriminators:
the multi-scale discriminator (MSD), multi-period discriminator (MPD), and the multi-scale STFT
guided (MS-STFT) discriminator (details are in the Technical Appendix).

Lg =
1

N

N∑
n=1

max(1−Rn(x̂), 0) (6)

Ld =
1

N

N∑
n=1

(max(1−Rn(x), 0) + max(1 +Rn(x̂), 0)) (7)

where N is the number of discriminators and Rn represents the nth discriminator.

Feature Matching Loss. To prevent the generator from overfitting to the discriminator’s decisions,
we apply a feature matching loss Lfm. This loss compares features from each discriminator Rn’s
internal layers M across all dimensions, promoting stability and better generalization.

Lfm =
1

NM

N∑
n=1

M∑
m=1

∥Rm
n (x)−Rm

n (x̂)∥1
mean(∥Rm

n (x)∥1)
(8)

RVQ Commitment Loss. To guide the encoder to produce outputs that closely match their corre-
sponding quantized values in the residual vector quantization (RVQ) process, we introduce a com-
mitment loss Lw. For Nq quantization vectors, where qi represents the current residual and qci is
the closest entry in the corresponding codebook for the ith entry, the Lw is computed as:

Lw =

Nq∑
i=1

∥qi − qci∥22 (9)

Overall Generator Loss. The total generator loss LG is a weighted sum of the individual loss
components, including the distillation loss LL/LS (which is either LL or LLS depending on the
chosen distillation method). We use the corresponding weighting factors λL/LS , λt, λf , λg, λfm,
and λw to control the influence of each loss component on the overall training objective as:

LG = λL/LSLL/LS + λtLt + λfLf + λgLg + λfmLfm + λwLw (10)

This comprehensive training objective ensures DM-Codec learns acoustic speech representations
while incorporating semantic and contextual representation through novel distillation approaches.
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Table 1: Evaluation of speech reconstruction quality of DM-Codec and comparison with baselines.
DM-Codec♠ achieves the best performance in WER, WIL, and ViSQOL, highlighting its enhanced
content preservation and speech quality, with competitive intelligibility results. ♡ means the results
were reproduced using the official training code. ♢ means the results were obtained using official
model checkpoints. ♣ indicates LM-guided Distillation method. ♠ indicates combined LM and
SM-guided Distillation method. Bold highlights the best result and underline the second-best result.

Tokenizer WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
Groundtruth 3.78 6.03 - -
EnCodec♢ 4.53 7.17 3.08 0.920
SpeechTokenizer♡ 4.49 7.10 3.09 0.923
FACodec♢ 4.68 7.33 3.13 0.949
DM-Codec ♣ 4.36 7.06 3.18 0.935
DM-Codec ♠ 4.05 6.61 3.26 0.937

3 EXPERIMENTAL SETUP

Dataset. We trained DM-Codec using the LibriSpeech training set of 100 hours of clean speech
(Panayotov et al., 2015). This dataset was selected primarily because of its successful use for training
and evaluation in various speech tokenizer and modeling tasks (Zhang et al., 2024a; Ju et al., 2024;
Hsu et al., 2021). Before training, we made the data uniform by randomly cropping each sample to
three seconds and ensuring a consistent sample rate of 16 Hz.

Training. We trained DM-Codec utilizing 2 to 4 A100 GPUs until the model converged within 100
epochs. The batch size ranged from 6 to 20, depending on GPU resource availability. We applied a
learning rate of 1× 10−4 using the Adam optimizer with a 0.98 learning rate decay. The embedding
size was set to 1024 for RVQ and 768 for the LM and SM. For all experiments, we used a random
seed of 42 to ensure reproducibility. We also share our training code with the entire configuration
file and a docker file to reproduce the training environment in the Technical Appendix.

Baselines. We compared DM-Codec with the baseline speech tokenizers: EnCodec (Défossez et al.,
2022), SpeechTokenizer (Zhang et al., 2024a), and FACodec (NaturalSpeech3) (Ju et al., 2024). We
reproduced SpeechTokenizer using the official training code and used official model checkpoints of
EnCodec (EnCodec 24khz 6kpbs) and FACodec as the baselines.

Evaluation Dataset. To evaluate DM-Codec, we randomly selected 300 audio samples from the
LibriSpeech test subset, following a similar practice of sampling test data used in our baselines
(Zhang et al., 2024a; Zeghidour et al., 2021) and to align the experimental setup with that of Speech-
Tokenizer. In our experiments, we sampled the test subset of LibriSpeech using a random seed of
42. We also evaluated the baseline models with the same sampled test dataset for a fair comparison.

