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ABSTRACT

Semantic search in 3D point clouds is a fundamental task for Spatial Intelligence
and embodied AI, yet it becomes particularly challenging when queries involve
precise spatial relationships and current large-scale vision-language models often
falter in these scenarios. Their reliance on monolithic, implicit attention mecha-
nisms struggles to disentangle semantic attributes match from complex spatial ge-
ometric constraints, leading to unreliable localization. To address this issue, we in-
troduce G-Verifier, a geometric verification module that enhances existing 3DVG
frameworks by explicitly decoupling the semantic attributes match and spatial rea-
soning processes. Our approach realizes a Propose, Select, then Verify paradigm,
where G-Verifier acts as a post-hoc re-ranker, adjudicating semantically-filtered
candidates based on explicit geometric facts. The core of our module is the Rotary
Spatial-Relationship Embedding (RoSE), a structured representation that dynam-
ically fuses high-level object semantics with an explicit 3D geometric encoding.
We train this module using a specialized language-alignment strategy on our new
large-scale dataset, 3D-SpAn, which contains 285,177 structured spatial relation-
ship annotations. Experiments on a challenging, manually-verified benchmark
demonstrate the effectiveness of our approach. Our module itself achieves high
F1-score(0.96) on a relational understanding proxy task, validating its strong dis-
criminative power. When integrated into the end-to-end pipeline, G-Verifier im-
proves grounding accuracy, increasing Acc@0.50(+2.50% over a strong baseline.
Our work validates that a decoupled verification approach is a promising direc-
tion for improving the geometric reasoning capabilities of large-scale 3D vision-
language models.

1 INTRODUCTION

Spatial Intelligence is a cornerstone of autonomous systems such as robotics (Chen et al. (2024b))
and augmented reality (Baruch et al. (2021)), allowing them to understand and interact with the
physical world. A critical aspect of this intelligence is the ability to interpret raw 3D sensor data
(Cai Y (2023)). Among the most common and informative 3D representations are point clouds,
typically captured by LiDAR and other depth sensors (Qi et al. (2017)). Each point corresponds to a
spatial location (x, y, z) on and is often augmented with attributes such as RGB color, intensity, and
semantic labels. Collectively, millions of such points form a detailed geometric scaffold of a real-
world environment, from a single object to an entire scene (Ling et al. (2023)), enabling machines to
perceive environments in their native 3D structure. Within a point cloud, distinct objects manifest as
dense clusters of points (Sarker et al. (2024)), and their spatial relationships are implicitly encoded
by the relative distances and orientations between these clusters (Shen et al. (2023)).

A key task for activating spatial intelligence is the Semantic Search of point clouds. The main idea
behind this task is to identify a specific object within a point cloud scene based on a language de-
scription (Liu et al. (2024)). In computer vision, this task is widely known as 3D Visual Grounding
(3DVG). The ability to perform 3DVG with high precision is vital for a range of impactful applica-
tions. For instance, a service robot in a hospital must be able to unambiguously execute commands
like “bring me the medical chart on the counter, not the one on the cart”. Similarly, an augmented
reality system for industrial maintenance needs to correctly highlight “the pressure valve located be-
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Locate the entrance.Locate the chair near
the entrance.

Find the small withdrawer
between the table and the sofa

Find the small item between
the table and the sofa

Find the small thing between
the table and the sofa

Find the small object between
the table and the sofa

a) Geometric Ambiguity b) Lexical Over-reliance c) Semantic-Geometric Conflict

Locate the monitor
on the brown table.

Figure 1: Common Issues for 3DVG Models on Implicit Reasoning

hind the main pump” for an engineer (Attaran & Celik (2023)). Success in these applications hinges
on a robust understanding of spatial relationships (Chen et al. (2022); Wang et al. (2023)).

While current models show remarkable progress (Chen et al. (2020); Achlioptas et al. (2020)), their
ability to reason spatial relationships remains a significant bottleneck. Existing methods perform
well when handling object-description semantics. However, once spatiotemporal semantics are in-
troduced, the accuracy of object queries drops significantly if the descriptions are intricate, ambigu-
ous, or conflict with the underlying scene geometry. (Xu et al. (2024b)). As illustrated in Figure 1,
challenging cases for state-of-the-art 3DVG models reveal several systematic failure modes:

Geometric Ambiguity arises when spatial constraints are underweighted in the final deci-
sion: a model can correctly locate the functionally defined entrance but still fail to
ground the chair near the entrance, as its choice is dominated by visual similarity
rather than precise relational reasoning.

Lexical Over-reliance. Grounding queries such as the small withdrawer based on specific
keywords but failing when the same query is rephrased with more general terms like item or
object, exposing a lack of compositional understanding.

Semantic–geometric Conflict occurs when the query specifies attributes inconsistent with the scene.
For example, the model is asked to find a monitor on the brown table. Faced with a
conflict (the only monitor is actually on a white table), it ignores the term of object attribute brown
and hallucinates an incorrect grounding, failing to report the non-existence of the object.

Collectively, these failures highlight a core limitation, i.e., current models rely on monolithic, im-
plicit reasoning mechanisms that entangle semantic interpretation with geometric validation, pre-
venting them from reliably handling complex spatiotemporal semantics and undermining their ro-
bustness in human–robot interaction.

The current methodologies for spatial reasoning in 3DVG can be broadly categorized into two
paradigms in the following: 1) Implicit Modeling, where end-to-end foundation models are expected
to learn spatial relationships as an emergent capability from massive data (Chen et al. (2024a); Cheng
et al. (2024); Wu et al. (2024a); Chen et al. (2024c)); 2) Explicit Modeling, which seeks to inject
more structure by either converting the scene into a symbolic representation like a 3D Scene Graph
(Armeni et al. (2019b); Hao et al. (2024)), or by directly embedding geometric features into the
model’s architecture (Ning et al. (2025)). Although distinct, both paradigms typically perform se-
mantic and geometric evaluations in a coupled manner, which contributes to the fragility we observe.

Inspired by the success of re-ranking in Information Retrieval (IR) (Geigle et al. (2022)), we ex-
plore a third, emerging paradigm Decoupled Verification. The core insight is to separate the what
(semantic understanding) from the where (geometric verification), moving beyond the limitations
of both monolithic implicit models and coupled explicit approaches. We achieve this by proposing
G-Verifier, a module that acts as an explicit geometric fact-checker. Instead of attempting to solve
the entire problem in a single step, our framework first uses a powerful baseline model to select a
pool of semantically plausible candidates. Then, G-Verifier combines its geometric verification with
the baseline’s semantic understanding to re-rank these candidates. This ensures the final selection is
guided by spatial constraints while still respecting the strong semantic priors of the baseline model.

However, developing the geometric verification module is non-trivial, which includes several key
challenges as follows.

1) Spatial Relation Representation. Create a representation of abstract spatial relationships that is
both expressive and compatible with object features. Our solution is the Rotary Spatial-Relationship
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Embedding, a structured representation that dynamically fuses object-level features with a special-
ized 3D geometric encoding derived from the objects’ relative positions.

2) Supervision Mechanism. The training module is not effective. Existing 3D grounding datasets
lack the structured, explicit annotations of relational components (e.g., target, anchor, and relation
type) required for our decoupled approach. To overcome this foundational data gap, we first con-
structed a large-scale dataset with 285,177 spatial relationship instances by fusing and improving
existing resources. Instead of a naive classification objective, we devise a specialized language
alignment strategy. This approach enables the module to learn a rich representation space for fine-
grained similarity matching, which is crucial for its role as a verifier at inference time.

3) Module Robustness. It is challenging to ensure that the module remains stable and does not
compromise performance in straightforward scenarios. We address this by designing a cautious re-
ranking mechanism. It ensures geometric evidence only overrides the baseline’s initial judgment
when the spatial relationship is clear and unambiguous, thereby preserving high accuracy in simpler
queries.

Our main contributions are summarized as follows:

• We propose a novel geometric verification module G-Verifier that facilitates a robust propose,
select, then verify paradigm, effectively decoupling geometric validation from semantic selec-
tion.

• We design a novel Rotary Spatial-Relationship Embedding that fuses object semantics with ex-
plicit 3D geometric information, enabling robust and fact-based re-ranking of candidates.

• We introduce a dedicated language-alignment strategy that enables G-Verifier to learn abstract
spatial concepts from semantic targets.

• We construct and release a large-scale 3D spatial relationship annotation set with 285,177 struc-
tured spatial relationship instances, providing a solid foundation for training and future research.

2 BACKGROUND

2.1 POINT CLOUDS AND 3D SCENES

Point cloud data is the primary modality for representing 3D spatial environments, typically captured
by sensors such as LiDAR or RGB-D cameras (Qi et al. (2017); Cai Y (2023)). It is a set of discrete
points in a three-dimensional coordinate system, formally denoted as P = {pi}Ni=1, where each
point pi ∈ R3+d includes its geometric coordinates (x, y, z) and optionally d additional attributes
such as color or normal information.

Figure 2: A Real-world 3D Scene Represented by Point Clouds
Millions of such points form a detailed geometric scaffold of a real-world environment, from a single
object to an entire scene (Dai et al. (2017); Armeni et al. (2016)). Within a scene, a physical object
instance ok is represented by a subset of these points, ok ⊂ P . The spatial relationships between
objects are therefore implicitly encoded by the relative geometric arrangement of these point subsets.

