

000 001 002 003 004 005 006 007 008 009 010 TRANSFORMERS AS INTRINSIC OPTIMIZERS: FOR- WARD INFERENCE THROUGH THE ENERGY PRINCIPLE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Transformers have demonstrated strong adaptability across a wide range of tasks
 012 and become the backbone of modern Large Language Models (LLMs). However,
 013 their underlying mechanisms remain open for further exploration. The energy-
 014 based perspective has long provided a valuable principle for understanding neural
 015 computation. In this paper, we revisit the energy principle as a framework for un-
 016 derstanding attention-based Transformers. Within the proposed framework, stan-
 017 dard attention can be viewed as a special case of minimizing the Helmholtz free
 018 energy when the energy function takes the form of elastic potential energy, with
 019 residual connections ensuring that this optimization proceeds in an incremental
 020 manner. Building on this connection, we incorporate the forward pass and pa-
 021 rameter updates during model training into a unified alternating optimization per-
 022 spective where parameter updates follow conventional training objectives while
 023 the model architecture is responsible for locally optimizing on the energy-based
 024 regularization. Furthermore, we extend the first-order energy update of standard
 025 attention to a second-order form based on Newton’s method, which ultimately
 026 introduces a covariance matrix to precondition the update directions of tokens.
 027 Meanwhile, we extend the above analysis to the multi-head case, where energy
 028 minimization is performed across multiple low-dimensional subspaces. Our ex-
 029 periments provide preliminary support for the potential of using the energy-based
 030 framework to design attention mechanisms.

1 INTRODUCTION

031 Energy-based formulations have long underpinned theories of neural computation and the modeling
 032 of neural networks (Hopfield, 1982; Ackley et al., 1985; LeCun et al., 2006). One of the most influ-
 033 ential works applying the concept of energy to pattern recognition is Associative Memory models,
 034 also known as Hopfield Networks Hopfield (1982; 1984), which implement associative memory by
 035 defining an energy function over neuron states. Modern Hopfield Networks have been largely en-
 036 hanced to achieve greater storage capacity through the design of new energy functions (Krotov &
 037 Hopfield, 2016; Ramsauer et al., 2020; Krotov, 2023). Additionally, based on the energy concept,
 038 LeCun et al. (2006) propose Energy-Based Models (EBMs) as a unifying framework for learning,
 039 where the training objective is to assign low energy to plausible configurations of variables and high
 040 energy to implausible ones. In fact, many modern self-supervised learning (SSL) methods can be
 041 naturally interpreted within this framework (Chen et al., 2020; He et al., 2020; LeCun, 2022; Glad-
 042 stone et al., 2025). The energy-based perspective has demonstrated great appeal in the development
 043 of deep neural networks.

045 On the other hand, in recent years, with the development of the SSL paradigm, pretrained large lan-
 046 guage models (LLMs) have achieved remarkable success across various areas (Kenton & Toutanova,
 047 2019; Brown et al., 2020). This success is not only attributed to these effective paradigms such as
 048 autoregressive training but also relies on the Transformer-based architecture as the foundational
 049 backbone (Vaswani et al., 2017). Therefore, many studies have begun to explore the theoretical
 050 mechanisms underlying the Transformer architecture, with a popular approach being to connect the
 051 model architecture to unrolled optimization (Gregor & LeCun, 2010; Tolooshams & Ba, 2021; Chan
 052 et al., 2022; Hinton, 2022). Zhou et al. (2022) explained that stacked self-attention modules can
 053 promote grouping and noise filtering using the information bottleneck principle. Yu et al. (2024b)
 showed that Transformer-like deep network layers can naturally be connected to an optimization

process aimed at sparse rate reduction. Wang et al. (2025b) pointed out that compressing noisy token representations and the corresponding denoising operations can naturally give rise to the form of multi-head self-attention. Actor et al. (2025) showed that optimizing latent features in multinomial regression align with dynamics induced by the attention blocks.

In addition to above explanations, some works have also attempted to establish a connection between energy-based principles and Transformers. For example, Ramsauer et al. (2020) proposed a modern Hopfield network whose energy objective corresponds to an update rule that takes a form similar to the attention mechanism in Transformers. Furthermore, Hoover et al. (2023) proposed the Energy Transformer which integrates multi-head energy attention with a Hopfield Network module and demonstrated good empirical performance across various tasks. Although these studies establish certain connections between energy and Transformers, the design of energy functions is often not straightforward and lacks a unified framework to understand, which limits both our understanding of Transformers and the potential design of model architectures.

In this paper, we revisit the principle of energy to view attention-based Transformer models. Our work mainly follows the following line of presentation:

(i.) Energy Framework for Attention. We first present an energy framework to provide a principled understanding of attention-based models. Within this framework, standard attention emerges as a special case where the global energy F^* and the energy function E_i take the forms of Helmholtz free energy and elastic potential energy respectively. From this perspective, the forward inference of standard attention corresponds to performing first-order gradient descent (GD) to minimize the free energy, with residual connections ensuring that the update is carried out in an incremental manner.

(ii.) Unified Alternating Optimization Perspective. Building on this connection, we point out that both the forward computation and the parameter updates in Transformer training can be incorporated into a unified alternating optimization perspective: parameter updates follow the conventional training objectives, while the forward pass is responsible for local optimization of the regularization term which is determined by the model architecture itself and carried out in the form of free energy.

(iii.) Second-order Attention Updates. Furthermore, we propose that the attention structure can be modified based on this energy-based framework. Specifically, we extend the local energy descent that is originally based on first-order GD to a second-order form grounded in Newton's method and then employ a Taylor expansion approximation to reduce its computational cost to the same order as standard attention. Compared to standard attention, the induced new attention for uses the covariance matrix to precondition the original update directions, allowing tokens to adaptively adjust their movements along different dimensions.

(iv.) Extension to Multi-head Case. Meanwhile, we extend the above analysis to the multi-head attention case whose forward computation can be viewed as optimizing the average Helmholtz free energy across multiple low-dimensional manifolds. We also apply the second-order GD update to modify the multi-head attention and the resulting induced model is named MHA2nd1st, which also uses the covariance matrix to adjust the updates within each subspace. Our experiments offer preliminary support for the effectiveness of the newly induced attention structure.

2 HELMHOLTZ FREE ENERGY AS A PRINCIPLE FOR ATTENTION

2.1 CONNECTING ATTENTION WITH HELMHOLTZ FREE ENERGY

The attention mechanism in Transformers is designed to model the interactions between tokens. For a given input $\mathbf{z} \in \mathbb{R}^d$, we assume that the set of tokens¹ interacting with it is $\{\mathbf{h}_i\}_{i=1}^N \in \mathbb{R}^{d \times N}$. The output of the standard attention layer in the single-head case can be formalized as²

$$\text{Atten}(\mathbf{z}) = \mathbf{z} + \mathbf{W}_V \mathbf{H} \text{softmax}(\mathbf{H}^T \mathbf{W}_K^T \mathbf{W}_Q \mathbf{z}) = \mathbf{z} + \sum_{i=1}^N \frac{e^{\mathbf{z}^T \mathbf{W}_Q^T \mathbf{W}_K \mathbf{h}_i / T}}{Z'} \mathbf{W}_V \mathbf{h}_i, \quad (1)$$

¹Here we do not impose any restrictions on the attention setup. For example, in the causal setting (decoder), \mathbf{z} can be the token at position $N + 1$, that is, $\mathbf{z} = \mathbf{h}_{N+1}$, while $\{\mathbf{h}_i\}_{i=1}^N$ denotes the N preceding tokens; in the bidirectional setting (encoder), \mathbf{z} can be the token at any given position while $\{\mathbf{h}_i\}_{i=1}^N$ are remaining ones.

²Here, for simplicity of notation, we absorb the factor $1/\sqrt{d}$ into the parameters.

