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Abstract

Data curation is a critical yet underexplored component in large language model
(LLM) training. Existing approaches (such as data selection and data mixing)
operate in an offline paradigm, decoupled from the training process. This separation
introduces extra engineering overhead and makes curated subsets brittle: once
the model or task changes, the entire pipeline must be re-run. Moreover, offline
methods alter dataset size through hard filtering or resampling, often discarding
data diversity, and thus face the generalization issue.
We propose to rethink data curation as an online reweighting problem, where
sample importance is dynamically adjusted during training via loss weighting rather
than static preprocessing. This view preserves data diversity, adapts continuously
to evolving model states, and yields a better performance–FLOPs tradeoff.
Thus, we introduce ADAPT (Adaptive Data reweighting for Pretraining and
FineTuning), a dynamic online framework that reweights training samples with
adaptive per-sample learning rates guided by similarity-based quality signals,
without changing the number of training samples. ADAPT integrates reweighting
directly into the optimization loop with negligible overhead. Experiments on
both instruction tuning and large-scale pretraining show that ADAPT consistently
outperforms offline selection/mixing and prior online methods, achieving stronger
cross-benchmark generalization under equal FLOPs.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks
(Brown et al., 2020; Chowdhery et al., 2022; Touvron et al., 2023a), yet their performance hinges
critically on the quality and proper mixture of training data (Hoffmann et al., 2022; Kaplan et al.,
2020a). Data curation—deciding what data to keep and how to weight it—has thus become a
cornerstone of model development in both pretraining and finetuning. In practice, however, data
curation has often remained a “secret sauce”: pipelines rely on opaque heuristics, ad-hoc engineering
choices, or costly trial-and-error, rather than principled frameworks.

Current approaches to data curation largely follow an offline paradigm, falling into two camps: data
selection, which keeps a subset of “valuable” examples, and data mixing, which adjusts sampling
frequencies to rebalance distributions. Despite their differences, both approaches typically follow a
multi-stage offline pipeline: (1) train or extract features with a proxy model, (2) compute quality signals
as selection or weighting criteria on a validation set, and (3) retrain the main model on the curated
data. While effective in some cases, this paradigm suffers from fundamental drawbacks (Sec. 4):
offline subsets often overfit to a specific benchmark, and once the architecture or corpus changes,
previously curated data quickly becomes suboptimal, forcing practitioners to restart the pipeline.

In contrast, we propose a shift to online reweighting, which dynamically adjusts sample contributions
during training by weighting losses, without modifying the underlying dataset. This preserves data
diversity compared to offline’s “hard cuts” intelligently controlling each sample’s “step size” in
parameter updates to adapt to evolving model states.

To solve the limitation of offline data curation, we propose a unified online reweighting framework,
ADAPT (Adaptive Data reweighting for Pretraining and FineTuning), which aligns training samples
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with a validation set via similarity-based weighting. Our method incurs nearly zero additional
overhead yet achieves superior cross-benchmark generalization. Under a unified evaluation protocol,
it consistently outperforms both offline selection/mixing strategies and prior online reweighting
methods, across large-scale pretraining and instruction tuning setups.

Our contributions. Our paper makes three contributions:

1. û Formalization and unification of dataset curation pipelines. We present a unified view of
data curation, showing that data selection, mixing, and balancing can all be expressed as special
cases of data reweighting. This perspective shifts the focus from offline pre-processing to dynamic,
in-training adjustment of data weights. Which offers a fair protocol we propose to view and
evaluate them through a unified lens of online data reweighting.

2. z Online sample-level reweighting method. We introduce a new online global reweighting
algorithm that is effective under this unified formalization and protocol. It employs an adaptive
per-sample learning rate guided by sample quality signals, without explicitly altering the dataset
size, while dynamically adjusting sample weights during training.

3. Í Better performance and generalization across tasks. On both instruction tuning and
large-scale pretraining experiments, our framework achieves up to higher accuracy per FLOP than
offline baselines including LESS (Xia et al., 2024), DoReMi (Xie et al., 2023b), and RegMix (Liu
et al., 2024), and other online reweighting method (Sow et al., 2025), and demonstrates stronger
out-of-domain generalization across benchmarks.

2 Background and Related Work

2.1 Data curation for large language models

Researchers and Engineers usually rely on web crawls to gather large datasets for training large
language models (Brown, 2020; Computer, 2023; Penedo et al., 2024; Tang et al., 2024; Bai et al.,
2023; Kandpal et al., 2025). However, these crawls often include a substantial amount of low-quality or
irrelevant content, which makes data curation necessary to build high-quality training sets. Most data
curation efforts focus on methods for improving model performance (Raffel et al., 2020; Brown, 2020;
Rae et al., 2021; Penedo et al., 2023; Soldaini et al., 2024), including filtering by language (Raffel et al.,
2020; Xue et al., 2020), heuristic-based filtering (Gao et al., 2020; Rae et al., 2021; Penedo et al., 2023;
Soldaini et al., 2024), quality filtering (Du et al., 2022; Xie et al., 2023c), data deduplication (Lee
et al., 2021) and mixing (Xie et al., 2023a; Soboleva et al., 2023; Albalak et al., 2023). However,
current approaches to curating such datasets are generally ad-hoc. We aim to develop a principled
and automated method for data curation that can also unify different processing stages.

