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ABSTRACT

Causal discovery from time-series data has been a central task in machine learn-
ing. Recently, Granger causality inference is gaining momentum due to its good
explainability and high compatibility with emerging deep neural networks. How-
ever, most existing methods assume structured input data and degenerate greatly
when encountering data with randomly missing entries or non-uniform sampling
frequencies, which hampers their applications in real scenarios. To address this is-
sue, here we present CUTS, a neural Granger causal discovery algorithm to jointly
impute unobserved data points and build causal graphs, via plugging in two mutu-
ally boosting modules in an iterative framework: (i) Latent data prediction stage:
designs a Delayed Supervision Graph Neural Network (DSGNN) to hallucinate
and register irregular data which might be of high dimension and with complex
distribution; (ii) Causal graph fitting stage: builds a causal adjacency matrix with
imputed data under sparse penalty. Experiments show that CUTS effectively in-
fers causal graphs from irregular time-series data, with significantly superior per-
formance to existing methods. Our approach constitutes a promising step towards
applying causal discovery to real applications with non-ideal observations.

1 INTRODUCTION

Causal interpretation of the observed time-series data can help answer fundamental causal questions
and advance scientific discoveries in various disciplines such as medical and financial fields. To
enable causal reasoning and counterfactual prediction, researchers in the past decades have been
dedicated to discovering causal graphs from observed time-series and made large progress (Ger-
hardus & Runge, 2020; Tank et al., 2022; Khanna & Tan, 2020; Wu et al., 2022; Pamfil et al., 2020;
Löwe et al., 2022; Runge, 2021). This task is called causal discovery or causal structure learning,
which usually formulates causal relationships as Directed Acyclic Graphs (DAGs). Among these
causal discovery methods, Granger causality (Granger, 1969; Marinazzo et al., 2008) is attracting
wide attentions and demonstrates advantageous due to its high explainability and compatibility with
emerging deep neural networks (Tank et al., 2022; Khanna & Tan, 2020; Nauta et al., 2019)).

In spite of the progress, actually most existing causal discovery methods assume well structured
time-series, i.e., completely sampled with an identical dense frequency. However, in real-world
scenarios the observed time-series might suffer from random data missing (White et al., 2011) or
be with non-uniform periods. The former is usually caused by sensor limitations or transmission
loss, while the latter occurs when multiple sensors are of distinct sampling frequencies. Robustness
to such data imperfections is urgently demanded, but has not been well explored yet so far. When
confronted with unobserved data points, some straightforward solutions fill the points with zero
padding, interpolation, or other imputation algorithms, such as Gaussian Process Regression or
neural-network-based approaches (Cini et al., 2022; Cao et al., 2018; Luo et al., 2018). We will
show in the experiments section that addressing missing entries via performing such trivial data
imputation in a pre-processing manner would lead to hampered causal conclusions.
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To push causal discovery towards real applications, we attempt to infer reliable causal graphs from
irregular time-series data. Fortunately, for data that are assumed to be generated with certain causal
structural models (Pamfil et al., 2020; Tank et al., 2022), a well designed neural network can fill a
small proportion of missing entries decently given a plausible causal graph, which would conversely
improve the causal discovery, and so forth. Leveraging this benefit, we propose to conduct causal
discovery and data completion in a mutually boosting manner under an iterative framework, instead
of sequential processing. Specifically, the algorithm alternates between two stages, i.e., (a) Latent
data prediction stage that hallucinates missing entries with a delayed supervision graph neural net-
work (DSGNN) and (b) Causal graph fitting stage inferring causal graphs from filled data under
sparse constraint utilizing the extended nonlinear Granger Causality scheme. We name our algo-
rithm Causal discovery from irregUlar Time-Series (CUTS), and the main contributions are listed
as follows:

• We proposed CUTS, a novel framework for causal discovery from irregular time-series
data, which to our best knowledge is the first to address the issues of irregular time-series
in causal discovery under this paradigm. Theoretically CUTS can recover the correct causal
graph with fair assumptions, as proved in Theorem 1.

• In the data imputation stage we design a deep neural network DSGNN, which success-
fully imputes the unobserved entries in irregular time-series data and boosts the subsequent
causal discovery stage and latter iterations.

• We conduct extensive experiments to show our superior performance to state-of-the-art
causal discovery methods combined with widely used data imputation methods, the ad-
vantages of mutually-boosting strategies over sequential processing, and the robustness of
CUTS (in Appendix Section A.4).

2 RELATED WORKS

Causal Structural Learning / Causal Discovery. Causal Structural Learning (or Causal Dis-
covery) is a fundamental and challenging task in the field of causality and machine learning, which
can be categorized into four classes. (i) Constraint-based approaches which build causal graphs
by conditional independence tests. Two most widely used algorithms are PC (Spirtes & Glymour,
1991) and Fast Causal Inference (FCI) (Spirtes et al., 2000) which is later extended by Entner &
Hoyer (2010) to time-series data. Recently, Runge et al. propose PCMCI to combine the above
two constraint-based algorithms with linear/nonlinear conditional independence tests (Gerhardus &
Runge, 2020; Runge, 2018b) and achieve high scalability on large scale time-series data. (ii) Score-
based learning algorithms based on penalized Neural Ordinary Differential Equations (Bellot et al.,
2022) or acyclicity constraint (Pamfil et al., 2020). (iii) Convergent Cross Mapping (CCM) firstly
proposed by Sugihara et al. (2012) that tackles the problems of nonseparable weakly connected
dynamic systems by reconstructing nonlinear state space. Later, CCM is extended to situation of
synchrony (Ye et al., 2015), confounding (Benkő et al., 2020) or sporadic time series (Brouwer
et al., 2021). (iv) Approaches based on Additive Noise Model that infer causal graph based on ad-
ditive noise assumption (Shimizu et al., 2006; Hoyer et al., 2008). Recently Hoyer et al. (2008)
extend ANM to nonlinear models with almost any nonlinearities. (v) Granger causality approach
proposed by Granger (1969) which has been widely used to analyze the temporal causal relation-
ships by testing the aid of a time-series on predicting another time-series. Granger causal analysis
originally assumes that linear models and the causal structures can be discovered by fitting a Vector
Autoregressive (VAR) model. Later, the Granger causality idea was extended to nonlinear situations
(Marinazzo et al., 2008). Thanks to its high compatibility with the emerging deep neural network,
Granger causal analysis is gaining momentum and is used in our work for incorporating a neural
network imputing irregular data with high complexities.

Neural Granger Causal Discovery. With the rapid progress and wide applications of deep Neural
Networks (NNs), researchers begin to utilize RNN (or other NNs) to infer nonlinear Granger causal-
ity. Wu et al. (2022) used individual pair-wise Granger causal tests, while Tank et al. (2022) inferred
Granger causality directly from component-wise NNs by enforcing sparse input layers. Building on
Tank et al. (2022)’s idea, Khanna & Tan (2020) explored the possibility of inferring Granger causal-
ity with Statistical Recurrent Units (SRUs, Oliva et al. (2017)). Later, Löwe et al. (2022) extends the
neural Granger causality idea to causal discovery on multiple samples with different causal relation-
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ships but similar dynamics. However, all these approaches assume fully observed time-series and
show inferior results given irregular data, which is shown in the experiments section. In this work,
we leverage this Neural Granger Causal Discovery idea and build a two-stage iterative scheme to
impute the unobserved data points and discover causal graphs jointly.

Causal Discovery from Irregular Time-series. Irregular time-series are very common in real
scenarios, causal discovery addressing such data remains somewhat under-explored. When con-
fronted with data missing, directly conducting causal inference might suffer from significant error
(Runge, 2018a; Hyttinen et al., 2016). Although joint data imputation and causal discovery has
been explored in static settings (Tu et al., 2019; Gain & Shpitser, 2018; Morales-Alvarez et al.,
2022; Geffner et al., 2022), it is still under explored in time series causal discovery. There are
mainly two solutions—either discovering causal relations with available observed incomplete data
(Gain & Shpitser, 2018; Strobl et al., 2018) or filling missing values before causal discovery (Wang
et al., 2020; Huang et al., 2020). To infer causal graphs from partially observed time-series, sev-
eral algorithms are proposed, such as Expectation-Maximization approach (Gong et al., 2015), La-
tent Convergent Cross Mapping (Brouwer et al., 2021), Neural-ODE based approach (Bellot et al.,
2022), Partial Canonical Correlation Analysis (Partial CCA), Generalized Lasso Granger (GLG)
(Iseki et al., 2019), etc. Some other researchers introduce data imputation before causal discovery
and have made progress recently. For example, Cao et al. (2018) learn to impute values via itera-
tively applying RNN and Cini et al. (2022) use Graph Neural Networks, while a recently proposed
data completion method by Chen et al. (2022) uses Gaussian Process Regression. In this paper, we
use a deep neural network similar to Cao et al. (2018)’s work, but differently, we propose to impute
missing data points and discover causal graphs jointly instead of sequentially. Moreover, these two
processes mutually improve each other and achieve high performance.