Evaluation Metrics. To evaluate DM-Codec, we employed different metrics suited to get insights
into various aspects of information and quality preservation in the reconstructed speech. First, we
used the Word Error Rate (WER) and Word Information Lost (WIL) metrics to evaluate context
preservation by calculating the amount of word-level transcription errors and key information miss-
ing in transcription, respectively. For these metrics, we used the Whisper (whisper-medium) (Rad-
ford et al., 2023) model to extract the transcription from the reconstructed speech. To provide a
fairer comparison and indicate the level of transcription error by the Whisper model, we also in-
cluded the Groundtruth WER and WIL scores for the Whisper’s transcribed text from the original
speech versus the true text. Next, we assessed the acoustic and semantic information preservation
using the ViSQOL (Virtual Speech Quality Objective Listener) (Hines et al., 2012) and Short-Time
Objective Intelligibility (STOI) metrics, respectively. The ViSQOL metric measures the similarity
between a reference and a test speech sample using a spectro-temporal measure and produces a
MOS-LQO (Mean Opinion Score - Listening Quality Objective) score ranging from 1 (worst) to 5
(best). For this metric, we used the wideband model suited for speech evaluation. Lastly, the STOI
metric evaluates the perceived intelligibility of speech by analyzing short-time correlations between
original and reconstructed speech, with scores ranging from 0 to 1.
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Table 2: Significance Analysis of DM-Codec compared to baselines EnCodec (E), SpeechTokenizer
(S), and FACodec (F). Results reveal DM-Codec consistently achieves significantly better scores
in key metrics across all individual samples. ✓ indicates that DM-Codec is significantly better, a
★ denotes dominance, and a ✗ means no significant improvement over the baseline. Avg and Std
mean the average and standard deviation of each score.

WER WIL ViSQOL STOI
Avg Std E S F Avg Std E S F Avg Std E S F Avg Std E S F

0.053 0.113 ✓ ✓ ✓ 0.082 0.157 ✓ ✓ ✓ 3.258 0.184 ★ ✓ ✓ 0.937 0.019 ✓ ✓ ✗

4 EXPERIMENTAL RESULTS AND DISCUSSION

We conducted extensive experiments to evaluate DM-Codec’s reconstructed speech using WER and
WIL for contextual information retention, and ViSQOL and STOI for semantic-acoustic information
preservation. To demonstrate the effectiveness of our two distillation approaches, we present results
for DM-Codec♣ (LM-guided Distillation) and DM-Codec♠ (LM and SM-guided Distillation).

4.1 COMPARISON OF SPEECH TOKENIZATION MODELS

We compared the quality of DM-Codec’s discrete speech representations by reconstructing speech
from quantized vector features and comparing it with state-of-the-art (SOTA) speech tokenization
models: EnCodec, SpeechTokenizer, and FACodec. For LM-guided distillation, we utilize quantized
features from the first Residual Vector Quantizer layer (RVQ-1), and for the combined LM and SM-
guided distillation, we average all layers (RVQ-1:8).

Results: The results in Table 1 show that DM-Codec outperformed all evaluated SOTA speech to-
kenization models across most metrics. Specifically, DM-Codec with only LM-guided distillation
exceeds the SOTA models, achieving improved scores: WER 4.36, WIL 7.06, and ViSQOL 3.18.
Furthermore, DM-Codec’s with combined LM and SM-guided distillation outscore LM-guided dis-
tillation and all previous scores with 4.05 WER, 6.61 WIL, 3.26 ViSQOL, and achieved highly
compatible 0.937 STOI scores compared to SOTA models.

Discussion: The observed performance gains stem from the proposed LM-guided distillation, which
enhances the quantized features by leveraging LM’s contextual representations. This process aligns
the speech with its overall context and word relation, resulting in more accurate reconstructions,
as reflected in the reduced WER and WIL scores. By embedding contextual cues, the method
effectively grounds isolated phonetic units within their overall context, reconstructing speech that
aligns with human expectations, as demonstrated by the higher ViSQOL and STOI scores.

Moreover, the integration of LM and SM-based distillation further amplifies these improvements.
The addition of SM distillation contributes to enhanced semantic-acoustic fidelity, as SM mod-
els capture phonetic nuances alongside prosodic and tonal characteristics. This dual representa-
tion—context from LM and phonetic detail from SM—produces a more coherent and natural speech
reconstruction, yielding superior results across all metrics.