Pretraining data curation. Several recent studies (Xie et al., 2023a; Chen et al., 2023b; Fan
et al., 2023; Thakkar et al., 2023) have explored various reweighting techniques to enhance the
generalization and efficiency of language models pretraining. For instance, Xie et al. (2023a) and Fan
et al. (2023) are aiming at finding the optimal mixture of pretraining corpora to enhance performance
across domains. Chen et al. (2023b) propose an ordered skill learning method for data selection
measuring how effectively it teaches interdependent skills for continual pretraining and fine-tuning.
Although effective, these works are aiming at the group level, whereas our work explores reweighting
at the sample level, offering fine-grained control during model training dynamics. Instance-level
reweighting has been used in pretraining settings of LLMs (Chen et al., 2024; Jiang et al., 2024),
where each sample per mini-batch is weighted over how individual samples are treated based on their
loss values. In contrast, our work studies the effects of various adaptive learning rate with different
quality signals considering the model states to enhance both performance and generalization for
LLMs pretraining and fine-tuning regimes.

Instruction data curation. Research has demonstrated that prioritizing data quality and diversity
over quantity is more helpful for instruction-following capabilities (Cao et al., 2023; Chen et al.,
2023a; Bukharin & Zhao, 2023; Du et al., 2023; Liu et al., 2023; Li et al., 2023). Instruction tuning
data includes task-based datasets curated from traditional NLP tasks (Wang et al., 2022; Sanh et al.,
2022; Wei et al., 2022a; Longpre et al., 2023), and open-ended datasets (Taori et al., 2023; Conover
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et al., 2023; Köpf et al., 2023; Xu et al., 2023; Mukherjee et al., 2023; Zhou et al., 2023; Ding et al.,
2023). In our work, we are focusing on adaptively adjust the data weight during instruction tuning
without explicitly reduce the number of instruction data samples and obtain model with generalization.

2.2 Commonly used quality signal for data curation

• Lexical Similarity (BM25) (Silva & Barbosa, 2024) quantifies term-based overlap between training
and validation data through sparse retrieval scoring:

𝑠BM25 (𝑥) =
1

|Dval |
∑︁

𝑣∈Dval

BM25(𝑥, 𝑣). (1)

This metric captures surface-level textual similarity without semantic understanding.
• Semantic Similarity (Embedding) (Rubin et al., 2021) measures dense representation alignment

using pretrained encoders:

𝑠Embed (𝑥) =
1

|Dval |
∑︁

𝑣∈Dval

cos
(
𝜙(𝑥), 𝜙(𝑣)

)
, (2)

where 𝜙(·) denotes a frozen embedding model. This approach captures semantic proximity beyond
lexical overlap.

• Distributional Alignment (Perplexity) (Antonello et al., 2020) evaluates likelihood under a
reference language model 𝜃0:

𝑠PPL (𝑥) = − log 𝑃𝜃0 (𝑥). (3)
Lower perplexity indicates stronger distributional alignment with the reference corpus.

• Gradient-Based Influence (Xia et al., 2024) estimates training utility through first-order approxi-
mation of validation loss reduction:

𝑠Grad (𝑥) =
〈
∇𝜃ℓ(𝑥; 𝜃0),∇𝜃ℓ(Dval; 𝜃0)

〉
, (4)

where 𝜃0 denotes a proxy model. This metric directly quantifies how training on 𝑥 influences
performance on the validation set Dval.

3 Unification of Fomalizing Different Data Curation

Setup. Given two datasets: the train set Dtrain and the validation set Dval. Usually, the size of
the validation set is much smaller than the train set. When Dval is sampled from the distribution of
downstream test data, the validation dataset Dval is considered as in-domain. The train dataset Dtrain
on the other hand consists of both in-domain and out-of-domain samples. This is the case when web
crawling is used to collect training data from the whole internet. Our goal is to subsample or weight
the train set Dtrain under the guidance of the validation set Dval, so that the model training is less
affected by the out-of-domain samples.

3.1 Design Space of Data Quality Signal

In Sec. 2, we present a unified framework for data quality assessment where scoring function takes
the form 𝑠(𝑥) ≡ 𝑠(𝑥; 𝜃,Dval) that assigns a quality signal for each data example 𝑥, which optionally
depends on a (proxy) model 𝜃 and the validation set Dval.

