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Abstract. Learning with noisy labels (LNL) aims at designing strate-
gies to improve model performance and generalization by mitigating the
effects of model overfitting to noisy labels. The key success of LNL lies in
identifying as many clean samples as possible from massive noisy data,
while rectifying the wrongly assigned noisy labels. Recent advances em-
ploy the predicted label distributions of individual samples to perform
noise verification and noisy label correction, easily giving rise to confir-
mation bias. To mitigate this issue, we propose Neighborhood Collective
Estimation, in which the predictive reliability of a candidate sample is
re-estimated by contrasting it against its feature-space nearest neigh-
bors. Specifically, our method is divided into two steps: 1) Neighbor-
hood Collective Noise Verification to separate all training samples into
a clean or noisy subset, 2) Neighborhood Collective Label Correction to
relabel noisy samples, and then auxiliary techniques are used to assist
further model optimization. Extensive experiments on four commonly
used benchmark datasets, i.e., CIFAR-10, CIFAR-100, Clothing-1M and
Webvision-1.0, demonstrate that our proposed method considerably out-
performs state-of-the-art methods.

Keywords: Learning with noisy labels, Neighborhood collective esti-
mation, Confirmation bias.

1 Introduction

Deep neural networks (DNNs) have achieved significant success in computer vi-
sion tasks, such as image classification [41, 1, 22, 5, 18, 52], etc. However, they
rely heavily on tremendous quantities of high-quality manual annotations. To
alleviate the need for extensive human annotations while improving the general-
ization capability of deep neural networks, learning with noisy labels (LNL) has
been proposed to effectively leverage large-scale yet poorly-annotated datasets
while mitigating the effects of model overfitting to noisy labels.

*Corresponding Authors are Guanbin Li and Yizhou Yu.
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Fig. 1. An illustration to exemplify our basic idea. Samples distributed within the
dotted circle, including the candidate sample, Point O, and its nearest neighbors, i.e.,
Point A, B, C, D and E are close to each other in the feature-space neighborhood.
Different colors indicate different labels (either predicted label or given groundtruth
label). In the noise verification stage, a given label of the candidate (Point O) is con-
sidered noisy if there is a huge inconsistency between the label distributions of the
candidate and its nearest neighbors; and otherwise, the candidate is considered as a
clean sample. Likewise, in the noise correction stage, a noisy sample discards the given
noisy label and is relabeled through a neighborhood collective estimation process in-
volving its contrastive neighbors

To tackle the challenges imposed by LNL, previous works have proposed
massive strategies [10, 39, 19, 32, 47], including noisy label correction [3, 24], noisy
label or sample rejection[19, 47, 15, 14], and noisy sample reweighing [42, 35, 12].
The mainstream pipeline first uses noise verification strategies to separate the
original training set into a clean set and a noisy set, which contain training
samples with clean labels and noisy labels respectively, in order to diminish the
effect of noisy labels during model training. Then, (un)supervised learning or
semi-supervised learning (SSL) based techniques are adopted to correct noisy
labels and further optimize the classification model by regarding the clean set
and noisy set as labeled and unlabeled samples respectively. In this scheme,
original noisy labels are simply discarded for their high chances to be incorrect,
avoiding the negative effect of noisy label memorization in the trained model.

In the context of learning with noisy labels, there may exist classes with
imbalanced noisy or clean samples, especially in real-world noisy datasets such as
Clothing-1M [45] andWebvision-1.0 [23]. For instance, there might be a relatively
high proportion of noisy labels in some hard-to-annotate classes; on the other
hand, a trained model may produce low-confident predictions on a relatively high
proportion of hard-to-learn clean samples in some classes, making existing noise
identification algorithms incorrectly identify them as noisy samples. As a result,
noise accumulation may take place implicitly in such classes, making the trained
model produce unreliable label predictions. The above scenarios could make
an LNL algorithm fall into the so-called confirmation bias [40, 2], which causes
the algorithm to favor incorrect training labels that have been confirmed with
predicted labels in earlier training iterations. In this context, relying too much
on the potentially biased label predictions for individual training samples would
increase the risk of incorrectly identifying noisy labels in the noise verification
stage. Moreover, confirmation bias also exists in the subsequent noise correction
stage, where SSL or other methods, such as label-guessing [19, 30, 51] and label
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re-assignment [47], construct pseudo-labels for unlabeled samples in the noisy
set using potentially biased label predictions. Apparently, model training in the
optimization stage would strengthen this bias as more confident but incorrect
predictions would defy new changes, and subsequently even deteriorate model
performance in high noise ratio scenarios.

