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Abstract

In this work, we present a task-independent evalu-
ation of Genome Language Model (gLM) embed-
dings to understand what contextual and biologi-
cal information they inherently capture. Through
three novel experiments, we assess how well em-
beddings reflect sequence similarity, encode evo-
lutionary context, and respond to synthetic point
mutations using Yeast genomic sequences. Our
findings reveal that embeddings correlate with se-
quence similarity, cluster by phylogenetic clade,
and show differential robustness between cod-
ing and non-coding regions. These results offer
new insights into the representational capabilities
of gLMs and pave the way for principled inter-
pretability and benchmarking of gLMs.

1. Introduction
Large Language Models (LLMs) have achieved unprece-
dented levels of success in handling natural languages (Liu
et al., 2019; Sun et al., 2019; Achiam et al., 2023). In re-
cent years, a new family of foundational models trained
on genomic sequences instead of natural language, called
Genomic Language Models (gLMs) has been developed to
utilize these models’ language understanding prowess on
the language of life (Nguyen et al., 2023; Fishman et al.,
2025; Zhou et al.). These encoder or decoder-based mod-
els use nucleotide sequences as inputs and learn genome
languages using the concepts of LLMs. These learned em-
beddings are then used for various downstream tasks such
as identifying promoters (Zhou et al.), detecting splice sites
(Nguyen et al., 2023), and predicting transcription factors
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(Benegas et al., 2023), in which they have demonstrated
remarkable accuracy.

Currently, gLMs are validated by their performance in pre-
defined downstream tasks. This constitutes an extrinsic
evaluation of the models (Marin et al., 2024), and one does
not get insights into what knowledge the pre-training im-
bibes. Therefore, there is a need to perform an intrinsic
evaluation of them - by characterizing them in isolation,
independent of any downstream tasks, we can quantify their
representational power. This will thoroughly assess the qual-
ity of the representations generated by the pre-trained gLMs
based on the knowledge they contain, and help in not only
gaining a better understanding of these models’ learning
process but also serve as a benchmark for gLMs. This work
carries out an intrinsic evaluation of gLMs for biological
information learned by gLMs. Particularly, the work investi-
gates the questions of how well a set of open-source gLMs
embeds the biological information for sequence similarity,
contextualization, and robustness to mutation. We use well-
studied genomic data from 1011 strains (Peter et al., 2018)
of Saccharomyces cerevisiae to investigate our question.

2. Methodology
The main objective of this project is to evaluate gLMs in-
trinsically, regardless of downstream tasks. To do this, three
criteria were devised:

1. Sequence Similarity: Similar sequences should yield
similar embeddings.

2. Embedding Contextuality: Similar sequences in dif-
ferent contexts should have different embeddings.

3. Embedding Robustness: The effect of point muta-
tions in sequences must be appropriately reflected in
their embeddings.

2.1. Genome Language Models

To comprehensively evaluate the representational capabil-
ities of gLMs, models of varying sizes, architectures (en-
coder and decoder), tokenization strategies, and pretraining
data were selected as shown in Table 1. These models
were used without any fine-tuning or modification, as the
goal was to analyze the information and context already
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captured in their pre-trained embeddings. The diversity in
model characteristics allowed us to systematically assess
how these factors influence embedding quality. This allowed
for a robust comparative analysis across the full spectrum
of gLM design, purely based on their pretrained representa-
tions. The embedding vector, an output of the final layer of a
particular gLM, was generated by providing each sequence
as an input.

2.2. Data Sets: Yeast DNA Sequences

Genomic dataset from 1011 strains of Saccharomyces cere-
visiae (baker’s yeast), a well-characterized eukaryotic organ-
ism, was used (Peter et al., 2018). Since the yeast genome
strikes a unique balance: it is simple and compact like
bacterial genomes, yet retains the structural and regulatory
complexity typical of eukaryotes, this dataset was selected
for this study. This dataset also acts as a smaller snapshot
of a greater biological diversity. Hence, results obtained
on this dataset can be used to generalize to other biological
systems. From each strain, we extracted specific individual
gene sequences to serve as inputs. These genes are largely
conserved across strains, with only minor nucleotide vari-
ations, and they provided an ideal testbed for analyzing
how gLM embeddings reflect subtle sequence differences.
This dataset was used to investigate sequence similarity and
embedding contextuality criteria.