108 where $\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_N] \in \mathbb{R}^{d \times N}$, T is the temperature and $\mathbf{W}_V, \mathbf{W}_K, \mathbf{W}_Q \in \mathbb{R}^{d \times d}$ are
 109 learnable parameters. In addition, $Z' = \sum_{j=1}^N e^{\mathbf{z}^T \mathbf{W}_Q^T \mathbf{W}_K \mathbf{h}_j / T}$ is the normalizing term.
 110

111 To illustrate how the Transformer connects to the optimization objective of minimizing the
 112 Helmholtz free energy, we can first regard each token as a particle, with multiple particles together
 113 forming a system. We assume that there are already N particles within our system, and the position
 114 of the i -th particle in the system can be denoted by $\mathbf{h}_i \in \mathbb{R}^d$. We want to place a new particle into
 115 the system with its position denoted by $\mathbf{z} \in \mathbb{R}^d$ and the other particles will exert interactions on it
 116 thereby generating the potential energy. The energy exerted on the new particle by the i -th particle
 117 can be denoted as $E(\mathbf{z}, \mathbf{h}_i)$ and we also use E_i for simplification.
 118

119 We define the internal energy of the system (respect to \mathbf{z}) as $U = \sum_{i=1}^N p_i E_i$ where $p_i > 0$ is
 120 the assigned weight to the i -th particle and satisfies $\sum_{i=1}^N p_i = 1$. Furthermore, the entropy of the
 121 system can be represented as $S = -\sum_{i=1}^N p_i \log p_i$. The free energy of the system is the portion of
 122 its internal energy that is not consumed by disorder, that is,
 123

$$F = U - TS = \sum_{i=1}^N p_i E_i + T \cdot \sum_{i=1}^N p_i \log p_i, \quad (2)$$

124 where T is the temperature characterizing how much the internal energy is unavailable due to dis-
 125 order (entropy). We first show that when the weights p_i follow the Boltzmann distribution, the
 126 system's free energy will reach its minimum:
 127

128 **Lemma 1** (Helmholtz free energy). *Define the partition function as $Z = \sum_{i=1}^N e^{-E_i/T}$. The sys-
 129 tem's free energy defined by Eq (2) attains its minimum value*

$$F^* = -T \log Z = -T \log \sum_{i=1}^N e^{-E_i/T}, \quad (3)$$

130 when p_i satisfies the Boltzmann distribution, i.e., $p_i = \frac{e^{-E_i/T}}{Z}$.
 131

132 The proof can be seen in Appendix A.2. We next show that the forward inference of attention defined
 133 in Eq.(1) can be interpreted optimizing the Helmholtz free energy in a special case where the energy
 134 function takes the form of an elastic potential parameterized by \mathbf{W} and the particles mapped by \mathbf{W}
 135 are constrained to lie on a hypersphere.
 136

137 **Theorem 1.** *Let the energy function $E_i = E(\mathbf{z}, \mathbf{h}_i)$ take the parameterized elastic potential form,
 138 that is,*

$$E_{\mathbf{W}}(\mathbf{z}, \mathbf{h}_i) = \frac{1}{2} \|\mathbf{z} - \mathbf{W} \mathbf{h}_i\|^2,$$

139 where $\mathbf{W} \in \mathbb{R}^{d \times d}$ is the learnable parameter. Then the Helmholtz free energy can be formalized as
 140

$$F^* = -T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{z} - \mathbf{W} \mathbf{h}_i\|^2}{2T}}. \quad (4)$$

141 Assume that \mathbf{z} and all $\mathbf{W} \mathbf{h}_i$ lie on a hypersphere of radius ρ , that is, $\|\mathbf{z}\| = \|\mathbf{W} \mathbf{h}_i\| = \rho$ for all
 142 $i \in [N]$. Then the forward inference of the standard attention defined in Eq (1) can be modeled as
 143 one gradient descent step for minimizing F^* with the learning rate η when setting $\mathbf{W}_Q^T \mathbf{W}_K = \mathbf{W}$
 144 and $\mathbf{W}_V = \eta T \mathbf{W}$.
 145

146 *Proof.* Using the assumption that $\|\mathbf{z}\| = \|\mathbf{W} \mathbf{h}_i\| = \rho$ for all $i \in [N]$, we first have
 147

$$F^* = -T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{z} - \mathbf{W} \mathbf{h}_i\|^2}{2T}} = -T \log \sum_{i=1}^N e^{\frac{\mathbf{z}^T \mathbf{W} \mathbf{h}_i}{T}} + \rho^2 = \tilde{F}^* + \rho^2$$

148 where $\tilde{F}^* = -T \log \sum_{i=1}^N e^{\frac{\mathbf{z}^T \mathbf{W} \mathbf{h}_i}{T}}$. We can take the derivative of F^* with respect to \mathbf{z} to obtain
 149

$$\nabla_{\mathbf{z}} F^* = \nabla_{\mathbf{z}} \tilde{F}^* = -T \nabla_{\mathbf{z}} \log \sum_{i=1}^N e^{\frac{\mathbf{z}^T \mathbf{W} \mathbf{h}_i}{T}} = -T \sum_{i=1}^N \frac{e^{\frac{\mathbf{z}^T \mathbf{W} \mathbf{h}_i}{T}}}{Z} \mathbf{W} \mathbf{h}_i,$$

162 Table 1: Comparison of different attention forms under the energy-based framework.
163

165 Global Energy F^*	166 Energy function E_i	167 GD Form	168 Induced Attention
169 $-\frac{T}{2} \sum_i E_i^2$	170 $-\mathbf{z}^T \mathbf{W} \mathbf{h}_i$	171 First-order GD	Linear Attention
172 $-T \log \sum_i e^{-E_i/T}$	173 $\frac{1}{2} \ \mathbf{z} - \mathbf{W} \mathbf{h}_i\ ^2$ or $-\mathbf{z}^T \mathbf{W} \mathbf{h}_i$	174 First-order GD	Standard Attention
175 $-T \log \sum_i e^{-E_i/T}$	176 $\frac{1}{2} \ \mathbf{z} - \mathbf{W} \mathbf{h}_i\ ^2$ or $-\mathbf{z}^T \mathbf{W} \mathbf{h}_i$	177 Newton's Method	Atten2nd (Section 3)

178 where $Z = \sum_{j=1}^N e^{\mathbf{z}^T \mathbf{W} \mathbf{h}_j / T}$. Then, given an initial value $\mathbf{z}^{(0)}$, we can apply gradient descent to
179 minimize the objective F^* . Suppose the learning rate is η , the iteration is given by
180

$$181 \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \nabla_{\mathbf{z}^{(k)}} F^* = \mathbf{z}^{(k)} + \sum_{i=1}^N \frac{e^{(\mathbf{z}^{(k)})^T \mathbf{W} \mathbf{h}_i / T}}{Z} \eta T \mathbf{W} \mathbf{h}_i.$$

182 By comparing with Eq (1), we can rewrite the learnable \mathbf{W} as $\mathbf{W} = \mathbf{W}_Q^T \mathbf{W}_K$ and further set
183 $\eta T \mathbf{W} = \mathbf{W}_V$. Then, we will have $Z' = Z$ and the above equation can be reformulated as
184

$$185 \mathbf{z}^{(k+1)} = \text{Atten}(\mathbf{z}^{(k)}) = \mathbf{z}^{(k)} + \sum_{i=1}^N \frac{e^{(\mathbf{z}^{(k)})^T \mathbf{W}_Q^T \mathbf{W}_K \mathbf{h}_i / T}}{Z} \mathbf{W}_V \mathbf{h}_i,$$

186 which has the same form as the attention layer in Eq (1). Thus, we complete our proof. \square
187

188 Below, we discuss Theorem 1 from the following perspectives.
189

190 **(i.) Specific selection and constraint on the energy function.** First, we note that in Theorem 1, the
191 energy function takes a form similar to elastic potential energy $E_i = \frac{1}{2} k \Delta^2$ where $\Delta = \|\mathbf{z} - \mathbf{h}_i\|$
192 and the elastic constant $k = 1$, meaning that when a particle (token) \mathbf{z} deviates from the existing
193 \mathbf{h}_i , it will be pulled back toward the position of \mathbf{h}_i ³. Ultimately, when $\mathbf{z} = \mathbf{h}_i$, the new particle
194 \mathbf{z} will be in a stable state with minimal energy $E(\mathbf{z}, \mathbf{h}_i) = 0$. These pulling forces ensure that \mathbf{z}
195 maintains the semantic similarity with all existing tokens. Furthermore, to make the energy function
196 more flexible, we parameterize it as a learnable function, that is, $E_i = E_{\mathbf{W}}(\mathbf{z}, \mathbf{h}_i) = \frac{\|\mathbf{z} - \mathbf{W} \mathbf{h}_i\|^2}{2}$
197 where $\mathbf{W} \in \mathbb{R}^{d \times d}$ is the learnable parameters.

198 In addition, we also impose the constraint on the norms of \mathbf{z} and $\mathbf{W} \mathbf{h}_i$, requiring them to lie on
199 a hypersphere of fixed radius ρ . In practice, we often use techniques like LayerNorm (Ba et al.,
200 2016) or RMSNorm (Zhang & Sennrich, 2019) to allow more flexible adjustment of these norms.
201 When this constraint is relaxed so that \mathbf{z} and the projected \mathbf{h}_i lie within the sphere of radius ρ , we
202 will have $F^* \leq \tilde{F}^* + \rho^2$ and the forward inference of attention will optimize the upper bound \tilde{F}^*
203 instead of F^* directly. In fact, \tilde{F}^* can also be viewed as the Helmholtz free energy in the case where
204 $E_i = -\mathbf{z}^T \mathbf{W} \mathbf{h}_i$.

205 **(ii.) Extension to a more general Energy-based framework.** In fact, the above special case can be
206 extended to a more general energy-based framework, which is described in Table 1. This framework
207 consists of three key components: the global energy F^* , the energy function E_i , and the gradi-
208 ent descent (GD) algorithm applied. When different modifications are made to these components,
209 corresponding attention architectures will be naturally induced. For example, when F^* is taken in
210 a quadratic-sum form, we obtain the linear attention formulation (see Appendix A.3). This frame-
211 work not only provides insights into understanding existing attention mechanisms but also facilitates
212 the design of new variants. For example, when higher-order optimization methods (e.g., Newton's
213 method) are employed, novel attention forms will naturally emerge (see Section 3).

