

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 G-VERIFIER: GEOMETRIC VERIFIER FOR ROBUST 3D POINT CLOUD SEMANTIC SEARCH WITH SPATIAL RE- LATION REASONING

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Semantic search in *3D* point clouds is a fundamental task for *Spatial Intelligence* and embodied *AI*, yet it becomes particularly challenging when queries involve precise spatial relationships and current large-scale vision-language models often falter in these scenarios. Their reliance on monolithic, implicit attention mechanisms struggles to disentangle semantic attributes match from complex spatial geometric constraints, leading to unreliable localization. To address this issue, we introduce *G-Verifier*, a geometric verification module that enhances existing *3DVG* frameworks by explicitly decoupling the semantic attributes match and spatial reasoning processes. Our approach realizes a *Propose, Select, then Verify* paradigm, where *G-Verifier* acts as a post-hoc re-ranker, adjudicating semantically-filtered candidates based on explicit geometric facts. The core of our module is the *Rotary Spatial-Relationship Embedding (RoSE)*, a structured representation that dynamically fuses high-level object semantics with an explicit *3D* geometric encoding. We train this module using a specialized language-alignment strategy on our new large-scale dataset, *3D-SpAn*, which contains 285,177 structured spatial relationship annotations. Experiments on a challenging, manually-verified benchmark demonstrate the effectiveness of our approach. Our module itself achieves high *F1*-score(0.96) on a relational understanding proxy task, validating its strong discriminative power. When integrated into the end-to-end pipeline, *G-Verifier* improves grounding accuracy, increasing *Acc@0.50*(+2.50%) over a strong baseline. Our work validates that a decoupled verification approach is a promising direction for improving the geometric reasoning capabilities of large-scale *3D* vision-language models.

1 INTRODUCTION

Spatial Intelligence is a cornerstone of autonomous systems such as robotics (Chen et al. (2024b)) and augmented reality (Baruch et al. (2021)), allowing them to understand and interact with the physical world. A critical aspect of this intelligence is the ability to interpret raw *3D* sensor data (Cai Y (2023)). Among the most common and informative *3D* representations are point clouds, typically captured by *LiDAR* and other depth sensors (Qi et al. (2017)). Each point corresponds to a spatial location (x, y, z) on and is often augmented with attributes such as *RGB* color, intensity, and semantic labels. Collectively, millions of such points form a detailed geometric scaffold of a real-world environment, from a single object to an entire scene (Ling et al. (2023)), enabling machines to perceive environments in their native *3D* structure. Within a point cloud, distinct objects manifest as dense clusters of points (Sarker et al. (2024)), and their spatial relationships are implicitly encoded by the relative distances and orientations between these clusters (Shen et al. (2023)).

A key task for activating spatial intelligence is the *Semantic Search* of point clouds. The main idea behind this task is to identify a specific object within a point cloud scene based on a language description (Liu et al. (2024)). In computer vision, this task is widely known as *3D Visual Grounding (3DVG)*. The ability to perform *3DVG* with high precision is vital for a range of impactful applications. For instance, a service robot in a hospital must be able to unambiguously execute commands like “bring me the medical chart on the counter, not the one on the cart”. Similarly, an augmented reality system for industrial maintenance needs to correctly highlight “the pressure valve located be-

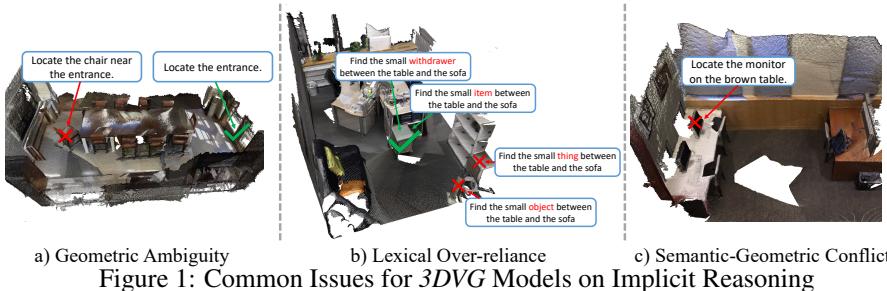


Figure 1: Common Issues for 3DVG Models on Implicit Reasoning

hind the main pump” for an engineer (Attaran & Celik (2023)). Success in these applications hinges on a robust understanding of spatial relationships (Chen et al. (2022); Wang et al. (2023)).

While current models show remarkable progress (Chen et al. (2020); Achlioptas et al. (2020)), their ability to reason spatial relationships remains a significant bottleneck. Existing methods perform well when handling object-description semantics. However, once spatiotemporal semantics are introduced, the accuracy of object queries drops significantly if the descriptions are intricate, ambiguous, or conflict with the underlying scene geometry. (Xu et al. (2024b)). As illustrated in Figure 1, challenging cases for state-of-the-art 3DVG models reveal several systematic failure modes:

Geometric Ambiguity arises when spatial constraints are underweighted in the final decision: a model can correctly locate the functionally defined entrance but still fail to ground the chair near the entrance, as its choice is dominated by visual similarity rather than precise relational reasoning.

Lexical Over-reliance. Grounding queries such as the small withdrawer based on specific keywords but failing when the same query is rephrased with more general terms like item or object, exposing a lack of compositional understanding.

Semantic-geometric Conflict occurs when the query specifies attributes inconsistent with the scene. For example, the model is asked to find a monitor on the brown table. Faced with a conflict (the only monitor is actually on a white table), it ignores the term of object attribute brown and hallucinates an incorrect grounding, failing to report the non-existence of the object.

Collectively, these failures highlight a core limitation, i.e., current models rely on monolithic, implicit reasoning mechanisms that entangle semantic interpretation with geometric validation, preventing them from reliably handling complex spatiotemporal semantics and undermining their robustness in human–robot interaction.

The current methodologies for spatial reasoning in 3DVG can be broadly categorized into two paradigms in the following: 1) *Implicit Modeling*, where end-to-end foundation models are expected to learn spatial relationships as an emergent capability from massive data (Chen et al. (2024a); Cheng et al. (2024); Wu et al. (2024a); Chen et al. (2024c)); 2) *Explicit Modeling*, which seeks to inject more structure by either converting the scene into a symbolic representation like a *3D Scene Graph* (Armeni et al. (2019b); Hao et al. (2024)), or by directly embedding geometric features into the model’s architecture (Ning et al. (2025)). Although distinct, both paradigms typically perform semantic and geometric evaluations in a coupled manner, which contributes to the fragility we observe.

Inspired by the success of re-ranking in *Information Retrieval (IR)* (Geigle et al. (2022)), we explore a third, emerging paradigm *Decoupled Verification*. The core insight is to separate the what (semantic understanding) from the where (geometric verification), moving beyond the limitations of both monolithic implicit models and coupled explicit approaches. We achieve this by proposing *G-Verifier*, a module that acts as an explicit geometric fact-checker. Instead of attempting to solve the entire problem in a single step, our framework first uses a powerful baseline model to select a pool of semantically plausible candidates. Then, *G-Verifier* combines its geometric verification with the baseline’s semantic understanding to re-rank these candidates. This ensures the final selection is guided by spatial constraints while still respecting the strong semantic priors of the baseline model.

However, developing the geometric verification module is non-trivial, which includes several key challenges as follows.

1) Spatial Relation Representation. Create a representation of abstract spatial relationships that is both expressive and compatible with object features. Our solution is the *Rotary Spatial-Relationship*

108 *Embedding*, a structured representation that dynamically fuses object-level features with a specialized
 109 3D geometric encoding derived from the objects’ relative positions.
 110

111 **2) Supervision Mechanism.** The training module is not effective. Existing 3D grounding datasets
 112 lack the structured, explicit annotations of relational components (e.g., target, anchor, and relation
 113 type) required for our decoupled approach. To overcome this foundational data gap, we first con-
 114 structed a large-scale dataset with 285,177 spatial relationship instances by fusing and improving
 115 existing resources. Instead of a naive classification objective, we devise a specialized language
 116 alignment strategy. This approach enables the module to learn a rich representation space for fine-
 117 grained similarity matching, which is crucial for its role as a verifier at inference time.
 118

119 **3) Module Robustness.** It is challenging to ensure that the module remains stable and does not
 120 compromise performance in straightforward scenarios. We address this by designing a cautious re-
 121 ranking mechanism. It ensures geometric evidence only overrides the baseline’s initial judgment
 122 when the spatial relationship is clear and unambiguous, thereby preserving high accuracy in simpler
 123 queries.
 124

125 Our main contributions are summarized as follows:
 126

- 127 • We propose a novel geometric verification module *G-Verifier* that facilitates a robust *propose*,
 128 *select*, then *verify* paradigm, effectively decoupling geometric validation from semantic selec-
 129 tion.
- 130 • We design a novel *Rotary Spatial-Relationship Embedding* that fuses object semantics with ex-
 131 plicit 3D geometric information, enabling robust and fact-based re-ranking of candidates.
- 132 • We introduce a dedicated language-alignment strategy that enables *G-Verifier* to learn abstract
 133 spatial concepts from semantic targets.
- 134 • We construct and release a large-scale 3D spatial relationship annotation set with 285,177 struc-
 135 tured spatial relationship instances, providing a solid foundation for training and future research.
 136

137 2 BACKGROUND

138 2.1 POINT CLOUDS AND 3D SCENES

139 Point cloud data is the primary modality for representing 3D spatial environments, typically captured
 140 by sensors such as *LiDAR* or *RGB-D* cameras (Qi et al. (2017); Cai Y (2023)). It is a set of discrete
 141 points in a three-dimensional coordinate system, formally denoted as $P = \{p_i\}_{i=1}^N$, where each
 142 point $p_i \in \mathbb{R}^{3+d}$ includes its geometric coordinates (x, y, z) and optionally d additional attributes
 143 such as color or normal information.
 144

152 Figure 2: A Real-world 3D Scene Represented by Point Clouds

153 Millions of such points form a detailed geometric scaffold of a real-world environment, from a single
 154 object to an entire scene (Dai et al. (2017); Armeni et al. (2016)). Within a scene, a physical object
 155 instance o_k is represented by a subset of these points, $o_k \subset P$. The spatial relationships between
 156 objects are therefore implicitly encoded by the relative geometric arrangement of these point subsets.
 157

158 Figure 6 illustrates how a real-world 3D scene is represented as point cloud data. The leftmost panel
 159 shows an *RGB* image of an indoor environment. The middle panel depicts a sparse geometric point
 160 cloud, capturing the basic structure of the scene. The rightmost panel presents a dense point cloud
 161 with color attributes, providing a richer, more detailed representation for semantic analysis. This
 162 type of data forms the basis for tasks involving semantic search and spatial reasoning, as will be
 163 elaborated in the following sections.
 164

162
163
164
165
166
167
168
169
170
171

Figure 3: Distinction between Standard Semantic Search and Spatial Semantic Search

2.2 SEMANTIC SEARCH IN 3D POINT CLOUD SCENES

Definition 1 (Semantic Search) *A semantic search query Q_s is to identify a specific target object o^* from the set of all objects $O = \{o_1, \dots, o_k\}$ in a point cloud scene P , based on a natural language description L . (Liu et al. (2024))*

Semantic search, commonly referred to as 3DVG in the computer vision field, has largely converged on a two-stage *Propose-then-Select* paradigm (He et al. (2021); Luo et al. (2022)). At first, a language-agnostic detector, such as *PointRCNN* (Shi et al. (2019)), generates a set of object proposals from the point cloud. Second, a language-guided selection module, often based on multimodal Transformers (Chen et al. (2020); Achlioptas et al. (2020)), matches the query L against these proposals to identify the target object. This paradigm serves as the foundation upon which our work builds and extends.

Figure 3(a) depicts a standard semantic search that finds the brown wooden chair. It relies solely on the target object’s intrinsic attributes for localization. However, our work extends the semantic search by focusing more on the accuracy of spatial reasoning. For example, in Figure 3(b), the query find the wooden chair to the right of a sofa involves grounding a target object based on its spatial relationship to a distinct anchor object. We formally define *spatial semantic search* in the following section.

