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ABSTRACT

In the field of weather forecasting, traditional models often grapple with dis-
cretization errors and time-dependent source discrepancies, which limit their
predictive performance. In this paper, we present WeatherODE, a novel one-
stage, physics-driven ordinary differential equation (ODE) model designed to
enhance weather forecasting accuracy. By leveraging wave equation theory
and integrating a time-dependent source model, WeatherODE effectively ad-
dresses the challenges associated with time-discretization error and dynamic at-
mospheric processes. Moreover, we design a CNN-ViT-CNN sandwich struc-
ture, facilitating efficient learning dynamics tailored for distinct yet interre-
lated tasks with varying optimization biases in advection equation estimation.
Through rigorous experiments, WeatherODE demonstrates superior performance
in both global and regional weather forecasting tasks, outperforming recent
state-of-the-art approaches by significant margins of over 40.0% and 31.8% in
root mean square error (RMSE), respectively. The source code is available at
https://anonymous.4open.science/r/WeatherODE-5C13/.

1 INTRODUCTION

Weather forecasting is a cornerstone of modern society, affecting key industries like agriculture,
transportation, and disaster management (Coiffier, 2011). Accurate predictions help mitigate the
effects of extreme weather and optimize economic operations. Recent advancements in high-
performance computing have significantly boosted the accuracy and speed of numerical weather
forecasting (NWP) (Bauer et al., 2015; Lorenc, 1986; Kimura, 2002).

The swift advancement of deep learning has opened up a promising avenue for weather forecast-
ing (Weyn et al., 2019; Scher & Messori, 2019; Rasp et al., 2020a; Weyn et al., 2021; Bi et al.,
2023; Pathak et al., 2022; Hu et al., 2023). However, the existing weather forecasting models based
on deep learning often fail to fully account for the key physical mechanisms governing small-scale,
complex nonlinear atmospheric phenomena, such as turbulence, convection, and airflow. These dy-
namic processes are crucial to the formation and evolution of weather systems, but most models
focus on learning statistical correlations from historical data instead of explicitly extracting or inte-
grating these physical dynamics. Furthermore, these models typically rely on fixed time intervals
(e.g., every 6 hours) for predictions, limiting their applicability to varying temporal scales. Con-
sequently, separate models are often required for different forecast periods (Bi et al., 2023), which
constrains flexibility and reduces generalization.

Another line of research utilizes neural ODEs (Chen et al., 2018) that incorporate partial differen-
tial equations to guide the physical dynamics of weather forecasting. Among these methods, the
advection continuity equation stands out as a key equation governing many weather indicators:

∂u

∂t
+ v · ∇u + u∇ · v︸ ︷︷ ︸

Advection

= s︸︷︷︸
Source

, (1)

where u represents a atmospheric variable evolving over space and time, driven by the flow velocity
v and the source term s. A recent study, ClimODE (Verma et al., 2024), effectively employs this
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Figure 1: (a) Comparison of two-meter temperature (t2m) and its discrete-time derivative over a
1-hour interval. While the temperature evolves continuously, the discrete-time derivative exhibits
discontinuities, leading to discretization errors. (b) Latitude-weighted RMSE for t2m using models
trained with different time intervals (∆t) for estimating initial velocity. Larger ∆t values result in
worse performance and can even lead to numerical instability (NaN). See Table 12 for full results.
(c) Comparison of temporal and spatial discretization intervals in the 5.625° ERA5 dataset. The
spatial discretization is 100 times denser than the temporal discretization.

equation and achieves state-of-the-art performance. However, there are several inherent challenges
when solving such equations using neural ODEs. Firstly, the accurate estimation of the initial ve-
locity is crucial to the weather forecasting performance. Unfortunately, current methods typically
rely on time discretization to estimate atmospheric time gradients for velocity calculation and cannot
achieve satisfying accuracy. In particular, we face a constraint due to a 1-hour discretization limit
imposed by the temporal resolution of the ERA5 dataset, which is usually chosen for training of
deep models including most global weather forecasting models. As shown in Figure 1a, it is evident
that velocity estimation is far from continuous, despite the observed variable being relatively smooth
and continuous. Furthermore, we demonstrate in Figure 1b that using larger discretization intervals
for velocity estimation would significantly hinder our forecasting performance. This indicates that
1-hour estimates can introduce significant errors. On the other hand, we note that coarse calculations
from 5.625° ERA5 data (Rasp et al., 2020b) reveal a temporal resolution of 1/24 and a spatial resolu-
tion of 1/(32×64), resulting in the spatial domain nearly 100 times denser, which can help to reduce
errors from temporal discretization (Figure 1c). Secondly, to better solve the advection equation,
we need to consider three key components carefully, including the initial velocity estimation, solv-
ing the advection equation itself, and the error term arising from deviations in reality. Due to their
physical nature, they call for different modeling. For example, global and long-term interactions
govern the advection process, while local and short-term interactions dictate the velocity estimation
and equation’s overall deviations. Lastly, the source term should be modeled as time-dependent for
better estimation.

To address these challenges, we propose WeatherODE, a one-stage, physics-driven ODE model for
weather forecasting. It leverages the wave equation, widely used in atmospheric simulations, to im-
prove the estimation of initial velocity using more precise spatial information ∇u. This approach
reduces the time-discretization errors introduced by using ∆u

∆t . Additionally, we introduce a time-
dependent source model that effectively captures the evolving dynamics of the source term. Fur-
thermore, we have meticulously crafted the model architecture to seamlessly integrate local feature
extraction with global context modeling, promoting efficient learning dynamics tailored for three
tasks in advection equation estimation. Our contributions can be summarized as follows:

• We conduct thorough experiments to identify and demonstrate the issues of discretization
error and time-dependent source error, both of which significantly hinder the performance
of current physics-informed weather forecasting models.

• We propose WeatherODE, a one-stage, physics-driven ODE model for weather forecast-
ing that utilizes wave equation theory and a time-dependent source model to address the
identified challenges. To solve the advection equation more accurately, we conduct a com-
prehensive analysis of the architectural design of the CNN-ViT-CNN sandwich structure,
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facilitating efficient learning dynamics tailored for distinct yet interrelated tasks with vary-
ing optimization biases.

• WeatherODE demonstrates impressive performance in both global and regional weather
forecasting tasks, significantly surpassing the recent state-of-the-art methods by margins of
40.0% and 31.8% in RMSE, respectively.

2 RELATED WORKS

The most advanced weather forecasting techniques predominantly rely on Numerical Weather Pre-
diction (NWP) (Lorenc, 1986; Kimura, 2002), which employs a set of equations solved on super-
computers to model and predict the atmosphere. While NWP has achieved promising results, it
is resource-intensive, requiring significant computational power and domain expertise to define the
appropriate physical equations.