3 PROBLEM FORMULATION

3.1 NONLINEAR STRUCTURAL CAUSAL MODELS WITH IRREGULAR OBSERVATION

Let us denote by X = {x1:L,i}Ni=1 a uniformly sampled observation of a dynamic system, in which
xt represents the sample vector at time point t and consists of N variables {xt,i}, with t ∈ {1, ..., L}
and i ∈ {1, ..., N}. In this paper, we adopt the representation proposed by Tank et al. (2022) and
Khanna & Tan (2020), and assume each sampled variable xt,i be generated by the following model

xt,i = fi(xt−τ :t−1,1,xt−τ :t−1,2, ...,xt−τ :t−1,N ) + et,i, i = 1, 2, ..., N. (1)

Here τ denotes the maximal time lag. In this paper, we focus on dealing with causal inference from
irregular time series, and use a bi-value observation mask ot,i to label the missing entries, i.e., the

observed vector equals to its latent version when ot,i equals to 1: x̃t,i
∆
= xt,i · ot,i. In this paper we

consider two types of recurrent data missing in practical observations:

Random Missing. The ith data point in the observations are missing with a certain probability pi,
here in our experiments the missing probability follows Bernoulli distribution ot,i ∼ Ber(1− pi).

Periodic Missing. Different variables are sampled with their own periods Ti. We model the
sampling process for ith variable with an observation function ot,i =

∑∞
n=0 δ(t − nTi), Ti =

1, 2, ... with δ(·) denoting the Dirac’s delta function.

3.2 NONLINEAR GRANGER CAUSALITY

For a dynamic system, time-series i Granger causes time-series j when the past values of time-series
xi aid in the prediction of the current and future status of time-series xj . The standard Granger
causality is defined for linear relation scenarios, but recently extended to nonlinear relations:

Definition 1 Time-series i Granger cause j if and only if there exists x′
t−τ :t−1,i ̸= xt−τ :t−1,i,

fj(xt−τ :t−1,1, ...,x
′
t−τ :t−1,i, ...,xt−τ :t−1,N ) ̸=

fj(xt−τ :t−1,1, ...,xt−τ :t−1,i, ...,xt−τ :t−1,N )
(2)

i.e., the past data points of time-series i influence the prediction of xt,j .
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Figure 1: Illustration of the proposed CUTS, with a 3-variable example. (a) Illustration of our learn-
ing strategy described in Section 4.3, with three groups of iterations being of the same alternation
scheme shown in (b) but different settings in data imputation and supervised model learning. (b)
Illustration of each iteration in CUTS. The dynamics reflected by the observed time-series x1 and
x2 are described by DSGNN in the Latent data prediction stage (left). With the modeled dynam-
ics, unobserved data points are imputed (center) and fed into the Causal graph fitting stage for an
improved graph inference (right).

Granger causality is highly compatible with neural networks (NN). Considering the universal ap-
proximation ability of NN (Hornik et al., 1989), it is possible to fit a causal relationship function
with component-wise MLPs or RNNs. Imposing a sparsity regularizer onto the weights of net-
work connections, as mentioned by Tank et al. (2022) and Khanna & Tan (2020), NNs can learn
the causal relationships among all N variables. The inferred pair-wise Granger causal relationships
can then be aggregated into a Directed Acyclic Graph (DAG), represented as an adjacency matrix
A = {aij}Ni,j=1, where aij = 1 denotes time-series i Granger causes j and aij = 0 means oth-
erwise. This paradigm is well explored and shows convincing empirical evidence in recent years
(Tank et al., 2022; Khanna & Tan, 2020; Löwe et al., 2022).

Although Granger causality is not necessarily the true causality, Peters et al. (2017) provide justifi-
cation of (time-invariant) Granger causality when assuming no unobserved variables and no instan-
taneous effects, as is mentioned by Löwe et al. (2022) and Vowels et al. (2021).

In this paper, we propose a new inference approach to successfully identify causal relationships from
irregular time-series data.

4 IRREGULAR TIME-SERIES CAUSAL DISCOVERY

CUTS implements the causal graph as a set of Causal Probability Graphs (CPGs) G =
⟨X , {Mτ}τmax

τ=0 ⟩ where the element mτ,ij ∈Mτ represents the probability of causal influence from
xt−τ,i to xt,j , i.e. mτ,ij = p(xt−τ,i → xt,j). Since we assume no instantaneous effects, time-
series i Granger cause j if and only if there exist causal relations on at least one time lag, we define
our discovered causal graph Ã to be the maximum value across all time lags τ ∈ {1, ..., τmax}

ãi,j = max (m1,ij , ...,mτmax,ij) . (3)
Specifically, if ãi,j is penalized to zero (or below certain threshold), we deduce that time-series i
does not influence the prediction of time-series j, i.e., i does not Granger cause j.

During training, we alternatively learn the prediction model and CPG matrix, which are respec-
tively implemented by Latent data prediction stage and Causal graph fitting stage. Besides, proper
learning strategies are designed to facilitate convergence.

4.1 LATENT DATA PREDICTION STAGE

The proposed Latent data prediction stage is designed to fit the data generation function for time-
series i with a neural network fϕi

, which takes into account its parent nodes in the causal graph.
Here we propose Delayed Supervision Graph Neural Network (DSGNN) for imputing the missing
entries in the observation.
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The inputs to DSGNN include all the historical data points (with a maximum time lag τmax)
xt−τ :t−1,i and the discovered CPGs. During training we sample the causal graph with Bernoulli
distribution, in a similar manner to Lippe et al. (2021)’s work, and the prediction x̂ is the output of
the neural network fϕi

x̂t,i = fϕi
(X ⊙ S) = fϕi

(xt−τ :t−1,1 ⊙ s1:τ,1i, ...,xt−τ :t−1,N ⊙ s1:τ,Ni), (4)
where S = {Sτ}τ=τmax

τ=1 , and sτ,ij ∼ Ber(1 − mτ,ij) and ⊙ denotes the Hadamard product. S
is sampled for each training sample in a mini-batch. The fitting is done under supervision from
the observed data points. Specifically, we update the network parameters ϕi by minimizing the
following loss function

Lpred

(
X̃ , X̂ ,O

)
=

N∑
i=1

⟨L2 (x̂1:L,i, x̃1:L,i) ,o1:L,i⟩
1
L ⟨o1:L,i,o1:L,i⟩

(5)

where oi denotes the observation mask, ⟨·⟩ is the dot product, and L2 represents the MSE loss
function. Then, the data imputation is performed with the following equation

x̃
(m+1)
t,i =

{
(1− α)x̃

(m)
t,i + αx̂

(m)
t,i ot,i = 0 and m ≥ n1

x̃0
t,i ot,i = 1 or m < n1

(6)

Here m indexes the iteration steps, and x̃
(0)
t,i denotes the initial data (unobserved entries filled with

zero order holder). α is selected to prevent the abrupt change of imputed data. For the missing
points, their predicted value x̂

(m)
t,i is unsupervised with L but updated to x̃

(m)
t,i to obtain a “delayed”

error in causal graph inference. Moreover, we impute the missing values with the help of discovered
CPG G (sampled with Bernoulli Distribution), as illustrated in Figure 1 (b), which is proved to
significantly improve performance in experiments.

4.2 CAUSAL GRAPH DISCOVERY STAGE

After imputing the missing time-series, we proceed to learn CPG in the Causal graph fitting stage, to
determine the causal probability p(xt−τ,i → xt,j) = mτ,ij , we model this likelihood with mτ,ij =
σ(θτ,ij) where σ(·) denotes the sigmoid function and θ is the learned parameter set. Since we
assume no instantaneous effect, it is unnecessary to learn the edge direction in CPG.

In this stage we optimize the graph parameters θ by minimizing the following objective

Lgraph

(
X̃ , X̂ ,O,θ

)
= Lpred

(
X̃ , X̂ ,O

)
+ λ||σ(θ)||1, (7)

where Lpred is the squared error loss penalizing prediction error defined in Equation (5) and || · ||1
being the L1 regularizer to enforce sparse connections on the learned CPG. If ∀τ ∈ [1, τmax], θτ,ij
are penalized to −∞ (and mτ,ij → 0), then we deduce that time-series i does not Granger cause j.

4.3 THE LEARNING STRATEGY.

The overall learning process consists of n = n1 + n2 + n3 epochs, which is illustrated in Figure 1
(a): in the first n1 epochs DSGNN and CPG are optimized without data imputation (missing entries
are set with initial guess); in the next n2 epochs the iterative model learning continues with data
imputation, but the imputed data are not used for model supervision; for the last n3 epochs the
learned CPG is refined based on supervision from all the data points (including the imputed ones).