4.2 SIGNIFICANCE ANALYSIS OF SPEECH TOKENIZER PERFORMANCE

We conducted a significance analysis at α = 0.05, following the approach of Dror et al. (2019),
to measure the stochastic dominance of DM-Codec over the baselines: EnCodec, SpeechTokenizer,
and FACodec. Specifically, we computed inverse cumulative distribution functions (CDFs) for all
reconstructed speech samples’ individual WER, WIL, ViSQOL, and STOI scores. Notably, the
average WER and WIL are calculated from each sentence individually, while the Table 1 scores are
calculated by concatenating all sentences into one. Significance was evaluated using the ϵ value
and categorized as: significantly better when 0.0 < ϵ ≤ 0.5, significantly dominant when ϵ = 0.0,
and not significantly better when ϵ > 0.5. For this analysis, we selected DM-Codec♠, trained
with combined LM and SM-guided distillation. To the best of our knowledge, we are the first to
conduct significance analysis to measure the effectiveness of different speech tokenizers. Here,
we visualize the significance analysis for DM-Codec compared to each baseline, and we report the
full significance analysis for each baseline compared to others in the Technical Appendix.
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Results and Discussion: The results in Table 2 show that DM-Codec significantly outperforms the
baselines in WER, WIL, ViSQOL, and STOI scores. The improved average values (0.053 WER,
0.082 WIL, 3.258 ViSQOL, 0.937 STOI) and consistent standard deviations (0.113 WER, 0.157
WIL, 0.193 ViSQOL, 0.019 STOI) further demonstrate the statistical significance. Notably, DM-
Codec’s performance in WER and WIL underscores the importance of contextual representation
distillation for enhanced speech reconstruction. Additionally, its dominance in ViSQOL and STOI,
especially over EnCodec, highlights the benefits of combining LM and SM distillation for retaining
semantic-acoustic fidelity. While DM-Codec does not achieve significant dominance over FACodec
in terms of STOI, it significantly outperforms the baselines across all other metrics.

4.3 ABLATION STUDIES

We conducted a thorough analysis of DM-Codec’s performance and the impact of each methodolog-
ical choice in LM-guided and combined LM and SM-guided distillation. Unless otherwise stated,
we use distillation for both LM and SM from the first Residual Vector Quantizer layer (RVQ-1) for
comparison consistency and simplicity.

4.3.1 ABLATION STUDY: IMPACT OF COMBINED SEMANTIC DISTILLATION

Table 3: Effects of weights on
combined representation distilla-
tion: Higher LM weight enhances
content preservation, leading to
lower WER. λSM is the SM
weight, λLM is the LM weight.

λSM λLM WER ↓
1.0 0.0 4.83
0.9 0.1 4.63
0.8 0.2 4.44
0.7 0.3 4.23
0.6 0.4 4.76
0.5 0.5 4.18
0.4 0.6 4.54
0.3 0.7 4.34
0.2 0.8 4.07
0.1 0.9 4.33
0.0 1.0 4.36

We conducted experiments with different weighted combina-
tions of LM and SM distillation loss to evaluate their impact on
reducing WER. The combined distillation loss from Equation
3 was updated using SM and LM weights (λSM and λLM ),
ranging from 0.0 to 1.0, with the constraint λSM + λLM = 1.

LLS =
1

2
(λSM · LSM + λLM · LL) (11)

Results and Discussion: The experimental results are pre-
sented in Table 3, showing the speech reconstruction results
with WER scores for different weighted combinations. From
the values, we notice a trend showing that incorporating LM
representations significantly improves WER, especially when
LM distillation is dominant. The lowest WER score of 4.07
occurs with a weight of λLM = 0.8 for LM, while λSM = 0.2
for SM, highlighting the strong influence of LM distillation
on capturing contextual information. A balanced weighting
of λSM = 0.5 and λLM = 0.5 produces a WER of 4.18,
confirming that distillation from both LM and SM is benefi-
cial. However, as the weighting shifts more in favor of SM
(λSM > 0.7), WER deteriorates, reaching 4.83 when relying
entirely on SM. This underscores that over-reliance on SM distillation compromises contextual
accuracy in favor of raw speech features. Thus, an LM-dominant approach yields optimal results,
while using SM alone is less effective in preserving content.

