
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FULLY QUANVOLUTIONAL NETWORKS FOR TIME
SERIES CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Quanvolutional neural networks have shown promise in areas such as computer
vision and time series analysis. However, their applicability to multi-dimensional
and diverse data types remains underexplored. Existing quanvolutional networks
heavily rely on classical layers, with minimal quantum involvement, due to inher-
ent limitations in current quanvolution algorithms. In this study, we introduce a
new quanvolution algorithm that addresses previous shortcomings related to per-
formance, scalability, and data encoding inefficiencies. Specifically targeting time
series data, we propose the Quanv1D layer, which is trainable, capable of han-
dling variable kernel sizes, and can generate a customizable number of feature
maps. Unlike previous implementations, Quanv1D can seamlessly integrate at any
position within a neural network, effectively processing time series of arbitrary di-
mensions. Our chosen ansatz and the overall design of Quanv1D contribute to its
significant parameter efficiency and inherent regularization properties. In addition
to this new layer, we present a new architecture called Fully Quanvolutional Net-
works (FQN), composed entirely of Quanv1D layers. We tested this lightweight
model on 20 UEA and UCR time series classification datasets and compared it
against both quantum and classical models, including the current state-of-the-art,
ModernTCN. On most datasets, FQN achieved accuracy comparable to the base-
line models and even outperformed them on some, all while using a fraction of the
parameters.

1 INTRODUCTION

As Moore’s Law approaches its limits, a global shift is underway toward quantum computing–
an alternative capable of solving challenges intractable for classical systems (Nielsen & Chuang,
2010). Given the practical implications of machine learning and the widely sought-after “quantum
advantage” offered by quantum computing and its algorithms, quantum machine learning (QML)
is gaining traction quickly (Biamonte et al., 2017). For instance, the domain has already seen the
implementation of several quantum adaptations of support vector machines (Rebentrost et al., 2014;
Li et al., 2015) and neural networks (Tacchino et al., 2019; 2020). In this paper, we revisit one such
QML algorithm, the quanvolution algorithm (Henderson et al., 2020), analyze its utilities and pit-
falls, and propose an improved version that can overcome performance, scalability, and modularity
issues in existing networks.

1.1 BACKGROUND

In the literature, there are two variants of quantum convolution: circuit-based and kernel-based (also
referred to as quanvolution). With different quantum operations, the circuit-based variant mimics
the Conv2D and pooling layers to turn a convolutional neural network (CNN) into a quantum circuit
(Cong et al., 2019; Hur et al., 2022). However, unlike a typical convolution operation, this variant
works with the entire flattened input instead of individual input patches. Although the entire pro-
cess can be executed on a quantum computer, the scalability of circuit-based quantum convolution
compared to classical CNNs remains open for debate. For instance, this variant struggles to encode
large, complex image datasets in this noisy intermediate-scale quantum (NISQ) era. Additionally,
the reliance of neural networks on nonlinearities conflicts with quantum mechanics.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In contrast, kernel-based quantum convolution, also known as quanvolution, functions similarly to a
single classical convolutional layer (Henderson et al., 2020). Essentially, the quanvolution operation
is the result of quantum circuits substituting for typical filters or kernels inside a convolutional layer.
This approach offers greater flexibility compared to the circuit-based variant, enabling the devel-
opment of hybrid models and training schemes. In a classical-quantum hybrid model, a quantum
computer deals with the primary computations–interactions between input patches and filters–while
classical computers handle tasks like processing loss values and applying nonlinear activations. Ow-
ing to its versatility, the algorithm’s introduction remains a staple in quantum-based computer vision
with wide range of applications (Ullah & Garcia-Zapirain, 2024; Kharsa et al., 2023; Zhang et al.,
2024; Yang et al., 2021; Peral-Garcı́a et al., 2024).

This study focuses on the kernel-based quantum convolution, or quanvolution, and aims to address
various limitations outlined in the following section.

1.2 MOTIVATION

Quanvolutional neural networks are implemented as hybrid systems, where learning is achieved
through the combined effort of quantum and classical layers. In such architectures, the initial con-
volution layer in models like LeNet-5 (LeCun et al., 1998) is replaced with a quanvolutional layer,
while the rest of the network remains unchanged. However, most implementations heavily rely on
deep classical layers, typically including only a single quantum layer. This raises questions about
the true contribution of quanvolutional layers–whether they play a meaningful role or if the classical
layers shoulder the heavy lifting. As such, quanvolutional neural networks are very limited in both
applicability and performance, and these limitations stem from the quanvolution algorithm itself.

The original quanvolution algorithm was initially designed to work only with single-channel image
patches (Henderson et al., 2020). While some studies have managed to extend its application to
RGB or three-channel images (Jing et al., 2022; Savla et al., 2022), the algorithm still lacks the
capability to process 2D data with an arbitrary number of channels, unlike a classical Conv2D layer.
In modern deep learning architectures, the number of channels or feature maps typically increases
as the network deepens. For instance, EfficientNet-B0 starts with a three-channel input image and
expands to a feature dimension of 1280 in the final convolutional layer (Tan & Le, 2019). Achieving
this level of scalability remains a challenge for existing quanvolution algorithms.

Moreover, a quanvolutional layer produces only a limited number of feature maps, primarily due to
its small kernel size and reliance on a single filter. Generally, the kernel size influences the number
of wires in the circuit, which in turn affects the number of feature maps. Such an approach is in stark
contrast to classical convolution. For Conv2D layers, users can adjust kernel sizes to capture either
fine-grained details or broader contextual features as needed. Furthermore, classical layers utilize
multiple kernels or filters to extract varied but pertinent patterns from the same input, improving the
model’s ability to generalize. As such, when compared to classical convolution, the quanvolution
algorithm has yet to reach its overall performance potential due to the rigidity in kernel size and
circuit selection.

Our motivation for this work was to create a learnable quanvolutional layer that works like modern
convolutional layers and gives users the freedom to choose the kernel size and number of output
feature maps. Our aim was to ensure that this layer could be seamlessly integrated into any network,
provided the input dimensions were compatible, mirroring the versatility of conventional convolu-
tion. However, we recognized that making a practical, scalable, and modular 2D quanvolutional
layer right away would be very challenging because of NISQ-related limitations. As a result, we
opted to begin with its 1D counterpart as a foundational step.