We are inspired by the premise of contrastive learning that samples from the
same class should have higher similarity in the feature space than those from
different classes [29, 31, 9]. Therefore, we approach learning with noisy labels
from a different perspective and propose Neighborhood Collective Estimation
(NCE), in which we re-estimate the predictive reliability of a candidate sample
by contrasting it against its feature-space nearest neighboring samples. Herein,
we borrow the concept from contrastive learning, and then name such neighbor-
ing samples of the candidate as contrastive neighbors. Leveraging contrastive
neighbors enriches the predictive information associated with the candidate and
also makes such information relatively unbiased, thereby improving the accuracy
of noisy label identification and correction. Fig. 1 displays the basic idea of the
proposed method.

Specifically, to abide by the mainstream LNL pipeline, we divide our method
into two steps: 1) Neighborhood Collective Noise Verification (NCNV) to sep-
arate all training samples into a clean set and a noisy set, 2) Neighborhood
Collective Label Correction (NCLC) to relabel noisy samples. In the NCNV
stage, a candidate sample is considered noisy when there is a huge inconsistency
between the one-hot vector of the given label of the candidate and the label dis-
tributions of its contrastive neighbors predicted using the trained model. In the
NCLC stage, we only relabel noisy samples whose predicted label distribution is
sufficiently similar to the given labels of neighboring clean samples, and the cor-
rected label of a noisy sample is related to a weighted combination of the given
labels of neighboring clean samples. Once we have identified clean samples and
relabeled noisy ones, we leverage off-the-shelf and well-established techniques,
such as mixup regularization [50] and consistency regularization [36], to perform
further SSL-based model training.

In summary, the main contributions are as follows.

– We propose Neighborhood Collective Estimation for learning with noisy la-
bels, which leverages contrastive neighbors to obtain richer and relatively
unbiased predictive information for candidate samples and thus mitigates
confirmation bias.

– Concretely, we design two steps called Neighborhood Collective Noise Verifi-
cation and Neighborhood Collective Label Correction to identify clean sam-
ples and relabel noisy ones respectively.

– We evaluate our method on four widely used LNL benchmark datasets, i.e.,
CIFAR-10 [16], CIFAR-100 [16], Clothing-1M [45] and Webvision-1.0 [23],
and the results demonstrate that our proposed method considerably outper-
forms state-of-the-art LNL methods.
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2 Related Work

In this section, we focus on noise verification and label correction that are means
involved in current dominant pipeline to address the LNL problem.

2.1 Noise Verification

Noise verification involves sample selection to choose and remove noisy labels
within the training datasets. Proper noise verification strategies are necessary
and several earlier works [10, 48, 15] have shown that samples with smaller cross-
entropy loss are prone to hold clean labels, assuming that deep neural networks
prefer to memorize simple patterns first rather than overfit to noisy labels. Also,
some recently superior methods made efforts to model per-sample loss distri-
butions with Beta Mixture Models (BMM) [26] or Gaussian Mixture Models
(GMM) [34] to separate noisy labels from all the training samples [3, 19, 30, 51,
13, 46]. However, based on the predicted label distributions of individual candi-
date samples to identify the training samples, the above-stated noise verification
strategies tend to fall into confirmation bias. Previous works have also attempted
to identify noisy labels by leveraging neighborhood information. They either use
neighborhood samples to remove noisy labels or re-weight them [43, 4, 32, 53, 44].
For example, Bahri et al. [4] proposed to identify noisy label by searching near-
est neighbors based on the model predictions of a KNN classifier, while Zhu et
al. [53] uses feature-space neighbors to help estimate a noise transition matrix.
In our work, we employ neighborhood collective estimation to realize both the
identification and correction of noise labels, and make the two promote each
other, to achieve better noise label learning.

2.2 Label Correction

To alleviate the effect of noisy memorization, noisy labels are discarded sim-
ply, and then label correction is adopted to relabel unlabeled samples [25, 37,
19, 30, 47, 51]. This aims to give reliable pseudo-labels and support subsequent
model training so as to achieve better performance. For example, “SELFIE” pro-
posed by Song et al. [37] tried to perform label correction by considering model
predictions from past selecting clean labels. Also, Li et al. [19] “co-guessed”
pseudo-labels for unlabeled (noisy) samples via ensembling predictions of cou-
pled networks, while Yao et al. [47] employed label re-assignment to provide
pseudo-labels with the predictions of a temporally averaged model. Different
from those as mentioned above, we correct noisy labels with the aid of neigh-
boring labeled samples. This can relatively avoid confirmation bias that derives
from model predictions at individual samples.