4.3.2 ABLATION STUDY: IMPACT OF DISTILLATION ON DIFFERENT RVQ LAYERS

We evaluated the effect of applying distillation at various Residual Vector Quantizer (RVQ) layers,
including the first layer (RVQ-1), the average of eight layers (RVQ-1:8), and the last layer (RVQ-8).

Results and Discussion: In LM-guided distillation, RVQ-1:8 achieves the best WER and WIL
scores (4.23 and 6.94), though with lower ViSQOL and STOI scores (3.12 and 0.929) compared to
RVQ-8 (3.28 and 0.935). The RVQ-1 layer provides the best overall balance between content preser-
vation and perceptual quality, with WER, WIL, ViSQOL, and STOI scores of 4.36, 7.06, 3.18, and
0.935. This demonstrates RVQ-1:8 prioritizes contextual integrity, while RVQ-8 favors perceptual
quality. Thus, we select RVQ-1 for LM-guided distillation due to its balanced performance.

For LM and SM-based distillation, the RVQ-1 and RVQ-1:8 combination achieves the best WER and
WIL scores (4.05 and 6.61), with RVQ-1 and RVQ-1 as the second-best (4.18 and 6.84). In contrast,
the RVQ-1 and RVQ-8 combination yields the highest ViSQOL and STOI scores (3.33 and 0.939),
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Table 4: Analysis of different RVQ layers effect on speech reconstruction. LM-guided distillation on
RVQ-1 layer ensures greater content preservation, while SM-guided distillation on RVQ-1:8 layer
is more effective at preserving semantic representation. LM-layer and SM-layer indicate the RVQ
layer used for respective distillation. ♣ indicates LM-guided Distillation. ♠ indicates combined LM
and SM-guided Distillation. Bold highlights the best result and underline the second-best result.

Tokenizer LM-Layer SM-Layer WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec ♣ RVQ-1 - 4.36 7.06 3.18 0.935
DM-Codec ♣ RVQ-1:8 - 4.23 6.94 3.12 0.929
DM-Codec ♣ RVQ-8 - 4.44 7.22 3.28 0.935

DM-Codec ♠ RVQ-1 RVQ-1 4.18 6.84 3.13 0.933
DM-Codec ♠ RVQ-1:8 RVQ-1 4.59 7.34 3.21 0.937
DM-Codec ♠ RVQ-8 RVQ-1 4.49 7.24 3.30 0.938
DM-Codec ♠ RVQ-1 RVQ-1:8 4.05 6.61 3.26 0.937
DM-Codec ♠ RVQ-1 RVQ-8 4.39 7.08 3.33 0.939

followed by RVQ-8 and RVQ-1 (3.30 and 0.938). RVQ-1 captures contextual representation more
effectively due to its simpler quantized vector, while RVQ-1:8 incorporates more nuanced semantic
and acoustic aspects. Overall, this ablation shows that selecting RVQ layers for LM and SM-based
distillation greatly affects the balance between contextual accuracy and semantic-acoustic fidelity,
allowing layer combinations to be tailored to task requirements.

4.3.3 ABLATION STUDY: IMPACT OF DIFFERENT MODELS ON DISTILLATION

We experimented with different LM and SM distillations to analyze performance variations based
on different model selections. In addition to our selected BERT (Devlin et al., 2019) and HuBERT
(Hsu et al., 2021), we experiment with ELECTRA (electra-base-discriminator) (Clark et al., 2020)
as the LM and wav2vec 2.0 (wav2vec2-base-960h) (Baevski et al., 2020) as the SM.

Results and Discussion: In LM-guided distillation, the ELECTRA model significantly enhances
performance, achieving WER and WIL scores of 4.12 and 6.63, respectively, compared to BERT’s
scores of 4.36 and 7.06. This indicates the architecture of ELECTRA’s effectiveness for the pro-
posed LM-guided distillation, demonstrating its superior contextual representation. These results
are consistent with ELECTRA’s better performance in general natural language processing tasks.
However, we select BERT for its simplicity and established performance.

In LM and SM-guided distillation, the combination of BERT and wav2vec 2.0 achieves the highest
overall performance, with scores of WER 4.13, WIL 6.77, ViSQOL 3.15, and STOI 0.942. However,
the combination of BERT and HuBERT closely follows with second-best scores of WER 4.18, WIL
6.84, and ViSQOL 0.933. These findings demonstrate that different speech models can be effectively
integrated with the BERT model.