Figure 6 illustrates how a real-world 3D scene is represented as point cloud data. The leftmost panel
shows an RGB image of an indoor environment. The middle panel depicts a sparse geometric point
cloud, capturing the basic structure of the scene. The rightmost panel presents a dense point cloud
with color attributes, providing a richer, more detailed representation for semantic analysis. This
type of data forms the basis for tasks involving semantic search and spatial reasoning, as will be
elaborated in the following sections.
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Query: the brown
wooden chair

Query: the wooden chair to
the right of a sofa

(a) Standard Semantic Search (b) Spatial Semantic Search
Figure 3: Distinction between Standard Semantic Search and Spatial Semantic Search

2.2 SEMANTIC SEARCH IN 3D POINT CLOUD SCENES

Definition 1 (Semantic Search) A semantic search query Qs is to identify a specific target object
o∗ from the set of all objects O = {o1, ..., ok} in a point cloud scene P , based on a natural language
description L. (Liu et al. (2024))

Semantic search, commonly referred to as 3DVG in the computer vision field, has largely con-
verged on a two-stage Propose-then-Select paradigm (He et al. (2021); Luo et al. (2022)). At first, a
language-agnostic detector, such as PointRCNN (Shi et al. (2019)), generates a set of object propos-
als from the point cloud. Second, a language-guided selection module, often based on multimodal
Transformers (Chen et al. (2020); Achlioptas et al. (2020)), matches the query L against these pro-
posals to identify the target object. This paradigm serves as the foundation upon which our work
builds and extends.

Figure 3(a) depicts a standard semantic search that find the brown wooden chair. It relies
solely on the target object’s intrinsic attributes for localization. However, our work extends the
semantic search by focusing more on the accuracy of spatial reasoning. For example, in Figure 3(b),
the query find the wooden chair to the right of a sofa involves grounding a
target object based on its spatial relationship to a distinct anchor object. We formally define spatial
semantic search in the following section.

3 PROBLEM SETTING

While semantic search primarily targets object attributes, our focus is on queries where the final
localization decision is critically dependent on understanding the objects’ spatial relationships.

Definition 2 (Spatial Semantic Search) Let a 3D scene P containing a set of distinct object in-
stances O = {o1, o2, ..., ok}. A query Qs2 for semantic search with spatial reasoning is a natural
language description L that can often be deconstructed into a semantic triplet L = {Ot, R,Oa}. In
this triplet, Ot is the description of a target object, Oa describes one or more anchor object(s), and
R represents the spatial relation that must hold between them.

In this work, we scope the spatial relation R to a comprehensive set of 12 fundamental types. We
argue that this set is representative of the majority of spatial language used in human-centric scene
descriptions. It is designed to cover a wide spectrum of cognitive spatial primitives, including: (1)
projective relations that are dependent on a viewpoint (e.g., left of, behind), (2) topological
relations describing contact or containment (e.g., on, inside), (3) a general proximity relation, and
(4) more complex relations involving multiple objects (e.g., between). The full list of relations we
address is: left of, right of, front of, behind, above, on, under, below, inside,
between, surrounded by, and proximity. This categorization is consistent with large-scale
empirical findings on human-generated descriptions in datasets like Visual Genome (Krishna et al.
(2017)).

The main objective is to find a function f , that maps the scene and a query Qs2 to the correct target
object instance: o∗t = f(P,L), where o∗t ∈ O is the unique instance that satisfies the composite
constraints defined by the triplet {Ot, R,Oa}.
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Q1

Q2

Q3

Q4

Q(N-1)

QN

······
·

L1

Object Embeddings
Input: Point Cloud Scene Semantic Selection Stage

The Object [Ot] has been located

Top-5 Semantic Candidates for [Ot]
via semantic alignment

Propose Stage

Baseline Model

L2
…

LK

Language Embeddings L

Baseline Object Proposing Model

Geometric Verification Stage
Rerank the Top-5 Semantic Candidates for [Ot]

G-Verifier

Constructing RoSE
Reranking
with RoSE

G-Verifier

The scene is discretized by FPS sampling points 
(diamonds) to anchor object representations.

Figure 4: An overview of our Propose, Select, then Verify framework.

The success of this task is typically measured by the Intersection-over-Union (IoU) between the
predicted 3D bounding box of o∗t and that of the ground truth. This formulation is general; existing
monolithic models attempt to learn the function f as a single, end-to-end neural network, which
often leads to a fragile coupling of semantic and geometric reasoning.

4 GEOMETRIC VERIFICATION MODULE

To address the fragility of existing 3D semantic search models in spatial reasoning, we introduce
G-Verifier, an explicit geometric verification module. Our approach is built upon a decoupled Pro-
pose, Select, then Verify paradigm, designed to augment powerful, pre-trained foundation models.
This section first presents the overall framework of this paradigm, then details the baseline imple-
mentation of the first two stages, and finally elaborates on the architecture, training, and inference
mechanism of G-Verifier module.

4.1 OVERALL FRAMEWORK

Our method deconstructs the complex task of spatial relation grounding into a three-stage pipeline,
as illustrated in Figure 4. The process starts with a standard baseline model, which performs the
first two stages. In the propose stage, a 3D detector generates a set of class-agnostic instance em-
beddings from the input point cloud scene. In the semantic selection stage, an enhanced grounded
3D LLM parses the language query L to identify the textual descriptions for both the target (Ot)
and anchor (Oa) objects. It then grounds these descriptions in the scene, producing ranked lists of
Top-K semantic candidates for both the target object Ct, and the anchor object Ca. Our module then
re-evaluates Ct and Ca through its internal components based on the query’s spatial constraints R.
Using a heuristic scoring mechanism that combines the baseline’s semantic confidence with its own
geometric verification score, G-Verifier produces a final, geometrically consistent re-ranked list of
target candidates C ′

t. The top candidate from this list, where c′t1 ∈ C ′
t, is then returned as the final

grounded object o∗t .

4.2 THE BASELINE PROPOSE-SELECT PIPELINE

Our framework leverages a state-of-the-art Grounded 3D-LLM(Chen et al. (2024c)), which follows
a query-based Propose-Select paradigm. It first generates a set of object instance representations
from the point cloud, and then uses an LLM to select the candidate that best matches a language
query. A detailed description of this baseline is provided in Appendix A.3.
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4.3 G-VERIFIER: OUR DECOUPLED VERIFICATION MODULE

G-Verifier performs the final, explicit geometric verification stage. It takes the top-k semantically-
ranked candidates from the baseline and re-ranks them based on the spatial relationship R in query.

4.3.1 ROTARY SPATIAL-RELATIONSHIP EMBEDDING (ROSE)

To achieve reliable geometric verification, a structured representation that can precisely capture the
relationship between a target-anchor pair is required. Our approach is conceptually analogous to the
powerful retrieve-and-rerank architectures common in IR Geigle et al. (2022), where an efficient
retriever first fetches plausible candidates, and a powerful re-ranker then meticulously examines this
small set to produce a high-precision ranking. G-Verifier functions as this specialist re-ranker, and
the Rotary Spatial-Relationship Embedding (RoSE) is its core component.

RoSE is not a static feature but a dynamically constructed composite embedding designed to facili-
tate a deep, cross-modal fusion of a specific target-anchor pair with a relational constraint. As shown
in Figure 5, a RoSE vector is composed of four key parts:

• Target and Anchor Context: The instance embeddings (Ot, Oa) of the candidate pair, which
provide rich, instance-level semantic and visual information.

• Explicit 3D Geometric Encoding: A high-dimensional feature vector, Fgeom, derived from the
candidates’ relative position vector, ∆p. We employ a 3D extension of Rotary Position Encoding
(RoPE)(Su (2021)) for this purpose, as its formulation provides a natural inductive bias for learn-
ing relational representations that are independent of the objects’ absolute positions. The detailed
mathematical formulation of our 3D RoPE is provided in Appendix A.4.

• Learnable Relation-Type Embedding: A learnable embedding, ER, that acts as a semantic anchor
for each of the 12 predefined relation types (e.g., above, next to).

These four components are then fused into the final RoSE vector using a lightweight MLP, as de-
tailed in the following section.

4.3.2 FEATURE FUSION STRATEGY IN ROSE

A crucial design choice is how to integrate the four distinct feature components including the target
instance embedding Ot, the anchor instance embedding Oa, the geometric encoding Fgeom, and the
relation-type embedding ER into a single, cohesive RoSE vector. We employ a non-linear fusion
approach using a Multilayer Perceptron (MLP) Haykin (1994) to learn the complex interactions
between these semantic and geometric features.

The components are first concatenated and then processed by a two-layer MLP, which includes a
ReLU non-linearity Agarap (2018) to model complex dependencies. This process can be formally
expressed as:

RoSE = MLPfusion (Concat(Ot, Oa, Fgeom, ER)) (1)

This MLP-based strategy allows the model to learn a rich, non-linear mapping from the constituent
features to the final relational representation. It provides the flexibility to model how the inter-
pretation of geometric features might be modulated by the semantic context of the objects and the

Query: the wooden chair to
the right of a sofa

(a) Inputs (b) Encoding (c) Fusion (d) Output

Target Object Embedding 𝑂!

Anchor Object Embedding 𝑂"

3D RoPE Feature 𝐹#$%&

Relation Embedding 𝐸!

Feature Concatenation
and

Transformation
RoSE

Δ𝑃 = 𝑃𝑡 − 𝑃𝑎 3D RoPE Encoder

Relation Type
Embeddings

(1, 128)

(1, 128)

(1, 128)

(1, 128)

(1, 512)

(1, 768) (1, 128)T

(768, 128)

512 X 256 X128 (1, 128)

Figure 5: Architecture of constructing a single RoSE

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

high-level relational concept. A detailed breakdown of the MLP architecture is provided in Ap-
pendix A.9.

4.4 LEARNING BY DISCRIMINATING ROSE

The core challenge in training G-Verifier lies in learning the abstract concept of a spatial relation. A
naive classification objective would suffer from a train-inference discrepancy. We therefore frame
the training as a contrastive alignment task. Our goal is for our structured, geometry-infused RoSE
representation to align with the BERT embedding of its corresponding natural language relation
phrase Vbert.

To achieve this, we first construct a training set of positive triplets (Ot, Oa, Vbert). As our source
datasets only provide ground truth for the target object, we devise an efficient ‘inverse querying’
pseudo-labeling strategy to automatically annotate the anchor object for over 296,000 relation in-
stances. To create a discriminative learning signal, we then employ a structured hard negative mining
strategy (HSC Mining), which generates plausible but incorrect configurations by perturbing the re-
lation type or the object pair within the same scene. The detailed procedures for our pseudo-labeling
and negative mining strategies are provided in Appendix A.5.

