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ABSTRACT

Transformers have demonstrated strong adaptability across a wide range of tasks
and become the backbone of modern Large Language Models (LLMs). However,
their underlying mechanisms remain open for further exploration. The energy-
based perspective has long provided a valuable principle for understanding neural
computation. In this paper, we revisit the energy principle as a framework for un-
derstanding attention-based Transformers. Within the proposed framework, stan-
dard attention can be viewed as a special case of minimizing the Helmholtz free
energy when the energy function takes the form of elastic potential energy, with
residual connections ensuring that this optimization proceeds in an incremental
manner. Building on this connection, we incorporate the forward pass and pa-
rameter updates during model training into a unified alternating optimization per-
spective where parameter updates follow conventional training objectives while
the model architecture is responsible for locally optimizing on the energy-based
regularization. Furthermore, we extend the first-order energy update of standard
attention to a second-order form based on Newton’s method, which ultimately
introduces a covariance matrix to precondition the update directions of tokens.
Meanwhile, we extend the above analysis to the multi-head case, where energy
minimization is performed across multiple low-dimensional subspaces. Our ex-
periments provide preliminary support for the potential of using the energy-based
framework to design attention mechanisms.

1 INTRODUCTION

Energy-based formulations have long underpinned theories of neural computation and the modeling
of neural networks (Hopfield, |[1982;|Ackley et al.,|1985; LeCun et al., 2006). One of the most influ-
ential works applying the concept of energy to pattern recognition is Associative Memory models,
also known as Hopfield Networks |[Hopfield| (1982} |1984), which implement associative memory by
defining an energy function over neuron states. Modern Hopfield Networks have been largely en-
hanced to achieve greater storage capacity through the design of new energy functions (Krotov &
Hopfield, 2016; Ramsauer et al.| 2020} Krotovl [2023)). Additionally, based on the energy concept,
LeCun et al.| (2006) propose Energy-Based Models (EBMs) as a unifying framework for learning,
where the training objective is to assign low energy to plausible configurations of variables and high
energy to implausible ones. In fact, many modern self-supervised learning (SSL) methods can be
naturally interpreted within this framework (Chen et al., 2020; He et al., 2020; |LeCunl 2022; |Glad-
stone et al., 2025). The energy-based perspective has demonstrated great appeal in the development
of deep neural networks.

On the other hand, in recent years, with the development of the SSL paradigm, pretrained large lan-
guage models (LLMs) have achieved remarkable success across various areas (Kenton & Toutanova,
2019; Brown et al.,2020). This success is not only attributed to these effective paradigms such as
autoregressive training but also relies on the Transformer-based architecture as the foundational
backbone (Vaswani et al.l 2017). Therefore, many studies have begun to explore the theoretical
mechanisms underlying the Transformer architecture, with a popular approach being to connect the
model architecture to unrolled optimization (Gregor & LeCunl [2010; Tolooshams & Ba, 2021} Chan
et al., 2022} Hinton| [2022). Zhou et al.| (2022) explained that stacked self-attention modules can
promote grouping and noise filtering using the information bottleneck principle. [Yu et al.| (2024b)
showed that Transformer-like deep network layers can naturally be connected to an optimization
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process aimed at sparse rate reduction. [Wang et al.| (2025b)) pointed out that compressing noisy to-
ken representations and the corresponding denoising operations can naturally give rise to the form of
multi-head self-attention. |Actor et al.[(2025) showed that optimizing latent features in multinomial
regression align with dynamics induced by the attention blocks.

In addition to above explanations, some works have also attempted to establish a connection between
energy-based principles and Transformers. For example, Ramsauer et al.| (2020) proposed a modern
Hopfield network whose energy objective corresponds to an update rule that takes a form similar to
the attention mechanism in Transformers. Furthermore, Hoover et al.| (2023) proposed the Energy
Transformer which integrates multi-head energy attention with a Hopfield Network module and
demonstrated good empirical performance across various tasks. Although these studies establish
certain connections between energy and Transformers, the design of energy functions is often not
straightforward and lacks a unified framework to understand, which limits both our understanding
of Transformers and the potential design of model architectures.

In this paper, we revisit the principle of energy to view attention-based Transformer models. Our
work mainly follows the following line of presentation:

(i.) Energy Framework for Attention. We first present an energy framework to provide a princi-
pled understanding of attention-based models. Within this framework, standard attention emerges as
a special case where the global energy F™* and the energy function E; take the forms of Helmholtz
free energy and elastic potential energy respectively. From this perspective, the forward inference of
standard attention corresponds to performing first-order gradient descent (GD) to minimize the free
energy, with residual connections ensuring that the update is carried out in an incremental manner.

(ii.) Unified Alternating Optimization Perspective. Building on this connection, we point out that
both the forward computation and the parameter updates in Transformer training can be incorpo-
rated into a unified alternating optimization perspective: parameter updates follow the conventional
training objectives, while the forward pass is responsible for local optimization of the regularization
term which is determined by the model architecture itself and carried out in the form of free energy.

(iii.) Second-order Attention Updates. Furthermore, we propose that the attention structure can
be modified based on this energy-based framework. Specifically, we extend the local energy descent
that is originally based on first-order GD to a second-order form grounded in Newton’s method
and then employ a Taylor expansion approximation to reduce its computational cost to the same
order as standard attention. Compared to standard attention, the induced new attention for uses the
covariance matrix to precondition the original update directions, allowing tokens to adaptively adjust
their movements along different dimensions.

(iv.) Extension to Multi-head Case. Meanwhile, we extend the above analysis to the multi-head
attention case whose forward computation can be viewed as optimizing the average Helmholtz free
energy across multiple low-dimensional manifolds. We also apply the second-order GD update to
modify the multi-head attention and the resulting induced model is named MHA2nd1st, which
also uses the covariance matrix to adjust the updates within each subspace. Our experiments offer
preliminary support for the effectiveness of the newly induced attention structure.

2 HELMHOLTZ FREE ENERGY AS A PRINCIPLE FOR ATTENTION

2.1 CONNECTING ATTENTION WITH HELMHOLTZ FREE ENERGY

The attention mechanism in Transformers is designed to model the interactions between tokens. For
a given input z € R?, we assume that the set of token interacting with itis {h;}}¥., € R¥N . The
output of the standard attention layer in the single-head case can be formalized as{%_-]

N 2TWIWxkh,/T
Ty T e e
Atten(z) = z + Wy Hsoftmax (H' WixWgz) = z + Z —

i=1

Wvh;, (1)

"Here we do not impose any restrictions on the attention setup. For example, in the causal setting (decoder),
z can be the token at position N + 1, that is, z = h 1, while {hi}ﬁvzl denotes the IV preceding tokens; in
the bidirectional setting (encoder), z can be the token at any given position while {h;}; are remaining ones.
?Here, for simplicity of notation, we absorb the factor 1 / +/d into the parameters.
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where H = [hy,ha,...,hx] € RN T is the temperature and Wy, Wi, W € R¥*? are
ZN 2TWEWkh;/T

learnable parameters. In addition, Z’ = i=1€ is the normalizing term.