For the third criterion, embeddings pertaining to coding and
non-coding sequences have to be compared. For the same,
we made use of conserved non-coding sequences belonging
to Sarcopterygii matsunami, sourced from Inoue & Saitou
(2020).

2.3. Sequence Similarity

Sequences of the same gene from all 1011 strains were used
to study sequence similarity criteria. Seven different genes
of varying lengths (ranging from 600 to 4000 bases) were
considered. These sequences are mostly conserved, and
hence, they differ only at a few nucleotides. Their similarity
is quantified by the Needleman-Wunsch algorithm (Needle-
man & Wunsch, 1970). The lower Needleman-Wunsch
score implies a more dissimilar sequence. The embeddings
for these gene sequences were generated using the gLMs,
and the similarity between embeddings was calculated using
the Euclidean distance. Higher Euclidean distance implies
a dissimilar sequence. Thus, if our hypothesis holds, then
the Needleman-Wunsch alignment scores between these
DNA sequences should be negatively correlated with the
Euclidean distances between their respective embeddings.

2.4. Embedding Contextuality

This criterion evaluates the ability of the gLMs to capture
certain sequence-specific characteristics/contexts. Context,
for example, could be the clade of the species from which
a sequence is obtained. An ideal gLM should be able to
generate similar embeddings for sequences from the same
clade. To test this, gene sequences of S. cerevisiae were
obtained from Peter et al. (2018). Genes were chosen instead
of entire genome sequences as the average yeast genome
length is 12 million nucleotides, which is well beyond the
context lengths of all of the models that were considered.
Embeddings for each of the sequences were obtained. The k-
means and agglomerative clustering algorithms were applied
to embedding vectors to investigate the question of how the
embeddings group with respect to one another.

2.5. Embedding Robustness

Mutations are nucleotide substitutions in DNA sequences
that can often have far-reaching consequences, capable of
drastically altering an organism’s phenotype. Accordingly,
understanding how gLM embeddings respond to such muta-
tions is essential for assessing their reliability in applications
involving genomic variation, such as variant effect predic-
tion or disease mutation analysis. Further, it is important
to analyse whether the embeddings pertaining to coding
and non-coding sequences could be differentiated by gLMs.
Hence, robust embeddings should reflect meaningful bio-
logical differences while remaining invariant to neutral or
synonymous changes, especially in coding sequences where
redundancy in the genetic code, i.e., codon degeneracy, of-
ten mitigates the impact of mutations.

Here, coding sequences from S. cerevisiae and non-coding
sequences from S. matsunami were chosen for each of the
models based on their context window, i.e., for each model,
the sequences’ lengths were equal to the maximum permis-
sible input length. Synthetic mutations were generated in
these sequences by randomly replacing nucleotides in in-
creasing percentages, ranging from 5% to 50%, in steps
of 5%. For each mutation percentage, 100 independently
mutated versions of the original sequence were generated,
ensuring randomness in mutation sites. After generating
embeddings for each of these sequences, the Euclidean dis-
tances between each mutated sequence’s embedding and its
original (baseline) embedding were computed to measure
their difference in context. The following questions are
posed to investigate the robustness of embeddings.

• How sensitive are gLM embeddings to random point
mutations in DNA sequences?

• Whether the type of sequence (coding vs. noncoding)
affects embedding shifts?

• How do embedding distances change with an increase
in the percentage of mutated bases?
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Table 1. Summary of the Genome Language Models considered for this study.