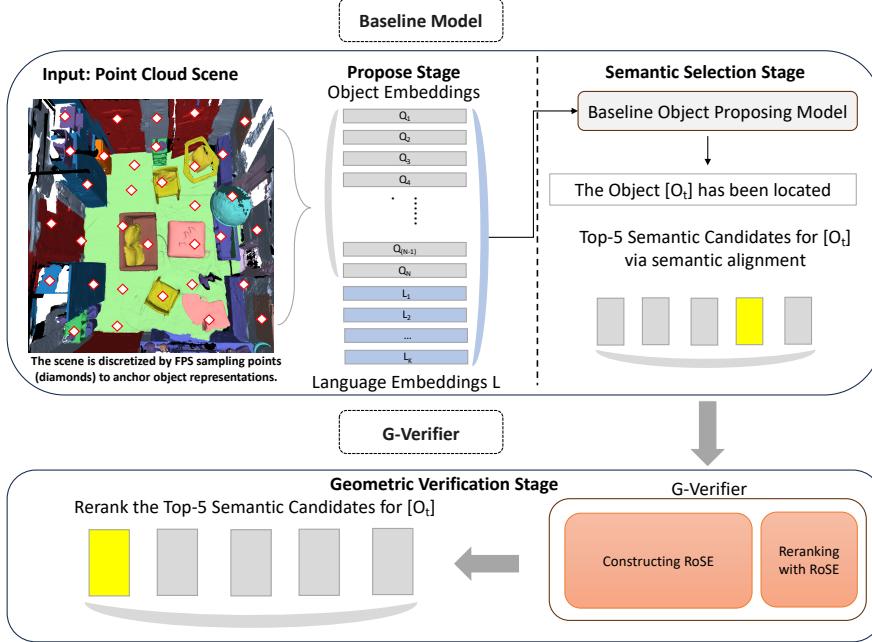
3 PROBLEM SETTING

While semantic search primarily targets object attributes, our focus is on queries where the final localization decision is critically dependent on understanding the objects’ spatial relationships.

Definition 2 (Spatial Semantic Search) *Let a 3D scene P containing a set of distinct object instances $O = \{o_1, o_2, \dots, o_k\}$. A query Q_{s^2} for semantic search with spatial reasoning is a natural language description L that can often be deconstructed into a semantic triplet $L = \{O_t, R, O_a\}$. In this triplet, O_t is the description of a target object, O_a describes one or more anchor object(s), and R represents the spatial relation that must hold between them.*

In this work, we scope the spatial relation R to a comprehensive set of 12 fundamental types. We argue that this set is representative of the majority of spatial language used in human-centric scene descriptions. It is designed to cover a wide spectrum of cognitive spatial primitives, including: (1) projective relations that are dependent on a viewpoint (e.g., left of, behind), (2) topological relations describing contact or containment (e.g., on, inside), (3) a general proximity relation, and (4) more complex relations involving multiple objects (e.g., between). The full list of relations we address is: left of, right of, front of, behind, above, on, under, below, inside, between, surrounded by, and proximity. This categorization is consistent with large-scale empirical findings on human-generated descriptions in datasets like Visual Genome (Krishna et al. (2017)).

The main objective is to find a function f , that maps the scene and a query Q_{s^2} to the correct target object instance: $o_t^* = f(P, L)$, where $o_t^* \in O$ is the unique instance that satisfies the composite constraints defined by the triplet $\{O_t, R, O_a\}$.

Figure 4: An overview of our *Propose, Select, then Verify* framework.

The success of this task is typically measured by the *Intersection-over-Union (IoU)* between the predicted 3D bounding box of o_t^* and that of the ground truth. This formulation is general; existing monolithic models attempt to learn the function f as a single, end-to-end neural network, which often leads to a fragile coupling of semantic and geometric reasoning.

4 GEOMETRIC VERIFICATION MODULE

To address the fragility of existing 3D semantic search models in spatial reasoning, we introduce *G-Verifier*, an explicit geometric verification module. Our approach is built upon a decoupled *Propose, Select, then Verify* paradigm, designed to augment powerful, pre-trained foundation models. This section first presents the overall framework of this paradigm, then details the baseline implementation of the first two stages, and finally elaborates on the architecture, training, and inference mechanism of *G-Verifier* module.

4.1 OVERALL FRAMEWORK

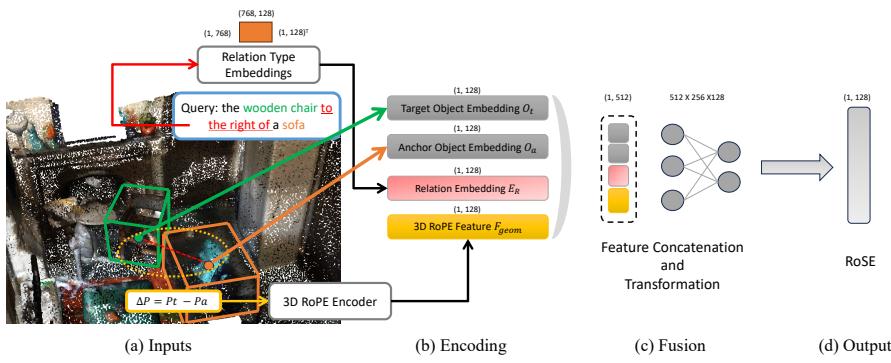
Our method deconstructs the complex task of spatial relation grounding into a three-stage pipeline, as illustrated in Figure 4. The process starts with a standard baseline model, which performs the first two stages. In the propose stage, a 3D detector generates a set of class-agnostic instance embeddings from the input point cloud scene. In the semantic selection stage, an enhanced grounded 3D LLM parses the language query L to identify the textual descriptions for both the target (O_t) and anchor (O_a) objects. It then grounds these descriptions in the scene, producing ranked lists of *Top-K* semantic candidates for both the target object C_t , and the anchor object C_a . Our module then re-evaluates C_t and C_a through its internal components based on the query’s spatial constraints R . Using a heuristic scoring mechanism that combines the baseline’s semantic confidence with its own geometric verification score, *G-Verifier* produces a final, geometrically consistent re-ranked list of target candidates C'_t . The top candidate from this list, where $c'_{t1} \in C'_t$, is then returned as the final grounded object o_t^* .

4.2 THE BASELINE PROPOSE-SELECT PIPELINE

Our framework leverages a state-of-the-art *Grounded 3D-LLM*(Chen et al. (2024c)), which follows a query-based *Propose-Select* paradigm. It first generates a set of object instance representations from the point cloud, and then uses an *LLM* to select the candidate that best matches a language query. A detailed description of this baseline is provided in Appendix A.3.

270 4.3 G-VERIFIER: OUR DECOUPLED VERIFICATION MODULE
271272 *G-Verifier* performs the final, explicit geometric verification stage. It takes the top- k semantically-
273 ranked candidates from the baseline and re-ranks them based on the spatial relationship R in query.
274275 4.3.1 ROTARY SPATIAL-RELATIONSHIP EMBEDDING (RoSE)
276277 To achieve reliable geometric verification, a structured representation that can precisely capture the
278 relationship between a target-anchor pair is required. Our approach is conceptually analogous to the
279 powerful *retrieve-and-rerank* architectures common in *IR* Geigle et al. (2022), where an efficient
280 retriever first fetches plausible candidates, and a powerful re-ranker then meticulously examines this
281 small set to produce a high-precision ranking. *G-Verifier* functions as this specialist re-ranker, and
282 the *Rotary Spatial-Relationship Embedding (RoSE)* is its core component.
283283 RoSE is not a static feature but a dynamically constructed composite embedding designed to facilitate
284 a deep, cross-modal fusion of a specific target-anchor pair with a relational constraint. As shown
285 in Figure 5, a RoSE vector is composed of four key parts:
286286 • **Target and Anchor Context:** The instance embeddings (O_t, O_a) of the candidate pair, which
287 provide rich, instance-level semantic and visual information.
288 • **Explicit 3D Geometric Encoding:** A high-dimensional feature vector, F_{geom} , derived from the
289 candidates' relative position vector, Δp . We employ a 3D extension of *Rotary Position Encoding*
290 (*RoPE*) (Su (2021)) for this purpose, as its formulation provides a natural inductive bias for learning
291 relational representations that are independent of the objects' absolute positions. The detailed
292 mathematical formulation of our 3D *RoPE* is provided in Appendix A.4.
293 • **Learnable Relation-Type Embedding:** A learnable embedding, E_R , that acts as a semantic anchor
294 for each of the 12 predefined relation types (e.g., above, next to).
295295 These four components are then fused into the final RoSE vector using a lightweight *MLP*, as de-
296 tailed in the following section.
297298 4.3.2 FEATURE FUSION STRATEGY IN ROSE
299300 A crucial design choice is how to integrate the four distinct feature components including the target
301 instance embedding O_t , the anchor instance embedding O_a , the geometric encoding F_{geom} , and the
302 relation-type embedding E_R into a single, cohesive *RoSE* vector. We employ a non-linear fusion
303 approach using a *Multilayer Perceptron (MLP)* Haykin (1994) to learn the complex interactions
304 between these semantic and geometric features.
305305 The components are first concatenated and then processed by a two-layer *MLP*, which includes a
306 *ReLU* non-linearity Agarap (2018) to model complex dependencies. This process can be formally
307 expressed as:
308

308
$$RoSE = MLP_{fusion} (Concat(O_t, O_a, F_{geom}, E_R)) \quad (1)$$

309 This *MLP*-based strategy allows the model to learn a rich, non-linear mapping from the constituent
310 features to the final relational representation. It provides the flexibility to model how the inter-
311 pretation of geometric features might be modulated by the semantic context of the objects and the
312

313 314 315 316 317 318 319 320 321 322 323 Figure 5: Architecture of constructing a single RoSE

324 high-level relational concept. A detailed breakdown of the *MLP* architecture is provided in Ap-
 325 pendix A.9.
 326

327 **4.4 LEARNING BY DISCRIMINATING ROSE**
 328

329 The core challenge in training *G-Verifier* lies in learning the abstract concept of a spatial relation. A
 330 naive classification objective would suffer from a train-inference discrepancy. We therefore frame
 331 the training as a contrastive alignment task. Our goal is for our structured, geometry-infused *RoSE*
 332 representation to align with the *BERT* embedding of its corresponding natural language relation
 333 phrase V_{bert} .

334 To achieve this, we first construct a training set of positive triplets (O_t, O_a, V_{bert}) . As our source
 335 datasets only provide ground truth for the target object, we devise an efficient ‘inverse querying’
 336 pseudo-labeling strategy to automatically annotate the anchor object for over 296,000 relation in-
 337 stances. To create a discriminative learning signal, we then employ a structured hard negative mining
 338 strategy (*HSC Mining*), which generates plausible but incorrect configurations by perturbing the re-
 339 lation type or the object pair within the same scene. The detailed procedures for our pseudo-labeling
 340 and negative mining strategies are provided in Appendix A.5.

341 Finally, we train the *G-Verifier* using an in-batch contrastive loss, guided by an asymmetric semantic
 342 target (detailed in Appendix A.6). For each positive *RoSE* representation, $RoSE_i^+$, the objective is
 343 to maximize its similarity with its true language target, $V_{bert_i}^+$, while minimizing its similarity to all
 344 other language targets in the batch, which act as distractors. This is formalized for each positive
 345 sample i as:

$$\mathcal{L}_i = -\log \frac{\exp(\text{sim}(RoSE_i^+, V_{bert_i}^+)/\tau)}{\sum_{j=1}^B \exp(\text{sim}(RoSE_i^+, V_{bert_j}^+)/\tau)} \quad (2)$$

346 where τ is a temperature hyperparameter. This training objective encourages the model to learn a
 347 rich and discriminative embedding space.
 348

351 **4.5 INFERENCE WITH G-VERIFIER**
 352

353 At inference time, *G-Verifier* functions as a re-ranking module that refines the initial candidate list
 354 from the baseline model based on an explicit geometric evaluation. The process consists of three
 355 main steps.

356 **1) Preparation of Inputs.** The process begins by parsing the user’s language query L into a struc-
 357 tured triplet $\{O_t, R_{text}, O_a\}$ and encoding the relation phrase R_{text} into a target vector, V_{target} , using
 358 our frozen BERT model. We then perform two separate queries to the baseline’s semantic selection
 359 module with O_t and O_a to obtain the top- k candidate lists C_t and C_a , respectively.

360 **2) Geometric Verification and Scoring.** Our verification is constrained to the top- k candidates in
 361 C_t and C_a to ensure computational efficiency. We iterate through all possible target-anchor pairs
 362 (c_{ti}, c_{aj}) from these lists, construct their *RoSE*, and compute a geometric verification score via
 363 cosine similarity with the language target:

$$\text{Score}_{\text{geom}}(i, j) = \text{Sim}(RoSE(i, j), V_{target}) \quad (3)$$

364 **3) Re-ranking via Weighted Score Fusion.** To effectively balance the baseline’s semantic confi-
 365 dence with our geometric score, we employ a weighted fusion strategy. For each target candidate
 366 c_{ti} , we first compute its optimal, confidence-weighted geometric evidence, $\text{Score}_{\text{geom}}^{\text{best}}(c_{ti})$, by find-
 367 ing the anchor candidate that maximizes the product of the geometric score and the anchor’s own
 368 semantic confidence. The final score is then a linear interpolation of the target’s initial semantic
 369 score, s_{ti} , and this geometric evidence:

$$\text{Score}_{\text{final}}(c_{ti}) = (1 - \alpha) \cdot s_{ti} + \alpha \cdot \text{Score}_{\text{geom}}^{\text{best}}(c_{ti}) \quad (4)$$

370 where α is a balancing hyperparameter. The candidate with the highest final score is selected.
 371 This fusion strategy allows geometric evidence to act as a powerful refinement signal, while still
 372 respecting the baseline’s robust semantic judgments. The detailed rationale for this fusion approach
 373 and our hyperparameter choices are provided in Appendix A.10.