Deep learning-based weather forecasting adopts a data-driven approach to learning the spatio-
temporal relationships between atmospheric variables. These methods can be broadly classified into
Graph Neural Networks (GNN) and Transformer-based methods. GNN-based methods (Lam et al.,
2022; Keisler, 2022) treat the Earth as a graph and use graph neural networks to predict weather
patterns. Transformer-based approaches have shown significant success in weather forecasting due
to their scalability (Chen et al., 2023b;a; Han et al., 2024; Vaswani, 2017). For example, Pangu (Bi
et al., 2023) employs a 3D Swin Transformer (Liu et al., 2021) and an autoregressive model to
accelerate inference. Fengwu (Chen et al., 2023a) models atmospheric variables as separate modal-
ities and uses a replay buffer for optimization, with Fengwu-GHR (Han et al., 2024) subsequently
extending the approach to higher-resolution data. Additionally, ClimaX (Nguyen et al., 2023) and
Aurora (Bodnar et al., 2024) introduce a pretraining-finetuning framework, where models are first
pretrained on physics-simulated data and then finetuned on real-world data. However, these models
frequently neglect the fundamental physical dynamics of the atmosphere and are limited to providing
fixed lead time for each prediction.

Physics-driven methods, which integrate physical constraints in the form of partial differential
equations (PDEs) (Evans, 2022) into neural networks, have gained increasing attention in recent
years (Cai et al., 2021; Li et al., 2024b). In weather forecasting, DeepPhysiNet (Li et al., 2024a)
incorporates physical laws into the loss function, marking an initial attempt to combine neural net-
works with PDEs. ClimODE (Verma et al., 2024) advances further by leveraging the continuity
equation to express the weather forecasting process as a full PDE system modeled using neural
ODEs (Chen et al., 2018). NeuralGCM (Kochkov et al., 2024) incorporates more physical con-
straints and designs neural networks to function as a dynamic core. However, it is complex and
difficult to modify, as it operates with over a dozen ODE functions similar to the NWP method.
In contrast, our proposed WeatherODE offers a more straightforward and efficient foundation for
ongoing improvements.

3 METHOD

In this section, we first introduce the overall ODE modeling framework for weather forecasting in
Section 3.1. We then describe the specific designs of the Velocity Model, Advection ODE, and
Source Model in Section 3.2, Section 3.3, and Section 3.4, respectively. We present the overarching
design choices for our CNN-ViT-CNN sandwich structure in Section 3.5. Finally, we end up with
the multi-task learning strategy in Section 3.6.

3.1 ODE FRAMEWORK FOR WEATHER DYNAMICS

We can model the atmosphere as a spatio-temporal process u(x, y, t) =
(u1(x, y, t), . . . , uK(x, y, t)) ∈ RK , where K represents the number of distinct atmo-
spheric variables uk(x, y, t) ∈ R, evolving over continuous time t and spatial coordinates
(x, y) ∈ [0, H] × [0,W ], H and W are the height and width, respectively. Each quantity or
atmospheric variable is driven by a velocity field vk(x, y, t) ∈ R2K and influenced by a source term
sk(x, y, t) ∈ RK . For simplicity, we first omit the index k since all quantities are treated equally,
and then drop the spatial coordinates (x, y) to focus on the time evolution. The time derivative is
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Figure 2: Overall architecture of WeatherODE. WeatherODE adopts a sandwich-like structure for atmosphere
modeling. The top and bottom parts use fast-converging neural networks (CNN-based) to estimate the initial
velocity and source term, while the central layer employs a slower-converging neural ODE (ViT-based) to
model the atmospheric advection process. This design ensures stability when training the neural ODE to solve
the numerical solution. More analyses are in Section 3.5 and Section 5.3.

denoted as u̇ (i.e., ∂u
∂t ), while spatial variation is captured through the gradient ∇u (i.e., ∂u

∂x and ∂u
∂y ).

Based on Equation 1, we hypothesize that the atmospheric system follows the subsequent partial
differential equation:

u̇(t) = −v(t) · ∇u(t)− u(t)∇ · v(t)︸ ︷︷ ︸
Advection

+s(t). (2)

Using the Method of Lines, we can express Equation 2 as a continuous first-order ODE sys-
tem (Verma et al., 2024). In practice, the system is discretized into N time steps {t1, . . . , tN},
which allows us to leverage data from multiple future points to supervise the ODE in intermediate
steps and apply numerical solvers like the Euler method (Biswas et al., 2013). This results in the
following discretized form:[

u(tn+1)
v(tn+1)

]
=

[
u(tn)
v(tn)

]
︸ ︷︷ ︸

Initial Velocity v(t0)

+∆t

[
−∇ · (u(tn)v(tn))

v̇(tn)

]
︸ ︷︷ ︸

Advection ODE

+

[
s(tn)
0

]
︸ ︷︷ ︸

Source Term

. (3)

To solve this ODE system, three unknowns need to be estimated: v(t0), v̇(tn), and s(tn). As shown
in Figure 2, the proposed WeatherODE uses neural networks to model v(t0) and s(tn), and a neural
ODE to model v̇(tn), which will be discussed in the following sections.

3.2 VELOCITY MODEL

Modeling the initial velocity v(t0) is crucial for ensuring the stability of the ODE solution.
ClimODE (Verma et al., 2024) estimates the initial velocity by first calculating the discrete-time
derivative ∆u

∆t from several past time points. However, using the discrete approximation ∆u
∆t intro-

duces large numerical errors, especially when ∆t is not small enough. This approach struggles to
capture smooth variations, resulting in significant deviations from the true continuous derivatives.
Moreover, it involves a two-stage process where a separate model must first be trained to estimate
all initial values v(t0) before proceeding with the ODE solution.

Therefore, based on the following assumptions, we introduce the wave equation to leverage more
precise spatial information for estimating the initial velocity.
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Incompressibility: In this study, we assume that the fluid (air) behaves as incompressible. This
implies that variations in pressure do not significantly influence the density of the fluid. This as-
sumption is generally valid for large-scale weather phenomena; however, it may not be applicable
to smaller, localized events.

Linearization: The governing equations of atmospheric dynamics can be linearized around a mean
state, permitting the examination of small perturbations. This approach simplifies the mathematical
framework and facilitates the superposition of solutions.

Given these assumptions, we can utilize the wave equation (Evans, 2022), commonly employed
in atmospheric simulations, to enhance the estimation of the initial velocity based on the available
spatial information, as outlined below:

∂2u

∂t2
= c2

(
∂2u

∂x2
+

∂2u

∂y2

)
. (4)

This allows the first derivative with respect to time to be expressed as:

∂u

∂t
=

∫
c2

(
∂2u

∂x2
+

∂2u

∂y2

)
dt. (5)

Thus, ∂u
∂t can be accurately computed as a function of the spatial derivatives ∂u

∂x and ∂u
∂y , avoiding

additional numerical errors. We model v(t0) using a CNN-based neural network fv(·):

v(t0) = fv(u(t0),∇u(t0)).

However, there is no free lunch, as we must also consider the discretization errors we introduce in
the spatial domains. Coarse estimations based on 5.625° ERA5 data (Rasp et al., 2020b) suggest a
temporal resolution of 1/24 and a spatial resolution of 1/(32∗64), indicating that the spatial domain
is nearly 100 times denser than the temporal domain. This disparity allows our approach to deliver
a more precise and stable estimation of the initial velocity, which is vital for accurately solving the
ODE system.