214 ³We also note that in this special chosen of E_i , each term (also called Boltzmann factor) in the partition
215 function takes the form of a radial basis function (RBF), that is, $\exp(-E_i/T) = \exp(-\|\mathbf{z} - \mathbf{h}_i\|^2/2T)$.
216 These terms are also approximated by the kernel mapping functions (Choromanski et al., 2020; Katharopoulos
217 et al., 2020), that is, $\exp(-\|\mathbf{z} - \mathbf{h}_i\|^2/2) = \phi(\mathbf{z})^T \phi(\mathbf{h}_i)$. Thus the free energy can also be written as
218 $F^* = -T \log \sum_i \phi(\mathbf{z})^T \phi(\mathbf{h}_i)$.

216 **Algorithm 1** Unification via Alternating Optimization: One Single Attention Layer
217
218 **Require:** Training dataset of size M : $\{\mathbf{H}_i, \mathbf{y}_i\}_{i=1}^M$, learning rate η , training epochs K
219 **Ensure:** Updated parameters $\widehat{\mathbf{W}}$, $\widehat{\mathbf{E}}$ and representations $\{\hat{\mathbf{z}}_i\}_{i=1}^M$
220 1: Initialize parameters $\mathbf{z}^0, \mathbf{E}^0, \mathbf{W}^0$
221 2: **for** each epoch $k = 0, \dots, K-1$ **do** *# Train for K epochs with batch size M*
222 3: **for** each sample $i = 0, \dots, M-1$ **do** *# Local GD on \mathbf{z} (equivalent to forward pass)*
223 4: $\mathbf{z}_i^{k+1} = \mathbf{z}_i^k - \eta \nabla_{\mathbf{z}} F^*(\mathbf{z}_i^k, \mathbf{W}^k) = \text{Atten}(\mathbf{z}_i^k)$
224 5: **end for**
225 6: $\mathbf{W}^{k+1} = \mathbf{W}^k - \frac{\eta}{M} \sum_{i=1}^M \nabla_{\mathbf{W}} F^*(\mathbf{z}_i^{k+1}, \mathbf{W}^k)$ *# Local GD on \mathbf{W} (backpropagation)*
226 7: $\mathbf{E}^{k+1} = \mathbf{E}^k - \frac{\eta}{M} \nabla_{\mathbf{E}} \sum_{i=1}^M \text{CE}((\mathbf{E}^k)^T \mathbf{z}_i^{k+1}, \mathbf{y}_i)$ *# Local GD on \mathbf{E} (backpropagation)*
227 8: **end for**
228 9: Update $\widehat{\mathbf{W}} = \mathbf{W}^K$, $\widehat{\mathbf{E}} = \mathbf{E}^K$ and $\hat{\mathbf{z}}_i = \mathbf{z}_i^K$ for $i = 1, \dots, M$
229 10: Return $\widehat{\mathbf{W}}, \widehat{\mathbf{E}}, \{\hat{\mathbf{z}}_i^{(K)}\}_{i=1}^M$

231
232 **(iii.) Residual connection and the incremental form of the update rule.** Theorem 1 shows that
233 given parameters \mathbf{W} and tokens $\{\mathbf{h}_i\}_{i=1}^N$, the forward computation of the attention layer can be
234 modeled as one GD step minimizing the Helmholtz free energy respect to \mathbf{z} , thereby reducing the energy
235 and driving \mathbf{z} toward a stable position in the semantic space. In this incremental iterative update
236 rule, the residual connection $\mathbf{z}^{(k)}$ serves as the current iterate (solution), the component computed
237 by the Softmax attention provides the search direction (update), and the final output $\mathbf{z}^{(k+1)}$ can be
238 viewed as the next iterate (solution).

239 **(iv.) Relation to Learnable Parameters in the Attention Layer.** It can be seen that the learnable
240 \mathbf{W} in the energy function are equivalent to $\mathbf{W}_Q^T \mathbf{W}_K$ in the attention layer, which are typically
241 learned during training to find an appropriate semantic space for computing the free energy. More-
242 over, it should be noted that in practical attention layers, the learnable \mathbf{W}_V is often not limited to
243 form $\mathbf{W}_V = \eta T \mathbf{W}_Q^T \mathbf{W}_K$ but is instead more flexible, enabling the discovery of a potential better
244 optimization path. In addition, multiple attention layers are also stacked with layer-wise parameter-
245 ization, allowing for further flexibility in learning.

2.2 UNIFYING FORWARD AND BACKWARD VIA ALTERNATING OPTIMIZATION

246 In fact, by incorporating Eq (4) as a regularization term into the training objective, the model’s
247 forward inference and backward propagation during training can be unified under the perspective
248 of alternating optimization. As a classification example, we consider a single attention layer where
249 the input is $\mathbf{H} = [\mathbf{h}_1, \dots, \mathbf{h}_N] \in \mathbb{R}^{d \times N}$ (e.g., embedded image patches)⁴ and \mathbf{z} serves as a special
250 classification token (e.g., [CLS]) to compute the final representation. The model’s final output is
251 typically projected via a projection head $\mathbf{E}^{d \times C}$ to obtain a logit matrix, which is then normalized
252 by the softmax function and used to compute the cross-entropy loss, that is,

$$\text{CE}(\mathbf{E}^T \mathbf{z}, \mathbf{y}) = - \sum_{c=1}^C (\mathbf{y})_c \log \frac{e^{(\mathbf{E}^T \mathbf{z})_c}}{\sum_{u=1}^C e^{(\mathbf{E}^T \mathbf{z})_u}}, \quad (5)$$

253 where C denotes the number of classes, $\mathbf{y} \in \mathbb{R}^C$ is the (soft) label vector and $(\mathbf{y})_c$ denotes the
254 probability of the c -th class. Then F^* as Eq (4) can be regarded as a regularization term on the
255 cross-entropy loss: optimizing \mathbf{z} in the regularization corresponds to the forward computation, while
256 optimizing the parameters corresponds to the backward propagation that updates the model. For-
257 mally, the overall objective can be written as

$$\min_{\mathbf{z}, \mathbf{W}, \mathbf{E}} \text{CE}(\mathbf{E}^T \mathbf{z}, \mathbf{y}) + F^*(\mathbf{z}, \mathbf{W}). \quad (6)$$

258 The process can be described by Algorithm 1, where we train the model with M samples for K
259 epochs. Within each epoch, the forward inference and backward update can be viewed as an alter-
260 nating optimization process over \mathbf{z} , \mathbf{W} and \mathbf{E} . More discussions can be seen in Appendix A.4.

261
262
263
264
265
266
267
268
269
⁴To avoid introducing unnecessary new notation, here we omit the update of the embedding layer.

270 **3 ENERGY-BASED REFINEMENTS OF ATTENTION**
 271

272 In Section 2.1, we show that in our proposed energy-based framework, different combinations of
 273 the three key components will naturally give rise to corresponding attention forms, which serves as
 274 guidance for us in designing potential attention models. A natural idea then arises: if the forward
 275 pass of standard attention can be modeled as optimizing the Helmholtz free energy, can we directly
 276 obtain the final solution as the token representation (i.e., $\mathbf{z}^* = \operatorname{argmin}_{\mathbf{z}} F^*$) instead of relying on
 277 such a structure that carries out incremental updates based on local gradient descent? Unfortunately,
 278 except in certain special cases (e.g., \mathbf{h}_i are symmetrically distributed), it is difficult to directly obtain
 279 a closed-form analytical solution for F^* or its upper bound \tilde{F}^* . We present Lemma 2 as follows.

280 **Lemma 2.** *Both the Helmholtz free energy F^* and its upper bound \tilde{F}^* are non-convex with re-
 281 spect to \mathbf{z} . Assume $\|\mathbf{z}\| \leq \rho$ and $\|\mathbf{W}\mathbf{h}_i\| \leq \rho$ for all $i \in [N]$. The local minima of F^* is
 282 attained at the boundary $\|\mathbf{z}\| = \rho$ or when $\mathbf{z} = \sum_{i=1}^N p_i \mathbf{W}\mathbf{h}_i$ where $p_i = \frac{1}{Z} e^{-\frac{\|\mathbf{z}-\mathbf{W}\mathbf{h}_i\|^2}{2T}}$ and
 283 $Z = \sum_{i=1}^N e^{-\frac{\|\mathbf{z}-\mathbf{W}\mathbf{h}_i\|^2}{2T}}$. In addition, the local minima of \tilde{F}^* is attained at the boundary $\|\mathbf{z}\| = \rho$.*

285 The proof of Lemma 2 is in Appendix A.5. The core is to show the Hessian matrix of F^* as

$$287 \quad \nabla_{\mathbf{z}}^2 F^* = \underbrace{\mathbf{I}}_{\succeq 0} - \frac{1}{T} \underbrace{\left[\sum_{i=1}^N p_i \mathbf{r}_i \mathbf{r}_i^T - (\nabla_{\mathbf{z}} F^*) (\nabla_{\mathbf{z}} F^*)^T \right]}_{\preceq 0}, \quad (7)$$

291 which is composed of a positive semidefinite identity matrix and a negative semidefinite term. There-
 292 fore, F^* is neither convex nor concave and its local minima can only occur at the boundary or at
 293 stationary points. Similarly, the Hessian of \tilde{F}^* contains only the negative semidefinite term, making
 294 it concave and ensuring that its local minima occur only on the boundary.