378 **5 EXPERIMENTS**
 379

380 To systematically evaluate our proposed *G-Verifier*, we conduct two sets of experiments. First,
 381 we perform a detailed component analysis to validate the design of our *RoSE* representation in an
 382 isolated setting. Second, we integrate *G-Verifier* as a post-hoc re-ranking module with a strong
 383 baseline to assess its impact on the end-to-end spatial reasoning task. All experiments are conducted
 384 on our newly constructed *3D-SpAn* dataset. A detailed description of *3D-SpAn* is provided in Ap-
 385 pendix A.12 and the implementation details of experiment environment and a full description of our
 386 evaluation metrics are provided in Appendix A.13.

387
 388 **5.1 ANALYSIS OF THE ROSE DESIGN**
 389

390 To validate the design choices within *RoSE*, we conduct a progressive analysis by starting with a
 391 naive baseline and incrementally adding our key components. We evaluate these configurations on
 392 a proxy classification task, with fine-grained *F1*-score results summarized in Table 1.

393 The results of our component analysis clearly demonstrate a synergistic relationship between se-
 394 mantic and geometric priors. A naive baseline using only the *instance embeddings* (*IE*) achieves a
 395 0.25 *F1*-score, confirming that pre-trained features contain some implicit spatial context, but it is
 396 insufficient for robust reasoning. Augmenting this baseline with our learnable *Relation Type Em-
 397 bedding* (E_{type}) causes a dramatic leap in performance to 0.95, establishing this high-level semantic
 398 prior as the most critical component for the task. While adding only the explicit *3D RoPE* encod-
 399 ing yields a more modest gain on its own, its crucial role is revealed in the full model. The final
 400 *RoSE*, which combines all three components, achieves the best performance across every relation
 401 category, with *RoPE* providing the most significant boosts on geometrically ambiguous relations
 402 like *left_of* and *right_of*. This progressive analysis validates our design, proving that the
 403 synergy of implicit context, a dominant semantic anchor, and an explicit geometric signal is es-
 404 sential for building a powerful relational representation. A more detailed discussion of these results is
 405 provided in Appendix A.15.

406 Table 1: Fine-grained *F1*-score analysis of our *RoSE* design across 12 spatial relation types. We pro-
 407 gressively add relational priors to a naive baseline. The highest score in each column is highlighted.
 408 *Full Precision* and *Recall* results are available in Appendix A.8.

Setup	<i>left_of</i>	<i>right_of</i>	<i>front_of</i>	<i>behind</i>	<i>above</i>	<i>on</i>	<i>under</i>	<i>below</i>	<i>inside</i>	<i>between</i>	<i>surrounded</i>	<i>proximity</i>	<i>Macro F1</i>	<i>WAvg F1</i>
(1) Naive (<i>IE</i> Only)	0.15	0.16	0.12	0.13	0.22	0.28	0.19	0.21	0.25	0.08	0.06	0.30	0.17	0.25
(2) + <i>3D RoPE</i> (<i>IE</i> + <i>RoPE</i>)	0.22	0.24	0.18	0.19	0.25	0.30	0.22	0.24	0.26	0.10	0.07	0.32	0.20	0.34
(3) + E_{type} (<i>IE</i> + E_{type})	0.82	0.81	0.79	0.78	0.94	0.96	0.92	0.93	0.90	0.75	0.70	0.97	0.80	0.95
(4) Full (<i>RoSE</i>)	0.88	0.87	0.85	0.84	0.95	0.97	0.93	0.94	0.91	0.81	0.75	0.98	0.85	0.96

419 **5.2 END-TO-END RE-RANKING PERFORMANCE**
 420

421 To evaluate our method’s real-world impact, we integrate *G-Verifier* as a post-hoc re-ranking module
 422 with a state-of-the-art *Grounded 3D-LLM*, using our own re-implementation as a controlled baseline.
 423 We conduct a comprehensive evaluation on a challenging, manually-verified 1,000-sample test set,
 424 employing both standard grounding metrics and a suite of *Information Retrieval* metrics.

425 **Overall Performance and Robustness Analysis.** Table 2 presents the primary results of our end-to-
 426 end evaluation. *G-Verifier* achieves an improvement on standard top-1 grounding metrics, boosting
 427 Acc@0.50 by a substantial +2.50% and Acc@0.25 by +2.60% over the strong baseline. We further
 428 analyze the module’s behavior on two critical subsets of the data. The first is the *Top-1 Rectification*
 429 *Rate*, which measures how often *G-Verifier* can correct a failure by the baseline. For the 510 cases
 430 where the baseline’s initial predictions with *IoU* below 0.25, our module successfully elevated a
 431 different candidate to the top-1 position with an *IoU* of 0.25 or higher in 6.27% of these instances.
 Achieving a Top-1 correction is a highly challenging task, as it requires not just a minor improvement

but a decisive re-ordering of the candidate list. The second diagnostic is the *Non-Deterioration Rate*, which assesses the module’s safety. For the 490 cases where the baseline was already successful ($IoU \geq 0.25$), our module preserved a successful outcome in 98.78% of instances. These diagnostic results confirm that *G-Verifier* acts as a safe and effective enhancement, primarily targeting the baseline’s failures while rarely disturbing its successes.

Analysis of Ranking Quality and Performance by Relation Type. To provide a more holistic assessment beyond Top-1 accuracy, we evaluate overall ranking quality using standard *IR* metrics. The results in Table 3a demonstrate a systematic improvement, with a significant gain in Mean Reciprocal Rank (MRR) confirming that the correct object is, on average, ranked higher. A fine-grained analysis, broken down by relation type in Table 3b, further reveals where *G-Verifier*’s strengths lie. The most substantial improvements are seen in categories with objective geometric cues, such as *on* (+4.17% Acc@0.25) and *proximity* (+4.14%). These are precisely the types of topological and proximity-based relations our explicit geometric encoding is designed to excel at. In contrast, performance on more viewpoint-dependent relations like ‘*behind*’ is more modest. This indicates that our *G-Verifier* is highly effective at verifying objective geometric facts, while modeling more subjective, orientation-dependent relations remains a challenging frontier.

Table 2: Overall performance of *G-Verifier* on our curated 1,000-sample benchmark. We report standard grounding metrics (Acc@ k) and key *IR* metrics (MRR, NDCG@ k).

Method	Grounding		IR		
	Acc@0.25	Acc@0.50	MRR	NDCG@1	NDCG@3
<i>Grounded 3D-LLM</i>	49.00%	46.30%	0.5038	0.4720	0.5435
+ <i>G-Verifier</i>	51.60%	48.80%	0.5260	0.4984	0.5627
Improvement	+2.60%	+2.50%	+0.0222	+0.0264	+0.0192

Table 3: Detailed analysis of re-ranking performance on our benchmark. Evaluation with standard IR metrics and performance improvement (Acc@0.25) broken down by major relation types.

(a) *IR* Metrics.

Metric	Baseline	Reranked	Improv.
<i>MRR</i>	0.5038	0.5260	+0.0222
<i>MAP@1</i>	0.3140	0.3410	+0.0270
<i>NDCG@1</i>	0.4720	0.4984	+0.0264
<i>MAP@3</i>	0.4327	0.4583	+0.0257
<i>NDCG@3</i>	0.5435	0.5627	+0.0192
<i>MAP@5</i>	0.4738	0.4964	+0.0227
<i>NDCG@5</i>	0.6207	0.6348	+0.0141

(b) Improvement by Relation Type.

Relation	Samples	Baseline	Improv.
<i>on</i>	216	56.48%	+4.17%
<i>proximity</i>	266	43.98%	+4.14%
<i>under</i>	26	53.85%	+3.85%
<i>above</i>	32	53.12%	+3.12%
<i>left_of</i>	133	44.36%	+2.26%
<i>front_of</i>	104	51.92%	+0.96%
<i>right_of</i>	151	48.34%	+0.00%
<i>behind</i>	55	47.27%	+0.00%
<i>surrounded_by</i>	10	40.00%	+0.00%

6 CONCLUSION

This paper tackles the challenge of robust spatial reasoning in 3D point clouds. We identified the entanglement of semantic and geometric reasoning in monolithic models as a core limitation and proposed *G-Verifier*, a novel geometric verification module built upon a decoupled *Propose, Select, then Verify* paradigm. The core of module is *RoSE*, a structured representation that fuses instance-level semantic context with an explicit, view-invariant geometric encoding. Experiments, conducted on a challenging, manually-verified benchmark, demonstrate that this decoupled approach is highly effective. *G-Verifier* significantly improves the top-1 grounding accuracy over a strong baseline, boosting Acc@0.50 by +2.50%. Furthermore, a holistic analysis with metrics confirms that our module systematically enhances the overall ranking quality of the baseline’s predictions. This work validates that a decoupled geometric verification stage can effectively and safely complement the implicit reasoning of large multimodal models to resolve complex spatial reasoning queries.

486
487
ETHICS STATEMENT488
489
490
We adhere to the ICLR Code of Ethics. Our work focuses on foundational algorithmic advancements
and we do not foresee direct negative societal consequences. We outline key ethical considerations
below.491
492
493
Our 3D-SpAn dataset is derived entirely from existing public academic datasets (e.g., ScanNet), and
our process does not involve new data collection from human subjects. We have taken care to ensure
our released annotations do not contain personally identifiable information.494
495
496
We acknowledge that, like any AI technology for spatial understanding, our methods could potentially
be applied in dual-use scenarios. Our research is intended for positive applications such as
assistive robotics.497
498
499
Our framework relies on large, pre-trained language and vision models, which may inherit societal
biases from their training data. While a full audit is beyond this paper’s scope, we acknowledge that
mitigating such biases in 3D vision-language systems is an important area for future research.500
501
REPRODUCIBILITY STATEMENT502
503
We have made a concerted effort to ensure the reproducibility of our work. All key components
required for reproduction are detailed throughout the paper and its supplementary materials.504
505
506
507
508
509
510
• **Source Code and Models:** We will release the full source code for our G-Verifier module, the
data construction pipeline, and all evaluation scripts. Pre-trained weights for our G-Verifier will
also be made available. The code will be hosted on an anonymous repository for review and will
be transferred to a public GitHub repository upon publication.511
512
513
514
• **Dataset:** Our newly constructed 3D-SpAn dataset, which forms the basis of our training, will
be publicly released. We provide a detailed description of the data construction process, includ-
ing the source datasets, the LLM-based parsing pipeline, and our pseudo-labeling strategy, in
Section A.12 and a more detailed prompt in Appendix A.17.515
516
517
518
• **Implementation Details:** We provide comprehensive implementation details for all experi-
ments. The architecture of our G-Verifier and its core component, RoSE, are detailed in Sec-
tion 4.3. Key hyperparameters for both the component analysis training and the final end-to-end
re-ranking are provided in Appendix A.9.519
520
521
522
• **Evaluation:** The evaluation protocol for our end-to-end experiments, including the construction
of our manually-verified 1,000-sample benchmark and the use of Information Retrieval metrics,
is described in Section 5.2. The code for reproducing all tables and figures in the paper will be
included in our code release.523
524
REFERENCES525
526
Panos Achlioptas, Ahmed Abdelreheem, Fei Xia, Mohamed Elhoseiny, and Leonidas Guibas.
527
Referit3d: Neural listeners for fine-grained 3d object identification in real-world scenes. In *Pro-
ceedings of the European Conference on Computer Vision (ECCV)*, pp. 422–440, 2020. doi:
528
10.1007/978-3-030-58452-8_25.530
531
Abien Fred Agarap. Deep learning using rectified linear units (relu). *arXiv preprint
arXiv:1803.08375*, 2018.532
533
Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
534
Savarese. 3d semantic parsing of large-scale indoor spaces. In *2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR)*, pp. 1534–1543, 2016. doi: 10.1109/CVPR.2016.
535
170.536
537
Iro Armeni, Zhi-Yang He, JunYoung Gwak, Amir R Zamir, Martin Fischer, Jitendra Malik, and
538
Silvio Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In
539
Proceedings of the IEEE International Conference on Computer Vision, pp. 5664–5673, 2019a.

540 Iro Armeni, Zhi-Yang He, Amir Zamir, Junyoung Gwak, Jitendra Malik, Martin Fischer, and Silvio
 541 Savarese. 3d scene graph: A structure for unified semantics, 3d space, and camera. In *2019*
 542 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 5663–5672, 2019b. doi:
 543 10.1109/ICCV.2019.00576.

544 Mohsen Attaran and Bilge Gokhan Celik. Digital twin: Benefits, use cases, challenges, and oppor-
 545 tunities. *Decision Analytics Journal*, 6:100165, 2023. ISSN 2772-6622. doi: <https://doi.org/10.1016/j.dajour.2023.100165>. URL <https://www.sciencedirect.com/science/article/pii/S277266222300005X>.