Fine-tuning. The main training process is the alternation between Latent data prediction stage and
Causal graph fitting stage. Considering that after sufficient iterations (here n1+n2) the unobserved
data points can be reliably imputed with the discovery of causal relations, and we can incorporate
these predicted points to supervise the model and fine-tune the parameters to improve the perfor-
mance further. In the last n3 epochs CPG is optimized with the loss function

Lft

(
X̃ , X̂

)
= L2 (x̂1:L,i, x̃1:L,i) + λ||σ(θ)||1. (8)

Parameter Settings. During training the τ value for Gumbel Softmax is initially set to a relatively
high value and annealed to a low value in the first n1+n2 epochs and then reset for the last n3 epochs.
The learning rates for Latent data prediction stage and Causal graph fitting stage are respectively
set as lrdata and lrgraph and gradually scheduled to 0.1lrdata and 0.1lrgraph during all n1 + n2 + n3

epochs. The detailed hyperparameter settings are listed in Appendix Section A.3.
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4.4 CONVERGENCE CONDITIONS FOR GRANGER CAUSALITY.

We show in Theorem 1 that under certain assumptions, the discovered causal adjacency matrix will
converge to the true Granger causal matrix.

Theorem 1 Given a time-series dataset X = {x1:L,i}Ni=1 generated with Equation 1, we have

1. ∃λ, ∀τ ∈ {1, .., τmax}, causal probability matrix element mτ,ij = σ(θτ,ij) converges to 0
if time-series i does not Granger cause j, and

2. ∃τ ∈ {1, .., τmax},mτ,ij converges to 1 if time-series i Granger cause j,

if the following two conditions hold:

1. DSGNN fϕi
in Latent data prediction stage model generative function fi with an error

smaller than arbitrarily small value eNN,i;

2. ∃λ0,∀i, j = 1, ..., N, ∥fϕj (X ⊙Sτ,ij=1)−fϕj (X ⊙Sτ,ij=0)∥22 > λ0, where Sτ,ij=l is set
S with element sτ,ij = l.

The implications behind these two conditions can be intuitively explained. Assumption 1 is intrinsi-
cally the Universal Approximation Theorem (Hornik et al., 1989) of neural network, i.e., the network
is of an appropriate structure and fed with sufficient training data. Assumption 2 means there exists
a threshold λ0 to binarize ∥fϕi

(X ⊙ Sτ,ij=1) − fϕi
(X ⊙ Sτ,ij=0)∥, serving as an indicator as to

whether time-series j contributes to prediction of i.

The proof of Theorem 1 is detailed in Appendix Section A.1. Although the convergence condition is
relevant to the appropriate setting of λ, we will show in Appendix Section A.4.6 that our algorithm
is robust to the setting changes of λ over a wide range.

5 EXPERIMENTS

Datasets. We evaluate the performance of the proposed causal discovery approach CUTS on
both numerical simulation and real-scenario inspired data. The simulated datasets come from a
linear Vector Autoregressive (VAR) model and a nonlinear Lorenz-96 model (Karimi & Paul, 2010),
while the real-scenario inspired datasets are from NetSim (Smith et al., 2011), an fMRI dataset
describing the connecting dynamics of 15 human brain regions. The irregular observations are
generated according to the following mechanisms: Random Missing (RM) is simulated by sampling
over a uniform distribution with missing probability pi; Periodic Missing (PM) is simulated with
sampling period Ti randomly chosen for each time-series with the maximum period being Tmax.
For statistical quantitative evaluation of different causal discovery algorithms, we take average over
multiple pi and Ti in our experiments.

Baseline Algorithms. To demonstrate the superiority of our approach, we compare with five
baseline algorithms: (i) Neural Granger Causality (NGC, Tank et al. (2022)), which utilizes MLPs
and RNNs combined with weight penalties to infer Granger causal relationships, in the experiments
we use the component-wise MLP model; (ii) economy-SRU (eSRU, Khanna & Tan (2020)), a vari-
ant of SRU that is less prone to over-fitting when inferring Granger causality; (iii) PCMCI (proposed
by Runge et al.), a non-Granger-causality-based method in which we use conditional independence
tests provided along with its repository1, i.e., ParCorr (linear partial correlation) for conditional
independence tests for linear scenarios and GPDC (Gaussian Process regression and Distance Cor-
relation Rasmussen (2003) Székely et al. (2007)) for nonlinear scenarios. (iv) Latent Convergent
Cross Mapping (LCCM, Brouwer et al. (2021)), a CCM-based approach that also tackles the irreg-
ular time-series problem. (v) Neural Graphical Model (NGM, Bellot et al. (2022)) which is based
on Neural Ordinary Differential Equations (Neural-ODE) to solve the irregular time-series problem.
In terms of quantitative evaluation, we use area under the ROC curve (AUROC) as the criterion.
For NGC, AUROC values are computed by running the algorithm with λ varying within a range
of values. For eSRU, PCMCI, LCCM, and NGM, the AUROC values are obtained with different
thresholds. For a fair comparison, we applied parameter searching to determine the hyperparameters

1https://github.com/jakobrunge/tigramite
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Lorenz-96 Simulation

Time-series Groundtruth CPG

VAR Simulation

Time-series Groundtruth CPG

Figure 2: Examples of our simulated VAR and Lorenz-96 datasets, with two of the total 10 gener-
ated time-series from the groundtruth CPG plotted as orange and blue solid lines, while the non-
uniformly sampled points are labeled with scattered points.

of the baseline algorithms with the best performance. For baseline algorithms unable to handle ir-
regular time-series data, i.e., NGC, PCMCI, and eSRU, we imputed the irregular time-series before
feeding them to causal discovery modules, and use three data imputation algorithms, i.e., Zero-
order Holder (ZOH), Gaussian Process Regression (GP), and Multivariate Time Series Imputation
by Graph Neural Network (GRIN, Cini et al. (2022)).

5.1 VAR SIMULATION DATASETS

VAR datasets are simulated following

xt =

τmax∑
τ=1

Aτxt−τ + et, (9)

where the matrix Aτ is the sparse autoregressive coefficients for time lag τ . Time-series i
Granger cause time-series j if ∃τ ∈ {1, ..., τmax} , aτ,ij > 0. The objective of causal dis-
covery is to reconstruct the non-zero elements in causal graph A (where each element of A
aij = max(a1,ij , ..., aτmax,ij)) with Ã. We set τmax = 3, N = 10 and time-series length
L = 10000 in this experiment. For missing mechanisms, we set p = 0.3, 0.6, respectively for
Random Missing and Tmax = 2, 4 respectively for Periodic Missing. Experimental results are
shown in the upper half of Table 1. We can see that CUTS beats PCMCI, NGC, and eSRU com-
bined with ZOH, GP, and GRIN in most cases, except for the case of VAR with random missing
(p = 0.3) where PCMCI + GRIN is better by only a small margin (+0.0012). The superiority is
especially prominent when with a larger percentage of missing values (p = 0.6 for random missing
and Tmax = 4 for periodic missing). Differently, data imputation algorithms GP and GRIN provide
performance gain in some scenarios but fail to boost causal discovery in others. This indicates that
simply combining previous data imputation algorithms with causal discovery algorithms cannot give
stable and promising results, and is thus less practical than our approach. We also beat LCCM and
NGM which originally tackles the irregular time series problem by a clear margin. This hampered
performance may be attributed to the fact that LCCM and NGM both utilize Neural-ODE to model
the dynamics and do not cope with VAR datasets well.

5.2 LORENZ-96 SIMULATION DATASETS

Lorenz-96 datasets are simulated according to

dxt,i

dt
= −xt,i−1(xt,i−2 − xt,i+1)− xt,i + F, (10)

where−xt,i−1(xt,i−2−xt,i+1) is the advection term, xt,i is the diffusion term, and F is the external
forcing (a larger F implies a more chaotic system). In this Lorenz-96 model each time-series xi is
affected by historical values of four time-series xi−2,xi−1,xi,xi+1, and each row in the ground
truth causal graph A has four non-zero elements. Here we set the maximal time-series length L =
1000, N = 10, force constant F = 10 and show experimental results for F = 40 in the Appendix
Section A.4.7. From the results in the lower half of Table 1, one can draw similar conclusions to
those on VAR datasets: CUTS outperforms baseline causal discovery methods either with or without
data imputation.

5.3 NETSIM DATASETS
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Table 1: Performance comparison of CUTS with (i) PCMCI, eSRU, NGC combined with imputation
method ZOH, GP, GRIN and (ii) LCCM, NGM which do not need data imputation. Experiments
are performed on VAR and Lorenz-96 datasets in terms of AUROC. Results are averaged over 10
randomly generated datasets.