To illustrate how the Transformer connects to the optimization objective of minimizing the
Helmholtz free energy, we can first regard each token as a particle, with multiple particles together
forming a system. We assume that there are already N particles within our system, and the position
of the i-th particle in the system can be denoted by h; € R?. We want to place a new particle into
the system with its position denoted by z € R¢ and the other particles will exert interactions on it
thereby generating the potential energy. The energy exerted on the new particle by the ¢-th particle
can be denoted as F(z, h;) and we also use F; for simplification.

We define the internal energy of the system (respect to z) as U = Zi\il p;E; where p; > 0 is
the assigned weight to the ¢-th particle and satisfies Zfil p; = 1. Furthermore, the entropy of the

system can be represented as S = — Zfil p; log p;. The free energy of the system is the portion of
its internal energy that is not consumed by disorder, that is,

N N
F:UfTS:ZpiEmLT'Zpilngu 2
i=1 i=1
where T is the temperature characterizing how much the internal energy is unavailable due to dis-
order (entropy). We first show that when the weights p; follow the Boltzmann distribution, the
system’s free energy will reach its minimum:

Lemma 1 (Helmholtz free energy). Define the partition function as Z = S~ e~ Fi/T. The sys-
tem’s free energy defined by Eq (2)) attains its minimum value

N
F*=-TlogZ = _TlogzefEi/T, 3
i=1
. .. . . —-E;/T
when p; satisfies the Boltzmann distribution, i.e., p; = “——

The proof can be seen in Appendix[A.2] We next show that the forward inference of attention defined
in Eq.(T)) can be interpreted optimizing the Helmholtz free energy in a special case where the energy
function takes the form of an elastic potential parameterized by W and the particles mapped by W
are constrained to lie on a hypersphere.

Theorem 1. Let the energy function E; = E(z, h;) take the parameterized elastic potential form,
that is,

1
Bw(z,h;) = 5||z -~ Why|?,

where W € R¥? js the learnable parameter. Then the Helmholtz free energy can be formalized as

N B 2
F*=-Tlogy e o, @)

Assume that z and all W h; lie on a hypersphere of radius p, Wh|| = p forall
i € [N]. Then the forward inference of the standard attention deﬁned in Eq (I) can be modeled as
one gradient descent step for minimizing F'* with the learning rate n when setting WQ Wi =W
and Wy =nTW.

Proof. Using the assumption that ||z|| = ||[Wh;|| = p for all i € [N], we first have
al lz—Wh,|?
F*:—TlogZe_ T :—TlogZe T +p =F*+p?

- zTwh;
where I'* = —T'log ZZ 1€ T . We can take the derivative of '* with respect to z to obtain

- 2T Whi/T
V.F* =V, F*=-TV, logZe T —TZ Wh;,
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Table 1: Comparison of different attention forms under the energy-based framework.

Global Energy F* Energy function E; GD Form Induced Attention

-y, E? —2TWh;, First-order GD Linear Attention
—Tlog), e Bi/T 1|z — Why||> or —2" Wh; First-order GD Standard Attention

~Tlog), e Bi/T 1|z — Why||? or —z"Wh;  Newton’s Method ~ Atten2nd (Section’gl)

where Z = Zjvzl e Whi/T, Then, given an initial value 2(?), we can apply gradient descent to
minimize the objective F'*. Suppose the learning rate is 7, the iteration is given by

") TWhy/T

N
2EHD = 20 _ g Fr = 2R Z T77TWhi.
=1

By comparing with Eq , we can rewrite the learnable W as W = Wg Wi and further set
nTW = Wy Then, we will have Z' = Z and the above equation can be reformulated as

N e(z“c))ngvam/T

(B+1) — Att (k)Y — (k) W h.:
z en(z'") = 2" + ; 7 vhi,
which has the same form as the attention layer in Eq (I). Thus, we complete our proof. O

Below, we discuss Theorem 1 from the following perspectives.

(i.) Specific selection and constraint on the energy function. First, we note that in Theorem 1, the
energy function takes a form similar to elastic potential energy E; = 1kA? where A = ||z — hy|
and the elastic constant £ = 1, meaning that when a particle (token) z deviates from the existing
h;, it will be pulled back toward the position of h; ﬂ Ultimately, when z = h;, the new particle
z will be in a stable state with minimal energy E(z, h;) = 0. These pulling forces ensure that z

maintains the semantic similarity with all existing tokens. Furthermore, to make the energy function

12
more flexible, we parameterize it as a learnable function, that is, F; = Ew(z,h;) = w

where W € R%* is the learnable parameters.

In addition, we also impose the constraint on the norms of z and W h;, requiring them to lie on
a hypersphere of fixed radius p. In practice, we often use techniques like LayerNorm (Ba et al.
2016) or RMSNorm (Zhang & Sennrichl, [2019) to allow more flexible adjustment of these norms.
When this constraint is relaxed so that z and the projected h; lie within the sphere of radius p, we
will have F* < F* + p? and the forward inference of attention will optimize the upper bound F™*
instead of F'* directly. In fact, F'* can also be viewed as the Helmholtz free energy in the case where
Ei = —ZTWhi.

(ii.) Extension to a more general Energy-based framework. In fact, the above special case can be
extended to a more general energy-based framework, which is described in Table[I} This framework
consists of three key components: the global energy F*, the energy function FE;, and the gradi-
ent descent (GD) algorithm applied. When different modifications are made to these components,
corresponding attention architectures will be naturally induced. For example, when F'* is taken in
a quadratic-sum form, we obtain the linear attention formulation (see Appendix [A.3). This frame-
work not only provides insights into understanding existing attention mechanisms but also facilitates
the design of new variants. For example, when higher-order optimization methods (e.g., Newton’s
method) are employed, novel attention forms will naturally emerge (see Section [3).

3We also note that in this special chosen of Ej, each term (also called Boltzmann factor) in the partition
function takes the form of a radial basis function (RBF), that is, exp(—FE;/T) = exp(—||z — hi||?/2T).
These terms are also approximated by the kernel mapping functions (Choromanski et al., [ 2020; |Katharopoulos
et al., 2020), that is, exp(—||z — hi||?/2) = ¢(2)T¢(h:). Thus the free energy can also be written as

F* = ~Tlog >, ¢(2)" ¢(hi).
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Algorithm 1 Unification via Alternating Optimization: One Single Attention Layer

Require: Training dataset of size M: {H;,y;}},, learning rate 7, training epochs K
Ensure: Updated parameters W, E and representations {2; } |
1: Initialize parameters 2°, E°, W°

2: for eachepoch k =0,...,K —1do # Train for K epochs with batch size M

3 for each sample i = 0,...,M —1do # Local GD on z (equivalent to forward pass)

4: 20T =2k — VP> (28, WF) = Atten(z})

5: end for

6 Whtl — wk _ i Zf\il VwFEF* (zf“, W’“) # Local GD on W (backpropagation)
7: EFtl = EF — 1V Z?il CE((E*)T2F*! y;) #Local GD on E (backpropagation)
8: end for _ R

9: Update W = WK E=FEKand 2, = 2K fori=1,.... M

10: Return W, E7 {ZEK)}i]\il

(iii.) Residual connection and the incremental form of the update rule. TheoremE] shows that
given parameters W and tokens {h; }_,, the forward computation of the attention layer can be mod-
eled as one GD step minimizing the Helmholtz free energy respect to z, thereby reducing the energy
and driving z toward a stable position in the semantic space. In this incremental iterative update
rule, the residual connection z(*) serves as the current iterate (solution), the component computed
by the Softmax attention provides the search direction (update), and the final output z*+1) can be
viewed as the next iterate (solution).