Finally, we train the G-Verifier using an in-batch contrastive loss, guided by an asymmetric semantic
target (detailed in Appendix A.6). For each positive RoSE representation, RoSE+

i , the objective is
to maximize its similarity with its true language target, V +

berti , while minimizing its similarity to all
other language targets in the batch, which act as distractors. This is formalized for each positive
sample i as:

Li = − log
exp(sim(RoSE+

i , V
+

berti)/τ)∑B
j=1 exp(sim(RoSE+

i , Vbertj )/τ)
(2)

where τ is a temperature hyperparameter. This training objective encourages the model to learn a
rich and discriminative embedding space.

4.5 INFERENCE WITH G-VERIFIER

At inference time, G-Verifier functions as a re-ranking module that refines the initial candidate list
from the baseline model based on an explicit geometric evaluation. The process consists of three
main steps.

1) Preparation of Inputs. The process begins by parsing the user’s language query L into a struc-
tured triplet {Ot, Rtext, Oa} and encoding the relation phrase Rtext into a target vector, Vtarget, using
our frozen BERT model. We then perform two separate queries to the baseline’s semantic selection
module with Ot and Oa to obtain the top-k candidate lists Ct and Ca, respectively.

2) Geometric Verification and Scoring. Our verification is constrained to the top-k candidates in
Ct and Ca to ensure computational efficiency. We iterate through all possible target-anchor pairs
(cti, caj) from these lists, construct their RoSE, and compute a geometric verification score via
cosine similarity with the language target:

Scoregeom(i, j) = Sim(RoSE(i, j), Vtarget) (3)

3) Re-ranking via Weighted Score Fusion. To effectively balance the baseline’s semantic confi-
dence with our geometric score, we employ a weighted fusion strategy. For each target candidate
cti, we first compute its optimal, confidence-weighted geometric evidence, Scorebest

geom(cti), by find-
ing the anchor candidate that maximizes the product of the geometric score and the anchor’s own
semantic confidence. The final score is then a linear interpolation of the target’s initial semantic
score, sti, and this geometric evidence:

Scorefinal(cti) = (1− α) · sti + α · Scorebest
geom(cti) (4)

where α is a balancing hyperparameter. The candidate with the highest final score is selected.
This fusion strategy allows geometric evidence to act as a powerful refinement signal, while still
respecting the baseline’s robust semantic judgments. The detailed rationale for this fusion approach
and our hyperparameter choices are provided in Appendix A.10.
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5 EXPERIMENTS

To systematically evaluate our proposed G-Verifier, we conduct two sets of experiments. First,
we perform a detailed component analysis to validate the design of our RoSE representation in an
isolated setting. Second, we integrate G-Verifier as a post-hoc re-ranking module with a strong
baseline to assess its impact on the end-to-end spatial reasoning task. All experiments are conducted
on our newly constructed 3D-SpAn dataset. A detailed description of 3D-SpAn is provided in Ap-
pendix A.12 and the implementation details of experiment environment and a full description of our
evaluation metrics are provided in Appendix A.13.

5.1 ANALYSIS OF THE ROSE DESIGN

To validate the design choices within RoSE, we conduct a progressive analysis by starting with a
naive baseline and incrementally adding our key components. We evaluate these configurations on
a proxy classification task, with fine-grained F1-score results summarized in Table 1.

The results of our component analysis clearly demonstrate a synergistic relationship between se-
mantic and geometric priors. A naive baseline using only the instance embeddings (IE) achieves a
0.25 F1-score, confirming that pre-trained features contain some implicit spatial context, but it is
insufficient for robust reasoning. Augmenting this baseline with our learnable Relation Type Em-
bedding (Etype) causes a dramatic leap in performance to 0.95, establishing this high-level semantic
prior as the most critical component for the task. While adding only the explicit 3D RoPE encod-
ing yields a more modest gain on its own, its crucial role is revealed in the full model. The final
RoSE, which combines all three components, achieves the best performance across every relation
category, with RoPE providing the most significant boosts on geometrically ambiguous relations
like left_of and right_of. This progressive analysis validates our design, proving that the
synergy of implicit context, a dominant semantic anchor, and an explicit geometric signal is essen-
tial for building a powerful relational representation. A more detailed discussion of these results is
provided in Appendix A.15.

Table 1: Fine-grained F1-score analysis of our RoSE design across 12 spatial relation types. We pro-
gressively add relational priors to a naive baseline. The highest score in each column is highlighted.
Full Precision and Recall results are available in Appendix A.8.
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(1) Naive (IE Only) 0.15 0.16 0.12 0.13 0.22 0.28 0.19 0.21 0.25 0.08 0.06 0.30 0.17 0.25
(2) + 3D RoPE (IE + RoPE) 0.22 0.24 0.18 0.19 0.25 0.30 0.22 0.24 0.26 0.10 0.07 0.32 0.20 0.34
(3) + Etype (IE + Etype) 0.82 0.81 0.79 0.78 0.94 0.96 0.92 0.93 0.90 0.75 0.70 0.97 0.80 0.95

(4) Full (RoSE) 0.88 0.87 0.85 0.84 0.95 0.97 0.93 0.94 0.91 0.81 0.75 0.98 0.85 0.96

5.2 END-TO-END RE-RANKING PERFORMANCE

To evaluate our method’s real-world impact, we integrate G-Verifier as a post-hoc re-ranking module
with a state-of-the-art Grounded 3D-LLM, using our own re-implementation as a controlled baseline.
We conduct a comprehensive evaluation on a challenging, manually-verified 1,000-sample test set,
employing both standard grounding metrics and a suite of Information Retrieval metrics.

Overall Performance and Robustness Analysis. Table 2 presents the primary results of our end-to-
end evaluation. G-Verifier achieves an improvement on standard top-1 grounding metrics, boosting
Acc@0.50 by a substantial +2.50% and Acc@0.25 by +2.60% over the strong baseline. We further
analyze the module’s behavior on two critical subsets of the data. The first is the Top-1 Rectification
Rate, which measures how often G-Verifier can correct a failure by the baseline. For the 510 cases
where the baseline’s initial predictions with IoU below 0.25, our module successfully elevated a
different candidate to the top-1 position with an IoU of 0.25 or higher in 6.27% of these instances.
Achieving a Top-1 correction is a highly challenging task, as it requires not just a minor improvement
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but a decisive re-ordering of the candidate list. The second diagnostic is the Non-Deterioration Rate,
which assesses the module’s safety. For the 490 cases where the baseline was already successful
(IoU ≥ 0.25), our module preserved a successful outcome in 98.78% of instances. These diagnostic
results confirm that G-Verifier acts as a safe and effective enhancement, primarily targeting the
baseline’s failures while rarely disturbing its successes.

Analysis of Ranking Quality and Performance by Relation Type. To provide a more holistic
assessment beyond Top-1 accuracy, we evaluate overall ranking quality using standard IR metrics.
The results in Table 3a demonstrate a systematic improvement, with a significant gain in Mean Re-
ciprocal Rank (MRR) confirming that the correct object is, on average, ranked higher. A fine-grained
analysis, broken down by relation type in Table 3b, further reveals where G-Verifier’s strengths lie.
The most substantial improvements are seen in categories with objective geometric cues, such as
on (+4.17% Acc@0.25) and proximity (+4.14%). These are precisely the types of topological
and proximity-based relations our explicit geometric encoding is designed to excel at. In contrast,
performance on more viewpoint-dependent relations like ‘behind’ is more modest. This indicates
that our G-Verifier is highly effective at verifying objective geometric facts, while modeling more
subjective, orientation-dependent relations remains a challenging frontier.

Table 2: Overall performance of G-Verifier on our curated 1,000-sample benchmark. We report
standard grounding metrics (Acc@k) and key IR metrics (MRR, NDCG@k).

Grounding IR

Method Acc@0.25 Acc@0.50 MRR NDCG@1 NDCG@3

Grounded 3D-LLM 49.00% 46.30% 0.5038 0.4720 0.5435
+ G-Verifier 51.60% 48.80% 0.5260 0.4984 0.5627

Improvement +2.60% +2.50% +0.0222 +0.0264 +0.0192

Table 3: Detailed analysis of re-ranking performance on our benchmark. Evaluation with standard
IR metrics and performance improvement (Acc@0.25) broken down by major relation types.

(a) IR Metrics.

Metric Baseline Reranked Improv.

MRR 0.5038 0.5260 +0.0222

MAP@1 0.3140 0.3410 +0.0270
NDCG@1 0.4720 0.4984 +0.0264

MAP@3 0.4327 0.4583 +0.0257
NDCG@3 0.5435 0.5627 +0.0192

MAP@5 0.4738 0.4964 +0.0227
NDCG@5 0.6207 0.6348 +0.0141

(b) Improvement by Relation Type.

Relation Samples Baseline Improv.

on 216 56.48% +4.17%
proximity 266 43.98% +4.14%
under 26 53.85% +3.85%
above 32 53.12% +3.12%
left of 133 44.36% +2.26%
front of 104 51.92% +0.96%
right of 151 48.34% +0.00%
behind 55 47.27% +0.00%
surrounded by 10 40.00% +0.00%

6 CONCLUSION

This paper tackles the challenge of robust spatial reasoning in 3D point clouds. We identified the
entanglement of semantic and geometric reasoning in monolithic models as a core limitation and
proposed G-Verifier, a novel geometric verification module built upon a decoupled Propose, Select,
then Verify paradigm. The core of module is RoSE, a structured representation that fuses instance-
level semantic context with an explicit, view-invariant geometric encoding. Experiments, conducted
on a challenging, manually-verified benchmark, demonstrate that this decoupled approach is highly
effective. G-Verifier significantly improves the top-1 grounding accuracy over a strong baseline,
boosting Acc@0.50 by +2.50%. Furthermore, a holistic analysis with metrics confirms that our
module systematically enhances the overall ranking quality of the baseline’s predictions. This work
validates that a decoupled geometric verification stage can effectively and safely complement the
implicit reasoning of large multimodal models to resolve complex spatial reasoning queries.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. Our work focuses on foundational algorithmic advancements
and we do not foresee direct negative societal consequences. We outline key ethical considerations
below.