3.3 ADVECTION ODE

In the discretized ODE system in Equation 3, the term u̇(tn) can be computed from the current
values of u(tn) and v(tn) using the advection equation. For v̇(tn), we design an advection model:

v̇(tn) = fθ(u(tn),∇u(tn), v(tn), (ϕs, ϕt)),

where (ϕs, ϕt) represent the spatial-temporal embeddings and details can be found in Appendix C.2.

The design of the advection model fθ is crucial for ensuring the stability of the numerical solution, as
it takes the output from the velocity model as input. We argue that fθ should converge more slowly
than the CNN-based velocity model, because the initial estimates of v(t0) from the velocity model
are likely to be inaccurate. If fθ converges too quickly based on early, imprecise values, it could
cause the numerical solution to become unstable, potentially leading to failure during optimization.

To address this, fθ is designed with a Vision Transformer (ViT) (Dosovitskiy et al., 2021) as the
primary network, complemented by a linear term. The ViT, with its inherently slower convergence
relative to CNNs, provides strong global modeling capabilities, while the linear term contributes to
stabilizing the training process by promoting smoother convergence (Linot et al., 2023). A detailed
analysis of how different architectural choices impact training stability is available in Section 5.3.

3.4 SOURCE MODEL

To capture the energy gains and losses within the ODE system, we introduce a neural network to
model the source term. Rather than incorporating the source term directly within the Advection
ODE, we model it separately using the output of the Advection ODE {u(tn)}Nn=1 to predict the cor-
responding source terms {s(tn)}Nn=1. This approach mitigates the numerical errors that would arise

5
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from modeling s(ti) within the ODE solver, as these errors would propagate through the solution.
The source model fs(·) is formulated as follows:

{s(tn)}Nn=1 = fs({u(tn)}Nn=1, u(t0), v(t0), ϕs, {tn}Nn=1).

This model is supervised using the predicted values {u(tn)}Nn=1, the spatial embedding ϕs, the se-
quence of time points {tn}Nn=1, and the initial conditions u(t0) and v(t0). Rather than assuming the
source term is independent at each time step, the model captures its temporal evolution, considering
dependencies on both past and future values. The architecture of the source model is based on a 3D
CNN, with further architectural details discussed in Section 5.2.

3.5 SANDWICH STRUCTURE DESIGN FOR SOLVING ADVECTION EQUATION

The hybrid CNN-ViT-CNN architecture optimally combines local feature extraction and global con-
text modeling, enabling efficient learning dynamics suited for distinct yet interconnected tasks in the
advection equation estimation.

The sandwich design of our neural ODE model, comprising a CNN for fast-converging tasks (veloc-
ity estimation and source term modeling) and a ViT for slower-converging tasks (advection equation
modeling), leverages the strengths of different architectures tailored to specific learning tasks. CNNs
excel at local feature extraction and are particularly suited for tasks requiring rapid convergence,
such as deriving initial conditions and identifying impacts from source terms with high spatial cor-
relation. In contrast, Vision Transformers (ViTs) utilize attention mechanisms that capture global
context and relationships, making them better suited for tasks with more complex interactions, such
as solving the advection equation, where the dynamics often involve long-range dependencies. From
a theoretical standpoint, the effectiveness of this hybrid architecture can be framed through the lens
of inductive biases: the CNN’s ability to model locality and translation invariance complements
the ViT’s ability to model global interactions and dependencies, resulting in a more robust solution
strategy for the coupled problem. Moreover, such sandwich design choice is also related to the
robustness of training as we discuss in Section 5.3.

3.6 MULTI-TASK LEARNING

Previous methods often train models using only the target leading time u(tN ) as the supervision
signal, ignoring the valuable information contained in intermediate states {u(tn)}N−1

n=1 . Here, we
adopt a multi-task learning strategy and leverage the continuous nature of neural ODE to predict the
state at every intermediate time step {u(tn)}Nn=1, minimizing the latitude-weighted RMSE between
the predicted values u(tn) and the ground truth ũ(tn). The loss function is defined as:

L =
1

N ×K ×H ×W

N∑
n=1

K∑
k=1

H∑
h=1

W∑
w=1

α(h) (ũk,h,w(tn)− uk,h,w(tn))
2
, (6)

where α(h) is the latitude weighting factor that accounts for the varying grid cell areas on a spherical
Earth, as cells near the equator cover larger areas than those near the poles. For more details on the
weighting factor, refer to Appendix B.

By leveraging the multi-task learning strategy, the ODE system can exploit information across dif-
ferent time points, helping the model filter out errors arising from advection assumptions and neural
network predictions. This allows us to train a single model with a lead time of N that can be used
for inference at any time step up to N , enhancing both efficiency and generalization.

4 EXPERIMENTS

In this section, we evaluate the proposed WeatherODE by forecasting the weather at a future time
u(t+∆t) based on the conditions at a given time t, where ∆t (measured in hours) represents the lead
time. The experimental setups are detailed in Section 4.1, while the results for global and regional
weather forecasting are presented in Section 4.2 and Section 4.3, respectively.
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4.1 EXPERIMENTAL SETUPS

Dataset. We utilize the preprocessed ERA5 dataset from WeatherBench (Rasp et al., 2020b),
which has 5.625° resolution (32 × 64 grid points) and temporal resolution of 1 hour. Our input
data includes K = 48 variables: 6 atmospheric variables at 7 pressure levels, 3 surface variables,
and 3 constant fields. To evaluate the performance of WeatherODE, following the benchmark work
in Verma et al. (2024), we focus on five target variables: geopotential at 500 hPa (z500), temperature
at 850 hPa (t850), temperature at 2 meters (t2m), and zonal wind speeds at 10 meters (u10 and v10).
We use the data from 1979 to 2015 as the training set, 2016 as the validation set, and 2017 to 2018
as the test set. More details are available in Appendix A.

Metric. In line with previous works, we evaluate all methods using latitude-weighted root mean
squared error (RMSE) and latitude-weighted anomaly correlation coefficient (ACC):

RMSE =
1

K

K∑
k=1

√√√√ 1

HW

H∑
h=1

W∑
w=1

α(h) (ũk,h,w − uk,h,w)
2
, (7)

ACC =

∑
k,h,w ũ′

k,h,wu
′
k,h,w√∑

k,h,w α(h)(ũ′
k,h,w)

2
∑

k,h,w α(h)(u′
k,h,w)

2
,

where α(h) is the same latitude weighting factor as used in the training process; ũ′ = ũ − C and
u′ = u − C are computed against the climatology C = 1

K

∑
k ũk, which is the temporal mean of

the ground truth data over the entire test set. More details are available in Appendix B.