(iv.) Relation to Learnable Parameters in the Attention Layer. It can be seen that the learn-
able W in the energy function are equivalent to Wg; W in the attention layer, which are typically
learned during training to find an appropriate semantic space for computing the free energy. More-
over, it should be noted that in practical attention layers, the learnable Wy, is often not limited to
form Wy = nTWZ Wy but is instead more flexible, enabling the discovery of a potential better
optimization path. In addition, multiple attention layers are also stacked with layer-wise parameter-
ization, allowing for further flexibility in learning.

2.2 UNIFYING FORWARD AND BACKWARD VIA ALTERNATING OPTIMIZATION

In fact, by incorporating Eq () as a regularization term into the training objective, the model’s
forward inference and backward propagation during training can be unified under the perspective
of alternating optimization. As a classification example, we consider a single attention layer where
the input is H = [hy, ..., hy] € RN (e.g., embedded image patches and z serves as a special
classification token (e.g., [CLS]) to compute the final representation. The model’s final output is
typically projected via a projection head E?*¢ to obtain a logit matrix, which is then normalized
by the softmax function and used to compute the cross-entropy loss, that is,

c (ETz)c
CE(ETz,y) = — Jog—o 5
(E"z,y) ;(y) %8 (3)

where C' denotes the number of classes, y € RY is the (soft) label vector and (y). denotes the
probability of the c-th class. Then F'* as Eq can be regarded as a regularization term on the
cross-entropy loss: optimizing z in the regularization corresponds to the forward computation, while
optimizing the parameters corresponds to the backward propagation that updates the model. For-
mally, the overall objective can be written as

in CE (E”" F* .
Jmin, CE (E'z,y) + F* (2, W) (©6)
The process can be described by Algorithm [I] where we train the model with M samples for K
epochs. Within each epoch, the forward inference and backward update can be viewed as an alter-
nating optimization process over z, W and E. More discussions can be seen in Appendix [A.4]

*To avoid introducing unnecessary new notation, here we omit the update of the embedding layer.
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3 ENERGY-BASED REFINEMENTS OF ATTENTION

In Section [2.1] we show that in our proposed energy-based framework, different combinations of
the three key components will naturally give rise to corresponding attention forms, which serves as
guidance for us in designing potential attention models. A natural idea then arises: if the forward
pass of standard attention can be modeled as optimizing the Helmholtz free energy, can we directly
obtain the final solution as the token representation (i.e., z* = argmin, F'*) instead of relying on
such a structure that carries out incremental updates based on local gradient descent? Unfortunately,
except in certain special cases (e.g., h; are symmetrically distributed), it is difficult to directly obtain
a closed-form analytical solution for F™* or its upper bound F*. We present Lemma as follows.

Lemma 2. Both the Helmholtz free energy F* and its upper bound F* are non-convex with re-
spect to z. Assume ||z|| < p and |Why;|| < p for all i € [N]. The local minima of F* is

_lz=why)?

attained at the boundazry Izl = p or when z = Zfil piWh; where p; = +e =T and
llz=Wh;l .. .. T - .
Z = Zivzl e~ 2t . Inaddition, the local minima of F* is attained at the boundary ||z|| = p.

The proof of Lemma[2]is in Appendix The core is to show the Hessian matrix of F™* as

N
1
ViF*= T -7 Zpi"'i'r'iT_(sz*)(sz*)T ; (7
i=1
~—
~0 =0

which is composed of a positive semidefinite identity matrix and a negative semidefinite term. There-
fore, F'* is neither convex nor concave and its local minima can only occur at the boundary or at
stationary points. Similarly, the Hessian of F'* contains only the negative semidefinite term, making
it concave and ensuring that its local minima occur only on the boundary.

Although a closed-form solution is difficult to obtain directly in both cases, it is possible to obtain
a better solution as the token representation by adopting more efficient GD algorithms within the
energy-based framework, which in turn leads to improvements in the attention structure. As for F'*,
the update rule derived from the first-order GD is

Z(k+1) = Z(k> - nvz(k)F* = (1 - n)z(k) + nFIG (8)

_ 25 _wh, |2
where h = Zf\;l piWh; and p; = %e*%. This can be regarded as a first-order update
with momentum. A simple and straightforward idea for employing a more efficient algorithm is
to use Newton’s method, which leverages the second-order information from the Hessian matrix to
accelerate convergence. This can be formulated as

20D = 20 (92 P70 B

where Vi(k)F * is the Hessian matrix at z(*). In fact, using the notation d; = Wh; — h, we can
rewrite the Hessian matrix in Eq (7)) into a more concise form:

N
1
ViF* =1 - 7 > pidid] . ©)
1=1

Thus the final update rule can be formed as

N ~1
Att2nd (z(k)) =zt = 2B _ [I - ,};pidid?] (z(k’) - ﬁ) ) (10)

The Hessian matrix in Eq () is composed of a weighted covariance term and an identity matrix
serving as regularization. Its inverse in Eq (I0) provides a preconditioning for the first-order gra-
dient, allowing adaptive updates along different dimensions. Corresponding to standard attention,
we can also parameterize W as Wg Wi in p; while W as Wy, in h and d; to make the model

more ﬂexibleﬂ We denote this modified attention layer as Att2nd(z) as it is inspired by Newton’s
method and uses the second-order GD information.

The parameterization method will change in the multi-head setting. Here we mainly emphasize how to
derive the Newton-inspired modification for attention and outline ideas for reducing its cost.
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Recalling that the standard attention incurs a computational cost of O(d? + Nd) per inference step
with the reuse of KV caches, the cost of computing h and d; is also O(d? + Nd). However, the
inverse of the Hessian incurs a cost of O(d®) which is often impractical in practiceﬂ To further
reduce the cost, we approximate the inverse using its Taylor expansion, that is,

1 B 1 1 (I ’

Here, we retain only the first-order term and the approximated update rule can be reformulated as

N
Att2nd1st (z(k)) = z(k+1) = (1- n)z(k) +nh — %;pidid? (z(k) - i_l) .