3.2 Offline Data Curation

The scores are employed once before training (e.g., with a proxy model 𝜃0 and fixed validation set
Dval). The resulting weights {𝑤(𝑥)}𝑥∈Dtrain are fixed and used to make a decision to pass which
training examples to the real training stage.

• Data Selection (sample-level binary weights) Data selection (or filtering) removes part of the
training corpus before pretraining begins. It keeps data examples with quality signal above a certain
threshold 𝜏:

D′
train = {𝑥 ∈ Dtrain | 𝑠(𝑥) ≥ 𝜏}.

3
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From a data reweighting perspective, filtering data points is equivalent to assigning binary weights
of the form 𝑤(𝑥) = 1[𝑠(𝑥) ≥ 𝜏] ∈ {0, 1}.

• Data Mixing (domain-level fractional weights) Data mixing can be seen as a coarse-grained data
reweighting method that operates at the domain level. In other words, data points within the same
domain receive the same quality score. Pulling all domain scores {𝑠𝑑}𝑑∈domains and normalize
them to obtain data mixing probability for each domain 𝑑

𝑤𝑑 =
𝑔(𝑠𝑑)∑
𝑑′ 𝑔(𝑠𝑑′ ) ,

where 𝑔 transform the score to be non-negative with a common choice being 𝑔 : 𝑠 ↦→ exp(𝑠). As
such, 𝑤𝑑 determine how much of a total training budget 𝐵 is allocated to each domain: 𝐵𝑑 = 𝑤𝑑𝐵.
Alternatively, training can be implemented by sampling domains with probability 𝑤𝑑 (probability
mixing) or by assigning a fixed quota 𝐵𝑑 (quota mixing). Since 𝑤𝑑 is decided before training,
mixing is an offline operation that alters the effective number of examples each domain contributes.

3.3 Online Data Curation

In this setting, the scoring function depends on the evolving model state 𝜃𝑡 and, in some cases, on a
dynamic validation set. The resulting weights {𝑤𝑡 (𝑥)}𝑥∈Dtrain evolve throughout training, adjusting
the gradient contributions of examples while preserving the full volume of the training set Dtrain.

Data Reweighting (sample-level fractional weights) Data reweighting assigns normalized weights
to examples while keeping the training set size unchanged. Similar to Sec. 3.2, the quality score for
example 𝑥 is transformed to a non-negative weight: 𝑤(𝑥) = 𝑔(𝑠(𝑥)), which scales their contribution
to the loss:

L∗ (𝜃) = 1
𝑍

∑︁
𝑥∈D

𝑤(𝑥) L(𝜃; 𝑥), 𝑍 =
∑︁
𝑥∈D

𝑤(𝑥).

Equivalently, from a stochastic gradient descent perspective, the stochastic gradient w.r.t. 𝑥 is scaled
by 𝑤 (𝑥 )

𝑍
, which plays a role of per-sample learning rate in addition to the global learning rate 𝜂:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑤(𝑥)
𝑍

∇𝜃ℓ(𝜃𝑡 ; 𝑥).

Since the total number of training examples remains unchanged, only their relative contribution to
parameter updates is modified, data reweighting is inherently an online method.

3.4 Unified Evaluation of Total FLOPs (Offline vs. Online)

The unification enables us to compare different methods under the same FLOPS calculation framework.
We evaluate curation methods under a cost-aware metric that accounts for all computation spent to
obtain and use the curated data. Let 𝐵 denote a training budget (tokens or update steps).
Total FLOPs for offline data curation Offline curation modifies the amount of data that participates
in training before training starts. Its total compute is

Foff
total = Foff

prep (D; 𝑓 )︸        ︷︷        ︸
data scoring as preprocessing

+ Ftrain
(
D′, 𝐵′)︸           ︷︷           ︸

model training on the sampled subset

, (5)

where (i) Foff
prep includes any corpus-wide scoring, proxy-model passes, retrieval or filtering necessary

to construct D′; (ii) D′ ⊆ D is the retained subset (for selection), or an effective subset induced for
data mixing; (iii) 𝐵′ is the effective training budget after curation. By construction, offline selection
uses binary example weights (keep/drop), and offline domain mixing changes per-domain sampling
rates, thereby reducing or reallocating the volume of data seen during training.
Total FLOPs for online data curation Online curation does not change the amount of training
data; instead, it modulates each example’s contribution during training. Its total compute is

Fon
total = Ftrain

(
D, 𝐵

)︸        ︷︷        ︸
model training on the full corpus

+ Fon
metrics︸ ︷︷ ︸

on-the-fly features

, (6)
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where Fon
metrics denotes lightweight, in-training computations needed to obtain scores (e.g., using

current logits, per-example loss, or gradient norms). Because scoring is amortized inside the training
loop and no data are removed, Fon

metrics is typically modest relative to Ftrain.