3 The Proposed Method

Problem formulation. Learning with noisy labels seeks an optimal model
trained with a large-scale noisy dataset Dtrain = {(xi, yi)}Ni=1, where N is the
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Fig. 2. Our proposed steps for learning with noisy labels. Triangles and squares repre-
sent contrastive neighbors from two different classes while circles denote the candidate
samples in various steps. We assume the candidates belong to the class represented by
the squares. In this work, we design two steps called Neighborhood Collective Noise
Verification (NCNV) and Neighborhood Collective Label Correction (NCLC) to iden-
tify clean samples and relabel noisy ones respectively. Both steps leverage contrastive
neighbors to obtain richer and relatively unbiased predictive information for candidate
samples and thus mitigate confirmation bias

number of sample-label pairs and each pair consists of a training sample xi

and its associated label yi over C classes while whether the given label is noisy
or clean is unknown. During the training process, a sample is fed into a model
being trained, that is parameterized by θ and contains a feature extractor Φ and a
classifier with a softmax layer, to obtain its corresponding feature representation
Φ(xi) and class probabilities p(y|xi) respectively.

Contrastive neighbors.We contrast a candidate sample against its feature-
space nearest neighbors to enrich and diversify predictive information of the
candidate. Such nearest neighbors are called contrastive neighbors in this paper.
First, to compute feature similarity between a candidate sample xi and one of
its feature-space neighbors xj , we define a similarity function:

d(xi, xj) =
Φ(xi)

⊤Φ(xj)

∥Φ(xi)∥∥Φ(xj)∥
, (1)

where d (·, ·) denotes the cosine distance metric. Then, we set up a pairwise
connection between the two samples and quantify the discrepancy between their
label distributions through the Jensen-Shannon (JS) divergence as follows,

J(pi, pj) =
1

2
KL(pi||

pi + pj
2

) +
1

2
KL(pj ||

pi + pj
2

), (2)

where KL(·||·) represents the Kullback-Leibler (KL) divergence, and for sample
xi ( or xj), in different contexts, pi (or pj) represents either its probabilistic
label distribution predicted using a trained model or its given ground-truth label.
J(·, ·) returns values in the range of [0,1], and the use of JS divergence allows
us to measure the discrepancy between the probabilistic label distributions of
different samples. J(pi, pj) → 0 indicates that the label distributions of pi and
pj are very similar while J(pi, pj)→ 1 means the label distributions of these two
samples are of great difference.
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Overview. In this paper, we propose Neighborhood Collective Estimation
(NCE) to tackle learning with noisy labels. In detail, we first propose Neigh-
borhood Collective Noise Verification (NCNV) to identify noisy labels in Dtrain

and divide Dtrain into clean subset Dclean and noisy subset Dnoisy. Then, we
propose Neighborhood Collective Label Correction (NCLC) to relabel selected
samples from Dnoisy and form a new subset Drelab. Finally, we leverage aux-
iliary techniques to perform model fine-tuning so as to further optimize our
model. The diagram and the training procedure of our proposed model have
been summarized in Fig. 2 and Algorithm 1, respectively.

Algorithm 1: Learning with Noisy Labels based on Neighborhood Col-
lective Estimation
Input: Dataset Dtrain; Number of training epochs Ttr; Number of

warm-up epochs Twu; Learning rate η
Output: Optimal model parameter θ

1 for t→ 1 · · ·Ttr do
2 if t < Twu then

/* The warm-up step. */

3 WarmUp(Dtrain; θ). // Initialize the model with a "WarmUp" function.

4 else
/* The NCNV step. */

5 Use Eq. (5) to split Dtrain into clean samples Dclean and noisy
ones Dnoisy.

/* The NCLC step. */

6 Use Eq. (9) to relabel a subset of samples from Dnoisy and form
a new subset Drelab.

/* The model fine-tuning step. */

7 Randomly sample mini-batches from Dclean and Drelab.
8 Update model parameter θ by applying SGD with η to Eq. (13).

3.1 Neighborhood Collective Noise Verification

In an effort to identify label noise for the task of LNL, most recent research
establish sample selection criteria on the basis of predicted label distributions of
individual samples [10, 48, 15, 3, 19], thus it is hard for them to avoid confirmation
bias. Aiming at mitigating such bias, we formulate a novel noise verification func-
tion that determines whether a candidate is a noisy sample or not through the
estimation of its label inconsistency score, which measures the degree of inconsis-
tency between the label distributions of the candidate sample and its contrastive
neighbors. Specifically, given a candidate sample-label pair

(
x(c), y(c)

)
∈ Dtrain,

we first find its K nearest neighbors in the feature space using the cosine simi-
larity in Eq. (1) and then declare them as contrastive neighbors, as formulated
below.