Our 3D-SpAn dataset is derived entirely from existing public academic datasets (e.g., ScanNet), and
our process does not involve new data collection from human subjects. We have taken care to ensure
our released annotations do not contain personally identifiable information.

We acknowledge that, like any AI technology for spatial understanding, our methods could poten-
tially be applied in dual-use scenarios. Our research is intended for positive applications such as
assistive robotics.

Our framework relies on large, pre-trained language and vision models, which may inherit societal
biases from their training data. While a full audit is beyond this paper’s scope, we acknowledge that
mitigating such biases in 3D vision-language systems is an important area for future research.

REPRODUCIBILITY STATEMENT

We have made a concerted effort to ensure the reproducibility of our work. All key components
required for reproduction are detailed throughout the paper and its supplementary materials.

• Source Code and Models: We will release the full source code for our G-Verifier module, the
data construction pipeline, and all evaluation scripts. Pre-trained weights for our G-Verifier will
also be made available. The code will be hosted on an anonymous repository for review and will
be transferred to a public GitHub repository upon publication.

• Dataset: Our newly constructed 3D-SpAn dataset, which forms the basis of our training, will
be publicly released. We provide a detailed description of the data construction process, includ-
ing the source datasets, the LLM-based parsing pipeline, and our pseudo-labeling strategy, in
Section A.12 and a more detailed prompt in Appendix A.17.

• Implementation Details: We provide comprehensive implementation details for all experi-
ments. The architecture of our G-Verifier and its core component, RoSE, are detailed in Sec-
tion 4.3. Key hyperparameters for both the component analysis training and the final end-to-end
re-ranking are provided in Appendix A.9.

• Evaluation: The evaluation protocol for our end-to-end experiments, including the construction
of our manually-verified 1,000-sample benchmark and the use of Information Retrieval metrics,
is described in Section 5.2. The code for reproducing all tables and figures in the paper will be
included in our code release.
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A APPENDIX

A.1 BACKGROUND ON 3D SEMANTIC SEARCH AND POINT CLOUD DATA

This section provides background on the core concepts and tasks relevant to our work.

Point Clouds and 3D Scenes A point cloud is the primary data modality for representing 3D
spatial environments, typically captured by sensors like LiDAR or RGB-D cameras Qi et al. (2017).
It is a set of vertices in a three-dimensional coordinate system, P = {pi}Ni=1, where each point
pi ∈ R3+d includes its geometric coordinates (x, y, z) and optional attributes. Millions of such
points form a detailed geometric scaffold of a real-world environment, as illustrated in Figure 6.
Within a scene, a physical object instance ok is represented by a subset of these points.

Figure 6: A real-world 3D scene represented as a point cloud. (a) RGB image. (b) Sparse geometric
point cloud. (c) Dense point cloud with color.

Standard Semantic Search (3D Visual Grounding) A fundamental task that leverages this repre-
sentation is semantic search, commonly known as 3D Visual Grounding (3DVG) in computer vision
Liu et al. (2024). The goal is to identify a target object o∗ from all objects O in a scene P based on a
language description L. The dominant approach follows a two-stage Propose-then-Select paradigm
He et al. (2021); Luo et al. (2022), which serves as the foundation upon which our work builds.

A.2 RELATED WORK

3D Visual Grounding 3D Visual Grounding (3DVG)(Liu et al. (2024)) seeks to link natural lan-
guage queries to specific objects within a 3D scene. The field has largely transitioned from early
methods relying on handcrafted features to end-to-end, Transformer-based paradigms. Pioneering
works like ScanRefer(Chen et al. (2020)) and BUTD-DETR(Jain et al. (2022)) demonstrated the ef-
fectiveness of multimodal Transformers in implicitly learning the complex correspondences between
visual features and textual phrases. The recent integration of Large Language Models (LLMs), as
seen in Grounded 3D-LLM(Chen et al. (2024c)), has further advanced the state of the art by leverag-
ing the powerful reasoning capabilities of LLMs for scene-level object localization through referent
token mechanisms. A common characteristic of these powerful models is their reliance on implicit,
attention-based mechanisms to handle spatial relationships, which motivates the exploration of more
explicit modeling approaches.
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LLMs for 3D Scene Understanding The application of LLMs to 3D data is a rapidly advanc-
ing frontier. Research has progressed on two main fronts: object-level and scene-level under-
standing(Yang et al. (2023); Sharma (2023); Wu et al. (2024b)). At the object level, models like
GPT4Point(Qi et al. (2024)) and PointLLM(Xu et al. (2024a)) have successfully enabled LLMs to
comprehend the attributes and functions of individual point clouds. At the scene level, frameworks
such as Grounded 3D-LLM(Chen et al. (2024c)) have made the crucial leap from single-object to
multi-object reasoning. By providing all object proposals in a scene as context to an LLM, these
models can resolve complex referential expressions. While significantly improving localization, this
paradigm also highlights the remaining challenges in robustly handling inter-object spatial relation-
ships, which is the primary focus of our work.

Spatial Relationship Modeling in 3DVG To improve spatial reasoning in 3DVG, researchers
have pursued several distinct strategies beyond relying solely on the model’s implicit learning ca-
pabilities. One prominent direction is data-driven enhancement, where works like AugRefer(Wang
et al. (2025)) programmatically augment 3D scenes and use Vision-Language Models (VLMs)(Chen
et al. (2024a); remyxai (2024)) to generate new training data rich in spatial descriptions. Another ap-
proach involves imposing explicit structured priors, such as 3D Scene Graphs(Armeni et al. (2019a)).
Methods in this category, like SGFN(Wu et al. (2021)), first generate a comprehensive graph of ob-
jects and their inter-relations, and then perform language-based reasoning on this pre-computed
structure. A third major strategy is the direct injection of geometric features into the main reasoning
pipeline. Classic examples include 3DVG-Transformer(Zhao et al. (2021)), which encodes relative
distances and angles as additional input features, while more recent methods like ViewRefer(Guo
et al. (2023)) transform these geometric priors into an attention bias to directly influence the scores
within the Transformer(Dosovitskiy et al. (2021)). Our work presents a distinct alternative to these
approaches. Instead of serving as an input feature, a pre-computed graph, or an attention bias, our
G-Verifier functions as an independent, post-hoc verification and re-ranking stage with a new spatial
relation representation RoSE. This architectural choice fundamentally separates the task of under-
standing objects from comprehending layouts, providing a more robust and interpretable pathway
for resolving complex spatial constraints.

A.3 THE DETAILS OF OUR BASELINE PROPOSE-SELECT PIPELINE

Our framework leverages a state-of-the-art 3D Vision Language Model (VLM) to execute the first two
stages. While our G-Verifier is designed to be compatible with any model that can perform these
foundational tasks. Here, we illustrate the specific baseline implementation used in our experiments.

Object Proposal (Stage 1): The initial stage generates object candidates from the input point cloud
P . We follow the query-based detection paradigm popularized by DETR (Carion et al. (2020)).
Specifically, our baseline employs a Mask3D-like (Schult et al. (2023)) architecture. It uses a set of
N learnable queries and a Transformer decoder, to predict a set of proposals {(mi, Oi)}Ni=1, where
mi is a binary mask and Oi is a high-dimensional feature representation for each instance, which
we term the learnable instance embedding.

Semantic Selection (Stage 2): The second stage is a language-guided selection module. The core
function is to take the set of all learnable instance embeddings and a textual description for an object
(e.g., Ot) as input and to produce a ranked list of the top-k candidates that best match this description.
Many existing baseline methods can fulfill this role.

In our work, we employ a grounded 3D LLM(Chen et al. (2024c)) for this purpose for its strong
performance. This model implements the selection via a generate-then-align mechanism. It has been
trained to generate a response containing a special referent token (e.g., [ref]), and its selection is
made by matching the token’s hidden state, href, against all available learnable instance embeddings.
This process is supervised by a grounding loss:

Lgrounding = ContrastiveLoss(href, Ogt) (5)

While powerful for grounding individual object descriptions, the end-to-end nature of this specific
implementation couples semantic and spatial reasoning when faced with a compositional query L,
which motivates our subsequent verification stage.
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A.4 DETAILED FORMULATION OF 3D ROTARY POSITION ENCODING

Our explicit geometric encoding is based on a 3D extension of Rotary Position Encoding (RoPE)
Su (2021). RoPE was originally proposed for 1D sequences and encodes positional information by
applying a rotation to feature vectors. A key property of RoPE is that the inner product between
any two vectors at different positions depends only on their relative position, making it inherently
suitable for relational modeling.

We extend this principle to 3D to encode the relative position vector between two object centers,
∆p = pt − pa = [δx, δy, δz]. The goal is to produce a d-dimensional feature vector, Fgeom, where
each component is a function of ∆p. Each dimension k ∈ {0, 1, ..., d − 1} is computed as the
sum of sinusoidal encodings from each coordinate difference (δx, δy, δz). These encodings are pa-
rameterized by frequencies θi = 10000−2i/d, where the frequency index i is shared across pairs of
dimensions, i.e., i = ⌊k/2⌋. The full formulation is as follows:

Fgeom(∆p)k =

{
sin(δx · θ⌊k/2⌋) + sin(δy · θ⌊k/2⌋) + sin(δz · θ⌊k/2⌋) if k is even
cos(δx · θ⌊k/2⌋) + cos(δy · θ⌊k/2⌋) + cos(δz · θ⌊k/2⌋) if k is odd

(6)

This formulation provides a continuous, high-dimensional representation of the relative geometry
that is robust to small coordinate shifts and naturally encodes both distance and direction.

A.5 DETAILED TRAINING PROCEDURES

This section provides a detailed breakdown of the data construction and negative mining strategies
used to train our G-Verifier.