1.3 CONTRIBUTIONS

As a main contribution, this study introduces the Quanv1D layer, a quantum analog to the Conv1D
layer. Similar to Conv1D, Quanv1D supports multichannel data, variable kernel lengths, and adapt-
able feature map generations. While designing this layer, we prioritized efficiency and practicality,
taking into account the limitations of current quantum hardware and aiming to minimize compu-
tational costs. For instance, based on the input requirements and desired output, the layer adjusts
itself by either using a higher number of qubits with fewer circuits or reducing the number of qubits

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

a b Input channels,

Se
qu

en
ce

 le
ng

th
,

K
er

ne
l l

en
gt

h,

Last channels are
dropped

 la
ye

rs

A
m

pl
itu

de
 e

m
be

dd
in

g
bl

oc
k

Repeated
 times

M
ea

su
re

m
en

t b
lo

ck

Figure 1: (a) FQN’s overall architecture. It has three main parts–embedding, propagation, and
projection–consisting of Quanv1D layers. For learning stability and non-linearity, we included batch
normalization and ReLU activation in the architecture. GAP denotes global average pooling. (b)
Workflow inside the Quanv1D layer. Unlike a conventional filter found in a convolutional layer,
Quanv1D uses quantum circuits to generate feature maps.

while increasing the number of filters. Additionally, we reduced the qubit usage for scalable data
encoding, which resulted in a single filter requiring log2(Cin ∗ k) qubits instead of Cin ∗ k qubits
stemming from linear mapping methods. Here, Cin represents the input channel size and k rep-
resents the kernel length. Furthermore, thanks to our carefully chosen ansatz, Quanv1D exhibits a
self-regularizing property that enhances training performance.

Our secondary contribution lies in designing an efficient quanvolutional neural network for time
series classification. As of now, quanvolution in time series analysis remains underexplored. Most
existing approaches adapt image-based quanvolution by first converting time series data into visual
representations, such as scalograms or spectrograms (Savla et al., 2022; Li et al., 2024; Sridevi et al.,
2022; Yang et al., 2021; Prabhu et al., 2023). Also, the only direct 1D quanvolutional approach, pro-
posed by Rivera-Ruiz et al. (2023), was limited to univariate time series data. All these methods suf-
fer from over-reliance on classical layers, scalability, limited feature maps, and rigid kernel size, as
discussed earlier. To overcome these limitations, we present a fully quanvolutional network (FQN)
built only with our Quanv1D layer. This design not only resolves the identified challenges but also
demonstrates the potential of stacked quantum layers to enhance representation learning in temporal
data. Moreover, FQN is very lightweight, requiring substantially fewer trainable parameters than its
quantum and classical counterparts.

We provide detailed technical explanations of Quanv1D and FQN’s design specifics in the following
section. In Appendix A, we discuss some quantum computing basics, alongside how our proposed
1D quanvolution differs from the existing one.

2 METHOD

2.1 QUANV1D

In general, Conv1D accepts input in the form (N,Cin, Lin), where N represents the batch size, Cin

is the number of input channels or dimensions, and Lin refers to the sequence length. The output
shape is (N,Cout, Lout), where Cout is a user-defined parameter specifying the number of output

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

channels following the quanvolution operation. The value of Lout is computed using the following
equation:

Lout =

⌊
Lin + 2× p− d× (k − 1)− 1

s
+ 1

⌋
(1)

Here, k stands for the kernel size, s for the stride, p for the zero padding on both sides of the input,
and d for the spacing between kernel points. Quanv1D has been designed such that it mimics a
Conv1D layer and follows the same patching operations (Chellapilla et al., 2006). For this reason,
we use the hyperparameters presented in Equation (1) to determine the patches that will serve as
input to the quanvolutional filters. These hyperparameters, such as the kernel length, also affect
quantum-related calculations inside the layer, like how many quantum filters there are, how many
qubits are in a single filter, how many unitary operations are in an ansatz, and so on.

In this study, amplitude embedding is used to convert the classical information from the extracted
patches into a quantum feature space (Schuld, 2018). This method encodes 2n features into the
amplitude vector of n qubits, as shown in the following equation:

|ψ⟩ =
2n∑
i=1

αi|i⟩ (2)

In this equation, αi are the elements of the amplitude vector α, and |i⟩ represent the compu-
tational basis states. Each quanvolutional filter takes an input of Cin × k features, requiring
n = ⌈log2(Cin × k)⌉ qubits for encoding. Before encoding, the features are normalized using√
softmax(α) to ensure |α|2 = 1. Additionally, if Cin × k is smaller than 2n, the features are

padded with zeros after normalization to match the required dimension size. We chose amplitude
embedding over the usual linear mapping method, such as angle encoding, to reduce qubit usage
and achieve compact data representation. This ensures the modularity we tried to achieve, which,
otherwise, would be difficult to achieve with angle encoding, as it demands an impractically large
number of qubits, even for simulations.

The matrix form of the chosen unitary operator, U , is given by:

U(θ, ϕ, λ) =

(
cos(θ π

2) −eiλ sin(θ π
2)

eiϕ sin(θ π
2) ei(ϕ+λ) cos(θ π

2)

)
(3)

Here, θ and λ are trainable, while ϕ is fixed but initialized randomly. This is because, although ϕ
is essential for introducing phase shifts within the circuit, its gradient during parameter updates is
theoretically derived to be zero (refer to Appendix F). Consequently, it remains static throughout the
optimization process.

For an n-qubit circuit, the unitary operator is applied to each qubit, forming a layer of unitaries, and
this layer is repeated k times. The total unitary operations can be expressed as follows:

Utotal =

k∏
l=1

(
n⊗

i=1

Uil(θil, ϕil, λil)

)
(4)

Here, Uil(θil, ϕil, λil) represents the unitary operation acting on the i-th qubit in the l-th layer. Let
|ψo⟩ represent the quantum state of the circuit after the unitary operations have been applied. Our
decoding process is described by the following equations:

Ei = ⟨ψo|Zi|ψo⟩ (5)

Zi = I⊗(i−1) ⊗ Z ⊗ I⊗(n−i) (6)

Z =

(
1 0
0 −1

)
(7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

I =

(
1 0
0 1

)
(8)

We measure each qubit in the circuit using Equation (5), where Ei represents the expectation value
and Zi is the observable for the i-th qubit. Although the circuit or filter’s operations and calculations
occur in the complex domain, the resulting expectation values are real and fall within the range of
[−1, 1]. For instance, an expectation value close to −1 suggests a high probability of the qubit being
in the |1⟩ state and vice versa.

Each expectation value is mapped to a distinct output channel. A filter with n qubits will produce
n feature maps, and the total number of filters required is

⌊
Cout+n−1

n

⌋
. However, if the total number

of feature maps exceeds the user-defined number of output channels, we discard the extra maps,
retaining only Cout feature maps. Finally, we add a bias term to the generated features for each
output channel, just like in a classical convolutional layer.

2.2 FQN

The FQN architecture is designed to be parameter-efficient, built exclusively with Quanv1D layers,
as shown in Fig. 1. It consists of three primary components: embedding, propagation, and projec-
tion. In summary, the embedding layer transforms the input into a high-dimensional feature space,
the propagation layers employ dilation (Yu, 2015) to iteratively improve feature representations with
longer receptive fields, and the projection layer transfers these enhanced features to a desired output
space.