Methods Imputation VAR with Random Missing VAR with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

PCMCI
ZOH 0.9904 ± 0.0078 0.9145 ± 0.0204 0.9974 ± 0.0040 0.9787 ± 0.0196
GP 0.9930 ± 0.0072 0.8375 ± 0.0651 0.9977 ± 0.0038 0.9332 ± 0.1071

GRIN 0.9983 ± 0.0028 0.9497 ± 0.0132 0.9989 ± 0.0017 0.9774 ± 0.0169

NGC
ZOH 0.9899 ± 0.0105 0.9325 ± 0.0266 0.9808 ± 0.0117 0.9439 ± 0.0264
GP 0.9821 ± 0.0097 0.5392 ± 0.1176 0.9833 ± 0.0108 0.7350 ± 0.2260

GRIN 0.8186 ± 0.1720 0.5918 ± 0.1170 0.8621 ± 0.0661 0.6677 ± 0.1350

eSRU
ZOH 0.9760 ± 0.0113 0.8464 ± 0.0299 0.9580 ± 0.0276 0.9214 ± 0.0257
GP 0.9747 ± 0.0096 0.8988 ± 0.0301 0.9587 ± 0.0191 0.8166 ± 0.1085

GRIN 0.9677 ± 0.0134 0.8399 ± 0.0242 0.9740 ± 0.0150 0.8574 ± 0.0869
LCCM 0.6851 ± 0.0411 0.6530 ± 0.0212 0.6462 ± 0.0225 0.6388 ± 0.0170
NGM 0.7608 ± 0.0910 0.6350 ± 0.0770 0.8596 ± 0.0353 0.7968 ± 0.0305

CUTS (Proposed) 0.9971 ± 0.0026 0.9766 ± 0.0074 0.9992 ± 0.0016 0.9958 ± 0.0069

Methods Imputation Lorenz-96 with Random Missing Lorenz-96 with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

PCMCI
ZOH 0.8173 ± 0.0491 0.7275 ± 0.0534 0.7229 ± 0.0348 0.7178 ± 0.0668
GP 0.7545 ± 0.0585 0.7862 ± 0.0379 0.7782 ± 0.0406 0.7676 ± 0.0360

GRIN 0.8695 ± 0.0301 0.7544 ± 0.0404 0.7299 ± 0.0545 0.7277 ± 0.0947

NGC
ZOH 0.9933 ± 0.0058 0.9526 ± 0.0220 0.9903 ± 0.0096 0.9776 ± 0.0120
GP 0.9941 ± 0.0064 0.5000 ± 0.0000 0.9949 ± 0.0050 0.7774 ± 0.2300

GRIN 0.9812 ± 0.0105 0.7222 ± 0.0680 0.9640 ± 0.0193 0.8430 ± 0.0588

eSRU
ZOH 0.9968 ± 0.0038 0.9089 ± 0.0261 0.9958 ± 0.0031 0.9815 ± 0.0148
GP 0.9977 ± 0.0035 0.9597 ± 0.0169 0.9990 ± 0.0015 0.9628 ± 0.0371

GRIN 0.9937 ± 0.0071 0.9196 ± 0.0251 0.9873 ± 0.0110 0.8400 ± 0.1451
LCCM 0.7168 ± 0.0245 0.6685 ± 0.0311 0.7064 ± 0.0324 0.7129 ± 0.0235
NGM 0.9180 ± 0.0199 0.7712 ± 0.0456 0.9751 ± 0.0112 0.9171 ± 0.0189

CUTS (Proposed) 0.9996 ± 0.0005 0.9705 ± 0.0118 1.0000 ± 0.0000 0.9959 ± 0.0042

Table 2: Quantitative results on NetSim dataset.
Results averaged over 10 human brain subjects.

Met. Imp. NetSim with Random Missing
p = 0.1 p = 0.2

PCMCI
ZOH 0.7625 ± 0.0539 0.7455 ± 0.0675
GP 0.7462 ± 0.0396 0.7551 ± 0.0451

GRIN 0.7475 ± 0.0517 0.7353 ± 0.0611

NGC
ZOH 0.7656 ± 0.0576 0.7668 ± 0.0403
GP 0.7506 ± 0.0532 0.7545 ± 0.0518

GRIN 0.6744 ± 0.0743 0.5826 ± 0.0476

eSRU
ZOH 0.6384 ± 0.0473 0.6592 ± 0.0248
GP 0.6147 ± 0.0454 0.6330 ± 0.0449

GRIN 0.6141 ± 0.0529 0.5818 ± 0.0588
LCCM 0.7711 ± 0.0301 0.7594 ± 0.0246
NGM 0.7417 ± 0.0380 0.7215 ± 0.0330
CUTS 0.7948 ± 0.0381 0.7699 ± 0.0550

To validate the performance of CUTS on real-
scenario data, We use data from 10 humans in
NetSim datasets2, which is generated with syn-
thesized dynamics of brain region connectivity
and unknown to us and the algorithm. The total
length of each time-series data L = 200 and the
number of time-series N = 15. By testing our
CUTS on this dataset we show that our algo-
rithm is capable of discovering causal relations
with irregular time-series data for scientific dis-
covery. However, L = 200 is a small data size,
therefore we only perform experiments with the
Random Missing situation. Experimental re-
sults shown in Table 2 tell that our approach
beats all existing methods on both missing pro-
portions.

5.4 ABLATION STUDIES

Besides demonstrating the advantageous performance of the final results, we further conducted a
series of ablation studies to quantitatively evaluate the contributions of the key technical designs or
learning strategies in CUTS. Due to page limit, we only show experiments on Lorenz-96 datasets
with Random Missing settings in this section, and leave the other results in the Appendix Section
A.4.2.

Causal Discovery Boosts Data Imputation. To validate that Latent data prediction stage helps
Causal graph fitting stage, we reset CPGs Mm

τ to all-one matrices in Latent data prediction

2Shared at https://www.fmrib.ox.ac.uk/datasets/netsim/sims.tar.gz
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Table 3: Quantitative results of ablation studies. “CUTS (Full)” denotes the default settings in this
paper. Here we run experiments on Lorenz-96 datasets. Ablation study results on other datasets are
provided in Appendix Section A.4.2.

Methods Lorenz-96 with Random Missing Lorenz-96 with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

CUTS (Full) 0.9996 ± 0.0005 0.9705 ± 0.0118 1.0000 ± 0.0000 0.9959 ± 0.0042
ZOH for Imputation 0.9799 ± 0.0071 0.8731 ± 0.0312 0.9981 ± 0.0021 0.9865 ± 0.0128
GP for Imputation 0.9863 ± 0.0058 0.8575 ± 0.0536 0.9965 ± 0.0036 0.9550 ± 0.0407

GRIN for Imputation 0.9793 ± 0.0126 0.8983 ± 0.0299 0.9869 ± 0.0101 0.9325 ± 0.0415
No Imputation 0.9898 ± 0.0045 0.9206 ± 0.0216 0.9968 ± 0.0032 0.9797 ± 0.0204

Remove CPG for Imput. 0.9972 ± 0.0021 0.9535 ± 0.0167 0.9989 ± 0.0011 0.9926 ± 0.0045
No Finetuning Stage 0.9957 ± 0.0036 0.9665 ± 0.0096 0.9980 ± 0.0025 0.9794 ± 0.0124

stage and then x̂t,i is predicted with all time-series instead of only the parent nodes. This ex-
periment is shown as “Remove CPG for Imput.” in Table 6. It is observed that introducing CPGs in
data imputation is especially helpful with large quantities of missing values (p = 0.6 for Random
Missing or Tmax = 4 for Periodic Missing). Comparing with the scores in the first row, we can see
that introducing CPGs in data imputation boosts AUROC by 0.0011 ∼ 0.0170.

Data Imputation Boosts Causal Discovery. To show that Causal graph fitting stage helps Latent
data prediction stage, we disable data imputation operation defined in Equation 6, i.e., α = 0. In
other words, Causal graph fitting stage is performed with just the initially filled data (Appendix
Section A.3.2), with the results shown as “No Imputation” in Table 6. Compared with the first row,
we can see that introducing data imputation boosts AUROC by 0.0032∼ 0.0499. We further replace
our data imputation module with baseline modules (ZOH, GP, GRIN) to show the effectiveness of
our design. It is observed that our algorithm beats “ZOH for Imputation”, “GP for Imputation”,
“GRIN for Imputation” in most scenarios.

Finetuning Stage Raises Performance. We disable the finetuning stage and find that the per-
formance drops slightly, as shown in the “No Finetuning Stage” row in Table 6. In other words, the
finetuning stage indeed helps to refine the causal discovery process.

5.5 ADDITIONAL EXPERIMENTS

We further conduct additional experiments in Appendix to show experiments on more datasets (Ap-
pendix Section A.4.1), ablation study for choice of epoch numbers (Appendix Section A.4.3), ab-
lation study results on VAR and NetSim datasets (Appendix Section A.4.2), performance on 3-
dimensional temporal causal graph (Appendix Section A.4.4), CUTS’s performance superiority on
regular time-series (Appendix Section A.4.5), robustness to different noise levels (Appendix Section
A.4.8), robustness to hyperparameter settings (Appendix Section A.4.6), and results on Lorenz-96
with forcing constant F = 40 (Appendix Section A.4.7). We further provide implementation details
and hyperparameters settings of CUTS and baseline algorithms in Appendix Section A.3, and the
pseudocode of our approach in Appendix Section A.5.