295 Although a closed-form solution is difficult to obtain directly in both cases, it is possible to obtain
 296 a better solution as the token representation by adopting more efficient GD algorithms within the
 297 energy-based framework, which in turn leads to improvements in the attention structure. As for F^* ,
 298 the update rule derived from the first-order GD is

$$299 \quad \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \nabla_{\mathbf{z}^{(k)}} F^* = (1 - \eta) \mathbf{z}^{(k)} + \eta \bar{\mathbf{h}}, \quad (8)$$

300 where $\bar{\mathbf{h}} = \sum_{i=1}^N p_i \mathbf{W}\mathbf{h}_i$ and $p_i = \frac{1}{Z} e^{-\frac{\|\mathbf{z}^{(k)}-\mathbf{W}\mathbf{h}_i\|^2}{2T}}$. This can be regarded as a first-order update
 301 with momentum. A simple and straightforward idea for employing a more efficient algorithm is
 302 to use Newton’s method, which leverages the second-order information from the Hessian matrix to
 303 accelerate convergence. This can be formulated as

$$305 \quad \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta [\nabla_{\mathbf{z}^{(k)}}^2 F^*]^{-1} \nabla_{\mathbf{z}^{(k)}} F^*,$$

307 where $\nabla_{\mathbf{z}^{(k)}}^2 F^*$ is the Hessian matrix at $\mathbf{z}^{(k)}$. In fact, using the notation $\mathbf{d}_i = \mathbf{W}\mathbf{h}_i - \bar{\mathbf{h}}$, we can
 308 rewrite the Hessian matrix in Eq (7) into a more concise form:

$$310 \quad \nabla_{\mathbf{z}}^2 F^* = \mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T. \quad (9)$$

312 Thus the final update rule can be formed as

$$314 \quad \text{Att2nd}(\mathbf{z}^{(k)}) = \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T \right]^{-1} (\mathbf{z}^{(k)} - \bar{\mathbf{h}}). \quad (10)$$

317 The Hessian matrix in Eq (9) is composed of a weighted covariance term and an identity matrix
 318 serving as regularization. Its inverse in Eq (10) provides a preconditioning for the first-order gra-
 319 dient, allowing adaptive updates along different dimensions. Corresponding to standard attention,
 320 we can also parameterize \mathbf{W} as $\mathbf{W}_Q^T \mathbf{W}_K$ in p_i while \mathbf{W} as \mathbf{W}_V in $\bar{\mathbf{h}}$ and \mathbf{d}_i to make the model
 321 more flexible⁵. We denote this modified attention layer as $\text{Att2nd}(\mathbf{z})$ as it is inspired by Newton’s
 322 method and uses the second-order GD information.

323 ⁵The parameterization method will change in the multi-head setting. Here we mainly emphasize how to
 324 derive the Newton-inspired modification for attention and outline ideas for reducing its cost.

Recalling that the standard attention incurs a computational cost of $O(d^2 + Nd)$ per inference step with the reuse of KV caches, the cost of computing $\bar{\mathbf{h}}$ and \mathbf{d}_i is also $O(d^2 + Nd)$. However, the inverse of the Hessian incurs a cost of $O(d^3)$ which is often impractical in practice⁶. To further reduce the cost, we approximate the inverse using its Taylor expansion, that is,

$$\left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T \right]^{-1} \approx \mathbf{I} + \frac{1}{T} \sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T + \frac{1}{T^2} \left(\sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T \right)^2 + \dots$$

Here, we retain only the first-order term and the approximated update rule can be reformulated as

$$\text{Att2nd1st}(\mathbf{z}^{(k)}) = \mathbf{z}^{(k+1)} = (1 - \eta) \mathbf{z}^{(k)} + \eta \bar{\mathbf{h}} - \frac{\eta}{T} \sum_{i=1}^N p_i \mathbf{d}_i \mathbf{d}_i^T (\mathbf{z}^{(k)} - \bar{\mathbf{h}}).$$

Compared with Eq (8), the above rule adds a term that adjusts the update using weighted covariance information. By prioritizing the computation of $\mathbf{d}_i^T (\mathbf{z}^{(k)} - \bar{\mathbf{h}})$ to avoid matrix–vector multiplications, we can reduce the overall cost to $O(Nd + d^2)$, which is the same order as standard attention. We denote this structure as $\text{Att2nd1st}(\mathbf{z})$, which is inspired by Newton’s method while approximating the inverse using first-order Taylor expansion. Note that our discussion so far mainly focuses on the single-head case. In the next section, we will extend to the multi-head cases and present the final modified attention along with its parameterization, following a line of ideas very similar to the discussion above.

4 EXTENDING THE ENERGY PRINCIPLE TO THE MULTI-HEAD CASE

Now we extend the energy principle to the multi-head case. The multi-head attention layer with H heads can be formalized as

$$\text{MHA}(\mathbf{z}) = \mathbf{z} + \sum_{h=1}^H \sum_{i=1}^N \frac{e^{\mathbf{z}^T \mathbf{W}_{Q,h}^T \mathbf{W}_{K,h} \mathbf{h}_i / T}}{Z'_h} \mathbf{W}_{O,h} \mathbf{W}_{V,h} \mathbf{h}_i, \quad (11)$$

where $\mathbf{W}_{V,h}, \mathbf{W}_{K,h}, \mathbf{W}_{Q,h} \in \mathbb{R}^{d_h \times d}$ and $\mathbf{W}_{O,h} \in \mathbb{R}^{d \times d_h}$ are learnable parameters. In addition, we have $d_h = \frac{d}{H}$ for each head and $Z'_h = \sum_{j=1}^N e^{\mathbf{z}^T \mathbf{W}_{Q,h}^T \mathbf{W}_{K,h} \mathbf{h}_j / T}$ as normalizing terms. Conceptually, multi-head attention works by first projecting tokens into lower-dimensional subspaces to capture information independently and finally combining these representations back into the original d -dimensional space through the projection $\mathbf{W}_{O,h}$.

Similarly, by appropriately parameterizing $E(\mathbf{z}, \mathbf{h}_i)$, the energy arising from interactions between particles can also be modeled in H low-dimensional (semantic) spaces. We denote the parameterized energy between \mathbf{z} and \mathbf{h}_i in the h -th subspace as $E_{\theta_h}(\mathbf{z}, \mathbf{h}_i)$ where θ_h represents the parameters. Then the average Helmholtz free energy can be defined as

$$F^* = -\frac{1}{H} \sum_{h=1}^H T \log Z_h = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{E_{\theta_h}(\mathbf{z}, \mathbf{h}_i)}{T}},$$

where Z_h is the partition function for the h -th subspace. Here we reuse the symbols F^* for the sake of notational simplicity and consistency. Next, we show that the forward computation of the multi-head attention as defined in Eq (11), can be modeled as one step GD to minimize the above average Helmholtz free energy.

Theorem 2. *Let the energy function $E_i = E(\mathbf{z}, \mathbf{h}_i)$ take the parameterized elastic potential form in the h -th subspace, that is,*

$$E_{\theta_h}(\mathbf{z}, \mathbf{h}_i) = \frac{1}{2} \|\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i\|^2,$$

⁶Noting that the Hessian can be expressed as a sum of rank-1 perturbations, we can use the Sherman–Morrison–Woodbury formula to compute the inverse and the resulting cost is $O(Nd^2)$. This will provide savings when $N \ll d$, but overall, the cost is still higher than the standard attention.

378 where $\mathbf{W}_{1,h}, \mathbf{W}_{2,h} \in \mathbb{R}^{d_h \times d}$ and $\theta_h = \{\mathbf{W}_{1,h}, \mathbf{W}_{2,h}\}$ denotes the parameters. Then the average
 379 Helmholtz free energy can be formalized as
 380

$$381 \quad F^* = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i\|^2}{2T}}.$$

384 Assuming that $\|\mathbf{W}_{1,h} \mathbf{z}\| = \|\mathbf{W}_{2,h} \mathbf{h}_i\| = \rho$ for all $i \in [N], h \in [H]$, the forward inference of
 385 the multi-head attention defined in Eq (11) can be modeled as one gradient descent step for min-
 386 imizing F^* with the learning rate η when setting $\mathbf{W}_{Q,h}^T \mathbf{W}_{K,h} = \mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ and $\mathbf{W}_{O,h} \mathbf{W}_{V,h} =$
 387 $\frac{\eta T}{H} \mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ for all $h \in [H]$.
 388

389 The proof can be seen in Appendix A.6. It can be noticed that the energy function here still takes the
 390 form of elastic potential. However, unlike the original approach that only applies \mathbf{W} to \mathbf{h} , here we
 391 introduce $\mathbf{W}_{1,h}, \mathbf{W}_{2,h}$ to embed both \mathbf{z} and \mathbf{h}_i for the h -th space, allowing the energy computation
 392 to be carried out independently across each semantic subspace. In the multi-head setting, we still
 393 cannot obtain a closed-form convergence solution (see Lemma 5 in Appendix A.7).