The embedding layer expands the raw input data into a learned embedding dimension, dime, which
helps aggregate local information and prepares the data for more complex hierarchical feature ex-
traction. For long sequences, the kernel size ke can remain large without shortening the sequence
length, as padding is automatically adjusted using

⌊
ke

2

⌋
. However, this adjustment is only applicable

to kernels with odd sizes. In addition, strides can reduce the input sequence length if necessary. For
example, setting se = 3 will shorten the embedded feature sequence to one-third of the original
input length.

After the embedding stage, the propagation layers form the core of the architecture. There are depth
propagation layers, each composed of a Quanv1D layer, followed by batch normalization and ReLU
activation. These layers improve the embedded representation over time by reducing the internal
covariate shift and adding nonlinearity to the data. The dilation rate, di = i (where i is the layer
index), linearly increases the network’s receptive field as the depth grows. This allows the model
to capture dependencies at multiple scales–from local interactions in the lower layers to long-range
dependencies in the deeper layers–without increasing the number of parameters. In the propagation
layers, no padding was applied, and sprop was set to one. However, the kernel size kprop was
adjusted based on the specific dataset.

Following the propagation layers, the projection layer maps the multi-scale, transformed features
to a space corresponding to the target classes. This allows the network to produce class-specific
feature maps. For this layer, the kernel size is set to kproj = 1, with a stride of sproj = 1, no
padding (pproj = 0), and a dilation rate of dproj = 1. We then apply global average pooling across
the channel dimension and pass the pooled features to a softmax classifier for final prediction. This
approach helps prevent overfitting by reducing the number of trainable parameters and serves as a
form of regularization.

3 EXPERIMENTS

3.1 DATASETS AND MODELS

To evaluate the performance of FQN (and Quanv1D), we utilized 20 datasets from the UEA and
UCR time series archives (Bagnall et al., 2018; Dau et al., 2019). We randomly selected the datasets
but ensured a broad spectrum of practical applications. As such, the selected binary and multi-class
datasets cover 15 different fields, with inputs that have different sizes (up to 64 channels) and lengths
(up to 18530). Table 3 provides a detailed description of these datasets, and Appendix C outlines
the selection process used in this study.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Classification performance across datasets. Each experiment is repeated five times. We
present the mean and standard deviation for test accuracy and provide a ratio for trainable parameter
count, which illustrates how each model’s count compares to the FQN. Bold indicates the best
performance.

Test accuracy (%) Parameters (ratio-to-FQN)

Dataset FQN FCN ModernTCN QuanvNet* FQN FCN ModernTCN QuanvNet*

D1 96.4 (1.2) 96.4 (0.8) 97.8 (1.2) 93.2 (5.1) ×1 ×4.0 ×4.7 ×108.0
D2 59.5 (1.0) 59.0 (1.1) 62.5 (2.2) 58.0 (2.6) ×1 ×3.0 ×5.7 ×101.8
D3 98.7 (0.7) 98.8 (0.5) 96.8 (1.4) 96.0 (2.0) ×1 ×9.8 ×11.1 ×31.6
D4 76.5 (1.2) 80.9 (0.3) 82.6 (1.3) 70.9 (1.8) ×1 ×5.2 ×5.3 ×35.9
D5 80.5 (4.1) 74.5 (2.7) 80.0 (3.5) 76.0 (7.2) ×1 ×2.1 ×3.5 ×51.1
D6 93.3 (1.2) 99.2 (0.8) 98.9 (1.2) 87.2 (3.3) ×1 ×6.8 ×4.0 ×20.8
D7 95.8 (1.7) 90.3 (3.3) 80.0 (2.7) 81.8 (8.6) ×1 ×4.9 ×6.9 ×28.9
D8 98.1 (1.3) 100.0 (0.0) 99.7 (0.7) 89.1 (5.3) ×1 ×6.4 ×5.0 ×15.2
D9 75.7 (2.3) 73.3 (4.5) 71.5 (1.4) 66.5 (12.3) ×1 ×7.9 ×12.2 ×27.2
D10 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) ×1 ×4.4 ×11.5 ×33.2
D11 95.1 (0.4) 97.8 (0.0) 88.8 (4.6) 95.6 (0.6) ×1 ×7.9 ×31.4 ×27.3
D12 99.5 (1.1) 99.5 (1.1) 59.0 (5.3) 98.5 (1.1) ×1 ×3.4 ×21.9 ×27.0
D13 72.7 (1.1) 74.1 (3.4) 64.1 (3.8) 73.7 (4.1) ×1 ×2.1 ×255.5 ×79.3
D14 99.3 (1.0) 98.9 (1.0) 96.0 (3.5) – ×1 ×11.1 ×38.7 –
D15 29.1 (1.7) 28.6 (2.0) 29.7 (5.4) – ×1 ×6.6 ×107.3 –
D16 97.8 (0.4) 99.9 (0.2) 99.6 (0.2) – ×1 ×5.2 ×33.5 –
D17 56.8 (2.4) 44.7 (0.9) 52.9 (5.5) – ×1 ×7.2 ×118.8 –
D18 34.5 (3.5) 31.1 (3.2) 36.6 (5.9) – ×1 ×2.6 ×96.8 –
D19 56.1 (2.8) 55.7 (2.9) 55.4 (2.8) – ×1 ×7.6 ×248.8 –
D20 52.4 (1.1) 51.1 (6.6) 55.0 (2.4) – ×1 ×10.6 ×12600.9 –

Average 78.4 77.7 75.3 – ×1 ×6.0 ×681.2 –
*The results for QuanvNet are incomplete because it can handle univariate data only.

Our goal was to compare FQN to a fully convolutional network (FCN) that had the same architec-
ture and hyperparameters but contained classical convolutional layers. This comparison helped us
examine the differences between Quanv1D and Conv1D in terms of training and inference. To as-
sess FQN’s benchmarking potential, we included ModernTCN, the current state-of-the-art (SOTA)
in time series classification, in the comparison (Luo & Wang, 2024). We also added the latest 1D
quanvolutional network, QuanvNet, proposed by Rivera-Ruiz et al. (2023).

3.2 TIME SERIES CLASSIFICATION

According to the performance results outlined in Table 1, FQN is comparable to ModernTCN and
FCN, even outperforming them in certain cases, despite having substantially fewer parameters.
While FQN and FCN both outperformed other models in eight cases, resulting in a tie, FQN was
better overall. It achieved a higher average with the least trainable parameters. Since our goal with
FQN was to develop a model comparable or equivalent to FCN, the results in Table 1 highlight the
potential of quantum-based representation learning.

Interestingly, FQN outperformed the current SOTA model, ModernTCN. The input’s length and
dimension largely determine ModernTCN’s parameter count, primarily because of its proposed em-
bedding layer and the fully connected layers in its classifier head. Although it is generally believed
that more parameters lead to better performance, a model with sufficient parameters to properly
fit the data—provided it is well-suited to the task—should not underperform compared to a model
with significantly more parameters. As shown in Table 5, ModernTCN clearly exhibits overfitting
in multiple datasets.