546 Daichi Azuma, Taiki Miyanishi, Shuhei Kurita, and Motoaki Kawanabe. Scanqa: 3d question an-
 547 swering for spatial scene understanding. In *Proceedings of the IEEE/CVF Conference on Com-
 548 puter Vision and Pattern Recognition (CVPR)*, 2022.

549 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
 550 Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. Arkitscenes: A diverse real-world dataset for
 551 3d indoor scene understanding using mobile rgb-d data. *arXiv preprint arXiv:2111.08897*, 2021.

552 Qin T Cai Y, Ou Y. Improving slam techniques with integrated multi-sensor fusion for 3d data
 553 analysis. *Sensors*, 24(7):2033, 2023. doi: 10.3390/s24072033.

554 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
 555 Sergey Zagoruyko. End-to-end object detection with transformers. *ArXiv*, abs/2005.12872, 2020.
 556 URL <https://api.semanticscholar.org/CorpusID:218889832>.

557 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 558 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings
 559 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14455–
 560 14465, June 2024a.

561 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 562 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings
 563 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14455–
 564 14465, June 2024a.

565 Dave Chen, Angel Chang, and Matthias Nießner. *ScanRefer: 3D Object Localization in RGB-D
 566 Scans Using Natural Language*, pp. 202–221. 11 2020. ISBN 978-3-030-58564-8. doi: 10.1007/
 567 978-3-030-58565-5_13.

568 Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi, Cordelia Schmid, and Ivan Laptev. Language
 569 conditioned spatial relation reasoning for 3d object grounding. *arXiv preprint arXiv:2211.09646*,
 570 2022.

571 Shizhe Chen, Ricardo Garcia Pinel, I. Laptev, and Cordelia Schmid. Sugar : Pre-training 3d vi-
 572 sual representations for robotics. *2024 IEEE/CVF Conference on Computer Vision and Pattern
 573 Recognition (CVPR)*, pp. 18049–18060, 2024b. doi: 10.1109/CVPR52733.2024.01709.

574 Yilun Chen, Shuai Yang, Haifeng Huang, Tai Wang, Ruiyuan Lyu, Runsen Xu, Dahua Lin, and
 575 Jiangmiao Pang. Grounded 3d-llm with referent tokens. *arXiv preprint arXiv:2405.10370*, 2024c.

576 An-Chieh Cheng, Hongxu Yin, Yang Fu, Qiushan Guo, Ruihan Yang, Jan Kautz, Xiaolong Wang,
 577 and Sifei Liu. Spatialrgpt: Grounded spatial reasoning in vision-language models. *Advances in
 578 Neural Information Processing Systems*, 37:135062–135093, 2024.

579 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 580 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *2017 IEEE Con-
 581 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 2432–2443, 2017. doi:
 582 10.1109/CVPR.2017.261.

583 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 584 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
 585 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 586 scale. *ICLR*, 2021.

587 Gregor Geigle, Jonas Pfeiffer, Nils Reimers, Ivan Vulić, and Iryna Gurevych. Retrieve fast, rerank
 588 smart: Cooperative and joint approaches for improved cross-modal retrieval. *Transactions of the
 589 Association for Computational Linguistics*, 10:503–521, 2022. doi: 10.1162/tacl_a_00473. URL
 590 <https://aclanthology.org/2022.tacl-1.29/>.

594 Ziyu Guo, Yiwen Tang, Renrui Zhang, Dong Wang, Zhigang Wang, Bin Zhao, and Xuelong Li.
 595 Viewrefer: Grasp the multi-view knowledge for 3d visual grounding with gpt and prototype guid-
 596 ance. *arXiv preprint arXiv:2303.16894*, 2023.

597

598 Yu Hao, Fan Yang, Nicholas Fang, and Yu-Shen Liu. Embosr: Embodied spatial reasoning for
 599 enhanced situated question answering in 3d scenes. In *2024 IEEE/RSJ International Conference
 600 on Intelligent Robots and Systems (IROS)*, pp. 9811–9816. IEEE, 2024.

601 Simon Haykin. *Neural networks: a comprehensive foundation*. Prentice Hall PTR, 1994.

602

603 Dailan He, Yusheng Zhao, Junyu Luo, Tianrui Hui, Shaofei Huang, Aixi Zhang, and Si Liu. Tran-
 604 sRefer3D: Entity-and-relation aware transformer for fine-grained 3d visual grounding. In *Pro-
 605 ceedings of the 29th ACM International Conference on Multimedia*, pp. 2344–2352, 2021. doi:
 606 10.1145/3474085.3475397. URL <https://arxiv.org/abs/2108.02388>.

607

608 Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, and Katerina Fragkiadaki. Bottom upnbsp;top
 609 downnbsp;detection transformers fornbsp;language grounding innnbsp;images andnbsp;point
 610 clouds. In *Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv, Israel, Octo-
 611 ber 23–27, 2022, Proceedings, Part XXXVI*, pp. 417–433, Berlin, Heidelberg, 2022. Springer-
 612 Verlag. ISBN 978-3-031-20058-8. doi: 10.1007/978-3-031-20059-5_24. URL https://doi.org/10.1007/978-3-031-20059-5_24.

613

614 Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
 615 Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Li Fei-Fei. Vi-
 616 sual genome: Connecting language and vision using crowdsourced dense image annotations. *Int.
 617 J. Comput. Vision*, 123(1):32–73, May 2017. ISSN 0920-5691. doi: 10.1007/s11263-016-0981-7.
 618 URL <https://doi.org/10.1007/s11263-016-0981-7>.

619

620 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 621 Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
 622 vision. *arXiv preprint arXiv:2312.16256*, 2023.

623

624 Daizong Liu, Yang Liu, Wencan Huang, and Wei Hu. A survey on text-guided 3d visual grounding:
 625 Elements, recent advances, and future directions. *arXiv preprint arXiv:2406.05785*, 2024.

626

627 Junyu Luo, Jiahui Fu, Xianghao Kong, Chen Gao, Haibing Ren, Hao Shen, Huaxia Xia, and Si Liu.
 628 3d-sps: Single-stage 3d visual grounding via referred point progressive selection. In *Proceedings
 629 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 18212–
 630 18221, 2022.

631

632 Zhenhua Ning, Zhuotao Tian, Shaoshuai Shi, Guangming Lu, Daojing He, Wenjie Pei, and Li Jiang.
 633 Enhancing spatial reasoning in multimodal large language models through reasoning-based seg-
 634 mentation. *arXiv preprint arXiv:2506.23120*, 2025.

635

636 OpenAI. Gpt-4 technical report. *ArXiv*, abs/2303.08774, 2023. URL <https://arxiv.org/abs/2303.08774>.

637

638 Aishwarya Padmakumar, Mert Inan, Spandana Gella, Patrick Lange, and Dilek Hakkani-Tur. Mul-
 639 timodal embodied plan prediction augmented with synthetic embodied dialogue. In Houda
 640 Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empir-
 641 ical Methods in Natural Language Processing*, pp. 6114–6131, Singapore, December 2023.
 642 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.374. URL
 643 <https://aclanthology.org/2023.emnlp-main.374/>.

644

645 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 646 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
 647 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 648 Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
 649 deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
 650 E. Fox, and R. Garnett (eds.), *Advances in Neural Information Processing Systems 32*, pp.
 651 8024–8035. Curran Associates, Inc., 2019. URL <http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf>.

648 Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point
 649 sets for 3d classification and segmentation. In *Proceedings of the IEEE Conference on Computer*
 650 *Vision and Pattern Recognition (CVPR)*, pp. 652–660, 2017.

651 Zhangyang Qi, Ye Fang, Zeyi Sun, Xiaoyang Wu, Tong Wu, Jiaqi Wang, Dahua Lin, and Heng-
 652 shuang Zhao. Gpt4point: A unified framework for point-language understanding and generation.
 653 In *CVPR*, 2024.

654 remyxai. Vqasynth, 2024. URL <https://github.com/remyxai/VQASynth/tree/main>. GitHub repository.

655 Sushmita Sarker, Prithul Sarker, Gunner Stone, Ryan Gorman, Alireza Tavakkoli, George Bebis,
 656 and Javad Sattarvand. A comprehensive overview of deep learning techniques for 3d point cloud
 657 classification and semantic segmentation, 05 2024.

658 Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe.
 659 Mask3D: Mask Transformer for 3D Semantic Instance Segmentation. 2023.

660 Manasi Sharma. Exploring and improving the spatial reasoning abilities of large language models.
 661 *arXiv preprint arXiv:2312.01054*, 2023.

662 Ze Shen, Hao Chu, Fei Wang, Yi Guo, Shangdong Liu, and Shuai Han. Hfe-net: hierarchical feature
 663 extraction and coordinate conversion of point cloud for object 6d pose estimation. *Neural Comput.*
 664 *Appl.*, 36(6):3167–3178, November 2023. ISSN 0941-0643. doi: 10.1007/s00521-023-09241-1.
 665 URL <https://doi.org/10.1007/s00521-023-09241-1>.

666 Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and
 667 detection from point cloud. In *The IEEE Conference on Computer Vision and Pattern Recognition*
 668 (*CVPR*), June 2019.

669 Jianlin Su. Roformer: Transformer with rotary position embeddings - zhuiyiai. Technical report,
 670 2021. URL <https://github.com/ZhuiyiTechnology/roformer>.

671 Xinyi Wang, Na Zhao, Zhiyuan Han, Dan Guo, and Xun Yang. Augrefer: advancing 3d visual
 672 grounding via cross-modal augmentation and spatial relation-based referring. In *Proceedings of*
 673 *the Thirty-Ninth AAAI Conference on Artificial Intelligence and Thirty-Seventh Conference on*
 674 *Innovative Applications of Artificial Intelligence and Fifteenth Symposium on Educational Ad-*
 675 *vances in Artificial Intelligence*, AAAI'25/IAAI'25/EAAI'25. AAAI Press, 2025. ISBN 978-1-
 676 57735-897-8. doi: 10.1609/aaai.v39i8.32863. URL <https://doi.org/10.1609/aaai.v39i8.32863>.

677 Zehan Wang, Haifeng Huang, Yang Zhao, Linjun Li, Xize Cheng, Yichen Zhu, Aoxiong Yin, and
 678 Zhou Zhao. 3drp-net: 3d relative position-aware network for 3d visual grounding. In *Proceed-
 679 ings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 10612–
 680 10625, Singapore, 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 681 emnlp-main.656. URL <https://aclanthology.org/2023.emnlp-main.656>.

682 Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
 683 GraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences. In *Proceedings*
 684 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.

685 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s
 686 eye of llms: visualization-of-thought elicits spatial reasoning in large language models. *Advances*
 687 *in Neural Information Processing Systems*, 37:90277–90317, 2024a.

688 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s
 689 eye of llms: Visualization-of-thought elicits spatial reasoning in large language models. *arXiv*
 690 *preprint arXiv:2404.03622*, 2024b.

691 Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
 692 Empowering large language models to understand point clouds. In *ECCV*, 2024a.

693 Yue Xu, Kaizhi Yang, Jiebo Luo, and Xuejin Chen. Dual attribute-spatial relation alignment for 3d
 694 visual grounding. *arXiv preprint arXiv:2406.08907*, 2024b.

702 Jianing Yang, Xuweiyi Chen, Shengyi Qian, Nikhil Madaan, Madhavan Iyengar, David F Fouhey,
 703 and Joyce Chai. Llm-grounder: Open-vocabulary 3d visual grounding with large language model
 704 as an agent. *arXiv preprint arXiv:2309.12311*, 2023.

705 Yiming Zhang, ZeMing Gong, and Angel X Chang. Multi3drefer: Grounding text description to
 706 multiple 3d objects. In *Proceedings of the IEEE/CVF International Conference on Computer
 707 Vision (ICCV)*, pp. 15225–15236, October 2023.

709 Lichen Zhao, Daigang Cai, Lu Sheng, and Dong Xu. 3dvg-transformer: Relation modeling for
 710 visual grounding on point clouds. In *Proceedings of the IEEE/CVF International Conference on
 711 Computer Vision (ICCV)*, pp. 2928–2937, October 2021.

713 A APPENDIX

716 A.1 BACKGROUND ON 3D SEMANTIC SEARCH AND POINT CLOUD DATA

717 This section provides background on the core concepts and tasks relevant to our work.

719 **Point Clouds and 3D Scenes** A point cloud is the primary data modality for representing 3D
 720 spatial environments, typically captured by sensors like LiDAR or RGB-D cameras Qi et al. (2017).
 721 It is a set of vertices in a three-dimensional coordinate system, $P = \{p_i\}_{i=1}^N$, where each point
 722 $p_i \in \mathbb{R}^{3+d}$ includes its geometric coordinates (x, y, z) and optional attributes. Millions of such
 723 points form a detailed geometric scaffold of a real-world environment, as illustrated in Figure 6.
 724 Within a scene, a physical object instance o_k is represented by a subset of these points.