{x(c)
k }, k = 1, · · · ,K ← KNN(x(c);Dtrain;K), (3)
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where KNN(x(c);Dtrain;K) is a function that returns K most similar samples
in Dtrain for the candidate sample x(c). Note that x(c) is temporarily removed
from Dtrain at this moment.

Then, the neighborhood-based label inconsistency score for the given label
of the candidate can be defined as follows,

Sver(x
(c), y(c)) =

1

K

K∑
k=1

J(py(y
(c)), p(y|x(c)

k )), (4)

where py(y
(c)) is the one-hot vector for the given ground-truth label y(c) of the

candidate sample and p(y|x(c)
k ) stands for the probabilistic label distribution of

the k-th contrastive neighbor predicted using a classification model trained with
all original samples including both clean and noisy ones. Here, instead of the
model prediction at the candidate sample, we make use of model predictions
at its contrastive neighbors, implicitly diversifying the predictive information of
the candidate sample and making it relatively unbiased.

After computing the label inconsistency score for every candidate sample, we
observe that if the given ground-truth label of a candidate sample is significantly
different from the model prediction of its contrastive neighbor samples, i.e.,
of large inconsistency, then the given label is very likely to be a noisy label.
Therefore, by setting a threshold τ , we can classify candidate sample x(c) as a
noisy sample if Sver(x

(c), y(c)) ≥ τ , and otherwise, a clean one. To this end, we
can obtain Dclean and Dnoisy as follows,

Dclean ← {(xi, yi) |Sver(xi, yi) < τ, ∀ (xi, yi) ∈ Dtrain},
Dnoisy ← {(xi, ) |Sver(xi, yi) ≥ τ,∀ (xi, yi) ∈ Dtrain}.

(5)

3.2 Neighborhood Collective Label Correction

After the neighborhood collective noise verification (NCNV) stage, we treat sam-
ples from Dclean and Dnoisy as labeled and unlabeled samples respectively by
simply discarding noisy labels to prevent noise memorization in the resulted
classification model. To leverage the unlabeled samples, some studies have taken
pseudo-labeling based methods to mine discriminative cues for model train-
ing [19, 47, 32], yet all of them resort to model predictions at individual un-
labeled samples, again tracing back to the unavoidable bias. On the contrary,
we set up neighborhood collective label correction (NCLC) stage, which corrects
noisy labels by relying on neighboring clean samples to obtain more reliable and
relatively unbiased pseudo-labels.

As in the NCNV stage, we first find K contrastive neighbors for each noisy
sample x(u) ∈ Dnoisy according to the ranked feature similarities between x(u)

and its neighbors, as formulated below. At this time, we require all its contrastive
neighbors to belong to the clean set Dclean.

{(x(u)
k , y

(u)
k )}, k = 1, · · · ,K ← KNN(x(u);Dclean;K), (6)
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where (x
(u)
k , y

(u)
k ) is a sample-label pair from Dclean. Unlike the NCNV stage,

the ground-truth label information of contrastive neighbors is required in this
stage.

Afterwards, we perform the following label consistency check between each
candidate sample and its contrastive neighbors to mine those noisy samples that
are similar to their neighboring samples in both the feature and label space,

Scor(x
(u)) =

1

K

K∑
k=1

J(p(y|x(u)), py(y
(u)
k )), (7)

where J(p(y|x(u)), py(y
(u)
k )) computes the discrepancy between the probabilistic

label distribution of the candidate sample x(u) predicted using the trained clas-
sification model, and the one-hot vector for the given ground-truth label of its
k-th contrastive neighbor. A large Scor(x

(u)) indicates that the predicted label
of the candidate sample is highly dissimilar to the clean and definite labels of its
contrastive neighbors, suggesting that the candidate sample may lie near the de-
cision boundary of the model. To be safe, we drop such candidate noisy samples
if Scor(x

(u)) ≥ τ ′, where a second threshold τ ′ is used. In contrast, a candidate
sample that satisfies Scor(x

(u)) < τ ′ is more likely to be farther away from the
decision boundary and could derive a more reliable pseudo-label from its con-
trastive neighbors. Therefore, we define a label correction function to generate
a new label for such a noisy sample as follows,

Correct(x(u)) = argmax
c

K∑
k=1

w(x(u); k) · py(y(u)k ), (8)

where we use w(x(u); k) = 1 − J(p(y|x(u)), py(y
(u)
k )) to approximate the proba-

bility that the candidate sample belongs to the same class as its k-th contrastive
neighbor, and c = 1, · · · , C indicates the c-th component of a label distribution
vector has the maximum value. For convenience, we set ŷ(u) = Correct(x(u)).