Across all datasets, FQN consistently outperforms QuanvNet. From a stability standpoint, QuanvNet
shows the greatest variance in accuracy. Its subpar performance can largely be attributed to two key
factors: (i) the constraints imposed by a fixed, small kernel length, which limits its ability to capture
temporal relationships effectively, and (ii) the reliance on a single circuit as a filter, which hinders
its capacity to extract diverse patterns. Additionally, it can only process univariate time series data.
As such, we were unable to evaluate QuanvNet across all 20 datasets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Input channel

Pa
ra

m
et

er
 c

ou
nt

Pa
ra

m
et

er
 c

ou
nt

Embedding dimension

Pa
ra

m
et

er
 c

ou
nt

Propagation depth

FCN FQN

Figure 2: Variation of model parameter count against hyperparameter change. The base hyperpa-
rameters are: Cin = 3, ke = 3, se = 2, dime = 16, kprop = 3, and depth = 4. The parameter
change is then observed by varying one hyperparameter at a time. For illustration, we used a Gaus-
sian filter for line smoothing.

3.3 PARAMETER EFFICIENCY

Although both models share the same architecture and hyperparameters, FCN is, on average, six
times lighter than FQN. Figure 2 illustrates the parameter differences between the two models across
various hyperparameter settings. As seen in the graph, the primary difference comes from dime,
where FCN’s parameter count grows exponentially, while FQN shows only a gradual linear increase.
While both models experience linear scaling in parameter count as depth increases, the rate of
increase is significantly higher for FCN. Additionally, Quanv1D’s efficient encoding and decoding
processes help keep FQN’s parameter count nearly constant for increasing cin, in contrast to FCN’s
steady linear growth. A higher Cin typically requires more qubits (and hence, more parameters),
but Quanv1D minimizes this by utilizing all available qubits in its circuits, thereby reducing the
total number of filters needed. This synergistic approach is what makes Quanv1D (and FQN) more
efficient in managing parameters.

The results in Table 2 show that FQN consistently maintains comparable losses across the training,
validation, and test sets. This is in contrast to its classical counterpart, FCN, which often overfits
and achieves almost zero training loss but much higher validation and test losses. However, after
closely looking at Table 2 and how FQN behaves during training, we hypothesize that a higher
number of parameters is not the sole reason why FCN fell behind FQN in multiple datasets. To
test this hypothesis, we rerun the experiments, adjusting the hyperparameters of FCN to ensure
that the trainable parameter for both FCN and FQN is equal. While reducing parameters lessened
overfitting in six cases (dropping from 13 to seven), the test accuracy also declined for ten cases.
This goes to show that FQN offers more stable learning when compared to FCN, despite the number
of parameters used.

3.4 SELF-REGULARIZATION

Table 2 provides empirical evidence of FQN’s self-regularization, which enabled it to generalize
more effectively in most test cases. Although this implicit regularization is partly due to the reduced
number of parameters, we believe it also stems from the fundamental nature of quantum operations
within the Quanv1D layer. To illustrate this, consider a single-wire quanvolutional kernel (or quan-
tum circuit) with a single unitary operator. The derivatives of the output, Qout, with respect to θ and
λ for a given patch are expressed as follows:

dQout

dθ
= −π(x21 − x22) sin(πθ)− 2πx1x2 cos(λ) cos(θπ) (9)

dQout

dλ
= 2x1x2 sin(λ) sin(θπ) (10)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The mean loss values of FQN and FCN across datasets with different splits. For FCN*, the
total number of trainable parameters matches that of FQN.

FQN FCN FCN* FCN-FCN*

Dataset Train Val Test Train Val Test Overfitting? Train Val Test Overfitting? Change in accuracy (%)

D1 0.27 0.29 0.31 0.00 0.01 0.23 ✓ 0.00 0.01 0.17 ✓ 0.5
D2 0.61 0.68 0.68 0.01 2.87 2.51 ✓ 0.03 3.21 2.96 ✓ 0.5
D3 0.86 0.90 0.88 0.00 0.05 0.05 × 0.00 0.03 0.02 × 0.3
D4 0.55 0.59 0.57 0.01 0.92 0.81 ✓ 0.04 0.64 0.72 ✓ -2.3
D5 0.43 0.60 0.55 0.00 1.29 1.36 ✓ 0.01 1.09 0.59 ✓ 6.5
D6 0.40 0.44 0.43 0.00 0.00 0.02 × 0.00 0.02 0.02 × 0.0
D7 0.38 0.39 0.41 0.02 0.26 0.29 ✓ 0.13 0.48 0.27 × 1.2
D8 0.68 0.54 0.59 0.17 0.00 0.00 × 0.17 0.08 0.08 × -2.2
D9 0.48 0.82 0.57 0.00 4.19 1.70 ✓ 0.00 3.10 1.38 ✓ 0.7
D10 0.66 0.64 0.68 0.02 0.01 0.01 × 0.13 0.08 0.07 × 0.0
D11 0.38 0.42 0.39 0.00 0.36 0.15 ✓ 0.00 0.32 0.12 ✓ -0.3
D12 0.57 0.57 0.56 0.02 0.07 0.03 × 0.44 0.68 0.34 × -2.4
D13 0.58 0.67 0.58 0.01 2.14 1.19 ✓ 0.55 0.72 0.57 × -3.2
D14 0.50 0.53 0.51 0.00 0.07 0.03 × 0.01 0.08 0.07 × -2.2
D15 1.31 1.43 1.38 0.32 2.36 2.83 ✓ 0.71 1.94 1.97 ✓ 5.5
D16 0.36 0.37 0.37 0.00 0.01 0.00 × 0.00 0.00 0.01 × -0.3
D17 0.61 0.71 0.70 0.41 1.07 1.09 ✓ 0.64 0.75 0.71 × 7.6
D18 1.28 1.40 1.35 0.41 1.79 1.69 ✓ 1.32 1.41 1.39 × -5.1
D19 0.55 0.75 0.69 0.07 1.85 1.74 ✓ 0.61 0.85 0.75 × -2.9
D20 0.67 0.71 0.70 0.39 1.12 1.14 ✓ 0.68 0.70 0.71 × -3.7

Both equations demonstrate a sinusoidal relationship between the derivatives and the weight values:
θ and λ. A sinusoidal function, naturally bound between -1 and 1, inherently constrains the gradient
update due to its periodicity. Additionally, the amplitude embedding restricts the input values to a
range between 0 and 1. As the inputs are the coefficients of the sinusoids, the input scaling limits
the magnitude of the gradient updates even further. Together, these factors help prevent extreme
gradient values, promoting self-regularization.