726 Figure 6: A real-world 3D scene represented as a point cloud. (a) RGB image. (b) Sparse geometric
 727 point cloud. (c) Dense point cloud with color.

739 **Standard Semantic Search (3D Visual Grounding)** A fundamental task that leverages this repre-
 740 sentation is semantic search, commonly known as 3D Visual Grounding (3DVG) in computer vision
 741 Liu et al. (2024). The goal is to identify a target object o^* from all objects O in a scene P based on a
 742 language description L . The dominant approach follows a two-stage *Propose-then-Select* paradigm
 743 He et al. (2021); Luo et al. (2022), which serves as the foundation upon which our work builds.

744 A.2 RELATED WORK

746 **3D Visual Grounding** 3D Visual Grounding (3DVG)(Liu et al. (2024)) seeks to link natural lan-
 747 guage queries to specific objects within a 3D scene. The field has largely transitioned from early
 748 methods relying on handcrafted features to end-to-end, Transformer-based paradigms. Pioneering
 749 works like ScanRefer(Chen et al. (2020)) and BUTD-DETR(Jain et al. (2022)) demonstrated the ef-
 750 fectiveness of multimodal Transformers in implicitly learning the complex correspondences between
 751 visual features and textual phrases. The recent integration of Large Language Models (LLMs), as
 752 seen in Grounded 3D-LLM(Chen et al. (2024c)), has further advanced the state of the art by leverag-
 753 ing the powerful reasoning capabilities of LLMs for scene-level object localization through referent
 754 token mechanisms. A common characteristic of these powerful models is their reliance on implicit,
 755 attention-based mechanisms to handle spatial relationships, which motivates the exploration of more
 explicit modeling approaches.

756 **LLMs for 3D Scene Understanding** The application of LLMs to 3D data is a rapidly advancing
 757 frontier. Research has progressed on two main fronts: object-level and scene-level under-
 758 standing(Yang et al. (2023); Sharma (2023); Wu et al. (2024b)). At the object level, models like
 759 GPT4Point(Qi et al. (2024)) and PointLLM(Xu et al. (2024a)) have successfully enabled LLMs to
 760 comprehend the attributes and functions of individual point clouds. At the scene level, frameworks
 761 such as Grounded 3D-LLM(Chen et al. (2024c)) have made the crucial leap from single-object to
 762 multi-object reasoning. By providing all object proposals in a scene as context to an LLM, these
 763 models can resolve complex referential expressions. While significantly improving localization, this
 764 paradigm also highlights the remaining challenges in robustly handling inter-object spatial relation-
 765 ships, which is the primary focus of our work.

766 **Spatial Relationship Modeling in 3DVG** To improve spatial reasoning in 3DVG, researchers
 767 have pursued several distinct strategies beyond relying solely on the model’s implicit learning ca-
 768 pabilities. One prominent direction is data-driven enhancement, where works like AugRefer(Wang
 769 et al. (2025)) programmatically augment 3D scenes and use Vision-Language Models (VLMs)(Chen
 770 et al. (2024a); remyxai (2024)) to generate new training data rich in spatial descriptions. Another ap-
 771 proach involves imposing explicit structured priors, such as 3D Scene Graphs(Armeni et al. (2019a)).
 772 Methods in this category, like SGFN(Wu et al. (2021)), first generate a comprehensive graph of ob-
 773 jects and their inter-relations, and then perform language-based reasoning on this pre-computed
 774 structure. A third major strategy is the direct injection of geometric features into the main reasoning
 775 pipeline. Classic examples include 3DVG-Transformer(Zhao et al. (2021)), which encodes relative
 776 distances and angles as additional input features, while more recent methods like ViewRefer(Guo
 777 et al. (2023)) transform these geometric priors into an attention bias to directly influence the scores
 778 within the Transformer(Dosovitskiy et al. (2021)). Our work presents a distinct alternative to these
 779 approaches. Instead of serving as an input feature, a pre-computed graph, or an attention bias, our
 780 G-Verifier functions as an independent, post-hoc verification and re-ranking stage with a new spatial
 781 relation representation *RoSE*. This architectural choice fundamentally separates the task of under-
 782 standing objects from comprehending layouts, providing a more robust and interpretable pathway
 783 for resolving complex spatial constraints.

784 A.3 THE DETAILS OF OUR BASELINE PROPOSE-SELECT PIPELINE

785 Our framework leverages a state-of-the-art 3D *Vision Language Model (VLM)* to execute the first two
 786 stages. While our *G-Verifier* is designed to be compatible with any model that can perform these
 787 foundational tasks. Here, we illustrate the specific baseline implementation used in our experiments.

788 **Object Proposal (Stage 1):** The initial stage generates object candidates from the input point cloud
 789 P . We follow the query-based detection paradigm popularized by *DETR* (Carion et al. (2020)).
 790 Specifically, our baseline employs a *Mask3D*-like (Schult et al. (2023)) architecture. It uses a set of
 791 N learnable queries and a Transformer decoder, to predict a set of proposals $\{(m_i, O_i)\}_{i=1}^N$, where
 792 m_i is a binary mask and O_i is a high-dimensional feature representation for each instance, which
 793 we term the learnable instance embedding.

794 **Semantic Selection (Stage 2):** The second stage is a language-guided selection module. The core
 795 function is to take the set of all learnable instance embeddings and a textual description for an object
 796 (e.g., O_t) as input and to produce a ranked list of the top- k candidates that best match this description.
 797 Many existing baseline methods can fulfill this role.

798 In our work, we employ a grounded 3D *LLM*(Chen et al. (2024c)) for this purpose for its strong
 799 performance. This model implements the selection via a *generate-then-align* mechanism. It has been
 800 trained to generate a response containing a special referent token (e.g., `[ref]`), and its selection is
 801 made by matching the token’s hidden state, h_{ref} , against all available learnable instance embeddings.
 802 This process is supervised by a grounding loss:

$$803 \mathcal{L}_{\text{grounding}} = \text{ContrastiveLoss}(h_{\text{ref}}, O_{gt}) \quad (5)$$

804 While powerful for grounding individual object descriptions, the end-to-end nature of this specific
 805 implementation couples semantic and spatial reasoning when faced with a compositional query L ,
 806 which motivates our subsequent verification stage.

810 A.4 DETAILED FORMULATION OF 3D ROTARY POSITION ENCODING
811

812 Our explicit geometric encoding is based on a 3D extension of Rotary Position Encoding (RoPE)
813 Su (2021). RoPE was originally proposed for 1D sequences and encodes positional information by
814 applying a rotation to feature vectors. A key property of RoPE is that the inner product between
815 any two vectors at different positions depends only on their relative position, making it inherently
816 suitable for relational modeling.

817 We extend this principle to 3D to encode the relative position vector between two object centers,
818 $\Delta p = p_t - p_a = [\delta_x, \delta_y, \delta_z]$. The goal is to produce a d -dimensional feature vector, F_{geom} , where
819 each component is a function of Δp . Each dimension $k \in \{0, 1, \dots, d-1\}$ is computed as the
820 sum of sinusoidal encodings from each coordinate difference $(\delta_x, \delta_y, \delta_z)$. These encodings are pa-
821 rameterized by frequencies $\theta_i = 10000^{-2i/d}$, where the frequency index i is shared across pairs of
822 dimensions, i.e., $i = \lfloor k/2 \rfloor$. The full formulation is as follows:

$$F_{\text{geom}}(\Delta p)_k = \begin{cases} \sin(\delta_x \cdot \theta_{\lfloor k/2 \rfloor}) + \sin(\delta_y \cdot \theta_{\lfloor k/2 \rfloor}) + \sin(\delta_z \cdot \theta_{\lfloor k/2 \rfloor}) & \text{if } k \text{ is even} \\ \cos(\delta_x \cdot \theta_{\lfloor k/2 \rfloor}) + \cos(\delta_y \cdot \theta_{\lfloor k/2 \rfloor}) + \cos(\delta_z \cdot \theta_{\lfloor k/2 \rfloor}) & \text{if } k \text{ is odd} \end{cases} \quad (6)$$

823 This formulation provides a continuous, high-dimensional representation of the relative geometry
824 that is robust to small coordinate shifts and naturally encodes both distance and direction.

825 A.5 DETAILED TRAINING PROCEDURES

826 This section provides a detailed breakdown of the data construction and negative mining strategies
827 used to train our G-Verifier.

828 A.5.1 ANCHOR PSEUDO-LABELING VIA INVERSE QUERYING

829 Our source datasets provide a ground truth mask only for the target object, not the anchor. To over-
830 come this, we devise an efficient pseudo-labeling strategy for anchors based on ‘inverse querying’.
831 For a given relation instance $\{O_t, R, O_a\}$ and its ground truth target instance embedding V_{gt} , we
832 proceed as follows:

1. **Positive Target Embedding:** The positive target embedding, V_t , is directly identified as V_{gt} .
2. **Inverse Query Construction:** We leverage the semantic symmetry of spatial prepositions. We
832 define a new triplet $\{O'_t, R', O'_a\}$ where roles are swapped: the new target is the original anchor
833 ($O'_t = O_a$), the new anchor is the original target ($O'_a = O_t$), and the relation is inverted ($R' =$
834 $\text{inverse}(R)$, e.g., `left of` becomes `right of`).
3. **Anchor Pseudo-Labeling:** We feed this inverse query, specifically the new target description O'_t ,
835 to the baseline’s semantic selection module. The Top-1 returned instance embedding is selected
836 as our positive pseudo-label anchor, V_a .

837 We acknowledge this heuristic can introduce label noise, but our framework proves robust due to the
838 scale of our dataset and the nature of contrastive learning.

839 A.5.2 HSC MINING: HARD STRUCTURAL-SEMANTIC NEGATIVE MINING.

840 To ensure the model learns a discriminative representation space, training with high-quality hard
841 negatives is crucial. We employ an in-scene dynamic negative mining strategy, which we term HSC
842 Mining, which generates challenging negatives by creating plausible but incorrect relational con-
843 figurations using only objects present within the same scene. For a given positive training sample,
844 defined by the instance embedding pair (O_t, O_a) and the relation R , we construct negatives using
845 one of the following strategies:

- 846 • Relation-type Substitution. We keep the instance embedding pair (O_t, O_a) fixed but replace the
847 ground truth relation R with an incorrect relation type R_{random} randomly sampled from our vo-
848 cabulary (e.g., replacing `above` with `in front of`). This forces the model to learn the fine-
849 grained semantic differences between relation types for the same geometric configuration.
- 850 • Antisymmetric Relation Swapping. For relations that have a clear antisymmetric counterpart, we
851 construct a highly challenging negative by keeping the instance embedding pair (O_t, O_a) fixed, but
852 swapping the relation R with its inverse, $R' = \text{inverse}(R)$ (e.g., `left of` becomes `right of`).

864 This compels the model to become sensitive to the precise directionality encoded in the geometric
 865 features.
 866 • **Object Pair Substitution.** We keep the relation type R fixed but replace the ground truth instance
 867 embedding pair (O_t, O_a) with a different pair (O_i, O_j) . This new pair is formed by randomly
 868 sampling two different instance embeddings from the set of all available object proposals in the
 869 same scene. This teaches the model to ground the specific relation instance to the correct objects,
 870 rather than just recognizing that the relation type exists somewhere in the scene.

871 These strategies collectively generate a diverse and challenging set of negative samples, forcing the
 872 model to learn a robust and fine-grained understanding of how semantics, geometry, and specific
 873 object instances jointly define a spatial relationship.
 874

875 A.6 ASYMMETRIC DESIGN OF SEMANTIC TARGETS IN CONTRASTIVE ALIGNMENT

876 An important design choice in our training paradigm is the composition of the language-based se-
 877 mantic target, V_{bert} , used in our contrastive alignment loss. Specifically, for a relation triplet like
 878 the chair next to the table, we encode the phrase next to the table (relation
 879 + anchor) but deliberately exclude the target object’s description (the chair). This asymmetric
 880 design might raise the question of why the anchor’s description is included while the target’s is not.
 881 This choice is fundamental to the effectiveness and learning objective of our G-Verifier module.
 882

883 From a linguistic and cognitive standpoint, the anchor object is an integral part of the relational
 884 phrase itself. A prepositional phrase like next to the table defines a specific spatial re-
 885 gion, and its meaning is incomplete without the anchor (the table) which acts as the refer-
 886 ence or origin of the spatial coordinate system. The target object (the chair), in contrast,
 887 is the entity being described or located by this entire relational phrase. Therefore, by using
 888 BERT(“next to the table”), we provide a pure, yet contextually rich, representation of the
 889 spatial relationship that we aim for our model to understand. The target vector encapsulates the
 890 semantics of a search space defined by the relation and the anchor.