394 As in the single-head case, we can also extend the Newton's method-inspired attention modification
 395 to the multi-head setting. We denote the Helmholtz free energy in the h -th subspace as $F_h^* =$
 396 $-T \log \sum_{i=1}^N Z_h$ and then $F^* = \frac{1}{H} F_h^*$. Instead of applying Newton's method directly to F^* , we
 397 apply it independently to each subspace F_h^* , which can be formalized as
 398

$$399 \quad \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \frac{\eta}{H} \sum_{h=1}^H \left[\nabla_{\mathbf{z}^{(k)}}^2 F_h^* \right]^{-1} \nabla_{\mathbf{z}^{(k)}} F_h^*$$

402 Considering the analogous roles of $\mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ and $\mathbf{W}_{Q,h}^T \mathbf{W}_{K,h}$ in Theorem 2, we use the notation
 403 $\mathbf{q}_h = \mathbf{W}_{1,h} \mathbf{z}$, $\mathbf{k}_{i,h} = \mathbf{W}_{2,h} \mathbf{h}_i$ and $\bar{\mathbf{k}}_h = \sum_{i=1}^N p_{i,h} \mathbf{W}_{2,h} \mathbf{h}_i$ where $p_{i,h} = \frac{1}{Z_h} e^{-\frac{\|\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i\|^2}{2T}}$.
 404 Then the Hessian matrix of F_h^* is
 405

$$406 \quad \nabla_{\mathbf{z}}^2 F_h^* = \mathbf{W}_{1,h}^T \left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_{i,h} (\mathbf{k}_{i,h} - \bar{\mathbf{k}}_h) (\mathbf{k}_{i,h} - \bar{\mathbf{k}}_h)^T \right] \mathbf{W}_{1,h}.$$

410 Note that due to $\mathbf{W}_{1,h} \in \mathbb{R}^{d_h \times d}$, the Hessian matrix $\nabla_{\mathbf{z}}^2 F_h^* \in \mathbb{R}^{d \times d}$ is non-invertible. Therefore,
 411 we need to employ the range-space approach⁷ to compute the inverse. Furthermore, to reduce the
 412 computational cost, we also approximate the inverse of the intermediate matrix using a first-order
 413 Taylor expansion. Finally, by parameterize $\mathbf{W}_{1,h}, \mathbf{W}_{2,h}$ as $\mathbf{W}_{Q,h}, \mathbf{W}_{K,h}$, the Att2nd1st(\mathbf{z}) can be
 414 extended as
 415

$$416 \quad \text{MHA2nd1st}(\mathbf{z}) = \mathbf{z} + \frac{\eta}{H} \sum_{h=1}^H \mathbf{W}_{Q,h}^T [(\mathbf{q}_h - \bar{\mathbf{k}}_h) + \mathbf{b}_h],$$

$$419 \quad \mathbf{b}_h = \frac{1}{T} (\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T)^{-1} \sum_{i=1}^N p_{i,h} \mathbf{d}_{i,h} [\mathbf{d}_{i,h}^T \mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T (\mathbf{q}_h - \bar{\mathbf{k}}_h)].$$

422 where $\mathbf{d}_{i,h} = \mathbf{k}_{i,h} - \bar{\mathbf{k}}_h$. We can see that the vector \mathbf{b}_h acts as a bias term, adjusting the update
 423 using variance information in the subspace. In practice, we introduce new parameters $\mathbf{W}_O \in \mathbb{R}^{d \times d_h}$
 424 to replace $\frac{\eta}{H} \mathbf{W}_{Q,h}^T$ to make the model more flexible. Moreover, to maintain stability, we set the
 425 temperature T in the attention score $p_{i,h}$ as a head-wise learnable parameter with initialization as
 426 d_h and the temperature in \mathbf{b}_h is treated in the same way. Compared with standard attention, the
 427 final structure keeps $\mathbf{W}_Q, \mathbf{W}_V, \mathbf{W}_O$ while removing the value mapping \mathbf{W}_V , thereby reducing the
 428 number of parameters by one quarter. Meanwhile, the total cost for H heads is $O(Nd + d^2)$, sharing
 429 the same asymptotic complexity as standard attention despite a larger constant factor. More details
 430 can be seen in Appendix A.8.

431 ⁷Here we use $(\mathbf{W}^T \mathbf{C} \mathbf{W})^\dagger = \mathbf{W}^T (\mathbf{W} \mathbf{W}^T)^{-1} \mathbf{C}^{-1} \mathbf{W}$ when $\mathbf{W} \in \mathbb{R}^{m \times n}$ and $m < n$.

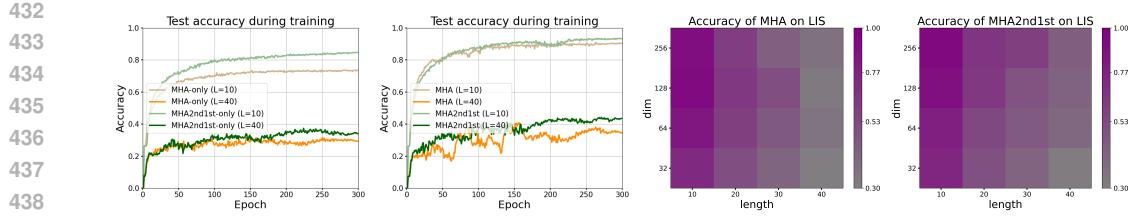


Figure 1: **Left Part:** Test accuracy during training when the task length $L = 10/40$ and model size $d = 256$: attention-only layers (leftmost) and alternating attention–FFN layers (center left). **Right Part:** Test accuracy of MHA and MHA2nd1st across different task lengths and model sizes.

5 EXPERIMENTS

Following the setup of Feng et al. (2024); Yang et al. (2024a), we evaluate the capability of the proposed attention structure in solving a classical dynamic programming (DP) problem—the Longest Increasing Subsequence (LIS) task. Given a sequence $s \in \mathbb{N}^L$ of length L , a sequence \tilde{s} is the subsequence of s if there exists an index set $1 \leq i_1 < i_2 < \dots < i_{|\tilde{s}|} \leq n$ such that $\tilde{s}_k = s_{i_k}$ for all $k \in [|\tilde{s}|]$. A subsequence \tilde{s} is called increasing if it satisfies that $\tilde{s}_1 < \tilde{s}_2 < \dots < \tilde{s}_{|\tilde{s}|}$. The goal of the LIS task is to predict the length of the longest increasing subsequence.

In our experiments⁸, we control the scale of the problem (i.e., the sequence length L) and the model size (i.e., the model dimension d) to investigate the model’s ability to solve the task. We use the standard Transformer model (Vaswani et al., 2017) and replaced the original multi-head attention layer (MHA) with the proposed MHA2nd1st. As mentioned in Section 4, since W_V is removed, the replaced attention layer reduces the number of parameters by 1/4. All models were trained from scratch using a draft model. During training, the model is optimized using cross-entropy loss on the answer tokens, while a greedy decoding strategy is employed during testing. More experimental and results details can be seen in Appendix A.9.

First, to more directly compare the original attention with our proposed one, we remove the Feed-Forward Network (FFN) layers from the Transformer and retain only the attention layers, labeled as MHA-only and MHA2nd1st-only respectively. We present the test accuracy during training in the leftmost panel of Figure 1. When the problem size is small, MHA2nd1st-only improves more rapidly and achieves higher accuracy. As the problem size increases, the accuracy of both models declines while MHA2nd1st-only still maintains the advantage. Furthermore, we retain the original FFN layers in the center-left part of Figure 1. It can be seen that adding FFN layers improves performance for both models under the same problem size, yet MHA2nd1st still outperforms the original MHA. In the right part of Figure 1, we further present the performance of the two models under different task lengths and model sizes. It can be seen that MHA2nd1st overall outperforms MHA, especially when the problem size is large. These results provide preliminary support that the modified attention structure derived from the energy-based framework has the potential to use fewer parameters to achieve performance that is comparable to or exceeds that of the original MHA.

6 CONCLUSION

In this work, we revisit the energy principle to understand attention-based Transformers. We propose an energy-based framework whose key components include the global energy F^* , the energy function E_i and the form of gradient descent to explain both attention structures. Within this framework, the forward inference of standard attention can be seen as a special case where F^* corresponds to the Helmholtz free energy, E_i takes the form of an elastic potential and first-order gradient descent is employed. Based on this connection, we note that the forward pass and parameter backpropagation can be unified under an alternating optimization perspective. Furthermore, inspired by Newton’s method, we extend the original first-order GD-based standard attention to a second-order form, which leverages covariance information to adjust the updates. Our experimental results provide preliminary support for the potential of our proposed attention structure.