In a similar way, we can extend this illustration to a two-qubit, two-unitary circuit. The gradients
for each wire with respect to the weights are as follows:

dQout

dθ1
= −π(x21 + x22 − x23 − x24) sin(θ1π)− 2π(x1x3 + x2x4) cos(λ1) cos(πθ1) (11)

dQout

dθ2
= −π(x21 − x22 + x23 − x24) sin(θ2π)− 2π(x1x2 + x3x4) cos(λ2) cos(πθ2) (12)

dQout

dλ1
= (x1x3 sin(λ1) + x2x4 sin(λ1)) sin(πθ1) (13)

dQout

dλ2
= (x1x2 sin(λ2) + x3x4 sin(λ2)) sin(πθ2) (14)

θi and λi represent the weights of the i-th wire. The regularization effect is also evident in Equations
(11, 12, 13, and 14). The gradient update value discussed here applies to a single layer, but because
the model is fully quanvolutional, adding more layers won’t affect this behavior. Since gradient
updates occur via a multiplicative chain rule, a similar regularization effect will propagate across all
layers. The derivation for the single-wire circuit can be found in Appendix F, and the equations for
the two-wire circuit were derived using SymPy (Meurer et al., 2017). Note that the derivatives with
respect to ϕ are always zero.

3.5 IMPACT OF FINITE SHOTS

Despite FQN’s promise for classifying real-world data, its application on actual quantum computers
remains a challenge. Quanv1D is mostly theoretical, as we rely on analytical or raw expectation
values. In practice, this approach is not feasible because expectation values must be measured using
a finite number of shots. To assess our model’s performance under such conditions, we conducted

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3 4 5 6 7 8 9 10
40

50

60

70

80

90

100 D2
D2 Analytical
D3
D3 Analytical
D6
D6 Analytical
D16
D16 Analytical
D19
D19 Analytical

A
cc

ur
ac

y
(%

)

Figure 3: Accuracy vs. number of shots. On the test sets, we evaluated the model five times for
each shot count. Dashed lines indicate the analytical results, while the solid line represents the mean
accuracy of the shot-based models. The shaded area around the solid line reflects the uncertainty
range, spanning from the minimum to maximum accuracy for each shot count.

experiments starting with ten shots and continued until FQN achieved accuracy within 3% of the
analytical benchmark. Due to the high computational cost of the simulation, we had to limit our
analysis to this threshold. Nevertheless, since the mean value obtained from the shots is a sample
mean rather than the theoretical expected value, the law of large numbers (Evans & Rosenthal, 2004)
predicts that as the number of shots increases significantly, the sample mean will eventually converge
to the true expected value. The results are shown in Fig. 3. For these tests, we randomly selected
five datasets from a pool of 20.

The number of shots needed to achieve the desired accuracy may differ depending on the dataset.
However, a consistent trend is that FQN exhibits erratic behavior at very low shot counts due to
randomness. This instability diminishes as the number of shots increases, eventually leading to sta-
bilization. Also, the introduced noise can sometimes enhance performance, even exceeding the
noise-free analytical baseline, as observed with D19. This outcome aligns with earlier studies
demonstrating the robustness of QML to noise (Cross et al., 2015; Du et al., 2021), which show
that noise can actually aid in data learning tasks. Consequently, in real-world scenarios where noise
is unavoidable, FQN has the potential to become more generalized and error-tolerant, when applied
to practical data.

4 CONCLUDING REMARKS

The primary objective of this study was to introduce a QML algorithm for quantum computers,
aiming to create a quantum equivalent of a well-established and widely used classical method. We
designed our proposed quanvolution algorithm, an analog to convolution, with NISQ-related con-
straints in mind, and it proved effective in temporal data learning tasks. In fact, it was able to
outperform contemporary classical models in some cases, thanks to its efficient parameter manage-
ment and inherent regularization. Despite our model being a theoretical framework, it remained
effective when we simulated a realistic scenario with statistical noise. Our proposed model, FQN,
incorporates non-linear activation functions, which present a challenge in a quantum environment.
But the computational overhead for these activation functions is negligible, and the network should,
in theory, work well in a classical-quantum hybrid framework. Previous studies have demonstrated
promising results for similar hybrid approaches with smaller models (Tacchino et al., 2019; 2020).
As the world moves toward fault-tolerant quantum computing with increased qubits, we are op-
timistic that, with the right settings, our model will perform similarly. Nonetheless, significant
progress is still required before reaching that point.

4.1 LIMITATIONS

For this study, we tested our FQN only on classification tasks and have yet to explore regression and
data imputation problems. Using a fully quanvolutional structure for these tasks will be challenging,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

as Quanv1D’s output is in the range of -1 to 1, which limits its applicability for tasks that require
output values beyond this range. Additionally, for classification problems, we noticed that training
FQN gets difficult when the number of classes exceeds 10, either due to the limited number of pa-
rameters or the usage of classical optimizers on a quantum model. Also, we could not determine the
true operating range of FQN because we only tested it on a subset of the UEA and UCR repositories
and not all the datasets, as the authors suggested (Dau et al., 2019).

In addition to these limitations, we believe it is important to address the constraints related to hard-
ware implementation. Our quanvolutional layer is largely theoretical, simulated using classical
computing. Given the constraints associated with the NISQ era, it remains uncertain whether we
can achieve this level of implementation, as we did not have access to real hardware to verify our
algorithm. While both Quanv1D and FQN showed strong performance in tasks involving statistical
noise, their robustness against other challenges–such as decoherence, environmental noise, error ac-
cumulation, and gate fidelity–has yet to be demonstrated. Moreover, although amplitude encoding
offers improved parameter efficiency for the model, it significantly increases circuit depth (Kharsa
et al., 2023; Schuld, 2018), posing further challenges. Finally, the high computational complexity
of FQN makes classical simulation difficult. For comparison, the time complexity of quanvolution
is O(k2 × c2in × cout), whereas that of convolution is O(k × cin × cout), where k is the kernel
length, cin is the input dimension, and cout is the number of output channels. Optimizing the design
to reduce complexity remains an area for future exploration.

4.2 FUTURE WORK

To address the current limitations, our immediate focus will be on improving the model’s perfor-
mance when handling more than 10 classes and optimizing the overall design to reduce time com-
plexity. Following this, we plan to benchmark the model using the full UEA and UCR repositories
Dau et al. (2019); Bagnall et al. (2018), which will help establish the operational range of quanvo-
lution for classification tasks. After completing the classification phase, we will address the range
limitation of -1 to 1. While the output range of the quantum layer cannot be altered, we aim to de-
sign an activation function that maps outputs to a higher range while preserving the distinct quantum
properties. Achieving this mapping could open new avenues for exploration.