Finally, we define a new sample collection that contains all relabeled noisy
samples as follows,

Drelab ← {(xi, ŷi) |ŷi = Correct(xi), Scor(xi) < τ ′,∀xi ∈ Dnoisy}. (9)

3.3 Training Objectives

Once we have the clean set Dclean and relabeled set Drelab respectively from the
NCNV and NCLC steps, we use both datasets together to further optimize the
classification model through fine-tuning. Auxiliary techniques are incorporated
during model optimization. Since the initial classification model trained using
both clean and noisy samples memorizes noisy labels during its training process
and Mixup [50] can effectively attenuate such noise memorization, we first em-
ploy the mixup regularization to construct augmented samples through linear
combinations of existing samples from Dclean.
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Given two existing samples (xi, yi) and (xj , yj) from Dclean, an augmented
sample (x̃, ỹ) can be generated as follows,

x̃ = λxi + (1− λ)xj , ỹ = λpy(yi) + (1− λ)py(yj), (10)

where λ ∼ Beta(α) is a mixup ratio and α is a scalar parameter of Beta distribu-
tion. The cross-entropy loss applied to B augmented samples in each mini-batch
is defined as follows,

Lmix = −
B∑

b=1

ỹb log p(y|x̃b). (11)

In the NCLC stage, more reliable pseudo-labels are assigned to noisy samples
farther away from the decision boundary. To leverage these relabeled samples
during model optimization, we apply consistency regularization to them to fur-
ther enhance the robustness of the model [8]. Label consistency is a good choice
to achieve this goal because it encourages the fine-tuned model to produce the
same output when there are minor perturbations in the input [36]. In practice,
we enforce label consistency through the following loss:

Llab = −
B′∑

b′=1

py(yb′) log p(y|Aug(xb′)), (12)

where B′ relabeled samples (xb′ , yb′) ∈ Drelab are chosen in each iteration,
py(yb′) is the one-hot vector of the pseudo-label of xb′ , Aug(·) denotes the func-
tion that perturbs the chosen samples using Autoaugment technique proposed
in [7], and p(y|Aug(xb′)) is the predicted label distribution of the perturbed
sample. Proved by our experiments, this label consistency loss can be also ap-
plied to the selected clean samples from Dclean, especially under low noise ratios,
to better boost the performance of the model.

As stated above, the overall loss function for final model fine-tuning is a
combination of the cross-entropy and label consistency losses,

Loverall = Lmix + γLlab, (13)

where γ is a trade-off scalar to balance those two loss terms.

4 Experiments

4.1 Experimental Setup

Implementation. We highlight the effectiveness of our proposed NCE method
on four standard LNL benchmark datasets: CIFAR-10 [16], CIFAR-100 [16],
Clothing-1M [45] and Webvision-1.0 [23]. To be fair, we follow most details of
the training and evaluation processes from the previous work “DivideMix” [19],
such as network architectures, confidence penalty for asymmetric noise, and so
on. Our code is publicly available at https://github.com/lijichang/LNL-NCE.
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Table 1. Test accuracy (%) of our method (NCE) and existing state-of-the-art meth-
ods on the CIFAR-10 and CIFAR-100 datasets. (Mean accuracy and 95% confidence
interval over 3 trails)

Dataset CIFAR-10 CIFAR-100
Noise type Symmetric Assymetric Symmetric

Method/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9

Cross-Entropy [19] 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
F-correction [33] 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
Co-teaching+ [49] 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
PENCIL [17] 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
LossModelling [3] 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
DivideMix [19] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
ELR [24] 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
ProtoMix [21] 95.8 94.3 92.4 75.0 91.9 79.1 74.8 57.7 29.3
NGC [44] 95.9 94.5 91.6 80.5 90.6 79.3 75.9 62.7 29.8

NCE(best)
96.2 95.3 93.9 88.4 94.5 81.4 76.3 64.7 41.1
±0.09 ±0.12 ±0.22 ±0.98 ±0.70 ±0.37 ±0.28 ±0.56 ±0.54

NCE(last)
96.0 95.2 93.6 88.0 94.2 81.0 75.3 64.5 40.7
±0.22 ±0.23 ±0.30 ±1.21 ±0.96 ±0.27 ±0.07 ±0.86 ±0.42

Table 2. Test accuracy (%) of our method (NCE) and existing state-of-the-art methods
on the Clothing-1M dataset.