⁸Code is anonymized at <https://anonymous.4open.science/r/energy-attn-A23C>

486
487
ETHICS STATEMENT488
489
490
491
492
The authors have read and adhered to the ICLR Code of Ethics. This work is primarily theoretical
and aims to understand attention based on the proposed energy-based framework. Our research does
not involve human subjects or the collection of new sensitive data. There may be some potential
societal consequences of our work, none of which we feel must be specifically highlighted here.493
494
REPRODUCIBILITY STATEMENT495
496
497
498
499
500
495
To ensure the reproducibility of our findings, we have made our resources publicly available. For the
theoretical contributions, we provide complete mathematical derivations and proofs for all theorems
and lemmas in Appendix A. For empirical results, all code used for the experiments presented in
this paper can be accessed through the anonymous GitHub repository linked in the Section 5. A
comprehensive description of the experimental setup is detailed in Appendix A.9. We believe these
resources provide the necessary details for the research community to verify our claims and build
upon our work.502
503
REFERENCES

- 504
-
- 505
-
- 506
-
- David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
-
- machines.
- Cognitive science*
- , 9(1):147–169, 1985.
-
- 507
-
- 508
-
- Jonas A Actor, Anthony Gruber, and Eric C Cyr. Interpreting transformer architectures as implicit
-
- multinomial regression.
- arXiv preprint arXiv:2509.04653*
- , 2025.
-
- 509
-
- 510
-
- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
- arXiv preprint*
-
- arXiv:1607.06450*
- , 2016.
-
- 511
-
- 512
-
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
-
- Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
-
- few-shot learners.
- Advances in neural information processing systems*
- , 33:1877–1901, 2020.
-
- 513
-
- 514
-
- 515
-
- Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet:
-
- 516
-
- 517
-
- A white-box deep network from the principle of maximizing rate reduction.
- Journal of machine*
-
- learning research*
- , 23(114):1–103, 2022.
-
- 518
-
- 519
-
- Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
-
- 520
-
- 521
-
- contrastive learning of visual representations. In
- International conference on machine learning*
- ,
-
- pp. 1597–1607. PMLR, 2020.
-
- 522
-
- 523
-
- Krzysztof Choromanski, Valerii Likhoshesterov, David Dohan, Xingyou Song, Andreea Gane, Tamas
-
- 524
-
- 525
-
- Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
-
- with performers.
- arXiv preprint arXiv:2009.14794*
- , 2020.
-
- 526
-
- 527
-
- Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
-
- generalization.
- arXiv preprint arXiv:2409.15647*
- , 2024.
-
- 528
-
- 529
-
- Guhaao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
-
- 530
-
- 531
-
- the mystery behind chain of thought: a theoretical perspective.
- Advances in Neural Information*
-
- Processing Systems*
- , 36, 2024.
-
- 532
-
- 533
-
- Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
-
- Bhavya Kailkhura, Abhinav Bhatale, and Tom Goldstein. Scaling up test-time compute with
-
- latent reasoning: A recurrent depth approach.
- arXiv preprint arXiv:2502.05171*
- , 2025.
-
- 534
-
- 535
-
- Alexi Gladstone, Ganesh Nanduru, Md Mofijul Islam, Peixuan Han, Hyeonjeong Ha, Aman Chadha,
-
- 536
-
- 537
-
- Yilun Du, Heng Ji, Jundong Li, and Tariq Iqbal. Energy-based transformers are scalable learners
-
- and thinkers.
- arXiv preprint arXiv:2507.02092*
- , 2025.
-
- 538
-
- 539
-
- Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
- Proceedings of*
-
- the 27th international conference on international conference on machine learning*
- , pp. 399–406,
-
- 2010.

- 540 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 541 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 542 *computer vision and pattern recognition*, pp. 9729–9738, 2020.
- 543
- 544 Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. *arXiv preprint*
 545 *arXiv:2212.13345*, 2(3):5, 2022.
- 546
- 547 Benjamin Hoover, Yuchen Liang, Bao Pham, Rameswar Panda, Hendrik Strobelt, Duen Horng
 548 Chau, Mohammed Zaki, and Dmitry Krotov. Energy transformer. *Advances in neural information*
 549 *processing systems*, 36:27532–27559, 2023.
- 550
- 551 John J Hopfield. Neural networks and physical systems with emergent collective computational
 552 abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.
- 553
- 554 John J Hopfield. Neurons with graded response have collective computational properties like those
 555 of two-state neurons. *Proceedings of the national academy of sciences*, 81(10):3088–3092, 1984.
- 556
- 557 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 558 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-*
 559 *chine learning*, pp. 5156–5165. PMLR, 2020.
- 560
- 561 Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
 562 bidirectional transformers for language understanding. In *Proceedings of naacl-HLT*, volume 1,
 563 pp. 2, 2019.
- 564
- 565 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
 566 2014.
- 567
- 568 Dmitry Krotov. A new frontier for hopfield networks. *Nature Reviews Physics*, 5(7):366–367, 2023.
- 569
- 570 Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. *Advances*
 571 *in neural information processing systems*, 29, 2016.
- 572
- 573 Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. *Open*
 574 *Review*, 62(1):1–62, 2022.
- 575
- 576 Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-
 577 based learning. *Predicting structured data*, 1(0), 2006.
- 578
- 579 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.
- 580
- 581 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 582 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 583 scaling. *arXiv preprint arXiv:2501.19393*, 2025.
- 584
- 585 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
 586 Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield
 587 networks is all you need. *arXiv preprint arXiv:2008.02217*, 2020.
- 588
- 589 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 590 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
- 591
- 592 Bahareh Tolooshams and Demba Ba. Stable and interpretable unrolled dictionary learning. *arXiv*
 593 *preprint arXiv:2106.00058*, 2021.
- 594
- 595 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 596 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 597 *tion processing systems*, 30, 2017.
- 598
- 599 Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maxi-
 600 milian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans,
 601 et al. Mesanet: Sequence modeling by locally optimal test-time training. *arXiv preprint*
 602 *arXiv:2506.05233*, 2025.

- 594 Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: a unifying framework for
 595 designing sequence models with associative memory. *arXiv preprint arXiv:2501.12352*, 2025a.
 596
- 597 Peng Wang, Yifu Lu, Yaodong Yu, Druv Pai, Qing Qu, and Yi Ma. Attention-only transformers via
 598 unrolled subspace denoising. *arXiv preprint arXiv:2506.03790*, 2025b.
 599
- 600 Kai Yang, Jan Ackermann, Zhenyu He, Guhao Feng, Bohang Zhang, Yunzhen Feng, Qiwei Ye,
 601 Di He, and Liwei Wang. Do efficient transformers really save computation? *arXiv preprint
 602 arXiv:2402.13934*, 2024a.
 603
- 604 Liu Yang, Kangwook Lee, Robert Nowak, and Dimitris Papailiopoulos. Looped transformers are
 605 better at learning learning algorithms. *arXiv preprint arXiv:2311.12424*, 2023.
 606
- 607 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 608 delta rule. *arXiv preprint arXiv:2412.06464*, 2024b.
 609
- 610 Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice,
 611 and Sanjiv Kumar. Orthogonal random features. *Advances in neural information processing
 612 systems*, 29, 2016.
- 613 Qifan Yu, Zhenyu He, Sijie Li, Xun Zhou, Jun Zhang, Jingjing Xu, and Di He. Enhancing auto-
 614 regressive chain-of-thought through loop-aligned reasoning. *arXiv preprint arXiv:2502.08482*,
 615 2025.
- 616 Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Hao Bai, Yuex-
 617 iang Zhai, Benjamin D Haeffele, and Yi Ma. White-box transformers via sparse rate reduction:
 618 Compression is all there is? *Journal of Machine Learning Research*, 25(300):1–128, 2024a.
 619
- 620 Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin Ha-
 621 effele, and Yi Ma. White-box transformers via sparse rate reduction. *Advances in Neural Infor-
 622 mation Processing Systems*, 36, 2024b.
 623
- 624 Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in neural infor-
 625 mation processing systems*, 32, 2019.
 626
- 627 Qiyuan Zhang, Fuyuan Lyu, Zexu Sun, Lei Wang, Weixu Zhang, Wenyue Hua, Haolun Wu, Zhihan
 628 Guo, Yufei Wang, Niklas Muennighoff, et al. A survey on test-time scaling in large language
 629 models: What, how, where, and how well? *arXiv preprint arXiv:2503.24235*, 2025.
 630
- 631 Daquan Zhou, Zhiding Yu, Enze Xie, Chaowei Xiao, Animashree Anandkumar, Jiashi Feng, and
 632 Jose M Alvarez. Understanding the robustness in vision transformers. In *International conference
 633 on machine learning*, pp. 27378–27394. PMLR, 2022.
 634
- 635
- 636
- 637
- 638
- 639
- 640
- 641
- 642
- 643
- 644
- 645
- 646
- 647