Conversely, online reweighting maintains the full training signal while adding only minimal in-loop
metrics computation, providing a clearer accuracy–compute trade-off when measured by total FLOPs.

4 Revisiting of Offline Data Selection

In this section, based on the evaluation protocol derived from the unification above, we revisit the
accuracy–FLOPs trade-off of existing offline data selection methods.
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(a) In-domain evaluation: MMLU validation set →
MMLU benchmark.
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(b) Out-of-domain evaluation: MMLU validation set →
BBH benchmark.

Figure 1. Efficiency–accuracy tradeoff of different data selection methods and full finetune method under our
proposed total FLOPs metric. Selection methods (e.g., LESS) appear competitive under in-domain evaluation, but
their advantage vanishes or even reverses in out-of-domain settings. In contrast, (full sft) remains consistently
strong across domains.
Observation. Figure 1 illustrates the limitation of offline data selection methods: Overfitting to
the validation benchmark. Model trained on offline selected data with MMLU (Hendrycks et al.,
2021) as validation set performs well on the MMLU benchmark (Figure 1a), but the same model
generalize poorly to BBH benchmark (Suzgun et al., 2022) (Figure 1b). This issue is especially severe
when using LESS (Xia et al., 2024). This reveals that offline methods often overfit to the chosen
validation task, lacking a true generalization. However, we observed that vanilla full dataset training
demonstrate more stable performance in both benchmark. One possible reason is that official data
curation which we directly change the number of data involved in the training by repetition would
cause the model to replace generalization ability with memorization (Hernandez et al., 2022).

In summary, the offline paradigm has severe limitations, being neither cost-effective nor generalizable.
This motivates us to explore an online alternative, which may alleviate memorization while retaining
more data to enhance generalization. In the next section, we leverage these insights to design an
online reweighting method.

5 Adaptive Learning Rate for Online Data Reweighting
The limitations of offline data selection suggest that a different paradigm is needed: one that is
generalizable, and adaptive to the evolving state of the model. To this end, we propose an online
data reweighting framework that is also suitable for data selection, data mixing with a unified
formalization. Unlike offline methods that commit to a fixed subset before training begins, our
framework dynamically adjusts data weights as the model learns, so it naturally adapts to new model
states without re-running the data preprocessing and training pipeline from scratch.

5.1 Per-Sample Learning Rate Update

We cast data selection and mixing as online data reweighting. At training step 𝑡, given a minibatch
𝐵𝑡 ⊂ D, we update model parameters as

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
∑︁
𝑖∈𝐵𝑡

𝑤𝑡 (𝑖) ∇𝜃ℓ
(
𝑓𝜃 (𝑥𝑖), 𝑦𝑖

)
, (7)
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where 𝑤𝑡 (𝑖) ≥ 0 denotes a dynamic weight assigned to sample 𝑖. Here, 𝑤𝑡 (𝑖) directly scales the
gradient contribution of sample 𝑖, and thus acts as a per-sample learning rate multiplier: larger
weights amplify the effective step size on informative examples, while smaller weights downweight
less useful ones.

In our framework, weights are derived from scoring functions 𝑠𝑡 (𝑣, 𝑖) that compare a training example
𝑖 with validation/query points 𝑣 ∈ Dval. These scores are aggregated across 𝑣, normalized within the
current batch or pool, and transformed by a smooth gating function to produce the final weights 𝑤𝑡 (𝑖).
To ensure stability, weights are clipped to prevent excessively large effective learning rates and avoid
gradient explosion. We now describe our score functions.
5.2 Model-Agnostic Per-Sample Learning Rate Update

ADAPT-BM25 quantifies term-based overlap between training and validation data through sparse
retrieval scoring:

𝑠BM25 (𝑥) =
1

|Dval |
∑︁

𝑣∈Dval

BM25(𝑥, 𝑣). (8)

This metric captures surface-level textual similarity without semantic understanding. We use
the standard BM25 score 𝑠BM25 (𝑣, 𝑖) over sparse token matches between query 𝑣 and example 𝑖.
Aggregated scores are normalized to obtain target weights.
5.3 Per-Sample Learning Rate Update with Model States

ADAPT measures alignment using the model’s own dense representations rather than a frozen
encoder (Ivison et al., 2025). For an input 𝑥 with last-layer hidden states {ℎ𝑖}𝐿𝑖=1, we compute a
position-weighted mean pooling:

𝑤𝑖 =
𝑖∑𝐿
𝑗=1 𝑗

, 𝜙(𝑥) =
𝐿∑︁
𝑖=1

𝑤𝑖ℎ𝑖 , (9)

where later tokens receive higher weights to counteract the causal mask bias of decoder-only models.
We then define the similarity score:

𝑠ADAPT (𝑥) =
1

|Dval |
∑︁

𝑣∈Dval

cos
(
𝜙(𝑥), 𝜙(𝑣)

)
. (10)

Equivalently, we can instantiate a representation-based scorer 𝑠ADAPT (𝑣, 𝑖) = cos
(
𝜙(𝑣), 𝜙(𝑖)

)
, where

𝜙(·) is the weighted hidden representation. Let 𝑧𝑡 (𝑖) denote the per-example aggregated score at step
𝑡, optionally normalized across the current batch/pool. We then produce a target weight 𝑤𝑡 (𝑖) via
smooth gating of these scores. This metric captures semantic proximity in the representation space of
the model being trained, while accounting for position-dependent contextualization.

6 Evaluation

6.1 Experimental Design
Instruction Tuning Models and Data. We use LoRA (Hu et al., 2021) to fine-tune the base
model Llama-2-7B (Touvron et al., 2023c). Following the experimental setup in Wang et al. (2023),
we use the instruction tuning datasets including Flan V2 (Longpre et al., 2023), CoT (Wei et al.,
2022b), Dolly (Conover et al., 2023) and Open Assistant 1 (Köpf et al., 2023). The datasets
do not contain any obvious in-domain data for the target queries. We evaluate our method on
MMLU (Hendrycks et al., 2020), multiple-choice dataset spanning 57 tasks and BBH (Suzgun et al.,
2023) from BIG-Bench selected to evaluate reasoning capabilities. For MMLU, we report 5-shot
accuracy; for BBH, we report 3-shot exact match score. Appendix G contains more details on the
training hyperparameter, Appendix D and E contain more dataset details.

Instruction Tuning Baselines. We introduce instruction finetuning baselines in Sec. 2.2.

Pretraining Models and Data. We adopt Tinyllama architecture (Zhang et al., 2024) with 120M
parameters, with FlashAttention (Dao et al., 2022) and Lit-GPT (LightningAI, 2023). More details
about the training settings can be found at Appendix F. Following prior works (Touvron et al., 2023b;
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Zhang et al., 2024; Wettig et al., 2024; Xie et al., 2023b), we employ SlimPajama (Touvron et al.,
2023b; Computer, 2023) as the text corpus, which is specifically curated for pre-training LLMs.
All selections are performed on about 590M training files of SlimPajama, processed with Llama
tokenizer (Touvron et al., 2023b). We evaluate our method on a diverse set of 15 downstream
benchmarks, following common practice in prior work such as RegMix (Liu et al., 2024). These
tasks span a wide range of realistic settings, including: ARC-E (Clark et al., 2018), ARC-C (Clark
et al., 2018), COPA (Sarlin et al., 2020), HellaSwag Zellers et al. (2019), Lambada-S (Paperno et al.,
2016), Lambada-O (Radford et al., 2019), LogiQA (Liu et al., 2020), MultiRC (Khashabi et al., 2018),
OpenBookQA (Mihaylov et al., 2018), PiQA (Bisk et al., 2020), QQP (Wang, 2018), RACE (Lai et al.,
2017), SciQ (Welbl et al., 2017), Social IQA (Sap et al., 2019), WinoGrande (Sakaguchi et al., 2021).
The reported accuracy in table 2 is measured in the 0-shot setting scored using the lm-eval-harness
evaluation framework (Gao et al., 2024).

Pretraining Baselines. We compare ADAPT with Uniform selection and existing file selection
methods for LLM pre-training, including Doremi (Xie et al., 2023b) and RegMix (Liu et al., 2024).
ADAPT requires an anchor set typically consists of examples in the evaluation distribution. To
construct this set, we sample 50 validation examples from each of eight evaluation benchmarks:
ARC-C, COPA, Lambada, MultiRC, PiQA, RACE, SciQ, and Social IQA. For Doremi and Regmix
we use the domain weights in (Lu et al., 2023) as the selection ratio of text samples in different
domains in our experiment. For Uniform we use the same ratio to sample from each domain. We
also compare LinUpper (Sow et al., 2025): an online sample reweighting strategy where the sample
weight is proportional to the normalized loss but is capped at a predefined 𝛼 value, ensuring that
outliers do not dominate the training process. Due to the large cost of pretraining, for each method we
sample 9B unique tokens from SlimPajama, and train for a total budget of 50B tokens, i.e., train for
approximately 5.6 epochs.

6.2 Results for Instruction Tuning
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(a) Subset distribution of selected examples.
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(b) Out-of-domain evaluation: MMLU validation set →
BBH benchmark.