Compared with Eq (8), the above rule adds a term that adjusts the update using weighted covariance
information. By prioritizing the computation of d} (z(k) — f_L) to avoid matrix—vector multiplica-
tions, we can reduce the overall cost to O(Nd + d?), which is the same order as standard attention.
We denote this structure as Att2nd1st(z), which is inspired by Newton’s method while approxi-
mating the inverse using first-order Taylor expansion. Note that our discussion so far mainly focuses
on the single-head case. In the next section, we will extend to the multi-head cases and present the
final modified attention along with its parameterization, following a line of ideas very similar to the
discussion above.

4 EXTENDING THE ENERGY PRINCIPLE TO THE MULTI-HEAD CASE

Now we extend the energy principle to the multi-head case. The multi-head attention layer with H
heads can be formalized as

H N z"WE, Wicuhi/T
MHA(z) = z + Z Z 7 Wo nWy ph;, (11
h=1i=1 h

where Wy, Wi, Wg 5, € R%*4 and W, j, € R4¥ are learnable parameters. In addition,

we have dj, = % for each head and Z; = Zjvzl e% Wo Wik nhi /T g¢ normalizing terms. Con-
ceptually, multi-head attention works by first projecting tokens into lower-dimensional subspaces to
capture information independently and finally combining these representations back into the original
d-dimensional space through the projection Wp .

Similarly, by appropriately parameterizing F(z, h;), the energy arising from interactions between
particles can also be modeled in H low-dimensional (semantic) spaces. We denote the parameterized
energy between z and h; in the h-th subspace as Eg, (z, h;) where 8}, represents the parameters.
Then the average Helmholtz free energy can be defined as

Eg, (z.h;)

1 H 1 H N
ja —E};Tlogzh — —E;Tlog;e‘fv

where Zj, is the partition function for the h-th subspace. Here we reuse the symbols F'* for the
sake of notational simplicity and consistency. Next, we show that the forward computation of the
multi-head attention as defined in Eq (TT), can be modeled as one step GD to minimize the above
average Helmholtz free energy.

Theorem 2. Let the energy function E; = E(z, h;) take the parameterized elastic potential form
in the h-th subspace, that is,

1
FEg,(z,h;) = §|\W17hz — Wanhil?,

SNoting that the Hessian can be expressed as a sum of rank-1 perturbations, we can use the Sherman-
Morrison-Woodbury formula to compute the inverse and the resulting cost is O(Nd?). This will provide
savings when N < d, but overall, the cost is still higher than the standard attention.
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where Wy 5, Wy ), € Réxd gnd @, = {W1,1, Wa } denotes the parameters. Then the average
Helmholtz free energy can be formalized as

H N

1 |W1 p 2= W3 phill?
= 5 ZTlogZe_%
h=1 i=1
Assuming that |Wh pz|| = ||[Wanhil| = pforalli € [N],h € [H], the forward inference of

the multi-head attention defined in Eq ([1) can be modeled as one gradient descent step for min-
imizing F'* with the learning rate ) when setting Wg;,hWK,h = WEhWZh and Wo 1, Wy, =

WL, Wa, for all h € [H].

The proof can be seen in Appendix [A.6] It can be noticed that the energy function here still takes the
form of elastic potential. However, unlike the original approach that only applies W to h, here we
introduce Wy p,, W5 j, to embed both z and h; for the h-th space, allowing the energy computation
to be carried out independently across each semantic subspace. In the multi-head setting, we still
cannot obtain a closed-form convergence solution (see Lemma5]in Appendix [A.7).

As in the single-head case, we can also extend the Newton’s method-inspired attention modification
to the multi-head setting. We denote the Helmholtz free energy in the h-th subspace as Fy =
—Tlog Z@Z\; Zp, and then F* = %F,’f Instead of applying Newton’s method directly to F'*, we
apply it independently to each subspace F}’, which can be formalized as

-1 *

Considering the analogous roles of W, W, , and Wg WWk nin Theorem we use the notation
||W1,hz*WQ,hhiH2

7 N _
qn — WLhz, ki,h = Wg,hhi and kh = Zizlpi,hWQ,hhi where Pin = %he 2T
Then the Hessian matrix of F}' is

ViF; =W, [T—- = sz n (Kin —kn) (Kin — kh)T Wi h.

Note that due to W1y, € R x4 the Hessian matrix VzF € R4%4 ig non-invertible. Therefore,
we need to employ the range-space approac to compute the inverse. Furthermore, to reduce the
computational cost, we also approximate the inverse of the intermediate matrix using a first-order
Taylor expansion. Finally, by parameterize W1 5, W5 j, as Wq p,, Wi 5, the Att2ndl1st(z) can be
extended as

H
77
MHA2nd1st(z + 4 ; [(gn — kn) + ba],
N
b = (WQ hWQ h Z Zhdlh thQ hWQh(qh*k )} .

where d; ;, = k;j, — k;,. We can see that the vector by, acts as a bias term, adjusting the update
using variance information in the subspace. In practice, we introduce new parameters Wy € R%*d»
to replace %Wg 5, to make the model more flexible. Moreover, to maintain stability, we set the
temperature 7' in the attention score p; j, as a head-wise learnable parameter with initialization as
dy, and the temperature in by, is treated in the same way. Compared with standard attention, the
final structure keeps W, Wy, W while removing the value mapping Wy, thereby reducing the
number of parameters by one quarter. Meanwhile, the total cost for H heads is O(NNd + d?), sharing
the same asymptotic complexity as standard attention despite a larger constant factor. More details
can be seen in Appendix[A.8]

"Here we use (WTC’W)T =wT (WWT)71 C'W when W € R™*™ and m < n.
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Figure 1: Left Part: Test accuracy during training when the task length L = 10/40 and model size
d = 256: attention-only layers (leftmost) and alternating attention—FFN layers (center left). Right
Part: Test accuracy of MHA and MHA2nd1st across different task lengths and model sizes.

5 EXPERIMENTS

Following the setup of [Feng et al.| (2024); [Yang et al.| (20244), we evaluate the capability of the pro-
posed attention structure in solving a classical dynamic programming (DP) problem—the Longest

Increasing Subsequence (LIS) task. Given the a sequence s € N’ of length L, a sequence 3 is the
subsequence of s if there exists an index set 1 < i1 < ig < -+ < 45 < n such that §; = s;, for
all k € [|5]]. A subsequence 5 is called increasing if it satisfies that §; < 83 < --- < 5|5. The goal
of the LIS task is to predict the length of the longest increasing subsequence.