Before advancing to our ultimate goal of developing a 2D quanvolution, we aim to introduce explain-
ability to the current 1D quanvolution framework. Although inspired by classical 1D convolution,
the quantum operations introduce complexities that make explainability less intuitive. Understand-
ing the mathematical principles underlying these processes will not only enhance interpretability but
may also offer insights for further design improvements. Transitioning from 1D to 2D quanvolu-
tion while maintaining this level of modularity will be a significant challenge, but we believe this
progression is the logical next step, especially for expanding applications into the domains of image
processing and computer vision.

REPRODUCIBILITY STATEMENT

The main text and the appendices provide detailed instructions for building the models and replicat-
ing the results. After the peer-review process, we will share the code in a public repository.

REFERENCES

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom, Paul
Southam, and Eamonn Keogh. The uea multivariate time series classification archive, 2018. arXiv
preprint arXiv:1811.00075, 2018.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.
Quantum machine learning. Nature, 549(7671):195–202, 2017.

Katherine S Button, John PA Ioannidis, Claire Mokrysz, Brian A Nosek, Jonathan Flint, Emma SJ
Robinson, and Marcus R Munafò. Power failure: why small sample size undermines the reliability
of neuroscience. Nature reviews neuroscience, 14(5):365–376, 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kumar Chellapilla, Sidd Puri, and Patrice Simard. High performance convolutional neural networks
for document processing. In Tenth international workshop on frontiers in handwriting recogni-
tion. Suvisoft, 2006.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

Andrew W Cross, Graeme Smith, and John A Smolin. Quantum learning robust against noise.
Physical Review A, 92(1):012327, 2015.

Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn Keogh. The ucr time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

Saeideh Davoudi, Tyler Schwartz, Aurélie Labbe, Laurel Trainor, and Sarah Lippé. Inter-individual
variability during neurodevelopment: an investigation of linear and nonlinear resting-state eeg
features in an age-homogenous group of infants. Cerebral Cortex, 33(13):8734–8747, 2023.

Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. Quantum noise protects
quantum classifiers against adversaries. Physical Review Research, 3(2):023153, 2021.

Michael J Evans and Jeffrey S Rosenthal. Probability and statistics: The science of uncertainty.
Macmillan, 2004.

Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan Cook. Quanvolutional
neural networks: powering image recognition with quantum circuits. Quantum Machine Intelli-
gence, 2(1):2, 2020.

Tak Hur, Leeseok Kim, and Daniel K Park. Quantum convolutional neural network for classical data
classification. Quantum Machine Intelligence, 4(1):3, 2022.

Yu Jing, Xiaogang Li, Yang Yang, Chonghang Wu, Wenbing Fu, Wei Hu, Yuanyuan Li, and Hua Xu.
Rgb image classification with quantum convolutional ansatz. Quantum Information Processing,
21(3):101, 2022.

Ruba Kharsa, Ahmed Bouridane, and Abbes Amira. Advances in quantum machine learning and
deep learning for image classification: a survey. Neurocomputing, 560:126843, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yue Li, Xinhao Li, Haopeng Jia, Anjiang Liu, Qingle Wang, Shuqing Hao, and Hao Liu. Detection
and identification of power quality disturbance signals in new power system based on quantum
classic hybrid convolutional neural networks. In International Conference on Data Security and
Privacy Protection, pp. 187–203. Springer, 2024.

Zhaokai Li, Xiaomei Liu, Nanyang Xu, and Jiangfeng Du. Experimental realization of a quantum
support vector machine. Physical review letters, 114(14):140504, 2015.

Donghao Luo and Xue Wang. Moderntcn: A modern pure convolution structure for general time
series analysis. In The Twelfth International Conference on Learning Representations, 2024.

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, 2017.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-
bridge university press, 2010.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

David Peral-Garcı́a, Juan Cruz-Benito, and Francisco José Garcı́a-Peñalvo. Systematic literature
review: Quantum machine learning and its applications. Computer Science Review, 51:100619,
2024.

Sharanya Prabhu, Shourya Gupta, Gautham Manuru Prabhu, Aarushi Vishal Dhanuka, and
K Vivekananda Bhat. Qucardio: Application of quantum machine learning for detection of car-
diovascular diseases. IEEE Access, 11:136122–136135, 2023.

Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big
data classification. Physical review letters, 113(13):130503, 2014.

Mayra Alejandra Rivera-Ruiz, Sandra Leticia Juárez-Osorio, Andres Mendez-Vazquez, José Mauri-
cio López-Romero, and Eduardo Rodriguez-Tello. 1d quantum convolutional neural network
for time series forecasting and classification. In Mexican International Conference on Artificial
Intelligence, pp. 17–35. Springer, 2023.

Aansh Savla, Ali Abbas Kanadia, Deep Mehta, and Kriti Srivastava. Gqnn: Greedy quanvolutional
neural network model. In International Conference on Image Processing and Capsule Networks,
pp. 397–410. Springer, 2022.

Maria Schuld. Supervised learning with quantum computers. Springer, 2018.

S Sridevi, T Kanimozhi, K Issac, and M Sudha. Quanvolution neural network to recognize arrhyth-
mia from 2d scaleogram features of ecg signals. In 2022 International Conference on Innovative
Trends in Information Technology (ICITIIT), pp. 1–5. IEEE, 2022.

Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An artificial neuron
implemented on an actual quantum processor. npj Quantum Information, 5(1):26, 2019.

Francesco Tacchino, Panagiotis Barkoutsos, Chiara Macchiavello, Ivano Tavernelli, Dario Gerace,
and Daniele Bajoni. Quantum implementation of an artificial feed-forward neural network. Quan-
tum Science and Technology, 5(4):044010, 2020.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural net-
works. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pp. 6105–6114. PMLR, 09–15 Jun 2019.

Ubaid Ullah and Begonya Garcia-Zapirain. Quantum machine learning revolution in healthcare: a
systematic review of emerging perspectives and applications. IEEE Access, 2024.

Chao-Han Huck Yang, Jun Qi, Samuel Yen-Chi Chen, Pin-Yu Chen, Sabato Marco Siniscalchi, Xi-
aoli Ma, and Chin-Hui Lee. Decentralizing feature extraction with quantum convolutional neural
network for automatic speech recognition. In ICASSP 2021-2021 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 6523–6527. IEEE, 2021.

F Yu. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122,
2015.

Juping Zhang, Gan Zheng, Toshiaki Koike-Akino, Kai-Kit Wong, and Fraser Burton. Hybrid
quantum-classical neural networks for downlink beamforming optimization. IEEE Transactions
on Wireless Communications, 2024.