Figure 2. Efficiency–accuracy tradeoff of different offline selection and online reweighting methods under our
proposed total FLOPs metric. Offline methods (e.g., LESS) appear competitive under in-domain evaluation,
but still weaker than online methods ours(bm25), ADAPT. Also, their advantage vanishes or even reverses in
out-of-domain settings. In contrast, online reweighting remains consistently strong across domains.

As shown in Figure 2, our proposed online data reweighting method consistently outperforms existing
approaches under comparable computational budgets:

Comparison with offline data selection methods. Across all baselines in both Fig. 2a and Fig. 2b,
our approach consistently lies on the Pareto frontier, demonstrating the best trade-off between
computational efficiency and final accuracy. At the same FLOPs, our method achieves substantially
higher accuracy than the offline data selection SoTA method LESS. To reach the same performance
level, our approach requires significantly fewer FLOPs than LESS. Moreover, after reaching this
performance, further training with LESS leads to overfitting and accuracy degradation, whereas online
data reweighting continues to exhibit steady performance gains. Notably, our online reweighting
method using BM25 as quality signal (ADAPT-BM25) has better generalization than its offline
selection method (BM25) with the other configuration keep the same, which demonstrates the
advantage of the online data curation.
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Table 1. Generalization results under different validation-test configurations.
Method MMLU(val) - MMLU(test) MMLU(val) - BBH(test)

BM25 48.7 ± 0.9 42.3 ± 0.8
Embedding 47.0 ± 0.6 40.1 ± 0.5
LESS 50.2 ± 0.5 38.7 ± 1.5
PPL 46.2 ± 1.1 40.9 ± 0.9
Random 43.5 ± 0.3 38.4 ± 1.0

Full Dataset SFT 49.7 ± 0.2 44.4 ± 0.3
ADAPT-bm25 50.9 ± 0.6 43.7 ± 1.2
ADAPT 50.7 ± 0.7 44.8 ± 1.3

Comparison with full-data fine-tuning. In Fig. 2a and Table. 1, our method also outperforms
full-data fine-tuning under equal FLOPs, with the performance gap widening as training progresses.
In Fig. 2b and Table. 1, our reweighting strategy that incorporates model state information (ADAPT)
outperforms our fixed-state online reweighting (ADAPT-BM25), highlighting the importance of
adapting to the evolving model state to better generalisation.

Generalization cross benchmark. As shown in Figure 2b, we further validate the generalization
capability of models trained with , where we use MMLU (Hendrycks et al., 2021) as the validation
set to select the data, and evaluate the model trained on selected data on the BBH (Suzgun et al.,
2022) task. The results, also reported in Table 1, show that ADAPT achieves a better generalization
performance between benchmark compared to other offline data selection baselines and demonstrates
comparable generalization with vanilla full dataset instruction tuning. This highlights a key strength
of ADAPT: when new downstream tasks or benchmarks emerge, there is no need to repeat the entire
data selection and model training pipeline. Over the long term, this substantially reduces FLOPs
costs, making highly practical for real-world applications.
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Figure 3. A summary of the distribution of effective selected samples and similarity scores. Both differences and
changes show the proposed method’s ability on capturing data features and adaptive learning.

Data mixing and curriculum. We present the distribution of the effective selected examples for
different methods in Fig. 3a. Different approaches end up selecting very different amounts of data
from each training subset. It demonstrats that online reweighting solution can also help with deciding
proper data mixture. We also calculate the effective proportion of used data, by summing up weights
of all data together, with the result of 0.501 in our experimental setting. In practice, this number
would automatically adapt according to the overall quality of the training corpus we are selecting
from.

We also presented Fig. 3b. The shift in similarity distributions from epoch 1 to epoch 2 reflects a
transition from collapsed, overly homogeneous representations toward more diverse and fine-grained
embeddings. This diversification enhances generalisation by improving the model’s ability to capture
subtle distinctions and reducing over-reliance on coarse features. Notably, this process can be
viewed as an instance of implicit curriculum learning: the model first clusters samples based on
coarse, “easier” patterns and progressively moves toward harder, fine-grained discrimination, thereby
mirroring the principles of curriculum learning without explicit scheduling.
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Table 2. Benchmark performance of TinyLlama-120M trained on 50B tokens using Uniform, LinUpper,
DoReMi, RegMix, and ADAPT.