In our experimentsﬂ we control the scale of the problem (i.e., the sequence length L) and the model
size (i.e., the model dimension d) to investigate the model’s ability to solve the task. We use the
standard Transformer model (Vaswani et al.| [2017)) and replaced the original multi-head attention
layer (MHA) with the proposed MHA2nd1st. As mentioned in Section [ since Wy is removed,
the replaced attention layer reduces the number of parameters by 1/4. All models were trained from
scratch using a draft model. During training, the model is optimized using cross-entropy loss on the
answer tokens, while a greedy decoding strategy is employed during testing. More experimental and
results details can be seen in AppendixA.9]

First, to more directly compare the original attention with our proposed one, we remove the Feed-
Forward Network (FFN) layers from the Transformer and retain only the attention layers, labeled
as MHA-only and MHA2ndIst-only respectively. We present the test accuracy during training in
the leftmost panel of Figure [ When the problem size is small, MHA2nd1st-only improves more
rapidly and achieves higher accuracy. As the problem size increases, the accuracy of both models
declines while MHA2nd1st-only still maintains the advantage. Furthermore, we retain the original
FEN layers in the center-left part of Figure [I] It can be seen that adding FFN layers improves
performance for both models under the same problem size, yet MHA2nd1st still outperforms the
original MHA. In the right part of Figure[I] we further present the performance of the two models
under different task lengths and model sizes. It can be seen that MHA2nd1st overall outperforms
MHA, especially when the problem size is large. These results provide preliminary support that the
modified attention structure derived from the energy-based framework has the potential to use fewer
parameters to achieve performance that is comparable to or exceeds that of the original MHA.

6 CONCLUSION

In this work, we revisit the energy principle to understand attention-based Transformers. We propose
an energy-based framework whose key components include the global energy F'*, the energy func-
tion F; and the form of gradient descent to explain both attention structures. Within this framework,
the forward inference of standard attention can be seen as a special case where F'™* corresponds to
the Helmholtz free energy, E; takes the form of an elastic potential and first-order gradient descent is
employed. Based on this connection, we note that the forward pass and parameter backpropagation
can be unified under an alternating optimization perspective. Furthermore, inspired by Newton’s
method, we extend the original first-order GD-based standard attention to a second-order form,
which leverages covariance information to adjust the updates. Our experimental results provide
preliminary support for the potential of our proposed attention structure.

8Code is anonymized atlhttps: //anonymous. 4open.science/r/energy—-attn-A23C
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USE OF LARGE LANGUAGE MODELS

In line with the ICLR policy, we disclose that Large Language Models (LLMs) were used as a
general-purpose writing assistant during the preparation of this manuscript. The primary role of
LLMs was to aid in polishing the text, which included improving grammar, refining sentence struc-
ture for clarity, and checking for stylistic consistency.

A APPENDIX

A.1 DISCUSSIONS ON RELATED WORK AND FUTURE DIRECTION

In this part, we discuss the related work and potential future directions in more detailed discussion.

Energy principle and Transformers: The concept of energy has long been used in deep neural
networks (Hopfield, |1982; 1984} |Ackley et al.,|1985; Krotov & Hopfield, 2016} |LeCun et al., 2006
LeCun, 2022)). Previous work has also linked energy to the attention mechanism in Transformers
and the studies most relevant to ours are likely those by |Ramsauer et al.| (2020) and [Hoover et al.
(2023). Ramsauer et al.| (2020) proposed a new energy function for continuous-state Hopfield net-
works and pointed out that this Hopfield update rule corresponds to the attention mechanism in the
Transformer. Hoover et al.[(2023) also proposed the Multi-Head Energy Attention, whose dynamic
evolution includes the computational process of standard attention. In this work, we revisit the en-
ergy perspective to interpret the attention mechanism. However, unlike previous works, we extend
the interpretation of standard attention into a more general framework, which consists of three key
components: the Global Energy F'*, the Energy function E;, and the Gradient Descent (GD) form.
We illustrate that standard attention is only a special case within this framework. For instance, by
altering the form of the energy, we can derive the formulation of linear attention (see Appendix
[A-3)); and by extending the GD form from first-order to second-order gradient descent, we arrive at
the proposed MHA2nd1st. Furthermore, we note that|Gladstone et al.|(2025) employ energy-based
methods to train Transformers and their focus is more related to training paradigms. We believe this
is orthogonal to our work.

Unrolled Optimization and Model Architecture: Understanding and designing model architec-
tures from the perspective of unrolled optimization is a currently active area of research (Gregor
& LeCunl 20105 [Tolooshams & Bal [2021; |Chan et al., [2022). Previous works have designed and
interpreted Transformer-like structures from various viewpoints, including sparse rate distortion (Yu
et al., 2024bza), denoising (Wang et al., |2025b), information bottleneck (Zhou et al.| [2022)), multi-
nomial regression (Actor et al. [2025), etc. Unlike previous work, our approach starts from the
concept of energy to interpret the standard attention mechanism, and show that new structure can
be designed based on the proposed energy framework. We also note that some other studies focus
more on leveraging an optimization perspective to guide the design of more efficient model archi-
tectures (e.g., those with linear complexity with respect to sequence length) (von Oswald et al.,
2025} |Yang et al.l [2024b; Wang et al., 2025a). We believe that the energy-based framework holds
potential for designing more efficient attention structures in the future, possibly through the devel-
opment of novel energy functions or GD forms. Additionally, our proposed attention mechanism is
primarily inspired by Newton’s method. In fact, numerous first-order optimization algorithms (e.g.,
Adam (Kingmal |2014)) could also inspire further improvements to existing attention mechanisms.
Although we employed a first-order Taylor approximation to reduce the computational cost of the
Newton-inspired attention to the same order as standard attention, it still carries a larger constant
factor. We believe that other techniques, such as random feature methods (Yu et al., 2016} |(Choro-
manski et al.l 2020), could be used to approximate the relevant operations, potentially achieving
even lower computational costs than standard attention.

Test-time Scaling and Loop Transformers: Test-time scaling is a favored pathway to boost model
inference (Zhang et al.| 2025; Snell et al., [2024}; Muennighoft et al., |2025). Among these methods,
Loop Transformers output token representations through parameter-shared recurrent computations
and existing research demonstrates that this recurrent structure offers advantages in terms of per-
formance gains and capability generalization (Geiping et al., 2025; [Fan et al., 2024; [Yang et al.,
2023; [Yu et al.l 2025). As mentioned in Appendix [A.4] unlike stacking attention layers with distinct
parameters, using parameter-shared recurrent computation aligns more closely with optimizing the
same energy function within a relatively stable semantic space. Therefore, we believe a promising

13



Under review as a conference paper at ICLR 2026

direction is to apply the attention mechanism induced by higher-order GD forms within Loop Trans-
formers to enable more “efficient” representation learning. Additionally, enhancing the capacity of
attention in a parameter-free manner, using approaches like MHA2nd1st, could represent another
viable path for test-time scaling. Concurrently, increasing the computational overhead of attention
without introducing extra parameters, following a paradigm like MHA2nd1st, may represent another
potential path for test-time scaling.