MODEL ARCHITECTURE SIZE TOKENIZATION CONTEXT LENGTH TRAINED ON

HYENADNA(NGUYEN ET AL.,
2023) HYENA 0.4M - 6.5M CHARACTER-

LEVEL
1K - 1M HUMAN

DNABERT-2 (ZHOU ET AL.) BERT 117M BYTE PAIR EN-
CODING

512 HUMAN, MUL-
TISPECIES

DNABERT-S (ZHOU ET AL.,
2024) BERT 117M BYTE PAIR EN-

CODING
512 HUMAN, MUL-

TISPECIES
NUCLEOTIDE TRANSFORMER
(DALLA-TORRE ET AL., 2025) BERT 500M - 2.5B K-MER TO-

KENS
1K

HUMAN, MUL-
TISPECIES

GENA-LM (FISHMAN ET AL.,
2025) BIGBIRD 336M BYTE PAIR EN-

CODING
36K

HUMAN, MUL-
TISPECIES

GPN (BENEGAS ET AL., 2023)
CNN-
TRANSFORMER
HYBRID

65M CHARACTER-
LEVEL

512 HUMAN

GROVER (SANABRIA ET AL.,
2024) BERT 0.4M - 6.5M BYTE-PAIR

ENCODING
510 HUMAN

3. Results
3.1. Sequence Similarity

The models exhibit strong negative correlations as shown
in Figure 1, giving credence to our hypothesis that sim-
ilar sequences have similar embeddings. As seen in Fig-
ure 1, HyenaDNA-large-1M performs better on longer gene
sequences such as YAL026C (4068 bases), while the Nu-
cleotide Transformer family of models performs better with
shorter gene sequences such as YAL007C (648 bases). Note
that HyenaDNA-large-1M and Nucleotide Transformer are
trained on sequences of larger and shorter lengths, respec-
tively. This suggests that the length of training data could
play a role in embedding characteristics of these models.
DNABERT-S, GROVER, and Gena-LM models perform
equally well irrespective of the sequence size.

3.2. Embedding Contextuality

Several distinct clusters were formed for the embeddings
from each clade as seen in Figure 3a in Appendix A.1, sug-
gesting that these gLMs were able to pick up characteristic
features pertaining to the entire strain from their genes’ se-
quences alone. These results were consistent throughout the
models as seen in Figure 3a. It can be noted that the shape
of these clusters seemed to be conserved as well.

The clustering algorithms, k-means and agglomerative clus-
tering, were able to identify 25-30 clusters, which is close
to the total number of clades, i.e., 30. By observing the
variation in the quality of these clusterings (measured by
metrics such as the silhouette score and the adjusted Rand
score) with clustering algorithm parameters, the highest
scores were obtained when the number of clusters param-
eter was close to the total number of clades in the case of
the agglomerative clustering, and when the parameter for
the number of neighbors within a cluster was close to the

median number of strains in each clade, i.e., 17, in the case
of k-means clustering (refer to Figure 3 in Appendix A.1).
Thus, the embeddings belonging to one clade tended to be
closer to each other, complying with our hypothesis for the
same.

3.3. Embedding Robustness

The magnitude of distances increases as the number of mu-
tations in the sequence increases, as depicted in Figure 4
in Appendix A.2, agreeing with our hypothesis. One of the
most striking patterns observed in our mutation robustness
experiments was the consistently larger Euclidean distances
between embeddings of mutated and original sequences in
non-coding DNA compared to coding DNA across most ge-
nomic language models. This suggests that point mutations
in non-coding sequences result in more significant shifts in
embedding space, implying a higher contextual sensitivity
to such changes.

While this was true for most models, the HyenaDNA models
were an exception, with coding sequences having marginally
higher Euclidean distances in most of them. GPN also
showed higher distances for coding sequences. Another
peculiar case was that of the Nucleotide Transformer mod-
els; the 500M parameter model and 2.5B parameter model
trained on Human genome data showed significantly higher
distances for non-coding sequences whereas the 2.5B pa-
rameter model trained on multi-species genome data had
very little difference between the coding and non-coding
distances, despite all of them receiving the same input se-
quences due to their shared context length.

A biologically plausible explanation for this phenomenon
lies in the concept of codon degeneracy. In protein-coding
DNA, the genetic code is redundant as multiple codons can
encode the same amino acid. Consequently, embeddings of
coding sequences may remain relatively stable under such
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(a) Correlations for the YAL007C gene (648 bases).

(b) Correlations for the YAL026C gene (4068 bases).

Figure 1. Magnitudes of the overall negative correlations between the gene sequences’ pairwise Needleman-Wunsch alignment scores and
the Euclidean distances between their corresponding embeddings, for each model.

mutations. In contrast, non-coding DNA lacks this redun-
dancy. Even a single-nucleotide substitution in a non-coding
region can disrupt regulatory motifs or structural elements
that are crucial for gene expression and genome architecture.
Hence, point mutations in non-coding sequences are more
likely to cause shifts in functional meaning, which in turn is
reflected in larger embedding distances.