648
649

USE OF LARGE LANGUAGE MODELS

650
651
652
653
In line with the ICLR policy, we disclose that Large Language Models (LLMs) were used as a
general-purpose writing assistant during the preparation of this manuscript. The primary role of
LLMs was to aid in polishing the text, which included improving grammar, refining sentence struc-
ture for clarity, and checking for stylistic consistency.654
655

A APPENDIX

656
657

A.1 DISCUSSIONS ON RELATED WORK AND FUTURE DIRECTION

658
659
In this part, we discuss the related work and potential future directions in more detailed discussion.660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
Energy principle and Transformers: The concept of energy has long been used in deep neural
networks (Hopfield, 1982; 1984; Ackley et al., 1985; Krotov & Hopfield, 2016; LeCun et al., 2006;
LeCun, 2022). Previous work has also linked energy to the attention mechanism in Transformers
and the studies most relevant to ours are likely those by Ramsauer et al. (2020) and Hoover et al.
(2023). Ramsauer et al. (2020) proposed a new energy function for continuous-state Hopfield
networks and pointed out that this Hopfield update rule corresponds to the attention mechanism in the
Transformer. Hoover et al. (2023) also proposed the Multi-Head Energy Attention, whose dynamic
evolution includes the computational process of standard attention. In this work, we revisit the en-
ergy perspective to interpret the attention mechanism. However, unlike previous works, we extend
the interpretation of standard attention into a more general framework, which consists of three key
components: the Global Energy F^* , the Energy function E_i , and the Gradient Descent (GD) form.
We illustrate that standard attention is only a special case within this framework. For instance, by
altering the form of the energy, we can derive the formulation of linear attention (see Appendix
A.3)); and by extending the GD form from first-order to second-order gradient descent, we arrive at
the proposed MHA2nd1st. Furthermore, we note that Gladstone et al. (2025) employ energy-based
methods to train Transformers and their focus is more related to training paradigms. We believe this
is orthogonal to our work.676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
Unrolled Optimization and Model Architecture: Understanding and designing model architec-
tures from the perspective of unrolled optimization is a currently active area of research (Gregor
& LeCun, 2010; Tolooshams & Ba, 2021; Chan et al., 2022). Previous works have designed and
interpreted Transformer-like structures from various viewpoints, including sparse rate distortion (Yu
et al., 2024b;a), denoising (Wang et al., 2025b), information bottleneck (Zhou et al., 2022), multi-
nomial regression (Actor et al., 2025), etc. Unlike previous work, our approach starts from the
concept of energy to interpret the standard attention mechanism, and show that new structure can
be designed based on the proposed energy framework. We also note that some other studies focus
more on leveraging an optimization perspective to guide the design of more efficient model archi-
tectures (e.g., those with linear complexity with respect to sequence length) (von Oswald et al.,
2025; Yang et al., 2024b; Wang et al., 2025a). We believe that the energy-based framework holds
potential for designing more efficient attention structures in the future, possibly through the devel-
opment of novel energy functions or GD forms. Additionally, our proposed attention mechanism is
primarily inspired by Newton’s method. In fact, numerous first-order optimization algorithms (e.g.,
Adam (Kingma, 2014)) could also inspire further improvements to existing attention mechanisms.
Although we employed a first-order Taylor approximation to reduce the computational cost of the
Newton-inspired attention to the same order as standard attention, it still carries a larger constant
factor. We believe that other techniques, such as random feature methods (Yu et al., 2016; Choro-
manski et al., 2020), could be used to approximate the relevant operations, potentially achieving
even lower computational costs than standard attention.695
696
697
698
699
700
701
Test-time Scaling and Loop Transformers: Test-time scaling is a favored pathway to boost model
inference (Zhang et al., 2025; Snell et al., 2024; Muennighoff et al., 2025). Among these methods,
Loop Transformers output token representations through parameter-shared recurrent computations
and existing research demonstrates that this recurrent structure offers advantages in terms of per-
formance gains and capability generalization (Geiping et al., 2025; Fan et al., 2024; Yang et al.,
2023; Yu et al., 2025). As mentioned in Appendix A.4, unlike stacking attention layers with distinct
parameters, using parameter-shared recurrent computation aligns more closely with optimizing the
same energy function within a relatively stable semantic space. Therefore, we believe a promising

direction is to apply the attention mechanism induced by higher-order GD forms within Loop Transformers to enable more “efficient” representation learning. Additionally, enhancing the capacity of attention in a parameter-free manner, using approaches like MHA2nd1st, could represent another viable path for test-time scaling. Concurrently, increasing the computational overhead of attention without introducing extra parameters, following a paradigm like MHA2nd1st, may represent another potential path for test-time scaling.

A.2 PROOF OF LEMMA 1

Lemma 3 (Helmholtz free energy). *Define the partition function as $Z = \sum_{i=1}^N e^{-E_i/T}$. The system’s free energy defined by Eq (2) attains its minimum value*

$$F^* = -T \log Z = -T \sum_{i=1}^N e^{-E_i/T}, \quad (12)$$

when p_i satisfies the Boltzmann distribution, i.e., $p_i = \frac{e^{-E_i/T}}{Z}$.

Proof. The problem can be formed as

$$\min_{p_1, p_2, \dots, p_N} F = \sum_{i=1}^N p_i E_i + T \sum_{i=1}^N p_i \log p_i \quad \text{s.t.} \quad \sum_{i=1}^N p_i = 1.$$

We can use a Lagrange multiplier α for the equality constraint:

$$\mathcal{L} = \sum_{i=1}^N p_i E_i + T \sum_{i=1}^N p_i \log p_i - \alpha \left(\sum_{i=1}^N p_i - 1 \right).$$

Then, we can get the stationarity w.r.t. p_i as:

$$\frac{\partial \mathcal{L}}{\partial p_i} = E_i + T (\log p_i + 1) - \alpha = 0.$$

Thus, we have

$$p_i = e^{\alpha/T - 1} e^{-E_i/T} \Rightarrow p_i \propto e^{-E_i/T},$$

where α should scale $e^{-E_i/T}$ so that the constraint $\sum_{i=1}^N p_i = 1$ is satisfied. Therefore, we obtain $p_i = \frac{e^{-E_i/T}}{Z}$ where $Z = \sum_{i=1}^N e^{-E_i/T}$ is the partition function. Then, we have

$$F^* = \sum_{i=1}^N p_i E_i + T \sum_{i=1}^N p_i \log \frac{e^{-E_i/T}}{Z} = -T \log Z.$$

Finally, the minimizer is unique because F is convex on the simplex. Thus, we complete our proof. \square

A.3 LINEAR ATTENTION WITHIN THE ENERGY-BASED FRAMEWORK

For a given input $\mathbf{z} \in \mathbb{R}^d$, we assume that the set of tokens interacting with it is $\{\mathbf{h}_i\}_{i=1}^N \in \mathbb{R}^{d \times N}$. The linear attention can be formalized as

$$\text{LinearAtten}(\mathbf{z}) = \mathbf{z} + \sum_{i=1}^N (\mathbf{z}^T \mathbf{W}_Q^T \mathbf{W}_K \mathbf{h}_i) \mathbf{W}_V \mathbf{h}_i, \quad (13)$$

where $\mathbf{W}_Q, \mathbf{W}_K, \mathbf{W}_V \in \mathbb{R}^{d \times d}$ are learnable parameters for query, key and value projection. Compared to standard attention, it eliminates the need for the softmax operation on attention scores. The following theorem shows that when we alter the forms of the global energy F^* and the energy function E_i within the energy framework in Table 1, the forward inference of linear attention can still be viewed as minimizing F^* using first-order gradient descent.