A.2 PROOF OoF LEMMA[I]

Lemma 3 (Helmholtz free energy). Define the partition function as Z = Y.~ | e~ Fi/T. The sys-
tem’s free energy defined by Eq (2) attains its minimum value

N
F*=_TlogZ = fTZ e BT, (12)
i=1
. . . . . —-B;/T
when p; satisfies the Boltzmann distribution, i.e., p; = “——

Proof. The problem can be formed as

N N
min F = By +T logp; s.t. ; = 1.
, min ;pz i ;pl g p; sz

We can use a Lagrange multiplier « for the equality constraint:

N N N
Lo nE AT pilogn —a (zpz- g 1) |
=1 i=1 i=1

Then, we can get the stationarity w.r.t. p; as:

g}i =FE;+T(logp; +1) —a=0.
Thus, we have
pi = /T BT o o= BT
where a should scale e/ so that the constraint Zi\; p; = 1is satisfied. Therefore, we obtain
pi = 67?” where Z = Zfil e Ei/T is the partition function. Then, we have
§ N N e—FEi/T
F* = ;pZE2 —&-T;pi log 7= —Tlog Z.

Finally, the minimizer is unique because F' is convex on the simplex. Thus, we complete our proof.

A.3 LINEAR ATTENTION WITHIN THE ENERGY-BASED FRAMEWORK

For a given input z € R%, we assume that the set of tokens interacting with it is {h;}Y, € RN,
The linear attention can be formalized as

N
LinearAtten(z) = z + Z (z"WEIWih;) Wy h,, (13)

i=1

where Wg, Wi, Wy, € R?*? are learnable parameters for query, key and value projection. Com-
pared to standard attention, it eliminates the need for the softmax operation on attention scores. The
following theorem shows that when we alter the forms of the global energy F'* and the energy func-
tion E; within the energy framework in Table[I] the forward inference of linear attention can still be
viewed as minimizing F'* using first-order gradient descent.
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Theorem 3. Let the energy function E; = E(z, h;) take the parameterized inner product form, that
is,
Ew(z,h;) = —2"Wh,,

where W € R¥? s the learnable parameter. Let the Global Energy F* take the form of a sum of
squares, which can be formalized as

- _fsz TWh) (14)

Then the forward inference of linear attention in Eq (I3) can be modeled as one gradient descent
step for minimizing F'* with the learning rate ) when setting WQ Wy =W and Wy = nTW.

Proof. We can take the derivative of F'* with respect to z to obtain

V. F* = Zv 2TWh,) Z (z"Wh,)
1=1

Then, given an initial value z(°), we can apply gradient descent to minimize the objective F*.
Suppose the learning rate is 7, the iteration is given by

N
2D = 20 _ v o P =20 4 ((z<k>)TWhi) nTWh,.

By comparing with Eq lb we can rewrite the learnable W as W = Wg Wi and further set
nTW = Wy,. Then, we will have

21 — LlnearAtten(z(k)) =2k 4 Z ( TWgWKh ) Wv h;,
which has the same form as the linear attention layer in Eq (I3). Thus, we complete our proof. [J

A.4 MORE DISCUSSIONS ON LOOP TRANSFORMERS

While attention layers are commonly stacked with varying parameters across layers, Loop Trans-
formers usually share parameters across iterations, helping preserve a relatively stable seman-
tic space. In this case, the forward loop computation can be modeled as alternately updating
F* (z;, H, W) with respect to z; at each position, given the shared W and the corresponding H
composed of attended set. Taking causal attention as an example, for the ¢-th position, the attended
set typically consists of the preceding tokens H<; = [h1, ..., h;]. Then the global objective is

N
min » F* (z;,H<;,W) s.t. Z=H, (15)
Z,H “ =
=1
where Z = [z1,...,2zx] € R¥N . The constraint ensures that after each iteration, the tokens used

in attended sets are aligned with the newly updated Z. The iteration starts with the initialization
2) = h? = h;. The forward computation of a single-layer Loop Transformer with K iterations can
be equivalently viewed as performing K steps of gradient descent on each z, which can be described
by Alogrithm

Unifying forward inference and backpropagation via alternating optimization. In fact, by in-
corporating Eq (T3) as a regularization term into the training objective, the model’s forward inference
and backward propagation can be unified under the perspective of alternating optimization. For ex-
ample, in autoregressive training, the model’s final output representations Z are typically projected
onto the vocabulary to obtain a logit matrix, which is then normalized by the softmax function and
used to compute the cross-entropy loss, that is,

e(E Zi)v

1%
L(ETZ)Y) ZZ( )olog ————, (16)

ETz),
i=1 v=1 Zu 1‘3( =)
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Algorithm 2 The Forward Inference of One-Layer Loop Transformer

Require: Learned W, Tokens {hl}f\il temperature T, learning rate n

Ensure: Updated representation {z5}¥

I: Initialize 20 = h) = h; fori=1,...,N

2: for each iteration k = 0,..., K — 1do # K iterations of Loop Transformer

3 for each positiont = 1,..., N do # Local GD on each z (equivalent to forward pass)
4 Update 2+t = 2F — A (zF, HE ;W) = Atten(zF)

5: end for '

6 Update hf“ :zfﬂ fori=1,...,N

7: end for

8

: Return {5}

1 Ji=1

where V is the vocabulary size, E € R%*V is the final projection matrix and Y = [y1,...,yn] €
RV >N is the label matrix often composed of N one-hot vectors. We also call ET Z € RV*" as the
unnormalized logit matrix. Eq can be regarded as a regularization term on the autoregressive
loss: optimizing the representations Z in the regularization corresponds to the forward computation,
while optimizing the parameters corresponds to the backward propagation that updates the model.
Formally, the overall objective can be written as

N

. T * . —
ng%"Ec (E*Z,Y) +Z;F (2zi, Hc; W), st. Z=H, (17)
1=

where L is the cross-entropy loss as Eq[I6] A single forward inference and backward update can be
viewed as an alternating optimization process over Z (or H), W, and E, which can be described
by Algorithm[3] In this way, the forward and backward processes can be unified as performing local
GD on the regularized training loss, where the form of the regularization term is determined by the
model architecture.

Algorithm 3 Unification via Alternating Optimization: One-Layer Loop Transformer

Require: Tokens {h;} ;, temperature T, learning rate 7

Ensure: Updated representation {2 1N=1’ updated parameters ﬁ\/, E
1: Initialize parameters E, W and 2{ = h) = h; fori=1,...,N

2: for each iteration k =0,..., K —1do # K iterations of Loop Transformer

3: for each positioni =1,..., N do # Local GD on z (equivalent to forward pass)
4: Update z; "' = 2 — .V« F* (2F, HE, W) = Atten(2])

5: end for

6:  Update hF™ = 2Ffori=1,...,N

7: end for __

8: Update W =W — nVyw F~* (zf, HE W) # Local GD on W (backpropagation)
9: Update E = E —nVgL(ETZXY) #Local GD on E (backpropagation)

—_
=

: Return W, E, {zF} N |

A.5 PROOF OF LEMMA 2]

Lemma 4. Both the Helmholtz free energy F'* with respect to z and its upper bound F* are non-
convex. Assume ||z|| < p and ||Wh;|| < p for all i € [N]. The local minima of F* is at-

. lz=Wh;|?
tained at the boundar); Izl = p or when z = ZivzlpiWhi where p; = e~ =T and
lz=Wh;]| . . P .
Z = Zivzl e~ =2t . Inaddition, the local minima of F* is attained at the boundary | z|| = p.
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_llz=why?