6 CONCLUSIONS

In this paper we propose CUTS, a time-series causal discovery method applicable for scenarios
with irregular observations with the help of nonlinear Granger causality. We conducted a series of
experiments on multiple datasets with Random Missing as well as Periodic Missing. Compared with
previous methods, CUTS utilizes two alternating stages to discover causal relations and achieved
superior performance. We show in the ablation section that these two stages mutually boost each
other to achieve an improved performance. Moreover, our CUTS is widely applicable for time-
series with different lengths, scales well to large sets of variables, and is robust to noise. Our code
is publicly available at https://github.com/jarrycyx/unn.

In this work we assume no latent confounder and no instantaneous effect for Granger causality. Our
future works includes: (i) Causal discovery in the presence of latent confounder or instantaneous
effect. (ii) Time-series imputation with causal models.
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REPRODUCIBILITY STATEMENT

For the purpose of reproducibility, we include the source code in the supplementary files, and will
published on GitHub upon acceptance. Datasets generation process is also included in source code.
Moreover, we provide all hyperparameters used for all methods in Appendix Section A.4.6. The
experiments are deployed on a server with Intel Core CPU and NVIDIA RTX3090 GPU.
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Junier B. Oliva, Barnabás Póczos, and Jeff Schneider. The statistical recurrent unit. In Proceedings
of the 34th International Conference on Machine Learning, pp. 2671–2680. PMLR, July 2017.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. DYNOTEARS: Structure learning from time-series
data. In Proceedings of the Twenty Third International Conference on Artificial Intelligence and
Statistics, pp. 1595–1605. PMLR, June 2020.

Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal Inference: Founda-
tions and Learning Algorithms. The MIT Press, 2017. ISBN 978-0-262-03731-0 978-0-262-
34429-6.

Robert J. Prill, Daniel Marbach, Julio Saez-Rodriguez, Peter K. Sorger, Leonidas G. Alexopoulos,
Xiaowei Xue, Neil D. Clarke, Gregoire Altan-Bonnet, and Gustavo Stolovitzky. Towards a Rig-
orous Assessment of Systems Biology Models: The DREAM3 Challenges. PLOS ONE, 5(2):
e9202, 2010. ISSN 1932-6203. doi: 10.1371/journal.pone.0009202.

11



Published as a conference paper at ICLR 2023

Carl Edward Rasmussen. Gaussian processes in machine learning. In Summer School on Machine
Learning, pp. 63–71. Springer, 2003.

J. Runge. Causal network reconstruction from time series: From theoretical assumptions to practical
estimation. Chaos: An Interdisciplinary Journal of Nonlinear Science, 28(7):075310, July 2018a.
ISSN 1054-1500. doi: 10.1063/1.5025050.

Jakob Runge. Conditional independence testing based on a nearest-neighbor estimator of conditional
mutual information. In Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, pp. 938–947. PMLR, March 2018b.

Jakob Runge. Necessary and sufficient graphical conditions for optimal adjustment sets in causal
graphical models with hidden variables. In Advances in Neural Information Processing Systems,
volume 34, pp. 15762–15773. Curran Associates, Inc., 2021.

Jakob Runge, Peer Nowack, Marlene Kretschmer, Seth Flaxman, and Dino Sejdinovic. Detecting
and quantifying causal associations in large nonlinear time series datasets. Science Advances, 5
(11):eaau4996. doi: 10.1126/sciadv.aau4996.

Shohei Shimizu, Patrik O. Hoyer, Aapo Hyv&#228, rinen, and Antti Kerminen. A Linear Non-
Gaussian Acyclic Model for Causal Discovery. Journal of Machine Learning Research, 7(72):
2003–2030, 2006. ISSN 1533-7928.

Stephen M. Smith, Karla L. Miller, Gholamreza Salimi-Khorshidi, Matthew Webster, Christian F.
Beckmann, Thomas E. Nichols, Joseph D. Ramsey, and Mark W. Woolrich. Network modelling
methods for FMRI. NeuroImage, 54(2):875–891, January 2011. ISSN 1053-8119. doi: 10.1016/
j.neuroimage.2010.08.063.

Peter Spirtes and Clark Glymour. An algorithm for fast recovery of sparse causal graphs. Social
science computer review, 9(1):62–72, 1991.

Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causation, Prediction,
and Search. MIT press, 2000.

Eric V. Strobl, Shyam Visweswaran, and Peter L. Spirtes. Fast causal inference with non-random
missingness by test-wise deletion. International journal of data science and analytics, 6(1):47–
62, 2018.

George Sugihara, Robert May, Hao Ye, Chih-hao Hsieh, Ethan Deyle, Michael Fogarty, and Stephan
Munch. Detecting Causality in Complex Ecosystems. Science, 338(6106):496–500, October
2012. doi: 10.1126/science.1227079.
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A.1 CONVERGENCE CONDITIONS FOR GRANGER CAUSALITY

A.1.1 PROOF OF THEOREM 1

We proved that in Theorem 1 our CUTS can discover the correct Granger causality with the follow-
ing assumptions:

1. DSGNN fϕi
in Latent data prediction stage model generative function fi with an error

smaller than arbitrarily small value eNN,i;

2. ∃λ0,∀i, j = 1, ..., N, ∥fϕj
(X ⊙ Sτ,ij=1) − fϕj

(X ⊙ Sτ,ij=0)∥22 > λ0, where Sτ,ij=l is
set S with element sτ,ij = l.

In Causal graph fitting stage the loss function

Lgraph(X̃ , X̂ ,O,θ) =
N∑
i=1

⟨L2(x̂1:L,i, x̃1:L,i),oi⟩
1
L ⟨o1:L,i,o1:L,i⟩

+ λ||σ(θ)||1

=

N∑
i=1

L∑
t=1

ciot,i(xt,i − fϕj
(X ⊙ S))2 + λ||σ(θ)||1

(11)
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where sτ,ij ∼ Ber(σ(θτ,ij)), ci = L
⟨o1:L,i,o1:L,i⟩ . We use the REINFORCE (Williams, 1992) trick

and mτ,ij
′s gradient is calculated as

∂

∂θτ.ij
Esτ,ij [Lgraph] = Esτ,ij [ciot,i(xt,j − fϕj

(X ⊙ S))2
∂

∂θτ,ij
log psτ,ij ] + λσ′(θτ,ij)

= λσ′(θτ,ij) + σ(θτ,ij)ciot,i(xt,j − fϕj
(X ⊙ Sτ,ij=1))

2 1

σ(θτ,ij)
σ′(θτ,ij)

+ (1− σ(θτ,ij))ciot,i(xt,j − fϕj (X ⊙ Sτ,ij=0))
2 1

σ(θτ,ij)− 1
σ′(θτ,ij)

= σ′(θτ,ij)(ciot,i(xt,j − fϕj (X ⊙ Sτ,ij=1))
2

− ciot,i(xt,j − fϕj (X ⊙ Sτ,ij=0))
2 + λ).

(12)

Where Sτ,ij=l denotes S = {Sτ}τmax
τ=1 with sτ,ij set to l, and fϕj

(X ⊙Sτ,ij=1) = fϕj
(xt−τ :t−1,1⊙

s1:τ,1i, ...,xt−τ :t−1,N ⊙ s1:τ,Ni). According to Definition 1, time-series i does not Granger
cause j if ∀τ ∈ {1, ..., τmax}, xt−τ,i is invariant of the prediction of xt,j . Then we have
∀τ ∈ {1, ..., τmax}, fϕj (...,xt−τ,i, ...) = fϕj (..., 0, ...), i.e., fϕj (X⊙Sτ,ij=1) = fϕj (X⊙Sτ,ij=0).

Applying additive noise model (ANM, Equation 1) we can derive that

∂

∂θτ,ij
Esτ,ij [Lgraph] = σ′(θτ,ij)(ciot,i(e

2
t,j − e2t,j)) = λσ′(θτ,ij) > 0. (13)

This is a sigmoidal gradient, whose convergence is analyzed in Section A.1.3. Likewise, we have
∃τ ∈ {1, ..., τmax}, fϕj (X ⊙ Sτ,ij=1) ̸= fϕj (X ⊙ Sτ,ij=0) if time-series i Granger cause j, and
∃τ satisfying

∂

∂θτ.ij
Esτ,ij [Lgraph] = σ′(θτ,ij)(ciot,j((xt,j − fϕj

(X ⊙ Sτ,ij=1))
2

− (xt,j − fϕj
(X ⊙ Sτ,ij=0))

2) + λ).