Tasks Uniform LinUpper DoReMi RegMix ADAPT
ARC-C 17.75 18.77 18.00 18.60 19.11
ARC-E 39.60 38.85 40.70 41.04 39.06
COPA 63.00 60.00 66.00 61.00 64.00
HellaSwag 28.39 27.90 28.03 27.63 28.11
Lambada-O 24.68 23.64 22.38 24.82 24.63
Lambada-S 16.98 16.79 16.30 18.30 18.07
LogiQA 20.43 21.35 21.51 20.89 21.66
MultiRC 56.68 50.74 48.99 56.70 55.67
OpenBookQA 15.80 14.00 15.20 18.20 14.20
PIQA 60.55 60.83 59.90 58.98 61.48
QQP 36.88 37.85 36.84 36.83 36.81
RACE 27.85 26.41 26.41 27.85 26.60
SciQ 71.00 70.70 72.90 71.20 72.50
SocialIQA 36.90 36.85 36.95 37.41 37.05
WinoGrande 50.75 50.83 49.64 50.12 50.99
Average (↑) 37.81 37.03 37.32 37.97 38.00

6.3 Pretraining results
As shown in Table 2, ADAPT outperforms all baselines in terms of average performance, achieving
a 0.19% improvement over Uniform, 0.68% over DoReMi, and a 0.97% over LinUpper. RegMix
reaches comparable but slightly lower accuracy on average. Interestingly, LinUpper performs worse
than Uniform sampling, suggesting that naive sample-level adjustments may not generalize well.
Compared to LinUpper, which conducts normalization and calculates sample-level weights for each
batch, our global sample-level reweighting solution demonstrates superior performance in handling
unknown ratios of mixed-quality corpora. To examine the effect of larger training budgets, we extend
training to 100B tokens. As shown in Table 3, ADAPT achieves higher benchmark performance than
Uniform on 11 out of 15 downstream tasks, with an average improvement of 0.38%. Table 6 further
shows that ADAPT consistently yields lower validation perplexity than Uniform at both 50B and
100B training budgets. These findings demonstrate that ADAPT improves both validation perplexity
and downstream task performance consistently across compute scales.

7 Discussion and Conclusion

Table 3. Benchmark performance of TinyLlama-120M
trained on 100B tokens using Uniform and ADAPT.

Tasks Uniform ADAPT
ARC-C 17.75 18.86
ARC-E 40.66 40.45
COPA 63.00 61.00
HellaSwag 28.35 28.75
Lambada-O 25.13 25.91
Lambada-S 18.47 20.14
LogiQA 20.28 21.66
MultiRC 55.98 56.44
OpenBookQA 16.00 15.00
PIQA 61.48 61.97
QQP 36.81 36.82
RACE 27.37 27.46
SciQ 71.50 72.40
SocialIQA 35.77 37.05
WinoGrande 51.14 51.54
Average (↑) 37.98 38.36

Our work unified data selection, mix-
ing, and reweighting under a FLOPs-
aware framework. We showed that of-
fline pipelines often incur significant cost
via data preprocessing and faces issues
with generalization. In contrast, online
reweighting integrates seamlessly into train-
ing, adapts to model state, and improves
efficiency without altering the dataset size.

Empirically, we demonstrated that ADAPT
consistently outperforms both offline and
online baselines across instruction tuning
and pretraining setups. In instruction tun-
ing, ADAPT not only achieves higher accu-
racy under equal FLOPs but also exhibits
stronger cross-benchmark generalization
(e.g., from MMLU to BBH), mitigating the
brittleness of offline methods. In pretrain-
ing, ADAPT improves both downstream
task accuracy and validation perplexity un-
der 50B and 100B token budgets, underscor-
ing its robustness across compute scales.
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Ethics
and Reproducibility Statements

We adhere to the ICLR Code of Ethics. This paper focuses on comparing methodologies for data
curation. To ensure fairness, we evaluate online data reweighting and offline data mixing methods
under a FLOPs-equivalent setting. We also rigorously test their performance in both instruction
fine-tuning and pretraining scenarios to provide a comprehensive and balanced comparison.

During the preparation of this manuscript, we utilized large language models (LLMs) to assist with
grammar correction and refinement of the writing.

We provide all necessary details to ensure reproducibility of our work. The theoretical justification
for our FLOPs-equivalent data curation formalization is presented in Section 3, with detailed FLOP
calculations in Appendix C. Implementation details and training protocols are provided in Section 6.1,
Appendix B, Appendix F, and Appendix G, while descriptions of the training data are given in
Appendix D.
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A Extended Discussion.

Implication. ADAPT could be effectively used for getting better control under constrained budgets
(both data budget and compute budget). Our empirical observation provides a principled view and
reference for automatically allocating computational resources to the most valuable samples while
maintaining end-to-end efficiency. Additionally, we expect our method to perform even better where
the data quality is often low, which is the common case in practical setup. where data is crude and is
not ideal for direct use for LLM training, sources of generally low quality, and biases inherent to the
distribution of content on the web.

Future Work. We didn’t explicitly discuss and evaluate deduplication, which is a key step for
data preprocessing. For example, we will treat deduplication as reweighting related documents
in accordance with their frequency. Based on this framework, we will explore different trade-offs
inherent in each stage, such as quality-aware deduplication where high-quality documents are allowed
to be duplicated more than once.