Proof. Recalling that F* = —T log Zf\;l e 27 . We can compute the derivative of F'™* with
respect to z as

N o N
V. F*=-TV, logZe_” i :Zpi (z—=Wh,),
i=1

i=1
1 _llz—why|? N _llz—why|? . . ..
where p; = e 2T and Z = >, e 2T . For notational simplicity, we denote

r; = z — Wh,;. To compute the Hessian matrix, we first calculate
2
_ U2 I 1 Y [y VA L] -
e 2T —Trie 2T —e 27 Zj:l e =T (_T)
vzpi = Vz 7 = 72

1 1 I
= T bl + TPi Z:lpj"’j
j=

Therefore, the Hessian matrix of F™* with respect to z is

N 1 | X L | N
ViF* :Z"'i _Tpir?+fpizpjrf +I=1- fZPiriT?‘FTZ}%Tz‘ZPﬂf
i=1 j=1 i=1 i=1 j=1

N
1 T * s\ T
=71I-— T lzlpiriri — (Vo F*) (V. F™)
Furthermore, for any v € R4, we have

* 1 * * T
vIVEF* v = |v||? — T ;pivzrrir?'ui - (vTVzF ) (vTF*) (18)

Let X; = 7! v and define a random variable X such that P(X = X;) = p;. Then for the second
term in Eq (I8)), we have

N N 2
1 T 2 T o 1 9 9 B 1
. ;pillri clle (;pm v) = —= [E(X?) - E* (X))] = — Var(X) < 0.
Considering that the identity matrix is positive semi-definite, we obtain

1

2 %
F*= 1 ——=
A% T

N
Zpirir;f — (Vo F*)(V F9T
i=1

~—~
=0 <0

Therefore, we obtain that F™* is neither convex nor concave and when ||z|| < p, its local minima
can only be attained at the boundary ||z|| = p or at interior points where V,F* = 0, that is,

Similarly, we can obtain the Hessian matrix of F* as

N
- 1 - -
ViF* = -7 [Zpi(Whi)(Whi)T — (VL F") (V. FHT| <0,
i=1
2T ; 2T i ~
where p; = # and Z = Zivzl e#. Therefore, we can get that F'* is concave and when
|Iz|l < p, its local minima can only be attained at the boundary ||z|| = p. O

A.6 PROOF OF THEOREM[2]

Theorem 4. Let the energy function E; = E(z, h;) take the parameterized elastic potential form
in the h-th subspace, that is,

1
FEg,(z,h;) = §|\W1,hz — Wa nhil?,
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where Wy 5, Wy ), € Réxd gnd @, = {W1,1, Wa } denotes the parameters. Then the average
Helmholtz free energy can be formalized as

H N 2
Wy 2= Wa bl
F*=—— ZTlogZe_%
h=1 i=1
Assuming that ||W1 pz|| = ||[Wanhil| = pforalli € [N],h € [H], the forward inference of

the multi-head attention defined in Eq ([1) can be modeled as one gradient descent step for min-
imizing F'* with the learning rate n when setting Wg;,hWK,h = WEhWZh and Wo 1, Wy, =

WL, Wa, forall h € [H].

Proof. Using the assumption that |[W; pz|| = |Wa rh;|| = p forall i € [N], h € [H], we have

||W11h,z—W2YhhiH2

1 N
F*:—ﬁZTlogZ(f# =F*" +p?, (19)

= 1 —H N ZTWinWanhi . .
where F* = —5 37" Tlog) ;" e T . We can take the derivative of F' with respect

to z to obtain
TW1 " Wa nhi/T

V.F*=V.F* = Z Z —Whlv, (20)

=11=1
where Z;, = Zjvzl ¢ WiiWanhi/T Then, given an initial value 2(%), we can apply gradient
descent to minimize the objective F*. Suppose the learning rate is 7, the iteration is given by

)W, W ki /T
2D = 20 Vo F* =20 4 ZZ 7

W1 WWaprh;.  (21)

Zn H
h=1i=1

Comparing with Eq , we can set W, Wy ), = WgﬁhWK,h and Wo , Wy, = %W&hWK,h

forh =1,...,H. Then, we will have Z; = Z, and the above equation can be reformulated as

(k+1) (R)y = (k) e WanWicnhi/T

) = MHA Wo nWy b 22
z (z —l—;; Z o.nWvrh, (22)
which has the same form as Eq (TT). Thus, we complete our proof. O

A.7 PROOF OF LEMMA

Lemma 5. Both the Helmholtz free energy F* with respect to z and its upper bound F* are non-

convex. Assume |W1 ,z|| < pand |Wa rh;|| < pforalli € [N]and h € [H). The local minima of

F* are attained at the boundary ||z|| = p or when Zthl Zf\il pi,hWEh (Wi hz— Wy h;) =0
1 HW1,}LZ*W2,hhi,H2 N _HW1,;LZ*W2,}L’H:”2

where p; , = z€ 2T and Z;, = Zi:l e 2T . In addition, the local

minima of F* are attained at the boundary || z|| = p.

. " 1 H N Wy pz=Wy ph 2 L
Proof. Recalling that F* = —% > ","  T'log) ;" e 2T . We compute the derivative
of F'* with respect to z as

H N
1
:Eg E Zhwlh Wlhz_Wth>
h=1i=1

Wy p2=Wy bl N Wy pz=Ws jhill? . .
where p; ;, = Zlh e~ 2T and Z;, = ZZ 1€ 2T . Since the attention heads

are 1ndependent of each other, the proof for each head is similar to that of Lemma[2] We denote
Tih = W1 h (W1 2z — Wa 3 h;) and to compute the Hessian matrix, we first calculate

1 1
VaDih = —=Di,nTin + sz‘,h ij,hrj,h-

T

18
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Then the Hessian matrix of F'* with respect to z is

VﬁF*:iZ Zrzh pzhzh-i- pzth],hr]h +W1hW1h

H
h=1 Jj=1
1 H
Ez [Wl hWIh_i <szhrzhrzh (v Fh)(v Fh) >]7
=1
>0 =0

where I} is the Helmholtz free energy in the h-th subspace and V. F}y = Zf;l Pi,nTi k- There-
fore, we obtain that F™* is neither convex nor concave and when ||z|| < p, its local minima
can only be attained at the boundary ||z|| = p or at interior points where V,F* = 0, that is,

Zthl Zf\il pin (Wi nz — Wy uh;) = 0. Similarly, we can obtain the Hessian matrix of F* as