A PRELIMINARIES

Quantum bits, or qubits, are the fundamental units of quantum computation. Unlike classical bits,
which can only exist in one of two definite states (0 or 1), qubits can be in the 0 state (|0⟩), the 1 state
(|1⟩), or any linear combination (superposition) of these states, expressed as |ψ⟩ = α |0⟩ + β |1⟩.
Here, α and β are complex numbers that satisfy the condition |α|2 + |β|2 = 1. This superposi-
tion property allows quantum operations to act on multiple states simultaneously, something that

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Table 3: Descriptions of the datasets used in the study.
Code Dataset Sample Length Dim Type Domain

D1 Chinatown 363 24 1 Traffic Urban planning
D2 SharePriceIncrease 1931 60 1 Financial Stock market
D3 SyntheticControl 600 60 1 Simulated Synthetic data analysis
D4 PhalangesOutlinesCorrect 2658 80 1 Image Osteology
D5 ECG200 200 96 1 ECG Cardiovascular diagnostics
D6 PowerCons 360 144 1 Device Smart grid
D7 ToeSegmentation2 166 343 1 Motion Biomechanics
D8 DiatomSizeReduction 322 345 1 Image Microbiology
D9 Earthquakes 461 512 1 Sensor Seismology
D10 InsectEPGRegularTrain 311 601 1 EPG Entomology
D11 StarLightCurves 9236 1024 1 Sensor Astronomy
D12 NerveDamage 204 1500 1 EMG Neurology
D13 BinaryHeartbeat 409 18530 1 Audio Cardiovascular diagnostics
D14 Epilepsy 275 206 3 Sensor Human activity recognition
D15 EthanolConcentration 524 1751 3 Spectroscopy Chemical analysis
D16 Blink 950 510 4 EEG Brain-computer interface
D17 SelfRegulationSCP2 380 1152 7 EEG Brain-computer interface
D18 HandMovementDirection 234 400 10 EEG Brain-computer interface
D19 FingerMovements 416 50 28 EEG Brain-computer interface
D20 MotorImagery 378 3000 64 EEG Brain-computer interface

ECG: electrocardiogram; EPG: electrical penetration graph; EMG: electromyogram; EEG: electroencephalogram

classical computers cannot achieve. When combined with the phenomena of entanglement and in-
terference, superposition forms the basis of “quantum advantage”–the ability of quantum systems to
solve specific problems more efficiently than classical systems.

Quantum circuits provide the framework for modeling quantum computations; wires represent
qubits, and gates correspond to quantum operations that manipulate these qubits. In the context
of applying QML to classical data, quantum circuits typically consist of three main phases: encod-
ing, manipulation, and measurement.

1. Encoding: In this phase, classical information is mapped into a quantum Hilbert space,
preparing the quantum system for computation. Two widely used encoding methods are
angle encoding and amplitude encoding. Angle encoding represents classical values as
angles of rotation gates applied to qubits, typically starting from the |0⟩ state. This method
requires n qubits to encode n classical features. Amplitude encoding or embedding, in
contrast, stores classical data in the amplitudes of a quantum state, allowing n qubits to
represent up to 2n classical values classical values. While amplitude encoding is highly
efficient in terms of qubit usage, preparing such states can be computationally intensive.

2. Manipulation: After encoding, the quantum data is processed using a sequence of quan-
tum gates. Researchers often design parameterized quantum circuits, known as ansatz,
which include gates such as Hadamard, Controlled-NOT (CNOT), and rotations around the
X, Y, and Z axes. These gates enable critical quantum phenomena for quantum advantage.
For example, the Hadamard gate creates superposition, while the CNOT gate establishes
entanglement.

3. Measurement: The final stage involves measuring quantum states to extract classical out-
comes. Measurement causes the quantum state to collapse into one of its basis states (ei-
ther 0 or 1). Due to the probabilistic nature of quantum measurement, multiple repetitions
(referred to as ”shots”) are performed to gather sufficient statistics. With enough mea-
surements or experimental reruns, the outcomes reliably reflect the expected or analytical
results of the quantum computation.

B EXPERIMENTAL SETUP

In this study, we conducted the experiments on an NVIDIA GeForce RTX 4060 Ti 16GB GPU using
PyTorch (Paszke et al., 2019).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 4: Total trainable parameters of FQN with its hyperparameters.
Dataset Batch size Parameters Decay factor ke se dime kprop depth

D1 64 856 0.85 9 1 16 3 4
D2 256 908 0.85 15 3 16 3 3
D3 128 2988 0.85 15 2 48 3 4
D4 256 2576 0.75 21 2 32 3 4
D5 32 1808 0.75 31 4 16 3 4
D6 64 4434 0.75 15 3 32 5 4
D7 32 3200 0.75 31 5 24 5 5
D8 32 6098 0.8 45 4 32 9 4
D9 64 3400 0.75 45 8 24 7 4
D10 32 2796 0.75 33 5 16 9 5
D11 128 3400 0.8 21 8 32 5 5
D12 32 3440 0.85 41 10 16 7 6
D13 32 1166 0.9 15 20 8 7 5
D14 64 6072 0.85 25 3 64 3 5
D15 128 4858 0.85 45 10 24 7 7
D16 128 3618 0.85 41 5 24 5 5
D17 64 4882 0.85 41 9 32 5 5
D18 128 1488 0.75 9 2 8 5 9
D19 64 728 0.75 5 2 16 3 4
D20 16 524 0.9 3 25 16 3 3

C DATASET SETUP

The datasets used in this experiment were taken from the UEA and UCR archives (Bagnall et al.,
2018; Dau et al., 2019). Among the 150+ datasets available in the archive, we have considered a
subset of 20. The selected datasets along with their descriptions are provided in Table 3. Our dataset
selection criteria were primarily based on the domain and its real-life applicability, i.e., we wanted
to cover as many domains as possible to test our proposed model. The considered datasets come
from 15 different domains and include a mix of both binary and multi-class classification tasks.
A major portion of the selected datasets are univariate in nature, as QuanvNet (Rivera-Ruiz et al.,
2023), one of our baselines, only works on univariate data. One exception to the criteria was the
selection of multiple EEG datasets. This was due to the high variability and low statistical power of
EEG datasets (Davoudi et al., 2023; Button et al., 2013), along with their high dimensionality.

All datasets were processed following the same procedure. We first applied Z-normalization to
the entire dataset, followed by a 60:20:20 split for training, validation, and testing. For multi-
dimensional data, we performed Z-normalization on each input channel individually. We saved the
normalization factors and data splits to ensure reproducibility and fair comparisons among models
trained on the same datasets. Additionally, we calculated class weights and integrated them into the
cross-entropy loss function to address class imbalances in several datasets.

D TRAINING SETUP

We trained each model for 200 epochs, opting for a learning rate scheduler instead of early stopping.
As mentioned before, our objective was to evaluate the differences in learning between Quanv1D
and traditional convolutional layers. The scheduler had a patience of 5 epochs and a relative thresh-
old of 0.001, monitoring the validation loss to reduce the learning rate by different factors when
performance plateaued. We varied the reduction factor to ensure stable training and minimize over-
fitting. However, for consistency, the reduction factor remained the same across all comparison
models for each dataset. The data specific reduction factors are presented in Table 4.