Table 5: Analysis of representation distillation from different models. BERT can be effectively com-
bined with HuBERT or wav2vec 2.0, however, ELECTRA in LM-guided distillation outperforms
BERT. ♣ indicates LM-guided Distillation. ♠ indicates combined LM and SM-guided Distillation.
Bold highlights the best result and underline the second-best result.

Tokenizer LM SM WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec ♣ BERT - 4.36 7.06 3.18 0.935
DM-Codec ♣ ELECTRA - 4.12 6.63 3.10 0.936

DM-Codec ♠ BERT HuBERT 4.18 6.84 3.13 0.933
DM-Codec ♠ BERT wav2vec 2.0 4.13 6.77 3.15 0.942
DM-Codec ♠ ELECTRA wav2vec 2.0 4.70 7.51 3.14 0.933
DM-Codec ♠ ELECTRA HuBERT 4.67 7.58 2.94 0.932
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Table 6: Analysis of different distillation layers representation on speech reconstruction. Average
layer provides more comprehensive representations. ♣ indicates LM-guided Distillation. ♠ indicates
combined LM and SM-guided Distillation. Bold highlights the best result and underline the second-
best result.

Tokenizer Distillation Layer(s) WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec ♣ Average 4.36 7.06 3.18 0.935
DM-Codec ♣ Last 4.62 7.56 2.95 0.926
DM-Codec ♣ 9th 4.75 7.80 2.88 0.925

DM-Codec ♠ Average 4.18 6.84 3.13 0.933
DM-Codec ♠ Last 4.68 7.55 3.03 0.933
DM-Codec ♠ 9th 4.52 7.43 3.00 0.933

4.3.4 ABLATION STUDY: IMPACT OF DIFFERENT DISTILLATION LAYER(S)

We evaluated speech reconstruction using different distillation layers of the LM and SM, examining
which combination of layers yields the most relevant representations of semantic and contextual
information. For this ablation, we considered the average of all layer representations, the 9th layer
representations, and the last layer representations. Table 5 shows the full results.

Results and Discussion: In LM-guided distillation, the use of the average layer achieves superior
overall performance, with a WER of 4.36, WIL of 7.06, ViSQOL of 3.18, and STOI of 0.935, com-
pared to the variants utilizing the last and 9th layers. Similarly, in LM and SM-guided distillation,
the average layer yields superior results compared to the last and 9th layer variants.

The results indicate that averaging all layers leads to more comprehensive representations of seman-
tic or contextual information. In the case of LM, the averaging process provides greater contextual
representation and synergizes syntactic information from earlier layers and abstract word relations
from higher layers. In combined LM and SM-guided distillation, averaging all SM layers provides a
more nuanced understanding of the earlier layer’s phonetic information and the higher layers’ richer
semantic information. Conversely, relying solely on the last layer or the 9th layer fails to capture the
overall context and semantic information, yielding less relevant representation distillation.

5 RELATED WORK

The adoption of textual LMs for speech-related tasks is a promising direction. Generally, an audio
encoder converts audio signals into discrete representations, which are passed to pre-trained textual
LLMs. This approach has been explored by (Hassid et al., 2024), (Wang et al., 2024), (Zhang et al.,
2023), (Fathullah et al., 2023), (Shu et al., 2023), and (Rubenstein et al., 2023). Another method
involves the corresponding text to feed directly into an LM (Zhang et al., 2024b). Most of these
approaches aim to extract representations through LMs while focusing on speech reconstruction
training objectives. Recently, LAST (Turetzky & Adi, 2024), explored a language model to tokenize
speech toward improved sequential modeling, using the LLM to perform the next token prediction of
quantized vectors. However, these approaches significantly differ from our method and do not focus
on combining multimodal representations. More details are reported in the Technical Appendix.

6 CONCLUSION

In this work, we introduced a speech tokenizer DM-Codec, with two novel distillation methods to
leverage multimodal (acoustic, semantic, and contextual) representations from a language model
and speech self-supervised learning model. Our extensive experimental results and ablation studies
suggest that distilling multimodal representations enables DM-Codec to introduce salient speech
information in discrete speech tokens. Our significance analysis further revealed that DM-Codec
with comprehensive multimodal representations consistently outperforms existing speech tokeniz-
ers. This approach highlights the potential of multimodal representations to enhance speech tok-
enization in various domains, including multilingual and code-switched speech processing.
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