T
5 = - .
V2t = Z Zpl wriartn = (V2B (V=Fr) | =0,
h 1 Li=1
2Twl wy phy/T 2w, wy yh; ~
where p; ;, = % and Z;, = va 1€ e . Therefore, we can get that F™* is
concave and when ||z|| < p, its local minima can only be attained at the boundary ||z|| = p. O

A.8 DETAILED DESIGN OF MHAtten2nd AND MHAtten2nd-1st

As in the single-head case, we extend the Newton’s method-inspired modification of the attention
structure to the multi-head setting. The update rule derived from the first-order gradient descent
method for F'* is

H N
* n
LR+ — (k) _ NV 0 F" = 2(F) _ Vi }Z:l ;pi,hwlT,h (Wi nz — Wa h;), 23)

W) 2= Wp il . .
where p; j, = Z%e‘ 2T . The basic form using Newton’s method based on second-order

gradients is
-1 *
20 = 20— [V2, F*] 7 Vo F7, (24)
where [Vi o F*] ! is the Hessian matrix at z(*). We denote the Helmholtz free energy in the h-th

subspace as Fy = —T'log vazl Zp, and then F* = %F;{ Instead of applying Newton’s method
directly to F'*, we apply it independently to each subspace F}', which can be formalized as

X -1 *
Z(k+1) k Z z(k)Fh Vz(th (25)

Considering the analogous roles of W1 nWoa p and WQA W Wk, in Theorem we use the notation

qn = Wiz, ki, = Wy ph; and ky, = Zfil Di,h Wa rh;. Then the Hessian matrix of F}’ can be
formulated as

ViFy =W,

N
1 _ _
I— =3 pin (kin — k) (ki kh)T] Wi, (26)

=1

Note that due to W, j, € R# %%, the Hessian matrix V2 F; € R?*is non-invertible. Therefore, we

employ the range-space approach in Newton’s method, or equivalently, use the pseudomverseﬂ of
the Hessian, i.e.,

N —1
_ _ 1
(ViFy] L Wi, (Wi aWiy) 1 [1_ fE :pi’hdi’hdzhl Wi p, 27)
=1

“Here we use (WTC’W)T =wT (WWT)71 C'W when W € R™*™ and m < n.
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where we use d;;, = ki — k;, for simplicity. Furthermore, by parameterize W1 j,, Ws ), as
Wo.n, Wk, the Atten2nd(z) can be extended as

MHA2nd(z) = z + *th an — kn),

1 (23)
P = WS, (WouWg,) ™ I—lz ndindl, | Won W,
Q,h Q.rYWQh T Pi,n@i h@; p, Q.rYWQ.h
=1

Below, we first consider the computational cost for a single head. The cost to compute q;, — ky,
and all d; 3, is O(% + d—HQ) It should be noted that WQ,hW& ,, and its inverse only need to be
pre-computed once and therefore the cost can be ignored when generating a large number of tokens.
The cost of computing the outer products of N vectors and the inverse are O(N 1‘3—22 + g—i) And
performing the remaining matrix multiplications need O(I% + %) Thus the total cost for one head
is O(NI‘_iI—Z2 + fg + Hs) Considering there are H heads, the final cost is O(Nd4& + d* + d®%).
Compared with O(Nd + d?) of standard attention, this incurs a higher computational cost.

To reduce the computational cost, as in the previous case, we replace the matrix inversion with the
first-order Taylor expansion, which can be formalized as

H
n -
MHA2nd1st(2) = 2 + hE:l P, (qn — kn) ,

N (29)
P =Wg, (WoWg,) ' |1+ %Zpi}hdmdzh WoWa .

i=1

In fact, this can be further simplified as
H
MHA2nd1st(z % S W&, [(an —kn) +bi]
;;: (30)

b = (WonWd 1) sz nin (AL, Wo W 1 (an — kn)] -

In this case, the cost to compute g5, — ky, and all d; p, is still O(% + %) However, computing by,
only needs O(%2 + Nﬁd + 1‘3—22) by prioritizing the computation of inner products between vectors.
Finally, the remaining cost of matrix multiplication is O(%). Therefore, the cost for each head is
O(% + %) and the total cost for H heads is O(Nd + d?), which is of the same order as standard
attention.

In practice, to avoid additionally computing and storing d; 5, we adopt the following form.

MHA2nd1st(z) = z + — Z W&, [(an — kn) +ba]
h 1
N
11 o (31)
by = (WonW4 ) T Zpi,hki,h (k] yun) — ki (K wn)
i=1
up = WQ,th,h (qn — k)
In practice, we also introduce new parameters Wo € R4¥% to replace %Wg 5, to make the model
more flexible. Moreover, to maintain stability, we set the temperature 7" in the attention score p; ,

as a head-wise learnable parameter with initialization as dj, and the temperature in by, is treated in
the same way.
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A.9 MORE DETAILS OF EXPERIMENTS

‘We mainly follow the setup of|[Feng et al.|(2024);|Yang et al.[(2024a)). For the LIS task, we investigate
different task lengths L = {10, 20, 30,40} which denotes the length of the input sequence to solve.
For each problem size, the training and test sets were generated independently with sizes of 51,200
and 5,120 respectively. We uniformly set the batch size to 128. The model dimensions is selected
from d = {32, 64,128,256} and the number of layers is set to 3 by default for all models. We use
a fixed dropout ratio of 0.1 for all experiments to improve generalization. For positional encoding,
we use the absolute positional encoding as in|Vaswani et al.[(2017). All models are trained for 300
epochs using AdamW (Loshchilov] with with 8; = 0.9, 82 = 0.999, Ir = 1le — 4 and weight
decay of 0.01. During training, the model is optimized using cross-entropy loss on the answer
tokens, while a greedy decoding strategy is employed during testing. For the results presented in the
form of heat maps, we report the average test accuracy over the last five epochs as the final accuracy.
Furthermore, our experiments were conducted on four 24GB NVIDIA GeForce RTX 3090 GPUs
and can be completed within two days.

For more experimental results, we present Figure [2]the test accuracy under different task difficulties
and model sizes under the attention-only configuration and the configuration incorporating MLP. In
Figures [3|and [ we show the test accuracy of MHA(-only) and MHA2nd1st(-only) during training.

Accuracy of MHA on LIS Accuracy of MHA2nd1st on LIS

Accuracy of MHA-only on LIS Accuracy of MHA2nd1st-only on LIS 100

085

030 030

028

028
0

20 30 g 30 2 30 2 30
length length length length

Figure 2: Test accuracy on LIS tasks across different task lengths and model sizes. Left part: The
accuracy of MHA-only and MHA2nd1st-only. Right part: The accuracy of MHA and MHA2nd1st.
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Figure 3: Test accuracy on LIS tasks of MHA-only and MHA2nd1st-only during training when the
task length L = {10, 20, 30,40} and the model dimension d = 32/256.
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Figure 4: Test accuracy on LIS tasks of MHA and MHA2nd1st during training when the task length
L = {10, 20, 30,40} and the model dimension d = 32/256.
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