A.5.1 ANCHOR PSEUDO-LABELING VIA INVERSE QUERYING

Our source datasets provide a ground truth mask only for the target object, not the anchor. To over-
come this, we devise an efficient pseudo-labeling strategy for anchors based on ‘inverse querying’.
For a given relation instance {Ot, R,Oa} and its ground truth target instance embedding Vgt, we
proceed as follows:

1. Positive Target Embedding: The positive target embedding, Vt, is directly identified as Vgt.
2. Inverse Query Construction: We leverage the semantic symmetry of spatial prepositions. We

define a new triplet {O′
t, R

′, O′
a} where roles are swapped: the new target is the original anchor

(O′
t = Oa), the new anchor is the original target (O′

a = Ot), and the relation is inverted (R′ =
inverse(R), e.g., left of becomes right of).

3. Anchor Pseudo-Labeling: We feed this inverse query, specifically the new target description O′
t,

to the baseline’s semantic selection module. The Top-1 returned instance embedding is selected
as our positive pseudo-label anchor, Va.

We acknowledge this heuristic can introduce label noise, but our framework proves robust due to the
scale of our dataset and the nature of contrastive learning.

A.5.2 HSC MINING: HARD STRUCTURAL-SEMANTIC NEGATIVE MINING.

To ensure the model learns a discriminative representation space, training with high-quality hard
negatives is crucial. We employ an in-scene dynamic negative mining strategy, which we term HSC
Mining, which generates challenging negatives by creating plausible but incorrect relational con-
figurations using only objects present within the same scene. For a given positive training sample,
defined by the instance embedding pair (Ot, Oa) and the relation R, we construct negatives using
one of the following strategies:

• Relation-type Substitution. We keep the instance embedding pair (Ot, Oa) fixed but replace the
ground truth relation R with an incorrect relation type Rrandom randomly sampled from our vo-
cabulary (e.g., replacing above with in front of). This forces the model to learn the fine-
grained semantic differences between relation types for the same geometric configuration.

• Antisymmetric Relation Swapping. For relations that have a clear antisymmetric counterpart, we
construct a highly challenging negative by keeping the instance embedding pair (Ot, Oa) fixed, but
swapping the relation R with its inverse, R′ = inverse(R) (e.g., left of becomes right of).
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This compels the model to become sensitive to the precise directionality encoded in the geometric
features.

• Object Pair Substitution. We keep the relation type R fixed but replace the ground truth instance
embedding pair (Ot, Oa) with a different pair (Oi, Oj). This new pair is formed by randomly
sampling two different instance embeddings from the set of all available object proposals in the
same scene. This teaches the model to ground the specific relation instance to the correct objects,
rather than just recognizing that the relation type exists somewhere in the scene.

These strategies collectively generate a diverse and challenging set of negative samples, forcing the
model to learn a robust and fine-grained understanding of how semantics, geometry, and specific
object instances jointly define a spatial relationship.

A.6 ASYMMETRIC DESIGN OF SEMANTIC TARGETS IN CONTRASTIVE ALIGNMENT

An important design choice in our training paradigm is the composition of the language-based se-
mantic target, Vbert, used in our contrastive alignment loss. Specifically, for a relation triplet like
the chair next to the table, we encode the phrase next to the table (relation
+ anchor) but deliberately exclude the target object’s description (the chair). This asymmetric
design might raise the question of why the anchor’s description is included while the target’s is not.
This choice is fundamental to the effectiveness and learning objective of our G-Verifier module.

From a linguistic and cognitive standpoint, the anchor object is an integral part of the relational
phrase itself. A prepositional phrase like next to the table defines a specific spatial re-
gion, and its meaning is incomplete without the anchor (the table) which acts as the refer-
ence or origin of the spatial coordinate system. The target object (the chair), in contrast,
is the entity being described or located by this entire relational phrase. Therefore, by using
BERT(”next to the table”), we provide a pure, yet contextually rich, representation of the
spatial relationship that we aim for our model to understand. The target vector encapsulates the
semantics of a search space defined by the relation and the anchor.

More critically from a machine learning perspective, this asymmetric design prevents the model
from learning a trivial shortcut and bypassing the core challenge of geometric reasoning. The Re-
lational Query, QR, already contains the rich, instance-level visual features of the target object via
its Object Query, Qt. If we were to also include the target’s textual description (e.g., the chair)
in the BERT target vector, the model could potentially minimize the contrastive loss by learning a
simple, unimodal mapping between the visual features in Qt and the text features corresponding to
“the chair” in the BERT vector. This would create a path of least resistance where the model could
achieve low loss by focusing on object matching, while neglecting the difficult but essential task of
learning the geometric constraints encoded by our 3D RoPE module.

By providing only the relational phrase (relation + anchor) as the semantic target, we enforce a true
multimodal alignment. The model is forced to learn how the visual-geometric configuration of an
object pair, represented by the full Relational Query, corresponds to the linguistic description of
their spatial relationship. This ensures that the G-Verifier genuinely learns to perform geometric
verification, which is the central goal of our work.

A.7 A PROBABILISTIC INTERPRETATION OF THE DECOUPLED PARADIGM

The distinction between our decoupled verification paradigm and monolithic end-to-end approaches
can be further understood from a probabilistic modeling perspective. This section provides a for-
mal interpretation of how these two paradigms differ in their approach to modeling the posterior
probability of the target object.

Let o∗t be the correct target object instance, V be the visual information from the 3D scene, and L
be the language query, which we deconstruct into its components {Ot, R,Oa}. The ultimate goal
of any 3D visual grounding system for spatial reasoning is to find the object that maximizes the
posterior probability P (o∗t |V,L).

Monolithic Approach: Modeling a Joint Probability State-of-the-art end-to-end models, such
as the baseline Grounded 3D-LLM, implicitly attempt to directly model this complex, joint posterior
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distribution. Their approach can be expressed as learning a single, high-dimensional function fθ that
maps the inputs directly to a score for each potential object oi in the scene:

P (o∗t = oi|V,L) ∝ exp (fθ(oi, V, L)) (7)

In this formulation, the semantic constraints from Ot and Oa are entangled with the geometric con-
straints from R. The function fθ, typically a large Transformer, must learn the intricate interactions
between these different types of information from scratch within a single, unified computation. This
tight coupling makes the model prone to failures when faced with novel or conflicting semantic-
geometric configurations, as it lacks a structured way to adjudicate between different sources of
evidence.

Our Decoupled Approach: A Conditional Probability Decomposition Our Propose, Select,
then Verify paradigm, in contrast, can be interpreted as a structured decomposition of the posterior
probability, analogous to applying the chain rule of probability. Instead of modeling the complex
joint distribution in one step, we break it down into a sequence of more manageable, specialized
conditional probability estimations.

Stage 1 & 2: Semantic Selection as Posterior Filtering. The first two stages, executed by the
baseline model, can be viewed as estimating a semantic-only posterior probability, P (ot|V,Ot).
This stage deliberately ignores the complex spatial relation R and focuses only on identifying a set
of candidates Ct that are semantically plausible matches for the target description:

Ct = {oi ∈ O | P (oi|V,Ot) > ϵ} (8)

where ϵ is some confidence threshold. This step effectively uses semantic information to prune the
search space.

Stage 3: Geometric Verification as Conditional Re-ranking. Our G-Verifier then addresses a
more constrained problem: estimating the probability of a candidate ot ∈ Ct being the correct
target, now conditioned on the additional evidence provided by the spatial relation R and the anchor
Oa. This corresponds to modeling the conditional probability P (ot|V,L, ot ∈ Ct).

Our Weighted Score Fusion mechanism is a practical implementation of this probabilistic reasoning.
The final score can be interpreted as an approximation of the log-posterior, based on a Bayesian
fusion of evidence. The log-posterior is approximated as a weighted sum of a semantic log-prior
and a geometric log-likelihood:

logP (ot|V,L) ≈ (1− α) logP (ot|V,Ot)︸ ︷︷ ︸
log-prior from semantics

+α logP (ot|V,R,Oa)︸ ︷︷ ︸
log-likelihood from geometry

(9)

Our final scoring function,

Scorefinal(cti) = (1− α) · sti + α · Scorebest
geom(cti) (10)

implements this idea directly. The initial semantic score sti from the baseline model serves as
the semantic log-prior. Our computed best geometric score, Scorebest

geom, acts as the geometric log-
likelihood, representing the evidence for the relation holding true. The hyperparameter α balances
the confidence between the prior belief from the semantic selector and the new evidence from our
geometric verifier. By decomposing the complex joint probability into a weighted fusion of a se-
mantic prior and a geometric likelihood, our approach injects a strong structural assumption into the
reasoning process, providing a more interpretable and robust path to the final decision.