Baselines. We compare WeatherODE with several representative methods from recent literature,
including ClimaX (Nguyen et al., 2023), FourCastNet (FCN) (Pathak et al., 2022), ClimODE (Verma
et al., 2024), and the Integrated Forecasting System (IFS) (ECMWF, 2023). Specifically, ClimaX is a
pre-trained framework capable of learning from heterogeneous datasets that span different variables,
spatial and temporal scales, and physical bases. FCN uses Adaptive Fourier Neural Operators to
provide fast, high-resolution global weather forecasts. ClimODE is a physics-informed neural ODE
model that incorporates key physical principles. IFS is the most advanced global physics simulation
model of the European Center for Medium-Range Weather Forecasting (ECMWF).

Implementation details. The architecture of our velocity model is based on ResNet2D (He et al.,
2016), the ODE is based on ViT (Dosovitskiy et al., 2021), and the source model is based on
ResNet3D. We optimize the model using the Adam optimizer. Detailed discussions on the model
architectures, specific parameter settings, and learning rate schedules are available in Appendix C.

4.2 GLOBAL WEATHER FORECASTING

Table 1 presents the global weather forecasting performance of WeatherODE and other baseline
models at ∆t = {6, 12, 18, 24} hours. We report the results from the original ClimaX paper,
where the model was pre-trained on the CMIP6 dataset (Eyring et al., 2016) and then fine-tuned on
ERA5 dataset. Despite training solely on the ERA5 dataset, WeatherODE gains a 10% improvement
over ClimaX. Besides, WeatherODE surpasses ClimODE with a substantial improvement over 40%,
clearly demonstrating that we have effectively overcome the major challenges inherent in physics-
driven weather forecasting models. Furthermore, WeatherODE achieves performance on par with
the IFS, which serves as the benchmark in the industry.

4.3 REGIONAL WEATHER FORECASTING

Global forecasting is not always feasible when only regional data is available. Therefore, we evaluate
WeatherODE with other baselines for regional forecasting of relevant variables in North America,
South America, and Australia, focusing on predicting future weather in each region based on its
current conditions. The latitude boundaries for these regions are detailed in the Appendix D. As
shown in Table 2, WeatherODE consistently achieves strong predictive performance across nearly
all variables in each region, surpassing ClimaX and ClimODE by 59.7% and 31.8%, respectively.
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RMSE ↓ ACC ↑

Variable Hours
ClimaX † FCN IFS ClimODE WeatherODE WeatherODE∗ ClimaX † FCN IFS ClimODE WeatherODE WeatherODE∗

(2023) (2022) (2023) (2024) (Ours) (Ours) (2023) (2022) (2023) (2024) (Ours) (Ours)

z500

6 62.7 149.4 26.9 102.9 54.0 56.3 1.00 0.99 1.00 0.99 1.00 1.00
12 81.9 217.8 (N/A) 134.8 80.0 73.3 1.00 0.99 (N/A) 0.99 1.00 1.00
18 88.9 275.0 (N/A) 162.7 96.3 91.9 1.00 0.99 (N/A) 0.98 1.00 1.00
24 96.2 333.0 51.0 193.4 114.5 114.5 1.00 0.99 1.00 0.98 1.00 1.00

t850

6 0.88 1.18 0.69 1.16 0.73 0.76 0.98 0.99 0.99 0.97 0.99 0.99
12 1.09 1.47 (N/A) 1.32 0.87 0.88 0.98 0.99 (N/A) 0.96 0.98 0.98
18 1.10 1.65 (N/A) 1.47 0.95 0.95 0.98 0.99 (N/A) 0.96 0.98 0.98
24 1.11 1.83 0.87 1.55 1.04 1.04 0.98 0.99 0.99 0.95 0.98 0.98

t2m

6 0.95 1.28 0.97 1.21 0.74 0.78 0.98 0.99 0.99 0.97 0.99 0.99
12 1.24 1.48 (N/A) 1.45 0.88 0.89 0.97 0.99 (N/A) 0.96 0.99 0.98
18 1.19 1.61 (N/A) 1.43 0.95 0.95 0.97 0.99 (N/A) 0.96 0.98 0.98
24 1.10 1.68 1.02 1.40 0.98 0.98 0.98 0.99 0.99 0.96 0.98 0.98

u10

6 1.08 1.47 0.80 1.41 0.84 0.88 0.97 0.95 0.98 0.91 0.98 0.98
12 1.23 1.89 (N/A) 1.81 1.00 1.00 0.95 0.93 (N/A) 0.89 0.97 0.97
18 1.27 2.05 (N/A) 1.97 1.12 1.13 0.95 0.91 (N/A) 0.88 0.96 0.96
24 1.41 2.33 1.11 2.01 1.26 1.26 0.94 0.89 0.97 0.87 0.95 0.95

v10

6 (N/A) 1.54 0.94 1.53 0.87 0.90 (N/A) 0.94 0.98 0.92 0.98 0.98
12 (N/A) 1.81 (N/A) 1.81 1.04 1.04 (N/A) 0.91 (N/A) 0.89 0.97 0.97
18 (N/A) 2.11 (N/A) 1.96 1.15 1.16 (N/A) 0.86 (N/A) 0.88 0.96 0.96
24 (N/A) 2.39 1.33 2.04 1.29 1.29 (N/A) 0.83 0.97 0.86 0.95 0.95

† For 6h and 24h, we report results from the original ClimaX paper; 12h and 18h results are obtained using their official pre-trained model and code1 .
* Indicates a 24-hour model used for inference across all lead times.

Table 1: Latitude-weighted RMSE and ACC comparison with baseline models for various target variables
across different lead times on global weather forecasting.

North-America South-America Australia

Variable Hours
ClimaX† ClimODE WeatherODE WeatherODE∗ ClimaX† ClimODE WeatherODE WeatherODE∗ ClimaX† ClimODE WeatherODE WeatherODE∗

(2023) (2024) (Ours) (Ours) (2023) (2024) (Ours) (Ours) (2023) (2024) (Ours) (Ours)

z500

6 273.4 134.5 91.2 97.3 205.4 107.7 62.3 68.9 190.2 103.8 62.7 58.4
12 329.5 225.0 147.4 158.7 220.2 169.4 97.7 100.0 184.7 170.7 79.2 77.7
18 543.0 307.7 218.9 233.5 269.2 237.8 137.5 141.2 222.2 211.1 103.5 102.7
24 494.8 390.1 314.5 314.5 301.8 292.0 183.1 183.1 324.9 308.2 125.1 125.1

t850

6 1.62 1.28 0.88 0.94 1.38 0.97 0.73 0.77 1.19 1.05 0.65 0.64
12 1.86 1.81 1.09 1.15 1.62 1.25 0.91 0.92 1.30 1.20 0.76 0.76
18 2.75 2.03 1.28 1.35 1.79 1.43 1.06 1.07 1.39 1.33 0.87 0.86
24 2.27 2.23 1.57 1.57 1.97 1.65 1.25 1.25 1.92 1.63 0.97 0.97

t2m

6 1.75 1.61 0.66 0.71 1.85 1.33 0.80 0.86 1.57 0.80 0.73 0.71
12 1.87 2.13 0.78 0.84 2.08 1.04 0.96 0.98 1.57 1.10 0.81 0.81
18 2.27 1.96 0.86 0.93 2.15 0.98 1.07 1.08 1.72 1.23 0.89 0.88
24 1.93 2.15 0.99 0.99 2.23 1.17 1.17 1.17 2.15 1.25 0.93 0.93