(14)

Assuming that fϕj
(·) accurately models causal relations in fi(·) (i.e., DSGNN fϕi

in Latent data pre-
diction stage model generative function fi with an error smaller than arbitrarily small value eNN,i),
applying Equation 1 we have

∂

∂θτ,ij
Esτ,ij [Lgraph] = σ′(θτ,ij)(ciot,j

(
e2t,j − (xt,j − fϕj (X ⊙ Sτ,ij=0))

2
)
+ λ)

= σ′(θτ,ij)
(
ciot,j(e

2
t,j − (et,j +∆fi,j)

2) + λ
)

= σ′(θτ,ij)(ciot,j(−2et,j∆fi,j −∆2fi,j) + λ),

(15)

where noise term et,i ∼ N (0, σ), ∆fi,j = fϕj (X ⊙ Sτ,ij=1) − fϕj (X ⊙ Sτ,ij=0). This gradient
is expected to be negative when ∀i, j = 1, ..., N,E(ci∆2fi,j) ≥ pλ0 > λ, where p is the missing
probability, i.e., E[ci] = p (here we only consider the random missing scenario). Since we can
certainly find a λ satisfying the above inequality, θτ,ij will go towards +∞ with a properly chosen λ
and mτ,ij → 1. Moreover, we show in Appendix Section A.4.6 that CUTS is robust to a wide range
of λ values. When applies to real data we use Gumbel Softmax estimator for improved performance
(Jang et al., 2016).

A.1.2 THE EFFECTS OF DATA IMPUTATION

To show why data imputation boosts causal discovery, we suppose xt−τ ′,j , a parent node of xt,i is
unobserved and imperfectly imputed with as x̂t−τ ′,j ̸= xt−τ ′,j . If time-series i Granger cause j,
then f(..., x̂t−τ ′,j , ...) ̸= f(...,xt−τ ′,j , ...). Let δτ ′,ij = f(...,xt−τ ′,j , ...)− f(..., x̂t−τ ′,j , ...), and

∂

∂θτ.ij
Esτ,ij [Lgraph] = σ′(θτ,ij)(ciot,i((et,i + δτ ′,ij)

2 − (et,i + δτ ′,ij +∆fi,j)
2) + λ)

= σ′(θτ,ij)(ciot,i(−2(et,i + δτ ′,ij)∆fi,j −∆2fi,j) + λ)

(16)

15



Published as a conference paper at ICLR 2023

The expectation

Eet,i

(
∂

∂θτ.ij
Esτ,ij [Lgraph]

)
= σ′(θτ,ij)(ciot,i(−2δτ ′,ij∆fi,j −∆2fi,j) + λ)

As a result, if we cannot find a lower bound for δτ ′,ij , gradient for θτ,ij is not guaranteed to be
positive or negative and the true Granger causal relation cannot be recovered. On the other hand, if
xt−τ ′,j is appropriately imputed with |δτ ′,ij | ≤ δ < λ2

0, we can find λ < pλ− pδ to insure negative
gradient and θτ,ij will go towards +∞.

A.1.3 CONVERGENCE OF SIGMOIDAL GRADIENTS

We now analyze the descent algorithm for sigmoidal gradients with learning rate α (for simplicity
we denote θτ,ij as θ):

θk = θk−1 + αλσ′(θk−1)

This is a monotonic increasing sequence. We show that this sequence converges to +∞,∀α > 0.
If this is not the case, ∃M > 0,s.t. ∀i > 0, we have θi ≤ M , since this sequence is monotonic
increasing, we have

θk+1 = θk + αλ
e−θk

(1 + e−θk)2
≥ θk + αλ

e−θk

(1 + e−θ0)
≥ θk + αλ

e−M

(1 + e−θ0)

then ∃k, s.t. θk > M , this contradicts with ”∀i > 0, θi ≤ M”, then we have θk → +∞ and
for any finite number M , θk can converge to ≥ M in finite steps. And likewise sequence θk =
θk−1 − αλσ′(θk−1) converges to ≤ −M in finite steps. This enables us to choose a threshold to
classify causal and non-causal edges.

A.2 AN EXAMPLE FOR IRREGULAR TIME-SERIES CAUSAL DISCOVERY

In this section we provide a simple example for irregular causal discovery and show that our algo-
rithm is capable of recovering causal graphs from irregular time-series. Suppose we have a dataset
with 3 time-series x1,x2,x3, which are generated with

xt,1 = et,1, xt,2 = f2(xt−1,2) + et,2, xt,3 = f3(xt−1,1, xt−1,2) + et,3, (17)

where e1, e2, e3 are the noise terms and follow N (0, σ). We assume only x2 is randomly sampled
with missing probability p2

ot,1 = 1, ot,2 ∼ Ber(1− p2), ot,3 = 1, (18)

where Ber(·) denotes the Bernoulli distribution. Then the groundtruth causal relations can be illus-
trated in Figure 3 (left). We use a DSGNN fϕ2

to fit f2 supervised on observed data points of x2,
i.e., minϕ2

L2(xt,2, fϕ2
(xt−1,1)), ∀t, s.t. ot,2 = 1. Given fϕ2

, the unobserved values of x2 can be
imputed with x̂t,2 = fϕ2

(xt,1) and we fit f3(·) with fϕ3
(·) in Latent data prediction stage:

argmin
ϕ3

L2(xt,3, fϕ3(xt−1,1, x̂t−1,2))

= argmin
ϕ3

L2(xt,3, fϕ3(xt−1,1, fϕ2(xt−2,1))),
(19)

and CPGs Mτ is optimized in Causal graph fitting stage with

argmin
M1

L2(xt,3s1,13, fϕ3
(xt−1,1s1,23, fϕ2

(xt−2,1), xt−1,3s1,33)) + λ

3∑
i=1

σ(s1,i3), (20)

where s1,ij is sampled with Gumbel Softmax technique denoted with Equation 21. Since xt−1,3 is
invariant to the prediction of xt,3 given xt,1 and xt,2, s1,33 can be penalized to zero with a proper
λ. Here we conduct an experiment to verify this example. We set L = 10000, random missing
probability p2 = 0.2. The illustration of the discovered causal relations is Figure 3. Results show
that CUTS without data imputation tends to ignore causal relations from x2 (with missing values)
to other time-series. This causal relation x2 → x3 are instead “replaced” by x3 → x3, which leads
to incorrect causal discovery results.
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True Causal Relations Causal Discovery with CUTS 
(No Data Imputation)

Causal Discovery with CUTS
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Figure 3: An three-time-series example demonstrating the advantages of introducing data imputa-
tion, with the groundtruth causal graph in the left column. The recovered causal graph without data
imputation (middle column) shows some false positive and false negative edges, while CUTS (right
column) exhibits perfect results.

A.3 IMPLEMENTATION DETAILS

A.3.1 GUMBEL SOFTMAX FOR CAUSAL GRAPH FITTING

In our proposed CUTS, causal relations are modeled with Causal Probability Graph (CPGs), which
describe the possibility of Granger causal relations. However, the distributions of CPGs are discrete
and cannot be updated directly with neural networks in Causal graph fitting stage. To achieve
a continuous approximation of the discrete distribution, we leverage Gumbel Softmax technique
(Jang et al., 2016), which can be denoted as

sτ,ij =
exp((log(mτ,ij) + g)/τ)

exp((log(mτ,ij) + g)/τ) + exp((log(1−mτ,ij) + g)/τ)
, (21)

where g = − log(− log(u)), u ∼ Uniform(0, 1). The parameter τ is set according to the “Gumbel
tau” item in Table 4. During training we first set a relatively large value of τ and decrease it slowly.

A.3.2 INITIAL DATA FILLING

The missing data points are filled with Zero-Order Holder (ZOH) before the iterative learning pro-
cess to provide an initial guess x̃(0). An intuitive solution for initial filling is Linear Interpolation,
but it would hamper successive causal discovery. For example, if xt−2,i and xt,i are observed and
xt−1,i is missing, xt−1,i is filled as x̃(0)

t−1,i =
1
2 (xt−2,i + xt,i), then xt,i can be directly predicted

with 2x̃
(0)
t−1,i − xt−2,i and other time-series cannot help the prediction of xt,i even if there exists

Granger causal relationships. To show the limitation of filling with linear interpolation, we con-
ducted ablation study on VAR datasets with Random Missing (p = 0.6). In this experiment, initial
data filling with ZOH achieves AUROC of (0.9766 ± 0.0074) while that with Linear interpolation
achieves an inferior accuracy (0.9636 ± 0.0145). This validates that Zero-order Holder is a better
option than linear interpolation as an initial filling implementation.

A.3.3 HYPERPARAMETERS SETTINGS

To fit data generation function fi we use a DSGNN fϕi
for each time-series i. Each DSGNN contains

a Multilayer Perceptron (MLP). The layer numbers and hidden layer feature numbers are shown in
Table 4. For activation function we use LeakyReLU (with negative slope of 0.05). During training
we use Adam optimizer and different learning rate for Latent data prediction stage and Causal graph
fitting stage (shown as “Stage 1 Lr” and “Stage 2 Lr” in Table 4) with learning rate scheduler. The
input step for fϕi

also denotes the chosen max time lag for causal discovery. For VAR and Lorenz-
96 datasets we already know the max time lag of the underlying dynamics (τmax = 3), while for
NetSim datasets this parameter is chosen empirically.
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Table 4: Hyperparameters settings of CUTS in the aforementioned experiments. “a1 → a2” means
parameters exponentially increase/decrease from a1 to a2.