A.8 DETAILED RESULTS FOR COMPONENT ANALYSIS

Table 4 provides a comprehensive breakdown of the performance for each configuration evaluated
in our component analysis (Sec. 5.1). For each of the 12 spatial relation types, we report the Pre-
cision (P), Recall (R), and F1-Score (F1). These detailed results provide a deeper insight into how
each component of our RoSE design affects the model’s predictive behavior. For instance, the im-
provements in both precision and recall for the full model on projective relations like left_of and
right_of highlight the crucial role of explicit geometric encoding in resolving ambiguity.
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Table 4: Full Precision, Recall, and F1-Score results for the component analysis of our RoSE design.

left of right of front of behind

Setup P R F1 P R F1 P R F1 P R F1

(1) IE Only 0.16 0.14 0.15 0.17 0.15 0.16 0.13 0.11 0.12 0.14 0.12 0.13
(2) + RoPE 0.23 0.21 0.22 0.25 0.23 0.24 0.19 0.17 0.18 0.20 0.18 0.19
(3) + Etype 0.83 0.81 0.82 0.82 0.80 0.81 0.80 0.78 0.79 0.79 0.77 0.78

(4) Full Model 0.89 0.87 0.88 0.88 0.86 0.87 0.86 0.84 0.85 0.85 0.83 0.84

above on under below

Setup P R F1 P R F1 P R F1 P R F1

(1) IE Only 0.23 0.21 0.22 0.29 0.27 0.28 0.20 0.18 0.19 0.22 0.20 0.21
(2) + RoPE 0.26 0.24 0.25 0.31 0.29 0.30 0.23 0.21 0.22 0.25 0.23 0.24
(3) + Etype 0.95 0.93 0.94 0.97 0.95 0.96 0.93 0.91 0.92 0.94 0.92 0.93

(4) Full Model 0.96 0.94 0.95 0.98 0.96 0.97 0.94 0.92 0.93 0.95 0.93 0.94

inside between surrounded proximity

Setup P R F1 P R F1 P R F1 P R F1

(1) IE Only 0.26 0.24 0.25 0.09 0.07 0.08 0.07 0.05 0.06 0.31 0.29 0.30
(2) + RoPE 0.27 0.25 0.26 0.11 0.09 0.10 0.08 0.06 0.07 0.33 0.31 0.32
(3) + Etype 0.91 0.89 0.90 0.76 0.74 0.75 0.71 0.69 0.70 0.98 0.96 0.97

(4) Full Model 0.92 0.90 0.91 0.82 0.80 0.81 0.76 0.74 0.75 0.99 0.97 0.98

A.9 IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation details for our experiments,
ensuring full reproducibility of our results. Our framework is implemented using PyTorch and Py-
Torch Lightning, with all experiments conducted on NVIDIA A100 GPUs with 80GB of memory.

G-Verifier Architecture. The G-Verifier module consists of two main learnable components: the
relation-type embedding matrix and the feature fusion network.

The relation-type embedding, ER, is a lookup table of size 12 × demb, where 12 is the number of
relation types and demb is the embedding dimension, set to 128.

The feature fusion network is a two-layer Multilayer Perceptron (MLP). The input to the MLP is the
concatenation of the four feature components, resulting in a vector of size 4×128 = 512. The MLP
architecture is as follows:

RoSE = W2 (ReLU(LayerNorm(W1vcat + b1))) + b2 (11)

where vcat = Concat(Vt, Va, Fgeom, ER). The first linear layer, W1, projects the 512-d input to a
256-d hidden layer. This is followed by LayerNorm and a ReLU activation. A Dropout layer with
a rate of 0.1 is applied after the activation. The second linear layer, W2, projects the 256-d hidden
representation back to the final 128-d RoSE embedding.

A.9.1 G-VERIFIER TRAINING

Model Configuration The G-Verifier module, responsible for producing the Rotary Spatial-
Relationship Embedding (RoSE), is designed to be lightweight and efficient.

• Input Dimensions: The learnable instance embeddings from the baseline model, which have a
hidden dimension of 128, are used directly.

• RoSE Components: The 3D RoPE module is configured to generate a 128-dimensional ge-
ometric encoding. The learnable relation-type embeddings for our 12 relation categories are
initialized as a 12× 128 matrix using Xavier uniform initialization.
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• Fusion Strategy: Following the ablation studies, our final fusion strategy is a simple yet effec-
tive element-wise addition of the target instance embedding, anchor instance embedding, RoPE
encoding, and the relation-type embedding. Each component feature vector undergoes Layer
Normalization before addition to ensure stable training. The final output is a 128-dimensional
RoSE vector.

Training Configuration.

• Optimizer and Scheduler: We train the G-Verifier module for 20 epochs using the AdamW
optimizer. The initial learning rate is set to 1e-4 with a weight decay of 1e-4. We employ a
Cosine Annealing learning rate scheduler that decays the learning rate to a minimum of 1e-7
over the training duration.

• Batching and Data: The training is performed on our newly constructed 3D-SpAn dataset. Due
to the lightweight nature of this phase (which does not involve running the baseline model), we
use a large batch size of 4096 relation instances, distributed across GPUs.

• Loss Function: Supervision is provided via our contrastive alignment loss. The semantic tar-
get vectors are generated by a frozen bert-base-uncased model, whose 768-dimensional
output is projected to 128 dimensions by a trainable linear layer. The weights for the alignment
loss component (a combination of MSE and Cosine Similarity) and the contrastive loss compo-
nent are set to 1.0 and 1.0, respectively. These weights were determined through preliminary
hyperparameter tuning on a validation subset.

A.10 END-TO-END 3D VISUAL GROUNDING EVALUATION

For the end-to-end evaluation described in Sec. 4.5, the pre-trained G-Verifier is integrated as a
post-hoc re-ranking module with the Grounded 3D-LLM baseline.

Baseline Model. Our baseline is a faithful reproduction of the Grounded 3D-LLM framework,
ensuring a fair and relevant comparison.

• Architecture: The 3D visual backbone is a Res16UNet34C implemented using
MinkowskiEngine. It generates 100 object proposals per scene, each represented by a 128-
dimensional learnable instance embedding. The language component is a Vicuna-7B LLM.

• State: For the re-ranking experiments, we start from an officially provided, fully pre-trained, and
instruction-tuned baseline model checkpoint. Crucially, the baseline model’s weights remain
frozen throughout the evaluation. This ensures that any observed performance gains are directly
attributable to the re-ranking capabilities of G-Verifier, rather than any implicit fine-tuning of the
baseline.

Rationale for Top-K Constrained Verification In our Geometric Verification and Scoring step
(Sec. 4.5), the verification process is constrained to the Top-K candidates for both the target and
anchor objects, rather than enumerating all possible N ×N pairs in a scene. This design choice is
crucial for computational efficiency. It is predicated on the assumption that the upstream semantic
selection module has a sufficiently high recall rate to include the correct target and anchor instances
within these Top-K lists.

Rationale for Weighted Score Fusion The final paragraph of our Re-ranking step (Sec. 4.5) ex-
plains our choice to augment the baseline’s semantic score rather than replace it. This is a princi-
pled decision reflecting the decoupled nature of our framework. The geometric verification score,
Scoregeom, is a specialized expert at evaluating the plausibility of a spatial configuration, assuming
the candidate objects are semantically correct. It does not, by design, re-evaluate whether a candi-
date is truly a chair or a table. Relying solely on the geometric score would make the system
vulnerable to perfect in geometric perspective but semantically wrong solutions. For instance, select-
ing a stool that is perfectly positioned to the left of the table over a slightly misplaced
but correct chair. By augmenting the initial semantic score, our mechanism ensures that geomet-
ric evidence is used as a powerful corrective signal to resolve spatial ambiguity among semantically
plausible candidates, without discarding the crucial semantic judgments made by the baseline model.
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Re-ranking Hyperparameters. The re-ranking process is controlled by several key hyperparam-
eters, which were tuned on a small validation subset separate from our final test set.

• Candidate Pool Size (K): During inference, the baseline’s semantic selection module generates
ranked lists of candidates. We set the candidate pool size to K = 10 for both the target and
anchor objects. This means our G-Verifier performs its geometric verification on a manageable
set of 10× 10 = 100 potential target-anchor pairs.

• Score Fusion Factor (α): The fusion hyperparameter α in our weighted score fusion function
(Eq. 4) is set to α = 0.5. This value assigns equal importance to the baseline’s initial semantic
confidence and our module’s geometric verification score. Empirically, we found this provided
a robust balance, allowing strong geometric evidence to correct semantic errors without exces-
sively overriding candidates that are semantically strong but have minor geometric inconsisten-
cies.

A.11 ROBUST ANCHOR PSEUDO-LABELING VIA TEMPLATED INVERSE QUERYING

A core challenge in constructing our 3D-SpAn dataset was the lack of instance-level ground truth
annotations for anchor objects. To address this, we developed a robust, automated pseudo-labeling
strategy that we term Templated Inverse Querying. Unlike early, brittle approaches that relied on di-
rect textual substitution within the original sentence, this new method leverages structured templates
to generate grammatically correct and semantically unambiguous queries for the anchor object.

The process is as follows. For a given relational triplet {Target: Ot, Relation: R, Anchor: Oa}
extracted by the LLM, we first generate a standard query for the target object using a simple template,
e.g., “find the Ot that is R the Oa.”

To generate the crucial pseudo-label for the anchor, we construct an inverse query. This is achieved
by first finding the semantic inverse of the relation, R′ = inverse(R) (e.g., left of becomes
right of, on becomes under). We then populate a second template with the swapped roles,
e.g., “find the Oa that is R′ the Ot.” For more complex, non-symmetric relations like between or
surrounded_by, we use specialized templates to form a logically consistent inverse query (e.g.,
for A between B and C, the inverse query for B would be “find the B that has an A between it
and C”).

This templated approach is highly robust because it does not depend on the grammatical structure of
the original, often colloquial, source sentence. By generating a clean, canonical query for the anchor
object, we can then reliably use the baseline model’s semantic selection capability to ground it and
obtain a high-quality pseudo-label anchor for our training. This mechanism was critical to achieving
the high unification success rates reported in Table 5.

A.12 DETAILED DATA CONSTRUCTION PIPELINE FOR 3D-SPAN

As mentioned in Sec. 4.4, a primary obstacle to developing explicit spatial reasoning modules is the
lack of large-scale, structured training data. Existing 3D vision-language datasets typically provide
instance-level annotations only for a single target object per description, without explicitly labeling
the anchor objects or relation types in a structured format. To overcome this foundational data
gap, we constructed a new large-scale dataset, which we name 3D-SpAn, by augmenting several
prominent 3D grounding datasets with structured spatial relationship annotations.