u10

6 1.74 1.54 1.05 1.09 1.27 1.25 0.83 0.87 1.40 1.35 1.02 1.04
12 2.24 2.01 1.37 1.42 1.57 1.49 1.05 1.03 1.77 1.78 1.24 1.27
18 3.24 2.17 1.77 1.81 1.83 1.81 1.19 1.20 2.03 1.96 1.39 1.45
24 3.14 2.34 2.22 2.22 2.04 2.08 1.39 1.39 2.64 2.33 1.62 1.62

v10

6 1.83 1.67 1.12 1.16 1.31 1.30 0.89 0.92 1.47 1.44 1.09 1.10
12 2.43 2.03 1.52 1.57 1.64 1.71 1.11 1.10 1.79 1.87 1.28 1.32
18 3.52 2.31 2.00 2.05 1.90 2.07 1.26 1.28 2.33 2.23 1.41 1.48
24 3.39 2.50 2.56 2.56 2.14 2.43 1.49 1.49 2.58 2.53 1.64 1.64

† The number is cited from ClimODE (Verma et al., 2024).

Table 2: Latitude-weighted RMSE comparison with baseline models for various target variables across differ-
ent lead times on regional weather forecasting.

This underscores the strong ability of WeatherODE to model weather patterns effectively in data-
scarce scenarios.

4.4 FLEXIBLE INFERENCE WITH A SINGLE 24-HOUR MODEL

Many deep learning-based methods treat predictions for different lead times as separate tasks, re-
quiring a distinct model for each lead time. Some approaches attempt to use short-range models
with rolling strategies (Bi et al., 2023; Chen et al., 2023a), but they still face the challenge of error
accumulation. In contrast, by modeling the atmosphere as a physics-driven continuous process and

1https://github.com/microsoft/ClimaX

8

https://github.com/microsoft/ClimaX


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

z500 [𝑚!/𝑠!] t850 [𝐾] t2m [𝐾] u10 [𝑚/𝑠] v10 [𝑚/𝑠]

RM
SE

Leadtime [hours]

𝑓!(
Δ𝑢
Δ𝑡
) 𝑓!(𝑢, ∇𝑢,

Δ𝑢
Δ𝑡
) 𝑓! 𝑢, ∇𝑢 (WeatherODE)𝑓!(∇𝑢) 𝑓!(𝑢)

Figure 3: RMSE comparison for different input configurations of the velocity model.

3 a.m. 4 a.m. 5 a.m. 6 a.m. 7 a.m. 8 a.m. 9 a.m. 10 a.m.

𝑢

!"
!#

(ClimODE)

!"
!#

(WeatherODE)

Figure 4: Visualization of the 2-meter temperature u on January 1, 2017, from 3 a.m. to 10 a.m., with the
estimated ∂u

∂t
from ClimODE and WeatherODE. WeatherODE provides smoother, more continuous estimates

of ∂u
∂t

, closely matching u, while ClimODE shows abrupt changes.

designing a time-dependent source network to account for errors at each time step, WeatherODE
can capture information across all intermediate time points. As shown in Table 1 and Table 2,
WeatherODE∗ (a 24-hour model of WeatherODE used for inference across all lead times) demon-
strates its effectiveness for any hour within that period. The results show that WeatherODE∗ achieves
performance comparable to WeatherODE across most variables and even exceeds WeatherODE in
certain cases (e.g., z500). This highlights the effectiveness of our physics-driven ODE model in
filtering out accumulated errors.

5 ABLATION STUDIES

5.1 EFFECTIVENESS OF WAVE EQUATION-INFORMED ESTIMATION

To validate the superiority of the wave equation-informed estimation over the discrete-time deriva-
tive, we conduct five experiments of the velocity model to estimate the initial velocity: (1) fv(∆u

∆t ):
the model uses only the discrete-time derivative ∆u

∆t ; (2) fv(u,∇u, ∆u
∆t ): the model combines the

discrete-time derivative with u and ∇u; (3) fv(u): the model uses only u; (4) fv(∇u): the model
uses only ∇u; (5) fv(u,∇u): the model relies solely on the wave function-derived u and ∇u. The
results in Figure 3 demonstrate the effectiveness of the wave equation-informed approach. Specif-
ically, (1) has an RMSE that is over 20% worse compared to (5). It is notable that experiment
the incorporation of ∆u

∆t into the velocity model in (2) adversely affected performance compared to
(5), primarily due to overfitting arising from the substantial discrepancy between the discrete-time
derivative and the true values. Furthermore, the model in (5) outperforms (4), suggesting that the
inclusion of ∇u with u provides additional beneficial information to the network, enhancing its
predictive capability. Figure 4 shows that WeatherODE produces much smoother ∆u

∆t predictions,
aligning with the smooth nature of u, while the predictions of ClimODE are more erratic.

5.2 ANALYSIS OF SOURCE MODEL ARCHITECTURE

We conduct experiments by removing the source model and comparing different source model ar-
chitectures: ViT, DiT, ResNet2D, and ResNet3D. DiT (Peebles & Xie, 2023) and ResNet3D are the
time-aware versions of ViT and ResNet2D, respectively. As shown in Figure 5, DiT and ResNet3D
outperform ViT and ResNet2D by 10% and 5%, and significantly exceed the performance of the

9
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z500 [𝑚!/𝑠!] t850 [𝐾] t2m [𝐾] u10 [𝑚/𝑠] v10 [𝑚/𝑠]

RM
SE

Leadtime [hours]
without Source ViT DiT ResNet2D ResNet3D (WeatherODE)

Figure 5: RMSE comparison for different architectures of the source model.

model without the source component. These results demonstrate the effectiveness of the source
model and highlight the importance of integrating temporal information into its architecture.

5.3 STABILITY ANALYSIS OF NEURAL NETWORK AND NEURAL ODE INTEGRATION

The interdependencies between the advection and velocity models highlight the importance of care-
fully selecting architectures and learning rates to ensure the stability and performance of the neural
network and neural ODE system. As shown in Table 3, the learning rate for the advection model
must be lower than that of the velocity model due to often inaccurate initial estimates. If the ad-
vection model converges too quickly based on these estimates, it may lead to numerical instabilities
and NaN values. Alternatively, using an advection model architecture with inherently slower con-
vergence can yield similar results even with the same learning rate. Moreover, given that the source
term represents solar energy with strong locality—where energy patterns are similar in neighboring
regions—a CNN architecture that effectively captures local dependencies is ideal for this task.