Meta-L. [20] DivideMix [19] ELR [24] ELR+ [24] NestedCoT. [6] AugDesc [30] NCE

73.5 74.8 72.9 74.8 74.9 75.1 75.3

CIFAR-10 and CIFAR-100 are two classic synthetic datasets for the LNL
problem. We follow “DivideMix” [19] to create the noisy types, i.e., “Symme-
try” and “Asymmetry”, and to set noise ratios, namely “0.20”, “0.50”, “0.80”
and “0.90” for “Symmetry”, and “0.40” for “Asymmetry”. Similar to existing
works [24, 19, 44], we also select PreAct Resnet [11] as the model backbone for
CIFAR-10/CIFAR-100. Then we train it using a SGD optimizer with a mo-
mentum of 0.9 and a weight decay of 5 × 10−4 respectively. To better initial-
ize our model, we set a warm-up step to perform supervised training on the
model over all available samples using a standard cross-entropy loss. For effec-
tiveness, this step is assigned a training period Twu = 10 (or 30) for CIFAR-
10 (or CIFAR-100). For adapting to diverse scenarios, we empirically set τ to
0.75 on CIFAR-10 or 0.90 on CIFAR-100, while τ ′ are usually set as 2 × 10−3

and 1× 10−2 on CIFAR-10 and CIFAR-100, respectively. With respect to other
hyper-parameters that are involved in NCE on CIFAR-10/CIFAR-100, we set
K = 20, Ttr = 300, γ = 1.0, η = 0.02, B = 128, B′ = 128 and α = 4.

Clothing-1M and Webvision-1.0 are two large-scale real-world noisy datasets.
Clothing-1M contains one million samples grabbed from the online shopping
websites and Webvision-1.0 only uses top-50 classes originating from the Google
image Subset of Webvision [23]. For Webvision-1.0, the results are reported
from testing our model on both the WebVision validation set and the ImageNet
ILSVRC12 validation set [38].

Baselines. We compare NCE with the following state-of-the-art algorithms
to address the LNL problem on CIFAR-10 and CIFAR-100: “Cross-Entropy” [19],
“F-correction” [33], “Co-teaching+” [49], “PENCIL” [17], “LossModelling” [3],
“DivideMix” [19], “ELR” [24], “ProtoMix” [21] and “NGC” [44]. Herein, “Cross-
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Table 3. Top-1 and top-5 test accuracy (%) of our method (NCE) and existing state-
of-the-art methods on the Webvision and ImageNet ILSVRC12 validation sets. The
models are trained on the training set of the Webvision-1.0 dataset

Method
WebVision ILSVRC12

top-1 top-5 top-1 top-5

F-correction [33] 61.1 82.7 57.4 82.4
Decoupling [28] 62.5 84.7 58.3 82.3
MentorNet [15] 63.0 81.4 57.8 79.9
Co-teaching [10] 63.6 85.2 61.5 84.7
DivideMix [19] 77.3 91.6 75.2 90.8
ELR [24] 76.3 91.3 68.7 87.8
ELR+ [24] 77.8 91.7 70.3 89.8
NGC [44] 79.2 91.8 74.4 91.0

NCE 79.5 93.8 76.3 94.1

Entropy” trains the model only with a supervised cross-entropy loss over train-
ing samples along with given noisy labels, and its results are copied from “Di-
videMix”. Besides methods stated above, we perform our comparison on Clothing-
1M with previous methods, including “Meta-Learning” [20], “ELR+” [24], “Nest-
edCoTeaching” [6] and “AugDesc” [30], where the augmentation strategy of our
method on this dataset refers to that of “AugDesc” for comparison fairness.
Moreover, we evaluate the proposed approach on Webvision-1.0 by newly adding
“Decoupling” [28], “MentorNet” [15], and “Co-teaching” [10].

4.2 Comparisons with the State of the Art

Synthetic noisy datasets. CIFAR-10 and CIFAR-100 are two representative
synthetic LNL benchmark datasets and we report results on these datasets in
Table 1. For fair comparison, we follow all the settings in [19, 44]. We can see
that our NCE outperforms all existing state-of-the-art methods on CIFAR-10
and CIFAR-100 under all settings of symmetric (from 20% to 90%) and asym-
metric (40% only) label noise ratio. In particular, on CIFAR-10, our method
surpasses the best performing baselines by 7.9% and 1.1% at the highest sym-
metric and asymmetric noise ratios, respectively. In addition, in comparison to
the performance of existing algorithms on CIFAR-100, NCE achieves the highest
classification accuracy under all four noise ratio settings by exceeding the second
best by 2.1%, 0.4%, 2.0% and 7.7%, respectively.