891 More critically from a machine learning perspective, this asymmetric design prevents the model
 892 from learning a trivial shortcut and bypassing the core challenge of geometric reasoning. The Re-
 893 lational Query, Q_R , already contains the rich, instance-level visual features of the target object via
 894 its Object Query, Q_t . If we were to also include the target’s textual description (e.g., the chair)
 895 in the BERT target vector, the model could potentially minimize the contrastive loss by learning a
 896 simple, unimodal mapping between the visual features in Q_t and the text features corresponding to
 897 “the chair” in the BERT vector. This would create a path of least resistance where the model could
 898 achieve low loss by focusing on object matching, while neglecting the difficult but essential task of
 899 learning the geometric constraints encoded by our 3D RoPE module.

900 By providing only the relational phrase (relation + anchor) as the semantic target, we enforce a true
 901 multimodal alignment. The model is forced to learn how the visual-geometric configuration of an
 902 object pair, represented by the full Relational Query, corresponds to the linguistic description of
 903 their spatial relationship. This ensures that the G-Verifier genuinely learns to perform geometric
 904 verification, which is the central goal of our work.

905 A.7 A PROBABILISTIC INTERPRETATION OF THE DECOUPLED PARADIGM

906 The distinction between our decoupled verification paradigm and monolithic end-to-end approaches
 907 can be further understood from a probabilistic modeling perspective. This section provides a for-
 908 mal interpretation of how these two paradigms differ in their approach to modeling the posterior
 909 probability of the target object.
 910

911 Let o_t^* be the correct target object instance, V be the visual information from the 3D scene, and L
 912 be the language query, which we deconstruct into its components $\{O_t, R, O_a\}$. The ultimate goal
 913 of any 3D visual grounding system for spatial reasoning is to find the object that maximizes the
 914 posterior probability $P(o_t^*|V, L)$.
 915

916 **Monolithic Approach: Modeling a Joint Probability** State-of-the-art end-to-end models, such
 917 as the baseline Grounded 3D-LLM, implicitly attempt to directly model this complex, joint posterior

918 distribution. Their approach can be expressed as learning a single, high-dimensional function f_θ that
 919 maps the inputs directly to a score for each potential object o_i in the scene:
 920

$$921 \quad P(o_t^* = o_i | V, L) \propto \exp(f_\theta(o_i, V, L)) \quad (7)$$

922 In this formulation, the semantic constraints from O_t and O_a are entangled with the geometric constraints
 923 from R . The function f_θ , typically a large Transformer, must learn the intricate interactions
 924 between these different types of information from scratch within a single, unified computation. This
 925 tight coupling makes the model prone to failures when faced with novel or conflicting semantic-
 926 geometric configurations, as it lacks a structured way to adjudicate between different sources of
 927 evidence.
 928

929 **Our Decoupled Approach: A Conditional Probability Decomposition** Our *Propose, Select,*
 930 *then Verify* paradigm, in contrast, can be interpreted as a structured decomposition of the posterior
 931 probability, analogous to applying the chain rule of probability. Instead of modeling the complex
 932 joint distribution in one step, we break it down into a sequence of more manageable, specialized
 933 conditional probability estimations.
 934

935 **Stage 1 & 2: Semantic Selection as Posterior Filtering.** The first two stages, executed by the
 936 baseline model, can be viewed as estimating a semantic-only posterior probability, $P(o_t | V, O_t)$.
 937 This stage deliberately ignores the complex spatial relation R and focuses only on identifying a set
 938 of candidates C_t that are semantically plausible matches for the target description:
 939

$$939 \quad C_t = \{o_i \in O \mid P(o_i | V, O_t) > \epsilon\} \quad (8)$$

940 where ϵ is some confidence threshold. This step effectively uses semantic information to prune the
 941 search space.
 942

943 **Stage 3: Geometric Verification as Conditional Re-ranking.** Our G-Verifier then addresses a
 944 more constrained problem: estimating the probability of a candidate $o_t \in C_t$ being the correct
 945 target, now conditioned on the additional evidence provided by the spatial relation R and the anchor
 946 O_a . This corresponds to modeling the conditional probability $P(o_t | V, L, o_t \in C_t)$.
 947

948 Our Weighted Score Fusion mechanism is a practical implementation of this probabilistic reasoning.
 949 The final score can be interpreted as an approximation of the log-posterior, based on a Bayesian
 950 fusion of evidence. The log-posterior is approximated as a weighted sum of a semantic log-prior
 951 and a geometric log-likelihood:
 952

$$952 \quad \log P(o_t | V, L) \approx (1 - \alpha) \underbrace{\log P(o_t | V, O_t)}_{\text{log-prior from semantics}} + \alpha \underbrace{\log P(o_t | V, R, O_a)}_{\text{log-likelihood from geometry}} \quad (9)$$

954 Our final scoring function,
 955

$$956 \quad \text{Score}_{\text{final}}(c_{ti}) = (1 - \alpha) \cdot s_{ti} + \alpha \cdot \text{Score}_{\text{geom}}^{\text{best}}(c_{ti}) \quad (10)$$

957 implements this idea directly. The initial semantic score s_{ti} from the baseline model serves as
 958 the semantic log-prior. Our computed best geometric score, $\text{Score}_{\text{geom}}^{\text{best}}$, acts as the geometric log-
 959 likelihood, representing the evidence for the relation holding true. The hyperparameter α balances
 960 the confidence between the prior belief from the semantic selector and the new evidence from our
 961 geometric verifier. By decomposing the complex joint probability into a weighted fusion of a se-
 962 mantic prior and a geometric likelihood, our approach injects a strong structural assumption into the
 963 reasoning process, providing a more interpretable and robust path to the final decision.
 964

965 A.8 DETAILED RESULTS FOR COMPONENT ANALYSIS

966 Table 4 provides a comprehensive breakdown of the performance for each configuration evaluated
 967 in our component analysis (Sec. 5.1). For each of the 12 spatial relation types, we report the Pre-
 968 cision (P), Recall (R), and F1-Score (F1). These detailed results provide a deeper insight into how
 969 each component of our RoSE design affects the model’s predictive behavior. For instance, the im-
 970 provements in both precision and recall for the full model on projective relations like `left_of` and
 971 `right_of` highlight the crucial role of explicit geometric encoding in resolving ambiguity.
 972

972 Table 4: Full Precision, Recall, and F1-Score results for the component analysis of our RoSE design.
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	left_of			right_of			front_of			behind		
	Setup	P	R	F1	P	R	F1	P	R	F1	P	R
(1) IE Only	0.16	0.14	0.15	0.17	0.15	0.16	0.13	0.11	0.12	0.14	0.12	0.13
(2) + RoPE	0.23	0.21	0.22	0.25	0.23	0.24	0.19	0.17	0.18	0.20	0.18	0.19
(3) + E_{type}	0.83	0.81	0.82	0.82	0.80	0.81	0.80	0.78	0.79	0.79	0.77	0.78
(4) Full Model	0.89	0.87	0.88	0.88	0.86	0.87	0.86	0.84	0.85	0.85	0.83	0.84
Setup	above			on			under			below		
	P	R	F1									
(1) IE Only	0.23	0.21	0.22	0.29	0.27	0.28	0.20	0.18	0.19	0.22	0.20	0.21
(2) + RoPE	0.26	0.24	0.25	0.31	0.29	0.30	0.23	0.21	0.22	0.25	0.23	0.24
(3) + E_{type}	0.95	0.93	0.94	0.97	0.95	0.96	0.93	0.91	0.92	0.94	0.92	0.93
(4) Full Model	0.96	0.94	0.95	0.98	0.96	0.97	0.94	0.92	0.93	0.95	0.93	0.94
Setup	inside			between			surrounded			proximity		
	P	R	F1									
(1) IE Only	0.26	0.24	0.25	0.09	0.07	0.08	0.07	0.05	0.06	0.31	0.29	0.30
(2) + RoPE	0.27	0.25	0.26	0.11	0.09	0.10	0.08	0.06	0.07	0.33	0.31	0.32
(3) + E_{type}	0.91	0.89	0.90	0.76	0.74	0.75	0.71	0.69	0.70	0.98	0.96	0.97
(4) Full Model	0.92	0.90	0.91	0.82	0.80	0.81	0.76	0.74	0.75	0.99	0.97	0.98

A.9 IMPLEMENTATION DETAILS

This section provides a comprehensive overview of the implementation details for our experiments, ensuring full reproducibility of our results. Our framework is implemented using PyTorch and PyTorch Lightning, with all experiments conducted on NVIDIA A100 GPUs with 80GB of memory.

G-Verifier Architecture. The G-Verifier module consists of two main learnable components: the relation-type embedding matrix and the feature fusion network.

The relation-type embedding, E_R , is a lookup table of size $12 \times d_{emb}$, where 12 is the number of relation types and d_{emb} is the embedding dimension, set to 128.

The feature fusion network is a two-layer Multilayer Perceptron (MLP). The input to the MLP is the concatenation of the four feature components, resulting in a vector of size $4 \times 128 = 512$. The MLP architecture is as follows:

$$\text{RoSE} = \mathbf{W}_2 (\text{ReLU}(\text{LayerNorm}(\mathbf{W}_1 \mathbf{v}_{\text{cat}} + \mathbf{b}_1))) + \mathbf{b}_2 \quad (11)$$

where $\mathbf{v}_{\text{cat}} = \text{Concat}(V_t, V_a, F_{\text{geom}}, E_R)$. The first linear layer, \mathbf{W}_1 , projects the 512-d input to a 256-d hidden layer. This is followed by LayerNorm and a ReLU activation. A Dropout layer with a rate of 0.1 is applied after the activation. The second linear layer, \mathbf{W}_2 , projects the 256-d hidden representation back to the final 128-d RoSE embedding.

A.9.1 G-VERIFIER TRAINING

Model Configuration The G-Verifier module, responsible for producing the Rotary Spatial-Relationship Embedding (RoSE), is designed to be lightweight and efficient.

- Input Dimensions: The learnable instance embeddings from the baseline model, which have a hidden dimension of 128, are used directly.
- RoSE Components: The 3D RoPE module is configured to generate a 128-dimensional geometric encoding. The learnable relation-type embeddings for our 12 relation categories are initialized as a 12×128 matrix using Xavier uniform initialization.

1026 • Fusion Strategy: Following the ablation studies, our final fusion strategy is a simple yet effective
 1027 element-wise addition of the target instance embedding, anchor instance embedding, RoPE
 1028 encoding, and the relation-type embedding. Each component feature vector undergoes Layer
 1029 Normalization before addition to ensure stable training. The final output is a 128-dimensional
 1030 RoSE vector.

1031 **Training Configuration.**

1032 • Optimizer and Scheduler: We train the G-Verifier module for 20 epochs using the AdamW
 1033 optimizer. The initial learning rate is set to 1e-4 with a weight decay of 1e-4. We employ a
 1034 Cosine Annealing learning rate scheduler that decays the learning rate to a minimum of 1e-7
 1035 over the training duration.

1036 • Batching and Data: The training is performed on our newly constructed 3D-SpAn dataset. Due
 1037 to the lightweight nature of this phase (which does not involve running the baseline model), we
 1038 use a large batch size of 4096 relation instances, distributed across GPUs.

1039 • Loss Function: Supervision is provided via our contrastive alignment loss. The semantic tar-
 1040 get vectors are generated by a frozen bert-base-uncased model, whose 768-dimensional
 1041 output is projected to 128 dimensions by a trainable linear layer. The weights for the alignment
 1042 loss component (a combination of MSE and Cosine Similarity) and the contrastive loss compo-
 1043 nent are set to 1.0 and 1.0, respectively. These weights were determined through preliminary
 1044 hyperparameter tuning on a validation subset.

1045 **A.10 END-TO-END 3D VISUAL GROUNDING EVALUATION**

1046 For the end-to-end evaluation described in Sec. 4.5, the pre-trained G-Verifier is integrated as a
 1047 post-hoc re-ranking module with the Grounded 3D-LLM baseline.

1048 **Baseline Model.** Our baseline is a faithful reproduction of the Grounded 3D-LLM framework,
 1049 ensuring a fair and relevant comparison.

1050 • Architecture: The 3D visual backbone is a Res16UNet34C implemented using
 1051 MinkowskiEngine. It generates 100 object proposals per scene, each represented by a 128-
 1052 dimensional learnable instance embedding. The language component is a Vicuna-7B LLM.

1053 • State: For the re-ranking experiments, we start from an officially provided, fully pre-trained, and
 1054 instruction-tuned baseline model checkpoint. Crucially, the baseline model’s weights remain
 1055 frozen throughout the evaluation. This ensures that any observed performance gains are directly
 1056 attributable to the re-ranking capabilities of G-Verifier, rather than any implicit fine-tuning of the
 1057 baseline.

1058 **Rationale for Top-K Constrained Verification** In our Geometric Verification and Scoring step
 1059 (Sec. 4.5), the verification process is constrained to the Top-K candidates for both the target and
 1060 anchor objects, rather than enumerating all possible $N \times N$ pairs in a scene. This design choice is
 1061 crucial for computational efficiency. It is predicated on the assumption that the upstream semantic
 1062 selection module has a sufficiently high recall rate to include the correct target and anchor instances
 1063 within these Top-K lists.