Velocity Model Advection Model Source Model lr Advection lr Training Stable? Rank

CNN ViT CNN 5e-4 5e-4 ✔ 1
ViT ViT CNN 5e-4 5e-4 ✔ 4

CNN ViT ViT 5e-4 5e-4 ✔ 2
ViT ViT ViT 5e-4 5e-4 ✔ 5

CNN CNN CNN 5e-4 5e-4 ✘ (1) -
ViT CNN CNN 5e-4 5e-4 ✘ (1) -

CNN CNN ViT 5e-4 5e-4 ✘ (1) -
ViT CNN ViT 5e-4 5e-4 ✘ (1) -

CNN CNN CNN 5e-4 5e-5 ✔ 3
ViT CNN ViT 5e-4 5e-5 ✘ (3) -
ViT CNN ViT 5e-4 5e-6 ✔ 6

Table 3: Stability analysis of neural network and neural ODE integration across different architectures and
learning rates. “Advection lr” denotes the learning rate of the advection model and “lr” corresponds to the other
two. “✔” indicates stable training, and “✘ (i)” shows where NaN values occurred at epoch i. “Rank” indicates
the performance ranking among stable configurations.

6 CONCLUSION

In this paper, we tackle several challenges faced by neural ODE-based weather forecasting mod-
els, specifically addressing time-discretization errors, global-local biases across individual tasks in
solving the advection equation, and discrepancies in time-dependent sources that compromise pre-
dictive accuracy. To address these issues, we present WeatherODE—a novel sandwich neural ODE
model that integrates wave equation theory with a dynamic source model. This approach effectively
reduces errors and promotes synergy between neural networks and neural ODEs. Our in-depth anal-
ysis of WeatherODE’s architecture and optimization establishes a strong foundation for advancing
hybrid modeling in meteorology. Looking forward, our work opens avenues for further exploration
of hybrid models that blend traditional physics-driven and modern machine-learning techniques.
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Lottes, Stephan Rasp, Peter Düben, Milan Klöwer, et al. Neural general circulation models for
weather and climate. Nature, 632:1060–1066, 2024.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. GraphCast: Learning
skillful medium-range global weather forecasting. arXiv preprint arXiv:2212.12794, 2022.

Wenyuan Li, Zili Liu, Keyan Chen, Hao Chen, Shunlin Liang, Zhengxia Zou, and Zhenwei Shi.
DeepPhysiNet: Bridging deep learning and atmospheric physics for accurate and continuous
weather modeling. arXiv preprint arXiv:2401.04125, 2024a.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024b.

Alec J Linot, Joshua W Burby, Qi Tang, Prasanna Balaprakash, Michael D Graham, and Romit
Maulik. Stabilized neural ordinary differential equations for long-time forecasting of dynamical
systems. Journal of Computational Physics, 474:111838, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Andrew C Lorenc. Analysis methods for numerical weather prediction. Quarterly Journal of the
Royal Meteorological Society, 112(474):1177–1194, 1986.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. ClimaX:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
CastNet: A global data-driven high-resolution weather model using adaptive fourier neural oper-
ators. arXiv preprint arXiv:2202.11214, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020a.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020b.

Sebastian Scher and Gabriele Messori. Weather and climate forecasting with neural networks: using
general circulation models (gcms) with different complexity as a study ground. Geoscientific
Model Development, 12(7):2797–2809, 2019.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate and weather forecasting
with physics-informed neural odes. arXiv preprint arXiv:2404.10024, 2024.

Jonathan A Weyn, Dale R Durran, and Rich Caruana. Can machines learn to predict weather? using
deep learning to predict gridded 500-hpa geopotential height from historical weather data. Journal
of Advances in Modeling Earth Systems, 11(8):2680–2693, 2019.

Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal fore-
casting with a large ensemble of deep-learning weather prediction models. Journal of Advances
in Modeling Earth Systems, 13(7):e2021MS002502, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A ERA5 DATA

We train WeatherODE on the preprocessed 5.625° ERA5 data from WeatherBench (Rasp et al.,
2020b), a benchmark dataset and evaluation framework designed to facilitate the comparison of
data-driven weather forecasting models. WeatherBench regridded the raw ERA5 dataset1 from its
0.25° resolution to three coarser resolutions: 5.625°, 2.8125°, and 1.40625°. The processed dataset
includes 8 atmospheric variables across 13 pressure levels, 6 surface variables, and 5 static variables.
For training and testing WeatherODE, we selected 6 atmospheric variables at 7 pressure levels, 3
surface variables, and 3 static variables, as detailed in Table 4.

Variable Name Abbrev. Description Levels

Land-sea mask lsm Binary mask distinguishing land (1) from sea (0) N/A
Orography oro Height of Earth’s surface N/A
Latitude lat Latitude of each grid point N/A

2 metre temperature t2m Temperature measured 2 meters above the surface Single level
10 metre U wind component u10 East-west wind speed at 10 meters above the surface Single level
10 metre V wind component v10 North-south wind speed at 10 meters above the surface Single level
Geopotential z Height relative to a pressure level 50, 250, 500, 600, 700, 850, 925 hPa
U wind component u Wind speed in the east-west direction 50, 250, 500, 600, 700, 850, 925 hPa
V wind component v Wind speed in the north-south direction 50, 250, 500, 600, 700, 850, 925 hPa
Temperature t Atmospheric temperature 50, 250, 500, 600, 700, 850, 925 hPa
Specific humidity q Mixing ratio of water vapor to total air mass 50, 250, 500, 600, 700, 850, 925 hPa
Relative humidity r Humidity relative to saturation 50, 250, 500, 600, 700, 850, 925 hPa

Table 4: Summary of ECMWF variables utilized in the ERA5 dataset. The variables lsm and oro
are constant and invariant with time, while t2m, u10, and v10 represent surface variables. The
remaining are atmospheric variables which are measured at specific pressure levels.

B WEATHER FORECASTING METRICS

In this section, we provide a detailed explanation of all the evaluation metrics used in Section 4. For
each metric, u and ũ represent the predicted and ground truth values, respectively, both shaped as
K×H×W , where K is the number of predict quantities, and H×W is the spatial resolution. The
latitude weighting term α(·) accounts for the non-uniform grid cell areas.

Latitude-weighted Root Mean Square Error (RMSE) assesses model accuracy while consider-
ing the Earth’s curvature. The latitude weighting adjusts for the varying grid cell areas at different
latitudes, ensuring that errors are appropriately measured. Lower RMSE values indicate better model
performance.

RMSE =
1

K

K∑
k=1

√√√√ 1

HW

H∑
h=1

W∑
w=1

α(h) (ũk,h,w − uk,h,w)
2
, α(h) =

cos(lat(h))
1
H

∑H
h′=1 cos (lat (h

′))
.

Anomaly Correlation Coefficient (ACC) measures a model’s ability to predict deviations from
the mean. Higher ACC values indicate better accuracy in capturing anomalies, which is crucial in
meteorology and climate science.