B Instruction Tuning Baselines

We compare ADAPT with the following baselines: 1) Random Selection: We randomly sample data
from the instruction tuning dataset. 2) BM25 (Robertson et al., 2009): We assign weights to training
samples based on textual statistical features (i.e., TF-IDF), and select the top 𝑘 data points with the
highest scores. 4) PPL (Yin & Rush, 2024; Marion et al., 2023; Ankner et al., 2024): We compute
the loss of each training sample on our original base model and use it as its score. 6) LESS Xia et al.
(2024): We train LoRAs on a random subset of the data, and then selecting data by computing the
gradient-based influence of each training sample to validation samples.

C Data-Selection FLOPs

To estimate computational costs throughout our paper, we adopt the methodology of Kaplan et al.
(2020b), which approximates the training step computation as approximately 6𝑁 FLOPs per processed
token, where 𝑁 represents the model’s parameter count (approximately 7B). According to Kaplan et al.
(2020b), the forward pass consumes roughly half the computational resources of the backward pass,
yielding an estimate of 2𝑁 FLOPs per token during sample processing. We employ an approximation
of 2,048 tokens per sample, as we limit all samples to this maximum length during both the training
and selection phases. Note that in all experimental configurations, we conduct full fine-tuning of
models over two complete epochs. If we define 𝑁 as model size, 𝑃 as the data pool magnitude
(measured in sample quantity), and 𝐷 as the number of samples chosen for training, we can calculate
the computational expense for each methodology as follows:

1. Random Selection: 2𝑘 × 6𝑁 × 𝐷 × 𝐸

2. BM25: 2𝑘 × 6𝑁 × 𝐷 × 𝐸

3. Embedding: 2𝑘 × 2𝑁 ′ × 𝑃 + 2𝑘 ∗ 6𝑁 × 𝐷 × 𝐸 (embed model 𝑁 ′)
3. PPL: 2𝑘 × 2𝑁𝑃 + 2𝑘 × 6𝑁 × 𝐷 × 𝐸

4. LESS: 1.53×2𝑘×6𝑁×𝑃+2𝑘×6𝑁×𝐷×𝐸 (LESS computes gradients for three checkpoints
over the entire pool.)

5. ADAPT-BM25: 2𝑘 × 6𝑁 × 𝑃 × 𝐸

6. ADAPT: 2𝑘 × 8𝑁 × 𝑃 × 𝐸

D Training Datasets in Instruction Tuning

Table 4 contains information about the training sets used in instruction tuning.

E Evaluation Datasets in Instruction Tuning

Table 5 contains detailed statistics of the evaluation datasets used in instruction finetuning.
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Table 4. Datails of training dataset from Wang et al. (2023). Len. is short for token length.

Dataset # Instance Sourced from # Rounds Prompt Len. Completion Len.
Flan V2 100,000 NLP datasets and human-written instructions 1 355.7 31.2
CoT 100,000 NLP datasets and human-written CoTs 1 266 53.2
Dolly 15,011 Human-written from scratch 1 118.1 91.3
Open Assistant 1 55,668 Human-written from scratch 1.6 34.8 212.5

Table 5. Statistics of evaluation datasets. The selection of evaluation tasks cover different kinds of answer types.

Dataset # Shot # Tasks |Dval | |Dtest | Answer Type
MMLU 5 57 285 18,721 Letter options
BBH 3 23 69 920 COT and answer

F Pretraining Details

We follow all settings in TinyLlama (Zhang et al., 2024). The optimizer is AdamW (Loshchilov &
Hutter, 2019), setting parameters 𝛽1 at 0.9 and 𝛽2 at 0.95. We adopt the cosine learning rate schedule
with a maximum learning rate of 4e-4 and the minimum of 4e-5, the batch size of 2M tokens, the
weight decay of 0.1, and the gradient clipping threshold of 1.

G Instruction Tuning Details

All experiments were conducted with parameter-efficient finetuning method LoRA (Hu et al., 2021).
For the LoRA adapter, we specified a rank of 128, an 𝛼 value of 512, and a dropout rate of 0.1 and
applied it across all attention matrices. Adding the LoRA adapter introduce minimal FLOPs overhead
during training—having no impact on our FLOPS analysis—and mainly reduce memory requirements
for more accessible training.

H Pretraining Perplexity

In Table 6, we evaluate validation perplexity on SlimPajama for TinyLlama-120M under two compute
budgets (50B and 100B tokens). Across both settings, ADAPT achieves consistently lower perplexity
than the Uniform baseline, highlighting its effectiveness in improving data efficiency.

Table 6. Validation perplexity of TinyLlama-120M on SlimPajama under different training budgets.

Method 50B Train Budget 100B Train Budget
Uniform 17.15 15.94
ADAPT 16.55 15.36
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