Methods Hyperparam. VAR Lorenz NetSim DREAM-3

CUTS

n1 5 50 200 20
n2 15 150 600 30
n3 30 300 200 50
α 0.1 0.01 0.01 0.01

Input step 3 3 5 5
Batch size 128 128 128 128

Hidden features 128 128 128 128
Network layers 3 3 3 5
Weight decay 0.001 0 0.001 0

Stage 1 Lr 10−4 → 10−5 10−4 → 10−5 10−4 → 10−5 10−4 → 10−5

Stage 2 Lr 10−2 → 10−3 10−2 → 10−3 10−2 → 10−3 10−2 → 10−3

Gumbel τ 1 → 0.1 1 → 0.1 1 → 0.1 1 → 0.1
λ 0.1 0.3 5 5

Table 5: Hyperparameters settings of the baseline causal discovery and data imputation algorithms.

Methods Hyperparameters VAR Lorenz NetSim DREAM-3

PCMCI
τmax 3 3 5 5
PCα 0.05 0.05 0.05 0.05

CI Test ParCorr GPDC ParCorr ParCorr

eSRU

µ1 0.1 0.1 0.1 0.7
Learning rate 0.01 0.01 0.001 0.001

Batch size 250 250 100 100
Epochs 2000 2000 2000 2000

NGC
Learning rate 0.05 0.05 0.05 0.05

λridge 0.01 0.01 0.01 0.01
λ Sweeping Range 0.02 → 0.2 0.02 → 0.2 0.04 → 0.4 0.02 → 0.01

GRIN
Epochs 200 200 200 200

Batch size 128 128 128 128
Window 3 3 3 3

LCCM
Epochs 50 50 50 50

Batch size 10 10 10 10
Hidden size 20 20 20 20

NGM

Steps 2000 2000 2000 2000
Horizon 5 5 5 5
GL reg 0.05 0.05 0.05 0.05

Chunk num 100 100 100 46

For baseline algorithm we choose parameters mainly according to the original paper or official
repository (PCMCI3, eSRU4, NGC5, GRIN6). For fair comparison, we applied parameter searching
to determine the key hyperparameters of the baseline algorithms with best performance. Tuned
parameters are listed in Table 5.

3https://github.com/jakobrunge/tigramite
4https://github.com/sakhanna/SRU for GCI
5https://github.com/iancovert/Neural-GC
6https://github.com/Graph-Machine-Learning-Group/grin
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A.4 ADDITIONAL EXPERIMENTS

A.4.1 DREAM-3 EXPERIMENTS

DREAM-3 (Prill et al., 2010) is a gene expression and regulation dataset mentioned in many causal
discovery works as quantitative benchmarks (Khanna & Tan, 2020; Tank et al., 2022). This dataset
contains 5 models, each representing measurements of 100 gene expression levels. Each measured
trajectory has a time length of T = 21. This is too low to perform random missing or periodic
missing experiments, so with DREAM-3 we only compare our approach with baselines in regular
time-series scenarios. The results are shown in Table 11.

A.4.2 ABLATION STUDY ON VAR AND NETSIM DATASETS

Besides the ablation studies on Lorenz-96 datasets shown in Table 3, we additionally show those
on VAR and NetSim in Tables 6 and 7. In Table 6, one can see that “CUTS (Full)” beats other
configurations in most scenarios, and the advantage is more obvious with higher missing percentage
(p = 0.6 for Random Missing and Tmax = 4 for Periodic Missing). On the NetSim datasets with a
too small data size L = 200, “CUTS (Full)” beats other configurations at a small missing probability
(p = 0.1).

A.4.3 ABLATION STUDY FOR EPOCH NUMBERS

In our proposed CUTS, each step can be recognized as a refinement of causal discovery, with builds
upon previous imputation results. Since the data imputation and causal discovery mutually boost
each other, the performance may be affected by different settings of learning steps. In Table 8 we
conduct experiments to show the impact of different epoch numbers on VAR, Lorenz-96, and Netsim
datasets. We set n1, n2, n3 proportional to original settings.

A.4.4 PERFORMANCE ON TEMPORAL CAUSAL GRAPH

In the previous experiments, we calculate causal summary graphs with ãi,j = max{mτ,ij}τmax
τ=1 ,

i.e., maximal causal effects along time axis. Our CUTS also supports discovery of 3-dimensional
temporal graph {mτ,ij}. We conduct experiments to investigate our performance for temporal causal
graph discovery. The results are shown in Table 10.

A.4.5 CAUSAL DISCOVERY WITH STRUCTURED TIME-SERIES DATA

We show in this section that CUTS is able to recover causal relations not only with irregular time-
series but also with regular time-series, which is widely used for performance comparison in previ-
ous works. We again tested our algorithm on VAR, Lorenz-96, and NetSim datasets, and the results
are shown in Table 11. It is observed that our algorithm shows superior performance to baseline
methods.

A.4.6 ROBUSTNESS TO HYPERPARAMETERS SETTINGS

We show that CUTS is robust to changes of hyperparameters settings, with experiment results listed
in Table 12. For existing Granger-causality based methods such as NGC (Tank et al., 2022) and
eSRU (Khanna & Tan, 2020), parameters λ and the maximum time lag τmax are often required to
be tuned precisely. Empirically, λ is chosen to balance between the sparsity of the inferred causal
relationship and data prediction accuracy, and τmax is chosen according to the estimated maximum
time lag. In this work we find our CUTS gives similar causal discovery results across a wide range
of λ (0.01 ∼ 0.3) and τmax(3 ∼ 9).

A.4.7 LORENZ-96 DATASETS WITH F=40

We further conducted experiments with external forcing constant F = 40 on Lorenz-96 datasets
instead of F = 10 in Section 5.2. We show that our approach produces promising results with
p = 0.3 for random missing and Tmax = 2 for periodic missing, as shown in Table 13 with AUROC
score higher than 0.9.
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Table 6: Quantitation results of ablation studies on VAR dataset. “CUTS (Full)” denotes the default
settings in this paper. The highest scores (or multiple ones with ignorable gaps) of each column are
bolded for clearer illustration.

Methods VAR with Random Missing VAR with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

CUTS (Full) 0.9971 ± 0.0026 0.9766 ± 0.0074 0.9992 ± 0.0016 0.9958 ± 0.0069
ZOH for Imputation 0.9908 ± 0.0065 0.9109 ± 0.0328 0.9974 ± 0.0020 0.9782 ± 0.0197
GP for Imputation 0.9964 ± 0.0026 0.9240 ± 0.0327 0.9980 ± 0.0018 0.9442 ± 0.0429

GRIN for Imputation 0.9963 ± 0.0047 0.9014 ± 0.0273 0.9992 ± 0.0012 0.9818 ± 0.0174
No Imputation 0.9945 ± 0.0038 0.9624 ± 0.0132 0.9968 ± 0.0032 0.9797 ± 0.0204

Remove CPG for Imput. 0.9975 ± 0.0020 0.9624 ± 0.0132 0.9991 ± 0.0016 0.9906 ± 0.0123
No Finetuning Stage 0.9960 ± 0.0073 0.9736 ± 0.0074 0.9974 ± 0.0032 0.9835 ± 0.0160

Table 7: Quantitation results of ablation studies on NetSim dataset. “CUTS (Full)” denotes the
default settings in this paper.

Methods NetSim with Random Missing
p = 0.1 p = 0.2

CUTS (Full) 0.7948 ± 0.0381 0.7699 ± 0.0550
ZOH for Imputation 0.7937 ± 0.0349 0.7878 ± 0.0361
GP for Imputation 0.7845 ± 0.0362 0.7890 ± 0.0443

GRIN for Imputation 0.7745 ± 0.0452 0.7553 ± 0.0513
No Imputation 0.7650 ± 0.0272 0.7164 ± 0.0343

Remove CPG for Imput. 0.7912 ± 0.0389 0.7878 ± 0.0361
No Finetuning Stage 0.7650 ± 0.0272 0.7164 ± 0.0343

A.4.8 ROBUSTNESS TO NOISE

We experimentally show that CUTS is robust to noise, as shown in Table 9. We choose the non-
linear Lorenz-96 datasets for this experiment (L = 1000, F = 10) and set additive Gaussian white
noise with standard deviation σ = 0.1, 0.3, 1, respectively.

A.5 PSEUDOCODE FOR CUTS

We provide the pseudocode of two boosting modules of the proposed CUTS in Algorithm 1 and
2 respectively, and the whole iterative framework in 3. Detailed implementation is provided in
supplementary materials and will be uploaded to GitHub soon.