ACC =

∑
k,h,w ũ′

k,h,wu
′
k,h,w√∑

k,h,w α(h)(ũ′
k,h,w)

2
∑

k,h,w α(h)(u′
k,h,w)

2
,

where u′ = u − C and ũ′ = ũ − C, with C = 1
K

∑
k ũk representing the temporal mean of the

ground truth over the test set.
1For more details of the raw ERA5 data, see https://confluence.ecmwf.int/display/CKB/

ERA5%3A+data+documentation.
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C IMPLEMENTATION DETAILS

C.1 DATA FLOW

We normalized all inputs by computing the mean and standard deviation for each variable at each
pressure level (for atmospheric variables) to achieve zero mean and unit variance. After normaliza-
tion, the input u(t0) ∈ RK×H×W with its spatial derivative ∇u(t0) ∈ R2K×H×W are processed by
the velocity model fv(·) to estimate the initial velocity v0 ∈ R2K×H×W . Both u(t0) and v(t0) are
then fed into the ODE system, where the u̇(tn) is calculated by advection equation and the advection
model fθ(·) uses u(tn),∇u(tn), v(tn) and (ϕs, ϕt) to model v̇(tn). The ODE system outputs the
predicted future state {u(tn)}Nn=1, where N represents the lead time.

The predicted {u(tn)}Nn=1, along with u(t0), and v(t0), are then passed into the source model fs(·)
to estimate the source term {s(tn)}Nn=1. The final prediction for the lead time and each intermediate
time point is obtained by adding s(tn) to u(tn) and then applying the inverse normalization. For
training and evaluation, we selected five key variables from the K input variables: z500, t850, t2m,
u10, and v10.

C.2 EMBEDDINGS

Spatial Encoding Latitude h and longitude w are encoded with trigonometric and spherical coor-
dinates:

ϕs = [sin(h), cos(h), sin(w), cos(w), sin(h) cos(w), sin(h) sin(w)] .

Temporal Encoding Daily and seasonal cycles are encoded using trigonometric functions:

ϕt =

[
sin(2πt), cos(2πt), sin

(
2πt

365

)
, cos

(
2πt

365

)]
.

Spatiotemporal Embedding The final embedding integrates both:

(ϕs, ϕt) = [ϕs, ϕt, ϕs × ϕt] .

C.3 OPTIMIZATION

All experiments are conducted with a batch size of 8, running on 4 NVIDIA A800-SXM4-80GB
GPUs for 50 epochs. We use the AdamW optimizer with β1 = 0.9, β2 = 0.999. The learning
rate is set to 1e-4 for the ODE model components and 5e-4 for the rest. A weight decay of 1e-5 is
applied to all parameters except for the positional embeddings. The learning rate follows a linear
warmup schedule starting from 1e-8 for the first 10, 000 steps (approximately 1 epoch), transitioning
to a cosine-annealing schedule for the remaining 90, 000 steps (approximately 9 epochs), with a
minimum value of 1e-8.

C.4 HYPERPARAMETERS

Hyperparameter Description Value

Kernel size Size of each convolutional kernels 3

Padding size Size of padding of each convolutional layer 1

Stride Step size of each convolutional layer 1

Dropout Dropout probability 0.1

Leakage Coefficient Slope of LeakyReLU for negative inputs 0.3

ResBlock List (Number of ResBlocks, Hidden dimensions) [(5, 512), (5, 128), (3, 64), (2, 48)]

Table 5: Default hyperparameters of ResNet2D of velocity model.
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Hyperparameter Description Value

p Size of image patches 2

D Dimension of hidden layers 1024

Depth Number of Transformer blocks 4

Heads Number of attention heads 8

MLP ratio Expansion factor for MLP 4

Decoder Depth Number of layers of the final prediction head 2

Drop path Stochastic depth rate 0.1

Dropout Dropout rate 0.1

Table 6: Default hyperparameters of ViT in advection ODE.

Hyperparameter Description Value

Kernel size Size of each 3D convolutional kernels 3

Padding size Size of padding of each 3D convolutional layer 1

Stride Step size of each 3D convolutional layer 1

Dropout Dropout probability 0.1

Leakage Coefficient Slope of LeakyReLU for negative inputs 0.3

ResBlock List (Number of ResBlocks, Hidden dimensions) [(5, 512), (5, 128), (3, 64), (2, 48)]

Table 7: Default hyperparameters of ResNet3D of source model.

D REGIONAL FORECAST

Obtaining global data is often challenging, making it crucial to develop methods that can predict
weather using data from specific local regions. As shown in Figure 6, we illustrate the forecasting
pipeline for regional prediction. We conduct experiments focusing on three regions: North America,
South America, and Australia. The data for these regions is extracted as bounding boxes from the
5.625° ERA5 global dataset. Table 8 provides the bounding box details for each of the three regions.

Model

𝑢(𝑡!) 𝑢 𝑡" "#$
%

Figure 6: Schematic of the regional forecast for Australia, where only data from the Australian
region is used to predict weather conditions within the same area.

Region Latitude Range Longitude Range Grid Size (lat x lon)

North America (15, 65) (220, 300) 8× 14

South America (−55, 20) (270, 330) 14× 10

Australia (−50, 10) (100, 180) 10× 14

Global (−90, 90) (0, 360) 32× 64

Table 8: Latitudinal and longitudinal boundaries with grid size for each region.
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E FULL RESULTS

RMSE ↓ ACC ↑
Variable Hours ClimaX ClimODE WeatherODE ClimaX ClimODE WeatherODE

z500
36 126.4 259.6 159.9 1.00 0.96 0.99
72 244.1 478.7 324.7 1.00 0.88 0.95

t850
36 1.25 1.75 1.22 0.97 0.94 0.97
72 1.59 2.58 1.81 0.98 0.85 0.93

t2m
36 1.33 1.70 1.18 0.97 0.94 0.97
72 1.43 2.75 1.60 0.98 0.85 0.95

u10
36 1.57 2.25 1.57 0.93 0.83 0.93
72 2.18 3.19 2.45 0.94 0.66 0.81

v10
36 (N/A) 2.29 1.61 (N/A) 0.83 0.92
72 (N/A) 3.30 2.50 (N/A) 0.63 0.80

Table 9: Latitude-weighted RMSE and ACC for global forecasting at longer lead times.

RMSE ↓ ACC ↑
Variable Hours wo Source ViT DiT Resnet2D Resnet3D wo Source ViT DiT ResNet2D Resnet3D

z500

6 144.6 76.0 66.4 58.6 56.3 0.99 1.00 1.00 1.00 1.00
12 164.6 94.4 81.4 75.4 73.3 0.99 1.00 1.00 1.00 1.00
18 215.3 111.8 99.0 94.2 91.9 0.98 0.99 1.00 1.00 1.00
24 284.3 150.0 126.8 120.0 114.5 0.96 0.99 0.99 0.99 1.00

t850

6 1.28 0.88 0.79 0.77 0.76 0.97 0.98 0.99 0.99 0.99
12 1.54 1.00 0.91 0.89 0.88 0.95 0.98 0.98 0.98 0.98
18 1.58 1.08 0.99 0.97 0.95 0.95 0.98 0.98 0.98 0.98
24 1.87 1.22 1.08 1.06 1.04 0.93 0.97 0.98 0.98 0.98

t2m

6 2.55 0.88 0.79 0.79 0.78 0.87 0.99 0.99 0.99 0.99
12 2.89 1.02 0.92 0.91 0.89 0.83 0.98 0.98 0.98 0.98
18 2.11 1.06 0.98 0.97 0.95 0.91 0.98 0.98 0.98 0.98
24 2.65 1.15 1.02 1.02 0.98 0.86 0.97 0.98 0.98 0.98

u10

6 1.59 0.96 0.90 0.88 0.88 0.92 0.97 0.98 0.98 0.98
12 1.73 1.08 1.02 1.01 1.00 0.91 0.96 0.97 0.97 0.97
18 1.85 1.21 1.14 1.13 1.13 0.89 0.95 0.96 0.96 0.96
24 2.31 1.38 1.28 1.27 1.26 0.84 0.94 0.95 0.95 0.95

v10

6 1.63 0.99 0.93 0.91 0.90 0.92 0.97 0.97 0.98 0.98
12 1.78 1.12 1.06 1.04 1.04 0.90 0.97 0.97 0.97 0.97
18 1.93 1.24 1.18 1.16 1.16 0.89 0.96 0.96 0.96 0.96
24 2.40 1.41 1.32 1.30 1.29 0.82 0.94 0.95 0.95 0.95