In order to further confirm these findings on a larger scale,
we repeated the experiment with 1000 different sequences
for each mutation percentage, each of which was randomly

mutated 100 times so as to ensure consistency in the results.
The results of this experiment are shown in Figure 5 in Ap-
pendix A.2, where we have compared the distribution of
all distances pertaining to each type of sequence. Using
the Kolmogorov-Smirnov test on each pair of distributions
yielded a p-value of zero, confirming that they were signifi-
cantly different.
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3.3.1. CODING/NON-CODING CLASSIFICATION

To see if these embeddings are indeed different for coding
and non-coding sequences, we generated embeddings for
20000 coding and 20000 non-coding sequences from the
human reference genome, in the hopes that this would be a
fairer evaluation as as all the selected gLMs contain human
sequences in their pretraining data. Using these embeddings,
we trained a random forest classifier on two different train-
test splits, of 80-20 (one-shot) and 1-99 (pseudo zero-shot).

Across both settings, the classifier achieved significantly
higher-than-chance accuracy for nearly all models as de-
picted in Figure 6 in Appendix A.2, with some (e.g., Hye-
naDNA variants) reaching accuracies above 90% in the one-
shot setting and maintaining robust performance even in
the pseudo zero-shot regime. These results indicate that the
embeddings produced by gLMs inherently encode features
that distinguish coding from non-coding sequences, without
requiring any fine-tuning. This finding is consistent with the
mutation robustness analysis, where coding and non-coding
sequences showed systematically different embedding be-
haviors. Together, these experiments suggest that gLMs are
not only capable of capturing localized sequence patterns
but may also be encoding functional genomic context that
differentiates regulatory and protein-coding regions.

4. Discussion
In this preliminary study, a suite of experiments was pro-
posed to intrinsically evaluate the embeddings of the pre-
trained gLMs. This study sheds light on how the gLMs
represent the DNA sequences. These gLMs models consid-
ered in this study accurately group similar sequences and
dissimilar sequences, even when the difference is only a
change in a small number of nucleotides. Further analysing
the effect of the mutations on the representational capabili-
ties of the gLMs, it is observed that many of these models
can distinguish coding and non-coding sequences without
explicitly being trained on these data separately. This points
to the fact that these models are able to understand the bio-
logical differences between the different types of sequences.
Further, this analysis will aid in understanding how exactly
these models learn the differences between these sequences,
independent of downstream tasks. In conclusion, our work
serves as a stepping stone towards better understanding ge-
nomic language models.

5. Impact Statement
This work investigates an important question of the biologi-
cally relevant of embeddings generated by a set of genome
language models (gLMs) on Yeast genomes. In contrast to
the existing studies, which are based on biologically rele-
vant downstream tasks, the study emphasises the intrinsic

evaluations of gLMs through a set of experiments. Hence,
this study will be useful in establishing intrinsic benchmarks
for evaluating the learning of gLMs. However, one of the
main limitations of this study is a smaller set of experiments,
and these experiments have to be validated at a larger scale
to support the stronger conclusions made in this work.
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A. Appendix
A.1. Clade Clustering Plots

Figure 2. Scatter plots of the models’ UMAP-reduced embeddings for the YAL001C gene sequence from each of the 1011 strains, labelled
according to the clade they belong to.

(a) Agglomerative clustering of UMAP-reduced embeddings. (b) Adjusted rand scores v/s no. of clusters for agglomerative
clustering.

Figure 3. Variation in clustering quality with parameters.
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A.2. Mutation Sensitivity Plots

Figure 4. Results from our third experiment. Here, each boxplot corresponds to the distribution of Euclidean distances between the
embeddings of the 100 randomly mutated sequences at that value of mutation percentage and the original sequence’s embedding.
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Figure 5. Distributions of all distances for coding and non-coding sequences, for 1000 input sequences at each mutation percentage level.
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(a) One-shot classification, with a train-test split of 80-20.

(b) Pseudo Zero-shot classification, with a train-test split of 1-99.

Figure 6. Classification accuracies of a random forest classifier trained on human coding and non-coding sequence embeddings.
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