Algorithm 1 Latent data prediction stage
Input: Time series dataset {x1:L,1, ...,x1:L,N}; observation mask {o1:L,1, ...,o1:L,N};

Adam optimizer Adam(·)
Output: DSGNNs parameters {ϕ1, ..., ϕN}

for i = 1 to N do
x̂t,i ← fϕi

(xt−τ :t−1,i ⊙ s1:τ,ij), sτ,ij ∼ Ber(1−mτ,ij)

Lpred(X̃ , X̂ ,O) =
∑N

i=1
⟨L2(x̂1:L,i,x̃1:L,i),oi⟩

1
L ⟨o1:L,i,o1:L,i⟩

ϕi ← Adam(ϕi,Lpred)

end for
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Table 8: Quantitative comparison on learning step numbers, in terms of AUROC. We set n1, n2, n3

proportional to original settings, e.g., if original settings is n1 = 50, n2 = 250, n3 = 200 then “50%
Steps” means n1 = 25, n2 = 125, n3 = 100.

Methods VAR with Random Missing VAR with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

25% Steps 0.9912 ± 0.0041 0.9492 ± 0.0119 0.9951 ± 0.0047 0.9818 ± 0.0158
50% Steps 0.9949 ± 0.0034 0.9640 ± 0.0087 0.9978 ± 0.0028 0.9894 ± 0.0125
75% Steps 0.9965 ± 0.0027 0.9729 ± 0.0075 0.9985 ± 0.0023 0.9921 ± 0.0105
100% Steps 0.9971 ± 0.0026 0.9766 ± 0.0074 0.9992 ± 0.0016 0.9958 ± 0.0069

Methods Lorenz-96 with Random Missing Lorenz-96 with Periodic Missing
p = 0.3 p = 0.6 Tmax = 2 Tmax = 4

25% Steps 0.9811 ± 0.0069 0.9052 ± 0.0208 0.9924 ± 0.0050 0.9655 ± 0.0216
50% Steps 0.9952 ± 0.0022 0.9456 ± 0.0153 0.9987 ± 0.0015 0.9855 ± 0.0112
75% Steps 0.9987 ± 0.0016 0.9613 ± 0.0128 0.9998 ± 0.0005 0.9930 ± 0.0062
100% Steps 0.9996 ± 0.0005 0.9705 ± 0.0118 1.0000 ± 0.0000 0.9959 ± 0.0042

Methods NetSim with Random Missing
p = 0.1 p = 0.2

25% Steps 0.7737 ± 0.0346 0.7403 ± 0.0355
50% Steps 0.7963 ± 0.0399 0.7699 ± 0.0443
75% Steps 0.7961 ± 0.0390 0.7714 ± 0.0503
100% Steps 0.7948 ± 0.0381 0.7699 ± 0.0550

Table 9: Accuracy of CUTS on Lorenz-96 datasets with different noise levels. The accuracy is
calculated in terms of AUROC.

Methods Noise σ
Lorenz-96 with Random Missing

p = 0.3 p = 0.6

CUTS
0.1 1.0000 ± 0.0000 0.9843 ± 0.0073
0.3 1.0000 ± 0.0001 0.9825 ± 0.0080
1 0.9999 ± 0.0002 0.9722 ± 0.0108

A.6 MSE CURVE FOR DATA IMPUTATION

The Mean Square Error (MSE) of the imputed time-series, imputed time-series without the help of
causal graph, and the groundtruth time-series during the whole training process are shown in Figure
4. We can see that under all configurations our approach successfully imputes missing values with
significantly lower MSE compared to initially filled values. Furthermore, in most settings imputing
time-series without the help of causal graph are prone to overfit. The imputed time-series then
boost the subsequent causal discovery module, and discovered causal graph help to prevent overfit
in imputation.
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Table 10: Quantitative comparison for 3-dimensional temporal causal graph discovery on VAR
datasets, in terms of AUROC.

Methods VAR with Random Missing
p = 0 p = 0.3 p = 0.6

CUTS 0.9979 ± 0.0018 0.9848 ± 0.0053 0.9170 ± 0.0127

Methods VAR with Periodic Missing
Tmax = 1 Tmax = 2 Tmax = 4

CUTS 0.9973 ± 0.0024 0.9938 ± 0.0036 0.9612 ± 0.0286

Table 11: Accuracy of CUTS and five other baseline causal discovery algorithms on VAR, Lorenz-
96, NetSim, and DREAM-3 datasets without missing values. The accuracy is calculated in terms of
AUROC.

Methods Lorenz-96 VAR NetSim DREAM-3
PCMCI 0.7515 ± 0.0381 0.9999 ± 0.0002 0.7692 ± 0.0414 0.5517 ± 0.0261

NGC 0.9967 ± 0.0058 0.9988 ± 0.0015 0.7616 ± 0.0504 0.5579 ± 0.0313
eSRU 0.9996 ± 0.0005 0.9949 ± 0.0040 0.6817 ± 0.0263 0.5587 ± 0.0335
LCCM 0.9967 ± 0.0058 0.9988 ± 0.0015 0.7616 ± 0.0504 0.5046 ± 0.0318
NGM 0.9996 ± 0.0005 0.9949 ± 0.0040 0.6817 ± 0.0263 0.5477 ± 0.0252
CUTS 1.0000 ± 0.0000 0.9999 ± 0.0002 0.8277 ± 0.0435 0.5915 ± 0.0344

Table 12: Accuracy of causal discovery results of CUTS under different hyperparameters λ and
τmax settings.

CUTS

λ AUROC τmax AUROC
0.01 0.9962 ± 0.0029 3 0.9971 ± 0.0026
0.03 0.9964 ± 0.0029 6 0.9972 ± 0.0032
0.1 0.9971 ± 0.0026 9 0.9972 ± 0.0042
0.3 0.9962 ± 0.0027

Table 13: Comparison of CUTS with (i) PCMCI, eSRU, NGC combined with imputation method
ZOH, GP, GRIN and (ii) LCCM, NGM which does not need data imputation. Results are averaged
over 4 randomly generated datasets.

Method Imputation Random Missing Periodic Missing
p = 0.3 Tmax = 2

PCMCI
ZOH 0.7995 ± 0.0361 0.8164 ± 0.0313
GP 0.8124 ± 0.0221 0.7871 ± 0.0323

GRIN 0.8193 ± 0.0329 0.7816 ± 0.0361

NGC
ZOH 0.8067 ± 0.0267 0.8558 ± 0.0248
GP 0.8350 ± 0.0314 0.8250 ± 0.0257

GRIN 0.6293 ± 0.0523 0.7114 ± 0.0129

eSRU
ZOH 0.8883 ± 0.0131 0.9463 ± 0.0208
GP 0.9499 ± 0.0061 0.8893 ± 0.0160

GRIN 0.9417 ± 0.0199 0.9494 ± 0.0129
LCCM 0.6437 ± 0.0267 0.6215 ± 0.0343
NGM 0.6734 ± 0.0403 0.7522 ± 0.0520

CUTS (Proposed) 0.9737 ± 0.0105 0.9289 ± 0.0145
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Algorithm 2 Causal graph fitting stage
Input: Time series dataset {x1:L,1, ...,x1:L,N}; observation mask {o1:L,1, ...,o1:L,N}; Adam op-

timizer Adam(·); Gumbel softmax function Gumbel(·) described with Equation 21
Output: Causal probability mτ,ji,∀j = 1, ..., N

for i = 1 to N do
x̂t,i ← fϕi(xt−τ :t−1,i ⊙ s1:τ,ij), sτ,ij = Gumbel(1−mτ,ij)

Lgraph(X̃ , X̂ ,O,θ) = Lpred(X̃ , X̂ ,O) + λ||σ(θ)||1
θ ← Adam(θ,Lgraph)

end for

Algorithm 3 Causal Discovery from Irregular Time-series (CUTS)
Input: Time series dataset {x1:L,1, ...,x1:L,N} with time-series length L; observation mask
{o1:L,1, ...,o1:L,N}; Zero-order holder (ZOH) imputation algorithm ZOH(·); Adam optimizer
Adam(·)

Output: Discovered causal graph
Initialize x̃

(0)
1:L,i = ZOH(x1:L,i), Causal Probability Graphs Mτ = 0,∀τ = 1, ..., τmax

# Warming up
for n1 iterations do

Update {ϕ1, ..., ϕN} with Algorithm 1
Update Mτ with Algorithm 2

end for
# Causal discovery with data imputation
for n2 iterations do

Update {ϕ1, ..., ϕN} with Algorithm 1
Update Mτ with Algorithm 2
for i = 1 to N do

Data update: x̃(m+1)
t,i ←

{
(1− α)x̃

(m)
t,i + αx̂

(m)
t,i ot,i = 0

x̃
(0)
t,i ot,i = 1

end for
end for
# Finetuning
Reset ot,i ← 1, ∀t = 1, ..., T, i = 1, ..., N

for n3 iterations do
Update {ϕ1, ..., ϕN} with Algorithm 1
Update Mτ with Algorithm 2

end for
for i = 1 to N do

for j = 1 to N do
ãi,j = max (m1,ij , ...,mτmax,ij)

end for
end for
return Discovered causal adjacency matrix Â where each elements is ãi,j .
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Figure 4: Average MSE curve of imputed data on VAR datasets with Random Missing / Periodic
Missing (top), Lorenz-96 datasets under Random Missing / Periodic Missing (middle), and NetSim
datasets with Random Missing (bottom).
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