We optimized all the models using Adam (Kingma, 2014), starting with default values set by Py-
Torch. The initial learning rate for all datasets was 0.01, except for D10 and D12, where it was
0.001. We repeated all the experiments five times without using any specific seeds.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

E MODEL SETUP

Table 4 presents FQN’s hyperparameters for each dataset. Note that, for fairness, we also use the
same batch size for other models under comparison. In the case of FCN, the hyperparameters are
identical to the values presented in Table 4. In the table, depth refers to the number of propagation
layers.

We utilized the official implementation of ModernTCN from https://github.com/
luodhhh/ModernTCN, retaining the hyperparameters recommended by Luo & Wang (2024) for
time series classification. The only modification was to adjust the embedding dimension to align
with FQN and FCN, ensuring a fair comparison. For QuanvNet, we implemented it from scratch
based on the approach outlined by Rivera-Ruiz et al. (2023).

F GRADIENT DERIVATION

Let us consider a one-wire, one-unitary quantum circuit where the number of inputs is 2. Before
being processed by the circuit, the inputs undergo amplitude embedding, such that the input vector
is given by:

|xinput⟩ =
(
x1
x2

)
(15)

The output state of the quantum circuit after applying a unitary transformation parameterized by
angles θ, ϕ, and λ is described as:

|ψo⟩ = U(θ, ϕ, λ) ∗ xinput =
(

x1 ∗ cos(θ π
2)− x2 ∗ eiλ sin(θ π

2)
x1 ∗ eiϕ sin(θ π

2) + x2 ∗ ei(ϕ+λ) cos(θ π
2)

)
(16)

After passing through the measurement block, the output Qout is computed as the expectation value
of the Pauli-Z operator:

Qout = ⟨ψo|Z|ψo⟩ (17)

Substituting |ψo⟩ into this expression and simplifying, we obtain:

Qout = x21 cos
2(θ

π

2
) + x22 sin

2(θ
π

2
)− x1x2 cosλ sin(πθ)

−x21 sin2(θ
π

2
)− x22 cos

2(θ
π

2
)− x1x2 cosλ sin(πθ)

= (x21 − x22) cos
2(θ

π

2
)− (x21 − x22) sin

2(θ
π

2
)− 2x1x2 cosλ sin(πθ)

(18)

Now, the derivatives of Qout with respect to θ, ϕ, and λ are:

dQout

dθ
= −2

π

2
(x21 − x22) cos(θ

π

2
) sin(θ

π

2
)

−2
π

2
(x21 − x22) sin(θ

π

2
) cos(θ

π

2
)− 2πx1x2 cos(λ) sin(πθ)

= −π(x21 − x22) sin(πθ)− 2πx1x2 cos(λ)cos(πθ)

(19)

dQout

dλ
= 2x1x2 sin(λ) sin(πλ) (20)

dQout

dϕ
= 0 (21)

15

https://github.com/luodhhh/ModernTCN
https://github.com/luodhhh/ModernTCN

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

G PARAMETER EFFICIENCY (EXTENDED)

Table 5 highlights the tendency of ModernTCN to overfit. Out of the 20 datasets evaluated, Mod-
ernTCN overfitted 14 of them, achieving near-zero training loss but exhibiting significantly higher
test loss. Unlike FCN, ModernTCN’s rigid model structure precluded the exploration of reducing
parameter counts for overfitting mitigation. However, our FCN-based exploration demonstrates that
FQN’s design and self-regularization will give it a competitive edge over ModernTCN, even though
parameter reduction in ModernTCN can improve some overfitting.

Table 5: The mean loss values of FQN and ModernTCN across datasets with different splits.
FQN ModernTCN

Dataset Train Val Test Train Val Test Overfitting?

D1 0.27 0.29 0.31 0.00 0.01 0.20 ✓
D2 0.61 0.68 0.68 0.23 1.31 1.19 ✓
D3 0.86 0.90 0.88 0.00 0.16 0.14 ×
D4 0.55 0.59 0.57 0.18 0.52 0.51 ×
D5 0.43 0.60 0.55 0.00 1.21 1.19 ✓
D6 0.40 0.44 0.43 0.00 0.00 0.04 ×
D7 0.38 0.39 0.41 0.00 2.06 3.35 ✓
D8 0.68 0.54 0.59 0.00 0.01 0.01 ×
D9 0.48 0.82 0.57 0.00 12.73 3.67 ✓
D10 0.66 0.64 0.68 0.01 0.00 0.00 ×
D11 0.38 0.42 0.39 0.01 0.70 0.71 ✓
D12 0.57 0.57 0.56 0.00 0.85 1.28 ✓
D13 0.58 0.67 0.58 0.00 41.84 35.61 ✓
D14 0.50 0.53 0.51 0.00 3.04 1.64 ✓
D15 1.31 1.43 1.38 0.47 8.53 9.13 ✓
D16 0.36 0.37 0.37 0.00 2.63 1.48 ✓
D17 0.61 0.71 0.70 0.00 12.61 13.92 ✓
D18 1.28 1.40 1.35 0.00 11.81 10.58 ✓
D19 0.55 0.75 0.69 0.01 2.03 2.27 ✓
D20 0.67 0.71 0.70 0.88 0.81 0.73 ×

H IMPACT OF FINITE SHOTS (EXTENDED)

The complete results from Section 3.5 are summarized in Table 6. We evaluated the model five
times for each shot count in the test sets. We incrementally increased the shot counts until the
shot accuracy was within 3% of the analytical accuracy. In Fig. 3, not all experimental results are
displayed to avoid overcrowding the figure, which would make it difficult to distinguish individual
results.

Table 6: FQN’s performance under statistical noise. A-A* represents the difference between the
analytical value and the highest accuracy achieved with a finite number of shots.

Number of shots Difference

Dataset 10 50 100 500 1000 Analytical (A) A-A*

D1 85.5% 92.9% 95.6% – – 96.4% 0.8%
D2 54.8% 56.6% 57.8% – – 59.5% 1.7%
D3 60.3% 84.0% 86.7% 98.8% – 98.7% -0.1%
D6 67.5% 82.2% 83.6% 87.2% 93.1% 93.3% 0.2%
D16 85.5% 92.9% 95.6% – – 97.8% 2.2%
D19 44.8% 45.3% 50.1% 58.6% – 56.1% -2.5%

16

	Introduction
	Background
	Motivation
	Contributions

	Method
	Quanv1D
	FQN

	Experiments
	Datasets and Models
	Time Series Classification
	Parameter Efficiency
	Self-Regularization
	Impact of Finite Shots

	Concluding Remarks
	Limitations
	Future Work

	Preliminaries
	Experimental Setup
	Dataset Setup
	Training Setup
	Model Setup
	Gradient Derivation
	Parameter Efficiency (Extended)
	Impact of Finite Shots (Extended)