Our data construction pipeline starts with a collection of six public datasets, including ScanRe-
fer(Chen et al. (2020)), ScanQA(Azuma et al. (2022)), M3dRef(Zhang et al. (2023)), Ground-
edSceneCaption(Chen et al. (2024c)), GlobalSceneCaption(Chen et al. (2024c)), and Embodied-
Plan(Padmakumar et al. (2023)). We process the natural language descriptions from these datasets
using a powerful Large Language Model (e.g., GPT-4(OpenAI (2023))) instructed via a carefully
designed few-shot prompt (see Appendix A.17). The LLM’s task is to parse each description and
extract all valid spatial relationship triplets of the form {Target Object, Relation Type, Anchor Ob-
ject}. This parsing task is non-trivial, as the language queries L with spatial relation constraints in
these datasets are often structurally complex. They frequently contain challenging linguistic phe-
nomena such as anaphora, where pronouns like it or they refer to previously mentioned objects,
and implicit spatial relationships that require contextual understanding to be correctly identified.
Leveraging a powerful LLM instructed via few-shot prompting allows us to resolve these ambigui-
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ties with high fidelity, yielding a more accurate and comprehensive collection of structured relational
triplets than what could be achieved with simple rule-based parsers. This process initially identified
a total of 331,273 potential relationship mentions across all datasets.

For each potential spatial relationship description, we then apply an automated pseudo-labeling
strategy to ground the anchor object, as our source datasets only provide ground truth for the target.
This unification process involves generating a robust, templated-based inverse query for the anchor
and using the baseline model to ground it. A detailed description of this robust inverse querying
mechanism is provided in Appendix A.11. The success of this automated annotation process varies
depending on the nature of the source dataset, as summarized in Table 5. For task-oriented datasets
like ScanRefer, ScanQA, and M3dRef, where descriptions are typically object-centric and well-
grounded, our data construction pipeline achieves a unification success rate of over 90%. However,
for more descriptive, caption-style datasets like GroundedSceneCaption and GlobalSceneCaption,
the success rate is lower. This is primarily because captions often contain more complex, ambiguous,
or scene-wide descriptions that are harder to decompose into clean target-anchor pairs.

After filtering out unification failures, the generated annotations also undergo a series of automated
filtering and cleaning steps to ensure their quality and relevance for spatial reasoning. This quality
control process is crucial for mitigating potential errors or hallucinations from the language model.
We employ two primary validation checks. First, we perform an entity validation step, ensuring
that the extracted object phrases correspond to valid object classes present in the scene. For in-
stance, if the LLM extracts a triplet {monitor, on, desk} from a description, but the ground truth
for that scene contains neither a monitor nor a desk, this annotation is discarded as a factual
hallucination. Second, we filter out descriptions that are purely attributive rather than relational.
A description like the red door is open might be erroneously parsed into {red door,
is, open}, which describes an object’s state, not its spatial relationship to another object. Such
attributive-only annotations are identified and removed.

The final 3D-SpAn dataset comprises 285,177 high-quality, structured spatial relationship instances.
As shown in Table 5, the dataset exhibits a diverse distribution of relation types. This new resource
provides the necessary, fine-grained supervision for our training paradigm and will be released to
facilitate future research in explicit spatial reasoning.

Table 5: Statistics of the 3D-SpAn dataset construction process across different source datasets.
Success Rate refers to the percentage of identified relationship mentions for which we successfully
generated a full training triplet.

Source Dataset Found Relations Unified Relations Success Rate

ScanRefer 64,854 59,696 92.05%
ScanQA 35,555 33,445 94.07%
M3dRef 62,605 57,809 92.34%
GroundedSceneCaption 115,709 99,482 85.98%
GlobalSceneCaption 45,511 29,796 65.47%
EmbodiedPlan 6,989 4,949 70.81%

Total 331,273 285,177 86.08%

A.13 EXPERIMENTAL SETUP DETAILS

Our framework is implemented in PyTorch Paszke et al. (2019) and all models were trained on
NVIDIA A100 GPUs.

Component Analysis Training. For the component analysis experiments in Sec. 5.1, the G-
Verifier module was trained for 20 epochs using the AdamW optimizer. We used a learning rate
of 1e-4 with cosine annealing and a batch size of 4096. The core of G-Verifier, the Rotary Spatial-
Relationship Embedding (RoSE), is a 128-dimensional vector. It is produced by fusing 128-d in-
stance embeddings, a 128-d 3D RoPE encoding, and a 12 × 128 relation-type embedding matrix.
Supervision was provided via our contrastive alignment loss against semantic targets from a frozen
bert-base-uncased model.
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End-to-End Evaluation. For the end-to-end evaluation in Sec. 5.2, the pre-trained G-Verifier was
integrated as a post-hoc re-ranking module with a frozen Grounded 3D-LLM baseline. The re-
ranking process considers the Top-10 candidates for both target and anchor objects, with the score
fusion factor α set to 0.5.

A.14 EVALUATION METRICS

Our evaluation employs a multi-faceted approach, with metrics tailored to different aspects of our
method.

Proxy Task for Component Analysis. To evaluate the G-Verifier in an isolated setting, we re-
port the F1-score on a proxy classification task against 12 pre-computed semantic prototypes. The
detailed protocol for this prototype-based evaluation is described in Sec. 5.1.

End-to-End Evaluation Metrics. For the end-to-end task, we adopt a suite of metrics.

• 3DVG Metrics: We use standard metrics, Acc@0.25 and Acc@0.50 (3D Box IoU), to mea-
sure the accuracy of the final Top-1 prediction.

• Information Retrieval (IR) Metrics: To provide a more holistic assessment of ranking qual-
ity, we report standard IR metrics, including Mean Reciprocal Rank (MRR) and Normalized
Discounted Cumulative Gain (NDCG@k).

• Diagnostic Metrics: To analyze the module’s corrective behavior, we introduce two diagnostic
metrics: the Rectification Rate (the percentage of baseline-failed cases that are cor-
rected) and the Non-Deterioration Rate (the percentage of baseline-correct cases that
remain correct).

A.15 EXTENDED DISCUSSION ON COMPONENT ANALYSIS

The results presented in Table 1 warrant a more detailed discussion.

The Limits of Implicit Information. The naive baseline’s 0.25 F1-score is an important finding.
It confirms that powerful, pre-trained instance embeddings from models like Grounded 3D-LLM
are not merely semantic descriptors; they are rich with implicit spatial information learned from co-
occurrence statistics in their training data. However, this information is unstructured and insufficient
for tasks requiring precise geometric disambiguation.

The Role of Semantic vs. Geometric Priors. The stark contrast in performance between adding
the Relation Type Embedding (+0.70 F1) and adding the 3D RoPE encoding (+0.09 F1) to the
naive baseline reveals a deeper insight. Raw geometric features, in isolation, are ambiguous. A
relative vector of [+1, 0, 0] could mean right of, in front of, or simply next to,
depending on the object’s canonical orientation and the relation’s semantic definition. The high-
level semantic anchor provided by Etype is essential to ground these ambiguous geometric cues in a
specific conceptual space.

Synergy in the Full Model. The final gain from adding 3D RoPE to the already strong
IE + E_type configuration demonstrates the synergistic nature of these components. The se-
mantic embedding provides the primary classification signal, while the explicit geometric features
act as a powerful fine-tuning mechanism. This allows the model to resolve ambiguities that are ge-
ometrically defined but semantically similar, which is precisely why the largest gains are observed
for projective relation pairs like left_of versus right_of.

A.16 DISCUSSION

Limitations. Our current implementation of G-Verifier as a post-hoc re-ranking module, while
effective, has two primary limitations. First, its performance is inherently capped by the recall of
the upstream baseline model. If the correct target or a plausible anchor object is not present in the
initial Top-K candidate set, G-Verifier cannot rectify the failure. Our fine-grained analysis (Table 3b)
also reveals that while our method excels at verifying objective topological and proximity relations
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(e.g., on, under), its performance is more modest on relations that may depend more heavily on
an object’s intrinsic orientation, such as behind, suggesting room for improvement in modeling
object-centric frames of reference.

Future Work. A promising direction for future work is to integrate this explicit, decoupled rea-
soning process more deeply into the foundation model itself. Rather than reverting to a coupled,
black-box architecture, the goal is to empower the LLM to autonomously perform a structured,
multi-step reasoning process that mirrors our Propose, Select, then Verify pipeline. By training the
LLM to generate explicit relational tokens, we could enable it to first identify semantic candidates
and then invoke its internalized geometric verification capabilities, potentially overcoming the recall
limitations of the current pipeline. This would transition our approach from a post-hoc verification
to an end-to-end model that performs reasoning in an explicit and interpretable manner. We also
plan to release our large-scale 3D-SpAn dataset to facilitate future research in this area.

A.17 FEW-SHOT PROMPT FOR QUERY PARSING

To parse free-form natural language queries into structured triplets, we leverage the in-context learn-
ing capabilities of a large language model. We do not perform any model finetuning for this task.
Instead, we provide the model with a detailed system prompt for each source dataset. While all
prompts share a common structure which consists of a general task definition, a list of supported
relation types, and a set of few-shot exemplars, the exemplars themselves are tailored to the spe-
cific linguistic style of each dataset. This is crucial because different datasets exhibit vastly dif-
ferent query structures. For instance, task-oriented datasets like ScanRefer and ScanQA use direct
commands, while descriptive datasets like GroundedSceneCaption contain more complex, narrative
sentences.

Below, we provide the detailed prompts used for each major dataset category. Figure 7 illustrates
the general task definition and the specific exemplars used for the ScanRefer dataset. Figure 8 and
Figure 9 show the tailored exemplars for the structurally different ScanQA and M3DRef datasets,
respectively. Finally, Figure 10 displays the exemplars designed for the more descriptive, caption-
style datasets.
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You are an expert in 3D scene understanding and pronoun resolution. Your task is to analyze a 
description of a Main Object, reconstruct the description to be more explicit, and extract all spatial 
relationships involving the Main Object.

Your Primary Task:
1.  Analyze the Description: Read the original description and identify all pronouns (e.g., 'it', 'this', 'they') 
that refer to the "Main Object".
2.  Reconstruct a Complete Sentence: Create a new, clearer sentence by replacing all those pronouns 
with the Main Object's actual name. This will be your 'final_reconstructed_text'.
3.  Direct Extraction: Based on your reconstructed text, extract all spatial relationships exactly as they 
are stated. Do not infer or invert relationships. The `object1_phrase` in your relations MUST be the 
"Main Object"'s name.