Real-world noisy datasets. To further verify the effectiveness of the pro-
posed NCE method, we also conduct experiments on real-world noisy datasets,
namely Clothing-1M and Webvision-1.0. Table 2 and Table 3 show performance
comparisons between NCE and existing algorithms when these two are respec-
tively used as the training set. We can observe that NCE achieves the highest
accuracy on Clothing-1M and an improvement of 0.2% over “AugDesc”, the best
performing method among existing ones. Likewise, on the challenging Webvision-
1.0, NCE again achieves higher performance than most existing methods in terms
of top-1 and top-5 accuracy. These results further verify that our proposed ap-
proach can effectively perform well on the real-world noisy datasets.
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Table 4. Ablation study of our method (NCE) on the CIFAR-10 and CIFAR-100
datasets under multiple label noise ratios. “repl.” is an abbreviation for “replaced”,
and Lce means the model is trained on the clean samples using a cross-entropy loss.
(Only one of three trails is selected for comparison in our NCE method)

M-(#)

Dataset CIFAR-10 CIFAR-100

MeanNoise type Symmetric Assymetric Symmetric
Method/Noise ratio 0.5 0.8 0.4 0.5 0.8

1 NCE 95.3 94.1 94.6 76.1 65.2 85.1
2 NCE repl. NCNV w/ GMM 94.8 79.0 89.7 75.8 56.8 79.2
3 NCE repl. NCLC w/ CT(0.95) 94.3 86.1 90.1 76.0 58.7 81.0

4 NCE repl. NCNV w/ GMM & w/o Llab 91.2 78.8 87.3 71.4 49.7 75.7

5 NCE w/o Llab 92.5 86.7 92.6 74.4 57.9 80.8
6 NCE repl. Lmix w/ Lce 93.3 78.5 89.0 73.2 55.2 77.8
7 NCE repl. perturbed w/ unperturbed in Eq. (12) 93.6 89.4 90.5 72.5 56.1 80.4

4.3 Analysis

To provide insights on how effectively each component of our algorithm works,
we conduct an ablation study by removing or replacing individual components.
Results of this ablation study are summarized in Table 4 and Fig. 3. Also, as
displayed in and Fig. 4, we perform feature visualization to further analyze
the proposed algorithm. All experiments are performed on both CIFAR-10 and
CIFAR-100 datasets.

Effectiveness of NCNV step. To examine the effectiveness of the NCNV
step in identifying clean/noisy labels, we replace NCNV with a well-known
GMM-based strategy proposed in “DivideMix” [19]. In Table 4, a comparison
between row M-(1) and row M-(2) reveals that our NCNV step significantly
outperforms the GMM-based strategy because the former is capable of iden-
tifying clean labels of harder samples. Specifically, Fig. 3(a) and (b) show the
power of our NCNV step in handling “hard” classes and “hard” samples in the
clean subset. A class is considered “hard” when multiple methods have an over-
all low clean sample identification accuracy in the class, while a “hard” sample
has a low probability (confidence) associated with its predicted class label. As
Fig. 3(a) shows, our method achieves higher sensitivity on “hard” classes, i.e.
“cat”, “bird” and “deer”, where both methods have the lowest identification ac-
curacy. In addition, Fig. 3(b) also shows that our NCNV step works significantly
better on “hard” samples, whose predicted class labels are associated with a low
probability (confidence).

Effectiveness of NCLC step. To better understand the performance of the
NCLC step in label correction, we replace NCLC with an existing label correction
scheme, called Confidence Thresholding (CT) [36], which relabels such samples
whose pseudo-labels have a confidence value exceeding a predefined threshold,
e.g., 0.95. According to row M-(3) of Table 4, NCLC clearly outperforms CT
under all noise ratio settings. In detail, Fig. 3(c) and (d) reveal that CT works
with few pseudo-labels in the early epochs. This is because, at that moment, the
model cannot fit the training samples well and thus unlabeled samples with low-
confidence predictions (< 0.95) would not be assigned pseudo-labels. Afterwards,
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Fig. 3. Analysis of ablation study results. (a) The accuracy of clean sample iden-
tification in various classes. (b) The accuracy of clean sample identification vs. the
probability (confidence) of predicted class label. (c) The evolution of the numbers of
pseudo-labels and correct pseudo-labels over epochs. (d) The evolution of label cor-
rection accuracy and test classification accuracy over epochs. The experiments for (a)
and (b) are performed on CIFAR-10 and CIFAR-100 respectively with the same noise
profile (Noise ratio: 0.80; Noise type: Symmetric). The blue bars represent the distribu-
tion of clean samples. (c) and (d) describe the same experiment, where we analyze the
label correction performance of NCLC and Confidence Thresholding (i.e., CT(0.95))
on CIFAR-10 (Noise ratio: 0.50; Noise type: Symmetric)