1064 **Rationale for Weighted Score Fusion** The final paragraph of our Re-ranking step (Sec. 4.5) ex-
 1065 plains our choice to augment the baseline’s semantic score rather than replace it. This is a prin-
 1066 cipled decision reflecting the decoupled nature of our framework. The geometric verification score,
 1067 $\text{Score}_{\text{geom}}$, is a specialized expert at evaluating the plausibility of a spatial configuration, assuming
 1068 the candidate objects are semantically correct. It does not, by design, re-evaluate whether a candi-
 1069 date is truly a chair or a table. Relying solely on the geometric score would make the system
 1070 vulnerable to perfect in geometric perspective but semantically wrong solutions. For instance, select-
 1071 ing a stool that is perfectly positioned to the left of the table over a slightly misplaced
 1072 but correct chair. By augmenting the initial semantic score, our mechanism ensures that geo-
 1073 metric evidence is used as a powerful corrective signal to resolve spatial ambiguity among semantically
 1074 plausible candidates, without discarding the crucial semantic judgments made by the baseline model.

1080
 1081 **Re-ranking Hyperparameters.** The re-ranking process is controlled by several key hyperparameters, which were tuned on a small validation subset separate from our final test set.
 1082

1083 • **Candidate Pool Size (K):** During inference, the baseline’s semantic selection module generates
 1084 ranked lists of candidates. We set the candidate pool size to $K = 10$ for both the target and
 1085 anchor objects. This means our G-Verifier performs its geometric verification on a manageable
 1086 set of $10 \times 10 = 100$ potential target-anchor pairs.
 1087 • **Score Fusion Factor (α):** The fusion hyperparameter α in our weighted score fusion function
 1088 (Eq. 4) is set to $\alpha = 0.5$. This value assigns equal importance to the baseline’s initial semantic
 1089 confidence and our module’s geometric verification score. Empirically, we found this provided
 1090 a robust balance, allowing strong geometric evidence to correct semantic errors without exces-
 1091 sively overriding candidates that are semantically strong but have minor geometric inconsis-
 1092 tencies.

1093 **A.11 ROBUST ANCHOR PSEUDO-LABELING VIA TEMPLATED INVERSE QUERYING**
 1094

1095 A core challenge in constructing our 3D-SpAn dataset was the lack of instance-level ground truth
 1096 annotations for anchor objects. To address this, we developed a robust, automated pseudo-labeling
 1097 strategy that we term Templatized Inverse Querying. Unlike early, brittle approaches that relied on di-
 1098 rect textual substitution within the original sentence, this new method leverages structured templates
 1099 to generate grammatically correct and semantically unambiguous queries for the anchor object.

1100 The process is as follows. For a given relational triplet $\{\text{Target: } O_t, \text{ Relation: } R, \text{ Anchor: } O_a\}$
 1101 extracted by the LLM, we first generate a standard query for the target object using a simple template,
 1102 e.g., “find the O_t that is R the O_a .”

1103 To generate the crucial pseudo-label for the anchor, we construct an inverse query. This is achieved
 1104 by first finding the semantic inverse of the relation, $R' = \text{inverse}(R)$ (e.g., `left of` becomes
 1105 `right of`, `on` becomes `under`). We then populate a second template with the swapped roles,
 1106 e.g., “find the O_a that is R' the O_t .” For more complex, non-symmetric relations like `between` or
 1107 `surrounded_by`, we use specialized templates to form a logically consistent inverse query (e.g.,
 1108 for `A between B and C`, the inverse query for `B` would be “find the `B` that has an `A` between it
 1109 and `C`”).

1110 This templated approach is highly robust because it does not depend on the grammatical structure of
 1111 the original, often colloquial, source sentence. By generating a clean, canonical query for the anchor
 1112 object, we can then reliably use the baseline model’s semantic selection capability to ground it and
 1113 obtain a high-quality pseudo-label anchor for our training. This mechanism was critical to achieving
 1114 the high unification success rates reported in Table 5.

1115 **A.12 DETAILED DATA CONSTRUCTION PIPELINE FOR 3D-SPAN**
 1116

1117 As mentioned in Sec. 4.4, a primary obstacle to developing explicit spatial reasoning modules is the
 1118 lack of large-scale, structured training data. Existing 3D vision-language datasets typically provide
 1119 instance-level annotations only for a single target object per description, without explicitly labeling
 1120 the anchor objects or relation types in a structured format. To overcome this foundational data
 1121 gap, we constructed a new large-scale dataset, which we name 3D-SpAn, by augmenting several
 1122 prominent 3D grounding datasets with structured spatial relationship annotations.
 1123

1124 Our data construction pipeline starts with a collection of six public datasets, including ScanRe-
 1125 fer(Chen et al. (2020)), ScanQA(Azuma et al. (2022)), M3dRef(Zhang et al. (2023)), Ground-
 1126 edSceneCaption(Chen et al. (2024c)), GlobalSceneCaption(Chen et al. (2024c)), and Embodied-
 1127 Plan(Padmakumar et al. (2023)). We process the natural language descriptions from these datasets
 1128 using a powerful Large Language Model (e.g., GPT-4(OpenAI (2023))) instructed via a carefully
 1129 designed few-shot prompt (see Appendix A.17). The LLM’s task is to parse each description and
 1130 extract all valid spatial relationship triplets of the form $\{\text{Target Object, Relation Type, Anchor Ob-}$
 1131 $\text{ject}\}$. This parsing task is non-trivial, as the language queries L with spatial relation constraints in
 1132 these datasets are often structurally complex. They frequently contain challenging linguistic phe-
 1133 nomena such as anaphora, where pronouns like `it` or `they` refer to previously mentioned objects,
 1134 and implicit spatial relationships that require contextual understanding to be correctly identified.
 1135 Leveraging a powerful LLM instructed via few-shot prompting allows us to resolve these ambigu-
 1136

ties with high fidelity, yielding a more accurate and comprehensive collection of structured relational triplets than what could be achieved with simple rule-based parsers. This process initially identified a total of 331,273 potential relationship mentions across all datasets.

For each potential spatial relationship description, we then apply an automated pseudo-labeling strategy to ground the anchor object, as our source datasets only provide ground truth for the target. This unification process involves generating a robust, templated-based inverse query for the anchor and using the baseline model to ground it. A detailed description of this robust inverse querying mechanism is provided in Appendix A.11. The success of this automated annotation process varies depending on the nature of the source dataset, as summarized in Table 5. For task-oriented datasets like ScanRefer, ScanQA, and M3dRef, where descriptions are typically object-centric and well-grounded, our data construction pipeline achieves a unification success rate of over 90%. However, for more descriptive, caption-style datasets like GroundedSceneCaption and GlobalSceneCaption, the success rate is lower. This is primarily because captions often contain more complex, ambiguous, or scene-wide descriptions that are harder to decompose into clean target-anchor pairs.

After filtering out unification failures, the generated annotations also undergo a series of automated filtering and cleaning steps to ensure their quality and relevance for spatial reasoning. This quality control process is crucial for mitigating potential errors or hallucinations from the language model. We employ two primary validation checks. First, we perform an entity validation step, ensuring that the extracted object phrases correspond to valid object classes present in the scene. For instance, if the LLM extracts a triplet {monitor, on, desk} from a description, but the ground truth for that scene contains neither a monitor nor a desk, this annotation is discarded as a factual hallucination. Second, we filter out descriptions that are purely attributive rather than relational. A description like the red door is open might be erroneously parsed into {red door, is, open}, which describes an object’s state, not its spatial relationship to another object. Such attributive-only annotations are identified and removed.

The final 3D-SpAn dataset comprises 285,177 high-quality, structured spatial relationship instances. As shown in Table 5, the dataset exhibits a diverse distribution of relation types. This new resource provides the necessary, fine-grained supervision for our training paradigm and will be released to facilitate future research in explicit spatial reasoning.

Table 5: Statistics of the 3D-SpAn dataset construction process across different source datasets. Success Rate refers to the percentage of identified relationship mentions for which we successfully generated a full training triplet.

Source Dataset	Found Relations	Unified Relations	Success Rate
ScanRefer	64,854	59,696	92.05%
ScanQA	35,555	33,445	94.07%
M3dRef	62,605	57,809	92.34%
GroundedSceneCaption	115,709	99,482	85.98%
GlobalSceneCaption	45,511	29,796	65.47%
EmbodiedPlan	6,989	4,949	70.81%
Total	331,273	285,177	86.08%

A.13 EXPERIMENTAL SETUP DETAILS

Our framework is implemented in PyTorch Paszke et al. (2019) and all models were trained on NVIDIA A100 GPUs.

Component Analysis Training. For the component analysis experiments in Sec. 5.1, the G-Verifier module was trained for 20 epochs using the AdamW optimizer. We used a learning rate of 1e-4 with cosine annealing and a batch size of 4096. The core of G-Verifier, the Rotary Spatial-Relationship Embedding (RoSE), is a 128-dimensional vector. It is produced by fusing 128-d instance embeddings, a 128-d 3D RoPE encoding, and a 12×128 relation-type embedding matrix. Supervision was provided via our contrastive alignment loss against semantic targets from a frozen bert-base-uncased model.

1188 **End-to-End Evaluation.** For the end-to-end evaluation in Sec. 5.2, the pre-trained G-Verifier was
 1189 integrated as a post-hoc re-ranking module with a frozen Grounded 3D-LLM baseline. The re-
 1190 ranking process considers the Top-10 candidates for both target and anchor objects, with the score
 1191 fusion factor α set to 0.5.
 1192

1193 **A.14 EVALUATION METRICS**

1195 Our evaluation employs a multi-faceted approach, with metrics tailored to different aspects of our
 1196 method.
 1197

1198 **Proxy Task for Component Analysis.** To evaluate the G-Verifier in an isolated setting, we re-
 1199 port the F1-score on a proxy classification task against 12 pre-computed semantic prototypes. The
 1200 detailed protocol for this prototype-based evaluation is described in Sec. 5.1.
 1201

1202 **End-to-End Evaluation Metrics.** For the end-to-end task, we adopt a suite of metrics.
 1203

- 1204 • **3DVG Metrics:** We use standard metrics, $\text{Acc}@0.25$ and $\text{Acc}@0.50$ (3D Box IoU), to mea-
 1205 sure the accuracy of the final Top-1 prediction.
- 1206 • **Information Retrieval (IR) Metrics:** To provide a more holistic assessment of ranking qual-
 1207 ity, we report standard IR metrics, including Mean Reciprocal Rank (MRR) and Normalized
 1208 Discounted Cumulative Gain (NDCG@k).
- 1209 • **Diagnostic Metrics:** To analyze the module’s corrective behavior, we introduce two diagnostic
 1210 metrics: the Rectification Rate (the percentage of baseline-failed cases that are cor-
 1211 rected) and the Non-Deterioration Rate (the percentage of baseline-correct cases that
 1212 remain correct).

1213 **A.15 EXTENDED DISCUSSION ON COMPONENT ANALYSIS**

1215 The results presented in Table 1 warrant a more detailed discussion.
 1216

1217 **The Limits of Implicit Information.** The naive baseline’s 0.25 F1-score is an important finding.
 1218 It confirms that powerful, pre-trained instance embeddings from models like Grounded 3D-LLM
 1219 are not merely semantic descriptors; they are rich with implicit spatial information learned from co-
 1220 occurrence statistics in their training data. However, this information is unstructured and insufficient
 1221 for tasks requiring precise geometric disambiguation.
 1222

1223 **The Role of Semantic vs. Geometric Priors.** The stark contrast in performance between adding
 1224 the Relation Type Embedding (+0.70 F1) and adding the 3D RoPE encoding (+0.09 F1) to the
 1225 naive baseline reveals a deeper insight. Raw geometric features, in isolation, are ambiguous. A
 1226 relative vector of $[+1, 0, 0]$ could mean `right_of`, `in_front_of`, or simply `next_to`,
 1227 depending on the object’s canonical orientation and the relation’s semantic definition. The high-
 1228 level semantic anchor provided by E_{type} is essential to ground these ambiguous geometric cues in a
 1229 specific conceptual space.
 1230

1231 **Synergy in the Full Model.** The final gain from adding 3D RoPE to the already strong
 1232 $\text{IE} + E_{type}$ configuration demonstrates the synergistic nature of these components. The se-
 1233 mantic embedding provides the primary classification signal, while the explicit geometric features
 1234 act as a powerful fine-tuning mechanism. This allows the model to resolve ambiguities that are ge-
 1235 ometrically defined but semantically similar, which is precisely why the largest gains are observed
 1236 for projective relation pairs like `left_of` versus `right_of`.
 1237

1238 **A.16 DISCUSSION**

1239 **Limitations.** Our current implementation of G-Verifier as a post-hoc re-ranking module, while
 1240 effective, has two primary limitations. First, its performance is inherently capped by the recall of
 1241 the upstream baseline model. If the correct target or a plausible anchor object is not present in the
 1242 initial Top-K candidate set, G-Verifier cannot rectify the failure. Our fine-grained analysis (Table 3b)
 1243 also reveals that while our method excels at verifying objective topological and proximity relations
 1244

1242 (e.g., on, under), its performance is more modest on relations that may depend more heavily on
 1243 an object’s intrinsic orientation, such as behind, suggesting room for improvement in modeling
 1244 object-centric frames of reference.