! IMPORTANT RULE: WHEN TO EXTRACT NOTHING !
-   If the description only specifies the object's own attributes (e.g., its color, shape, size, or state like 'the 
door is open') and does NOT describe its position relative to ANOTHER object, the `relations` list 
MUST be empty [].

Spatial relationship types (ID and Name):
- 0: "left_of": A is to the left of B. Handles composite terms like "middle left of", "far left of".
- 1: "right_of": A is to the right of B. Handles "far right of", "middle right of" etc.
- 2: "front_of": A is in front of B.
- 3: "behind": A is behind B.
- 4: "above": A is above B, no contact.
- 5: "on": A is on top of B, with support.
- 6: "under": A is under B, with shelter.
- 7: "below": A is below B, no shelter.
- 8: "inside": A is contained within B.
- 9: "between": A is positioned between two other distinct objects, B and C. Requires three distinct 
objects.
- 10: "surrounded_by": A is encircled by multiple other objects. Requires multiple surrounding objects.
- 11: "proximity": A is near B without a specific direction (e.g., 'next to', 'beside').

(a) General Task Definition and Rules

Walkthrough 1 (Pronoun Resolution & Reconstruction):
-   Main Object: "trash can"
-   Description: "this is directly to the right of the toilet against the wall; it is purple."
-   Your `final_reconstructed_text` MUST BE: "the trash can is directly to the right of the toilet against 
the wall; the trash can is purple."
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 1, "relation_text": "directly to the right of the toilet", "object1_phrase": "the 
trash can", "object2_phrase": "the toilet" },
      { "relation_type": 5, "relation_text": "against the wall", "object1_phrase": "the trash can", 
"object2_phrase": "the wall" }
    ]
    ```

Walkthrough 2 (Negative Example - NON-SPATIAL):
-   Main Object: "office_chair"
-   Description: "the brown office chair is facing to the right."
-   Your `final_reconstructed_text` can be: "the brown office chair is facing to the right."
-   Your `relations` output MUST BE: `[]`

Output format: Return ONLY a valid JSON object:
{
  "relations": [
    {
      "relation_type": <number_id_from_0_to_11>,
      "relation_text": "...",
      "object1_phrase": "...",
      "object2_phrase": "..."
    }
  ],
  "final_reconstructed_text": "The sentence with all pronouns replaced by the Main Object's name."
}

(b) Few-shot Exemplars for ScanRefer
Figure 7: The General Task Definition and Rules and full few-shot prompt used for parsing language
queries for ScanRefer Dataset.
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Crucial Reconstruction Rules:
1.  Entity Completion: If the `Main Text` (`answer_with_ground`) is a fragment (e.g., "on the table"), 
you MUST use the `Question Context` to find the missing object (e.g., "the book") and construct a full 
sentence.
2.  Protagonist Centering & Relation Inference: If the question asks for a reference object (e.g., "A is left 
of what?"), the answer is "B". You MUST rephrase the sentence to be about "B". This often requires 
inverting the spatial relationship (e.g., "B is to the right of A").

Walkthrough 1: Entity Completion:
- Question Context: "Where is the kitchen counter located?"
- Main Text: "above kitchen cabinet"
- Reasoning: The question identifies "kitchen counter" (object1). The main text provides the relation 
"above" and "kitchen cabinet" (object2), but is an incomplete fragment.
- Your `relations` output should have: `"object1_phrase": "kitchen counter"`, `"object2_phrase": 
"kitchen cabinet"`
- Your `reconstructed_answer` MUST BE: "The kitchen counter is above the kitchen cabinet."

Walkthrough 2: Protagonist Centering:
- Question Context: "The cabinet is to the immediate left of what?"
- Main Text: "The cabinet is to the immediate left of the shelf."
- Reasoning: The true answer/protagonist is "shelf". The main text is about the "cabinet". You must 
reconstruct the sentence to be about the "shelf" and infer the inverse relationship.
- Your `relations` output should have: `"object1_phrase": "shelf"`, `"object2_phrase": "cabinet"`, 
`"relation_type": "right_of"`
- Your `reconstructed_answer` MUST BE: "The shelf is to the immediate right of the cabinet."

Walkthrough 3 (NON-SPATIAL - Negative Example):
-   Question Context: "How many arms does the chair have?"
-   Main Text: "The chair has 1 arm."
-   Reasoning: This question and answers do not have any spatial relationship that can be categorized 
into the 12 classes. "has 1 arm" is not spatial relationship. 
-   Your `relations` output MUST BE: `[]`
-   Your `reconstructed_answer` MUST BE:  "The chair has 1 arm."

(a) Few-shot Exemplars for ScanQA Dataset Part1

Walkthrough 4 (SPATIAL within ATTRIBUTE QUESTIONS - Special Positive Example):
-   Question Context: "What color is the board on the wall with nothing beneath it?"
-   Main Text: "The blackboard is black."
-   Reasoning: This question is about the color of the object, but to refer to the object, a spatial 
relationship is involved "on the wall with nothing beneath it". 
- Your `relations` output should have: `"object1_phrase": "board"`, `"object2_phrase": "wall"`, 
`"relation_type": "on"`
-   Your `reconstructed_answer` MUST BE:  "The blackboard, which is on the wall with nothing beneath 
it, is black."

Output format: Return ONLY valid JSON:
{
  "relations": [
    {
      "relation_type": "...",
      "relation_text": "...",
      "object1_phrase": "...",
      "object2_phrase": "..."
    }
  ],
  "reconstructed_answer": "...",
  "reconstruction_needed": true/false,
  "reconstruction_phrase": "The most accurate relation phrase to use for reconstruction, e.g., 'to the 
immediate right of the cabinet'. This phrase should be based on the model's own analysis, NOT 
necessarily from the original question."
}

(b) Few-shot Exemplars for ScanQA Dataset Part2
Figure 8: The few-shot prompt used for parsing language queries for ScanQA Dataset.
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Walkthrough 1 (Pronoun Resolution):
-   Description: "a copier rests on the floor. it is left of a garbage can."
-   Your `final_reconstructed_text` should be: "a copier rests on the floor. the copier is left of a garbage 
can."
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 5, "relation_text": "rests on the floor", "object1_phrase": "a copier", 
"object2_phrase": "the floor" },
      { "relation_type": 0, "relation_text": "left of a garbage can", "object1_phrase": "the copier", 
"object2_phrase": "a garbage can" }
    ]
    ```
Walkthrough 2 (Chained Relation):
-   Description: "a printer is on a table which is to the left of a chair"
-   Your `final_reconstructed_text` should be: "a printer is on a table which is to the left of a chair"
-   Your `relations` output should be:
    ```json
    [{ "relation_type": 5, "relation_text": "on a table", "object1_phrase": "a printer", "object2_phrase": 
"a table" },
        { "relation_type": 0, "relation_text": "to the left of a chair", "object1_phrase": "a table", 
"object2_phrase": "a chair" }]
    ```
Output format: Return ONLY a valid JSON object:
{"relations": [
    {
      "relation_type": <number_id_from_0_to_11>,
      "relation_text": "...",
      "object1_phrase": "...",
      "object2_phrase": "..."
    }
  ],"final_reconstructed_text": "The description with pronouns resolved for clarity."
}

Figure 9: The few-shot prompt used for parsing language queries for M3DRef Dataset.
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Walkthrough Example:
-   Description: "Two white sinks are parallel, with a bottle placed on one and toilet paper on the other."
-   Reasoning: "one" refers to the first "white sink", "the other" refers to the second. You must resolve 
these in the output.
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 5, "relation_text": "placed on one", "object1_phrase": "a bottle", 
"object2_phrase": "a white sink" },
      { "relation_type": 5, "relation_text": "on the other", "object1_phrase": "toilet paper", 
"object2_phrase": "the other white sink" }
    ]
    ```

Output format: Return ONLY a valid JSON list of relations.

Walkthrough Example:
-   Task: "Prepare for evening relaxation"
-   Steps: "step 1. Position ottoman near couch for footrest.\nstep 2. Move table within arm's reach of 
couch.\n"
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 11, "relation_text": "near couch", "object1_phrase": "ottoman", 
"object2_phrase": "couch" },
      { "relation_type": 11, "relation_text": "within arm's reach of couch", "object1_phrase": "table", 
"object2_phrase": "couch" }
    ]
    ```

Output format: Return ONLY a valid JSON list of relations.

(a) Few-shot Exemplars for GroundedSceneCaption and Global Scene Caption Datasets

Walkthrough Example:
-   Description: "Two white sinks are parallel, with a bottle placed on one and toilet paper on the other."
-   Reasoning: "one" refers to the first "white sink", "the other" refers to the second. You must resolve 
these in the output.
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 5, "relation_text": "placed on one", "object1_phrase": "a bottle", 
"object2_phrase": "a white sink" },
      { "relation_type": 5, "relation_text": "on the other", "object1_phrase": "toilet paper", 
"object2_phrase": "the other white sink" }
    ]
    ```

Output format: Return ONLY a valid JSON list of relations.

Walkthrough Example:
-   Task: "Prepare for evening relaxation"
-   Steps: "step 1. Position ottoman near couch for footrest.\nstep 2. Move table within arm's reach of 
couch.\n"
-   Your `relations` output should be:
    ```json
    [
      { "relation_type": 11, "relation_text": "near couch", "object1_phrase": "ottoman", 
"object2_phrase": "couch" },
      { "relation_type": 11, "relation_text": "within arm's reach of couch", "object1_phrase": "table", 
"object2_phrase": "couch" }
    ]
    ```

Output format: Return ONLY a valid JSON list of relations.

(b) Few-shot Exemplars for EmbodiedPlan Dataset
Figure 10: The few-shot prompt used for parsing language queries for GroundedSceneCaption,
Global Scene Caption and EmbodiedPlan Dataset.
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A.18 LLM USAGE STATEMENT

Throughout the preparation of this manuscript, we utilized a large language model as an assistive
tool for writing, editing and code debugging. The role of the LLM was strictly confined to improving
the presentation of our research and help us solve some hard bugs during coding; it was not involved
in the core research idea design or experimental analysis.
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