although plenty of unlabeled samples are given pseudo-labels as model training
goes on, the label correction accuracy drops at the same time. Ultimately, it
leads to lower performance than NCLC, which, on the other hand, obtains more
reliable pseudo-labels for unlabeled (noisy) points.

Necessity of mixup regularization. To verify the importance of the
mixup regularization, we remove it from our algorithm and then perform stan-
dard supervision over clean samples. As shown in row M-(6) of Table 4, this
change causes very serious performance degradation, indicating that the mixup
regularization is able to effectively attenuate noise memorization.

Necessity of consistency regularization. To investigate the effectiveness
of consistency regularization over unlabeled (noisy) samples, we conduct two ex-
periments. First, we disable Llab, meaning that the model is only trained over all
clean samples. By comparing row M-(5) with row M-(1) in Table 4, we observe
that the performance under all noise ratios drops by 1.7% to 7.6%, suggesting
that this consistency loss is important for the performance of the model, espe-
cially when the noise ratio is high. In the second experiment, we replace the
perturbed samples used in Eq. (12) with unperturbed ones to examine the need
of sample perturbations. As shown in row M-(7) of Table 4, the average accu-
racy drops considerably by 4.7%. This demonstrates that sample perturbations
in Eq. (12) play a significant role in realizing the full potential of consistency
regularization.

Feature visualization. We use t-SNE [27] to visualize the feature distri-
butions in both NCNV and NCLC steps. In Fig. 4(a)-(c), we show how the
distributions of misidentified samples across diverse classes evolve in the model
training process. It can be observed that as model training proceeds, the number
of misclassifications in the training data decreases gradually. The misclassifica-
tions are distributed near the boundaries of the clusters corresponding to the
classes, showing a good noise verification effect. Furthermore, in the NVLC step,
as illustrated in Fig. 4(d), most well-relabeled samples are located in the core re-
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(a) NCNV step, Epoch=30 (b) NCNV step, Epoch=60 (c) NCNV step, Epoch=300 (d) NCLC step, Epoch=300

Fig. 4. Feature visualization using t-SNE. We choose 10 representative classes on
CIFAR-100 (Noise ratio: 0.80; Noise type: Symmetric). (a)-(c) show how the distri-
butions of misidentifications in the NCNV step evolve during model training. They are
involved in samples from Dtrain corresponding to each representative class. In these
subfigures, points in black are misclassified samples, such as clean (or noisy) samples
misclassified as noisy (or clean) ones, in the training data, while samples in purple are
correctly identified ones. The accuracy of training sample identification in (a)-(c) is
82.2%, 94.7% and 95.2%, respectively. (d) shows the feature distributions of unlabeled
(noisy) samples in Dnoisy corresponding to 10 classes in the NCLC step, and points
in bright colors, black and grey respectively denote correctly relabeled samples, mis-
relabeled ones and dropped ones

gions of the clusters, while the mis-relabeled points and dropped ones are closer
to the boundaries of the clusters or peripheral areas between different clusters.
This meets our assumption stated in Section (3.2) that a candidate sample in
the NVLC step that satisfies Eq. (9) is more likely to be farther away from the
decision boundary of the model and could derive a more reliable pseudo-label.

5 Conclusions

In this paper, we have introduced a novel method called Neighborhood Collec-
tive Estimation (NCE) to tackle the problem of learning with noisy labels. In
this method, we re-estimate the predictive reliability of a candidate sample by
contrasting it against its feature-space nearest neighbors. This can enrich and
diversify predictive information associated with the candidate and also makes
such information relatively unbiased. The accuracy of noisy label identification
and correction can thus be improved, facilitating subsequent model training. In
detail, NCE consists of two steps, 1) Neighborhood Collective Noise Verification
(NCNV) for separating all training data into clean samples and noisy ones, and
2) Neighborhood Collective Label Correction (NCLC) for relabeling noisy sam-
ples. Extensive experiments and a thorough ablation study have confirmed the
superiority of our proposed method.
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