1245

1246 **Future Work.** A promising direction for future work is to integrate this explicit, decoupled reasoning
 1247 process more deeply into the foundation model itself. Rather than reverting to a coupled,
 1248 black-box architecture, the goal is to empower the LLM to autonomously perform a structured,
 1249 multi-step reasoning process that mirrors our *Propose, Select, then Verify* pipeline. By training the
 1250 LLM to generate explicit relational tokens, we could enable it to first identify semantic candidates
 1251 and then invoke its internalized geometric verification capabilities, potentially overcoming the recall
 1252 limitations of the current pipeline. This would transition our approach from a post-hoc verification
 1253 to an end-to-end model that performs reasoning in an explicit and interpretable manner. We also
 1254 plan to release our large-scale 3D-SpAn dataset to facilitate future research in this area.

1255

1256 A.17 FEW-SHOT PROMPT FOR QUERY PARSING

1257 To parse free-form natural language queries into structured triplets, we leverage the in-context learning
 1258 capabilities of a large language model. We do not perform any model finetuning for this task.
 1259 Instead, we provide the model with a detailed system prompt for each source dataset. While all
 1260 prompts share a common structure which consists of a general task definition, a list of supported
 1261 relation types, and a set of few-shot exemplars, the exemplars themselves are tailored to the specific
 1262 linguistic style of each dataset. This is crucial because different datasets exhibit vastly different
 1263 query structures. For instance, task-oriented datasets like ScanRefer and ScanQA use direct
 1264 commands, while descriptive datasets like GroundedSceneCaption contain more complex, narrative
 1265 sentences.

1266 Below, we provide the detailed prompts used for each major dataset category. Figure 7 illustrates
 1267 the general task definition and the specific exemplars used for the ScanRefer dataset. Figure 8 and
 1268 Figure 9 show the tailored exemplars for the structurally different ScanQA and M3DRef datasets,
 1269 respectively. Finally, Figure 10 displays the exemplars designed for the more descriptive, caption-
 1270 style datasets.

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

You are an expert in 3D scene understanding and pronoun resolution. Your task is to analyze a description of a Main Object, reconstruct the description to be more explicit, and extract all spatial relationships involving the Main Object.

Your Primary Task:

- Analyze the Description: Read the original description and identify all pronouns (e.g., 'it', 'this', 'they') that refer to the "Main Object".
- Reconstruct a Complete Sentence: Create a new, clearer sentence by replacing all those pronouns with the Main Object's actual name. This will be your 'final_reconstructed_text'.
- Direct Extraction: Based on your reconstructed text, extract all spatial relationships exactly as they are stated. Do not infer or invert relationships. The 'object1_phrase' in your relations MUST be the "Main Object"'s name.

! IMPORTANT RULE: WHEN TO EXTRACT NOTHING !

- If the description only specifies the object's own attributes (e.g., its color, shape, size, or state like 'the door is open') and does NOT describe its position relative to ANOTHER object, the 'relations' list MUST be empty [].

Spatial relationship types (ID and Name):

- 0: "left_of": A is to the left of B. Handles composite terms like "middle left of", "far left of".
- 1: "right_of": A is to the right of B. Handles "far right of", "middle right of" etc.
- 2: "front_of": A is in front of B.
- 3: "behind": A is behind B.
- 4: "above": A is above B, no contact.
- 5: "on": A is on top of B, with support.
- 6: "under": A is under B, with shelter.
- 7: "below": A is below B, no shelter.
- 8: "inside": A is contained within B.
- 9: "between": A is positioned between two other distinct objects, B and C. Requires three distinct objects.
- 10: "surrounded_by": A is encircled by multiple other objects. Requires multiple surrounding objects.
- 11: "proximity": A is near B without a specific direction (e.g., 'next to', 'beside').

(a) General Task Definition and Rules

Walkthrough 1 (Pronoun Resolution & Reconstruction):

- Main Object: "trash can"
- Description: "this is directly to the right of the toilet against the wall; it is purple."
- Your 'final_reconstructed_text' MUST BE: "the trash can is directly to the right of the toilet against the wall; the trash can is purple."
- Your 'relations' output should be:


```
```json
 [
 {
 "relation_type": 1, "relation_text": "directly to the right of the toilet", "object1_phrase": "the trash can", "object2_phrase": "the toilet" },
 {
 "relation_type": 5, "relation_text": "against the wall", "object1_phrase": "the trash can", "object2_phrase": "the wall" }
]
      ```
```

Walkthrough 2 (Negative Example - NON-SPATIAL):

- Main Object: "office_chair"
- Description: "the brown office chair is facing to the right."
- Your 'final_reconstructed_text' can be: "the brown office chair is facing to the right."
- Your 'relations' output MUST BE: '[]'

Output format: Return ONLY a valid JSON object:

```
{
  "relations": [
    {
      "relation_type": <number_id_from_0_to_11>,
      "relation_text": "...",
      "object1_phrase": "...",
      "object2_phrase": "..."
    }
  ],
  "final_reconstructed_text": "The sentence with all pronouns replaced by the Main Object's name."
}
```

(b) Few-shot Exemplars for ScanRefer

Figure 7: The General Task Definition and Rules and full few-shot prompt used for parsing language queries for ScanRefer Dataset.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379

Crucial Reconstruction Rules:

1. **Entity Completion:** If the 'Main Text' ('answer_with_ground') is a fragment (e.g., "on the table"), you MUST use the 'Question Context' to find the missing object (e.g., "the book") and construct a full sentence.
2. **Protagonist Centering & Relation Inference:** If the question asks for a reference object (e.g., "A is left of what?"), the answer is "B". You MUST rephrase the sentence to be about "B". This often requires inverting the spatial relationship (e.g., "B is to the right of A").

Walkthrough 1: Entity Completion:

- Question Context: "Where is the kitchen counter located?"
- Main Text: "above kitchen cabinet"
- Reasoning: The question identifies "kitchen counter" (object1). The main text provides the relation "above" and "kitchen cabinet" (object2), but is an incomplete fragment.
- Your `relations` output should have: `{"object1_phrase": "kitchen counter", "object2_phrase": "kitchen cabinet"}`
- Your `reconstructed_answer` MUST BE: "The kitchen counter is above the kitchen cabinet."

Walkthrough 2: Protagonist Centering:

- Question Context: "The cabinet is to the immediate left of what?"
- Main Text: "The cabinet is to the immediate left of the shelf."
- Reasoning: The true answer/protagonist is "shelf". The main text is about the "cabinet". You must reconstruct the sentence to be about the "shelf" and infer the inverse relationship.
- Your `relations` output should have: `{"object1_phrase": "shelf", "object2_phrase": "cabinet", "relation_type": "right_of"}`
- Your `reconstructed_answer` MUST BE: "The shelf is to the immediate right of the cabinet."

Walkthrough 3 (NON-SPATIAL - Negative Example):

- Question Context: "How many arms does the chair have?"
- Main Text: "The chair has 1 arm."
- Reasoning: This question and answers do not have any spatial relationship that can be categorized into the 12 classes. "has 1 arm" is not spatial relationship.
- Your `relations` output MUST BE: `[]`
- Your `reconstructed_answer` MUST BE: "The chair has 1 arm."

(a) Few-shot Exemplars for ScanQA Dataset Part1

Walkthrough 4 (SPATIAL within ATTRIBUTE QUESTIONS - Special Positive Example):

- Question Context: "What color is the board on the wall with nothing beneath it?"
- Main Text: "The blackboard is black."
- Reasoning: This question is about the color of the object, but to refer to the object, a spatial relationship is involved "on the wall with nothing beneath it".
- Your `relations` output should have: `{"object1_phrase": "board", "object2_phrase": "wall", "relation_type": "on"}`
- Your `reconstructed_answer` MUST BE: "The blackboard, which is on the wall with nothing beneath it, is black."

Output format: Return ONLY valid JSON:

```
{
  "relations": [
    {
      "relation_type": "...",
      "relation_text": "...",
      "object1_phrase": "...",
      "object2_phrase": "..."
    }
  ],
  "reconstructed_answer": "...",
  "reconstruction_needed": true/false,
  "reconstruction_phrase": "The most accurate relation phrase to use for reconstruction, e.g., 'to the immediate right of the cabinet'. This phrase should be based on the model's own analysis, NOT necessarily from the original question."
}
```

(b) Few-shot Exemplars for ScanQA Dataset Part2

Figure 8: The few-shot prompt used for parsing language queries for ScanQA Dataset.

1400
1401
1402
1403

```

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417 Walkthrough 1 (Pronoun Resolution):
1418 - Description: "a copier rests on the floor. it is left of a garbage can."
1419 - Your `final_reconstructed_text` should be: "a copier rests on the floor. the copier is left of a garbage
can."
1420 - Your `relations` output should be:
1421     ```json
1422     [
1423         {
1424             "relation_type": 5, "relation_text": "rests on the floor", "object1_phrase": "a copier",
1425             "object2_phrase": "the floor" },
1426         {
1427             "relation_type": 0, "relation_text": "left of a garbage can", "object1_phrase": "the copier",
1428             "object2_phrase": "a garbage can" }
1429     ]
1430     ```
1431
1432 Walkthrough 2 (Chained Relation):
1433 - Description: "a printer is on a table which is to the left of a chair"
1434 - Your `final_reconstructed_text` should be: "a printer is on a table which is to the left of a chair"
1435 - Your `relations` output should be:
1436     ```json
1437     [
1438         {
1439             "relation_type": 5, "relation_text": "on a table", "object1_phrase": "a printer", "object2_phrase": "a table" },
1440             {
1441                 "relation_type": 0, "relation_text": "to the left of a chair", "object1_phrase": "a table",
1442                 "object2_phrase": "a chair" }
1443     ]
1444     ```
1445 Output format: Return ONLY a valid JSON object:
1446 {"relations": [
1447     {
1448         "relation_type": <number_id_from_0_to_11>,
1449         "relation_text": "...",
1450         "object1_phrase": "...",
1451         "object2_phrase": "..."
1452     }
1453 ], "final_reconstructed_text": "The description with pronouns resolved for clarity."}
1454
1455
1456
1457

```

Figure 9: The few-shot prompt used for parsing language queries for M3DRef Dataset.

```

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468 Walkthrough Example:
1469 - Description: "Two white sinks are parallel, with a bottle placed on one and toilet paper on the other."
1470 - Reasoning: "one" refers to the first "white sink", "the other" refers to the second. You must resolve
1471 these in the output.
1472 - Your `relations` output should be:
1473   ````json
1474   [
1475     { "relation_type": 5, "relation_text": "placed on one", "object1_phrase": "a bottle",
1476     "object2_phrase": "a white sink" },
1477     { "relation_type": 5, "relation_text": "on the other", "object1_phrase": "toilet paper",
1478     "object2_phrase": "the other white sink" }
1479   ````.
1480
1481 Output format: Return ONLY a valid JSON list of relations.
1482

```

1483 (a) Few-shot Exemplars for GroundedSceneCaption and Global Scene Caption Datasets

```

1485 Walkthrough Example:
1486 - Task: "Prepare for evening relaxation"
1487 - Steps: "step 1. Position ottoman near couch for footrest.\nstep 2. Move table within arm's reach of
1488 couch.\n"
1489 - Your `relations` output should be:
1490   ````json
1491   [
1492     { "relation_type": 11, "relation_text": "near couch", "object1_phrase": "ottoman",
1493     "object2_phrase": "couch" },
1494     { "relation_type": 11, "relation_text": "within arm's reach of couch", "object1_phrase": "table",
1495     "object2_phrase": "couch" }
1496   ````.
1497
1498 Output format: Return ONLY a valid JSON list of relations.
1499

```

1500 (b) Few-shot Exemplars for EmbodiedPlan Dataset

1501 Figure 10: The few-shot prompt used for parsing language queries for GroundedSceneCaption,
1502 Global Scene Caption and EmbodiedPlan Dataset.

```

1503
1504
1505
1506
1507
1508
1509
1510
1511

```

1512 A.18 LLM USAGE STATEMENT
15131514 Throughout the preparation of this manuscript, we utilized a large language model as an assistive
1515 tool for writing, editing and code debugging. The role of the LLM was strictly confined to improving
1516 the presentation of our research and help us solve some hard bugs during coding; it was not involved
1517 in the core research idea design or experimental analysis.

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565