Table 10: Full results on source model architectures shown in Figure 5.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

RMSE ↓ ACC ↑
Variable Hours fv(

∆u
∆t ) fv(u) fv(∇u) fv(u,∇u, ∆u

∆t ) fv(u,∇u) fv(
∆u
∆t ) fv(u) fv(∇u) fv(u,∇u, ∆u

∆t ) fv(u,∇u)

z500

6 71.0 73.6 59.8 61.4 56.3 1.00 1.00 1.00 1.00 1.00
12 100.6 101.2 79.4 83.5 73.3 0.99 1.00 1.00 1.00 1.00
18 134.0 129.7 101.6 108.1 91.9 0.99 0.99 1.00 0.99 1.00
24 172.8 162.6 128.5 137.6 114.5 0.98 0.99 0.99 0.99 1.00

t850

6 0.83 0.83 0.77 0.79 0.76 0.99 0.99 0.99 0.99 0.99
12 1.00 0.98 0.90 0.92 0.88 0.98 0.98 0.98 0.98 0.98
18 1.12 1.09 0.99 1.02 0.95 0.97 0.98 0.98 0.98 0.98
24 1.25 1.20 1.08 1.12 1.04 0.97 0.97 0.98 0.97 0.98

t2m

6 0.91 0.89 0.80 0.82 0.78 0.98 0.98 0.99 0.99 0.99
12 1.09 1.04 0.93 0.95 0.89 0.98 0.98 0.98 0.98 0.98
18 1.13 1.10 0.99 1.02 0.95 0.98 0.98 0.98 0.98 0.98
24 1.16 1.13 1.03 1.06 0.98 0.97 0.98 0.98 0.98 0.98

u10

6 0.96 0.95 0.89 0.90 0.88 0.97 0.97 0.98 0.98 0.98
12 1.13 1.12 1.03 1.04 1.00 0.96 0.96 0.97 0.97 0.97
18 1.30 1.28 1.15 1.18 1.13 0.95 0.95 0.96 0.96 0.96
24 1.50 1.45 1.30 1.33 1.26 0.93 0.94 0.95 0.95 0.95

v10

6 0.98 0.98 0.92 0.93 0.90 0.97 0.97 0.97 0.97 0.98
12 1.16 1.16 1.06 1.07 1.04 0.96 0.96 0.97 0.97 0.97
18 1.34 1.32 1.19 1.21 1.16 0.95 0.95 0.96 0.96 0.96
24 1.54 1.50 1.33 1.37 1.29 0.93 0.93 0.95 0.94 0.95

Table 11: Full results of different input configurations of the velocity model in Figure 3.

RMSE ↓ ACC ↑
Variable Hours ∆t = 1 ∆t = 2 ∆t = 3 ∆t = 12 ∆t = 24 ∆t = 1 ∆t = 2 ∆t = 3 ∆t = 12 ∆t = 24

z500

6 71.0 86.8 88.8 107.8 140.5 1.00 1.00 1.00 0.99 0.98
12 100.6 118.5 128.7 164.3 NaN 0.99 0.99 0.99 0.98 NaN
18 134.0 157.3 161.3 NaN NaN 0.99 0.99 0.99 NaN NaN
24 172.8 NaN NaN NaN NaN 0.98 NaN NaN NaN NaN

t850

6 0.83 0.89 0.91 0.95 1.04 0.99 0.98 0.98 0.97 0.97
12 1.00 1.10 1.11 1.18 NaN 0.98 0.98 0.97 0.97 NaN
18 1.12 1.24 1.25 NaN NaN 0.97 0.97 0.97 NaN NaN
24 1.25 NaN NaN NaN NaN 0.97 NaN NaN NaN NaN

t2m

6 0.91 0.98 1.00 1.12 1.35 0.98 0.98 0.98 0.97 0.96
12 1.09 1.18 1.23 1.35 NaN 0.98 0.97 0.97 0.96 NaN
18 1.13 1.21 1.28 NaN NaN 0.98 0.97 0.97 NaN NaN
24 1.16 NaN NaN NaN NaN 0.97 NaN NaN NaN NaN

u10

6 0.96 1.02 1.03 1.07 1.11 0.97 0.97 0.97 0.97 0.96
12 1.13 1.24 1.23 1.41 NaN 0.96 0.95 0.95 0.93 NaN
18 1.30 1.44 1.42 NaN NaN 0.95 0.93 0.94 NaN NaN
24 1.50 NaN NaN NaN NaN 0.93 NaN NaN NaN NaN

v10

6 0.98 1.06 1.07 1.11 1.16 0.97 0.97 0.96 0.96 0.96
12 1.16 1.28 1.31 1.44 NaN 0.96 0.95 0.94 0.94 NaN
18 1.34 1.47 1.52 NaN NaN 0.95 0.93 0.93 NaN NaN
24 1.54 NaN NaN NaN NaN 0.93 NaN NaN NaN NaN

Table 12: Full result of the time interval ∆t for estimating ∆u
∆t in Figure 1b. NaN indicates that

numerical instability occurred during ODE inference.
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F VISUALIZATION

Figure 7 to Figure 10 provide visual comparisons between WeatherODE’s forecasts and the ground
truth ERA5 data at different lead times (6h, 12h, 18h, and 24h). Figure 11 illustrates the output from
the advection ODE and the source model, demonstrating that the advection ODE captures global
features, while the source model captures local features.

z500

t850

t2m

u10

v10

Figure 7: Example 6-hour lead time forecasts from WeatherODE compared to ground truth ERA5
data.

z500

t850

t2m

u10

v10

Figure 8: Example 12-hour lead time forecasts from WeatherODE compared to ground truth ERA5
data.
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z500

t850

t2m

u10

v10

Figure 9: Example 18-hour lead time forecasts from WeatherODE compared to ground truth ERA5
data.

z500

t850

t2m

u10

v10

Figure 10: Example 24-hour lead time forecasts from WeatherODE compared to ground truth ERA5
data.
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z500

t850

t2m

u10

v10

Figure 11: Example 24-hour lead time forecasts from the advection ODE, source model, and ground
truth comparison.
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