756 **Theorem 3.** Let the energy function $E_i = E(\mathbf{z}, \mathbf{h}_i)$ take the parameterized inner product form, that
757 is,

$$758 \quad E_{\mathbf{W}}(\mathbf{z}, \mathbf{h}_i) = -\mathbf{z}^T \mathbf{W} \mathbf{h}_i,$$

759 where $\mathbf{W} \in \mathbb{R}^{d \times d}$ is the learnable parameter. Let the Global Energy F^* take the form of a sum of
760 squares, which can be formalized as
761

$$762 \quad F^* = -\frac{T}{2} \sum_{i=1}^N E_i^2 = -\frac{T}{2} (\mathbf{z}^T \mathbf{W} \mathbf{h}_i)^2. \quad (14)$$

765 Then the forward inference of linear attention in Eq (13) can be modeled as one gradient descent
766 step for minimizing F^* with the learning rate η when setting $\mathbf{W}_Q^T \mathbf{W}_K = \mathbf{W}$ and $\mathbf{W}_V = \eta T \mathbf{W}$.
767

768 *Proof.* We can take the derivative of F^* with respect to \mathbf{z} to obtain

$$769 \quad \nabla_{\mathbf{z}} F^* = -\sum_i^N \nabla_{\mathbf{z}} (\mathbf{z}^T \mathbf{W} \mathbf{h}_i)^2 = -\sum_{i=1}^N (\mathbf{z}^T \mathbf{W} \mathbf{h}_i) \mathbf{W} \mathbf{h}_i.$$

772 Then, given an initial value $\mathbf{z}^{(0)}$, we can apply gradient descent to minimize the objective F^* .
773 Suppose the learning rate is η , the iteration is given by
774

$$775 \quad \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \nabla_{\mathbf{z}^{(k)}} F^* = \mathbf{z}^{(k)} + \sum_{i=1}^N \left((\mathbf{z}^{(k)})^T \mathbf{W} \mathbf{h}_i \right) \eta T \mathbf{W} \mathbf{h}_i.$$

778 By comparing with Eq (13), we can rewrite the learnable \mathbf{W} as $\mathbf{W} = \mathbf{W}_Q^T \mathbf{W}_K$ and further set
779 $\eta T \mathbf{W} = \mathbf{W}_V$. Then, we will have
780

$$781 \quad \mathbf{z}^{(k+1)} = \text{LinearAtten}(\mathbf{z}^{(k)}) = \mathbf{z}^{(k)} + \sum_{i=1}^N \left((\mathbf{z}^{(k)})^T \mathbf{W}_Q^T \mathbf{W}_K \mathbf{h}_i \right) \mathbf{W}_V \mathbf{h}_i,$$

784 which has the same form as the linear attention layer in Eq (13). Thus, we complete our proof. \square
785

786 A.4 MORE DISCUSSIONS ON LOOP TRANSFORMERS

787 While attention layers are commonly stacked with varying parameters across layers, Loop Trans-
788 formers usually share parameters across iterations, helping preserve a relatively stable seman-
789 tic space. In this case, the forward loop computation can be modeled as alternately updating
790 $F^*(\mathbf{z}_i, \mathbf{H}, \mathbf{W})$ with respect to \mathbf{z}_i at each position, given the shared \mathbf{W} and the corresponding \mathbf{H}
791 composed of attended set. Taking causal attention as an example, for the i -th position, the attended
792 set typically consists of the preceding tokens $\mathbf{H}_{\leq i} = [\mathbf{h}_1, \dots, \mathbf{h}_i]$. Then the global objective is
793

$$794 \quad \min_{\mathbf{Z}, \mathbf{H}} \sum_{i=1}^N F^*(\mathbf{z}_i, \mathbf{H}_{\leq i}, \mathbf{W}) \quad \text{s.t. } \mathbf{Z} = \mathbf{H}, \quad (15)$$

797 where $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N] \in \mathbb{R}^{d \times N}$. The constraint ensures that after each iteration, the tokens used
798 in attended sets are aligned with the newly updated \mathbf{Z} . The iteration starts with the initialization
799 $\mathbf{z}_i^0 = \mathbf{h}_i^0 = \mathbf{h}_i$. The forward computation of a single-layer Loop Transformer with K iterations can
800 be equivalently viewed as performing K steps of gradient descent on each \mathbf{z} , which can be described
801 by Algorithm 2

802 **Unifying forward inference and backpropagation via alternating optimization.** In fact, by in-
803 corporating Eq (15) as a regularization term into the training objective, the model’s forward inference
804 and backward propagation can be unified under the perspective of alternating optimization. For ex-
805 ample, in autoregressive training, the model’s final output representations \mathbf{Z} are typically projected
806 onto the vocabulary to obtain a logit matrix, which is then normalized by the softmax function and
807 used to compute the cross-entropy loss, that is,

$$808 \quad \mathcal{L}(\mathbf{E}^T \mathbf{Z}, \mathbf{Y}) = -\sum_{i=1}^N \sum_{v=1}^V (\mathbf{y}_i)_v \log \frac{e^{(\mathbf{E}^T \mathbf{z}_i)_v}}{\sum_{u=1}^V e^{(\mathbf{E}^T \mathbf{z}_i)_u}}, \quad (16)$$

810 **Algorithm 2** The Forward Inference of One-Layer Loop Transformer

811 **Require:** Learned \mathbf{W} , Tokens $\{\mathbf{h}_i\}_{i=1}^N$, temperature T , learning rate η
 812 **Ensure:** Updated representation $\{\mathbf{z}_i^K\}_{i=1}^N$

813 1: Initialize $\mathbf{z}_i^0 = \mathbf{h}_i^0 = \mathbf{h}_i$ for $i = 1, \dots, N$
 814 2: **for** each iteration $k = 0, \dots, K - 1$ **do** *# K iterations of Loop Transformer*
 815 3: **for** each position $i = 1, \dots, N$ **do** *# Local GD on each \mathbf{z} (equivalent to forward pass)*
 816 4: Update $\mathbf{z}_i^{k+1} = \mathbf{z}_i^k - \eta \nabla_{\mathbf{z}_i^k} F^*(\mathbf{z}_i^k, \mathbf{H}_{\leq i}; \mathbf{W}) = \text{Atten}(\mathbf{z}_i^k)$
 817 5: **end for**
 818 6: Update $\mathbf{h}_i^{k+1} = \mathbf{z}_i^{k+1}$ for $i = 1, \dots, N$
 819 7: **end for**
 820 8: Return $\{\mathbf{z}_i^K\}_{i=1}^N$

822
 823
 824 where V is the vocabulary size, $\mathbf{E} \in \mathbb{R}^{d \times V}$ is the final projection matrix and $\mathbf{Y} = [\mathbf{y}_1, \dots, \mathbf{y}_N] \in \mathbb{R}^{V \times N}$ is the label matrix often composed of N one-hot vectors. We also call $\mathbf{E}^T \mathbf{Z} \in \mathbb{R}^{V \times N}$ as the unnormalized logit matrix. Eq (15) can be regarded as a regularization term on the autoregressive loss: optimizing the representations \mathbf{Z} in the regularization corresponds to the forward computation, while optimizing the parameters corresponds to the backward propagation that updates the model. Formally, the overall objective can be written as

825

$$\min_{\mathbf{Z}, \mathbf{H}, \mathbf{W}, \mathbf{E}} \mathcal{L}(\mathbf{E}^T \mathbf{Z}, \mathbf{Y}) + \sum_{i=1}^N F^*(\mathbf{z}_i, \mathbf{H}_{\leq i}; \mathbf{W}), \quad s.t. \quad \mathbf{Z} = \mathbf{H}, \quad (17)$$

826
 827
 828
 829

830 where \mathcal{L} is the cross-entropy loss as Eq 16. A single forward inference and backward update can be
 831 viewed as an alternating optimization process over \mathbf{Z} (or \mathbf{H}), \mathbf{W} , and \mathbf{E} , which can be described
 832 by Algorithm 3. In this way, the forward and backward processes can be unified as performing local
 833 GD on the regularized training loss, where the form of the regularization term is determined by the
 834 model architecture.

840 **Algorithm 3** Unification via Alternating Optimization: One-Layer Loop Transformer

841 **Require:** Tokens $\{\mathbf{h}_i\}_{i=1}^N$, temperature T , learning rate η
 842 **Ensure:** Updated representation $\{\mathbf{z}_i^K\}_{i=1}^N$, updated parameters $\widehat{\mathbf{W}}, \widehat{\mathbf{E}}$

843 1: Initialize parameters \mathbf{E}, \mathbf{W} and $\mathbf{z}_i^0 = \mathbf{h}_i^0 = \mathbf{h}_i$ for $i = 1, \dots, N$
 844 2: **for** each iteration $k = 0, \dots, K - 1$ **do** *# K iterations of Loop Transformer*
 845 3: **for** each position $i = 1, \dots, N$ **do** *# Local GD on \mathbf{z} (equivalent to forward pass)*
 846 4: Update $\mathbf{z}_i^{k+1} = \mathbf{z}_i^k - \eta_k \nabla_{\mathbf{z}_i^k} F^*(\mathbf{z}_i^k, \mathbf{H}_{\leq i}; \mathbf{W}) = \text{Atten}(\mathbf{z}_i^k)$
 847 5: **end for**
 848 6: Update $\mathbf{h}_i^{k+1} = \mathbf{z}_i^{k+1}$ for $i = 1, \dots, N$
 849 7: **end for**
 850 8: Update $\widehat{\mathbf{W}} = \mathbf{W} - \eta \nabla_{\mathbf{W}} F^*(\mathbf{z}_i^k, \mathbf{H}_{\leq i}; \mathbf{W})$ *# Local GD on \mathbf{W} (backpropagation)*
 851 9: Update $\widehat{\mathbf{E}} = \mathbf{E} - \eta \nabla_{\mathbf{E}} \mathcal{L}(\mathbf{E}^T \mathbf{Z}^K, \mathbf{Y})$ *# Local GD on \mathbf{E} (backpropagation)*
 852 10: Return $\widehat{\mathbf{W}}, \widehat{\mathbf{E}}, \{\mathbf{z}_i^K\}_{i=1}^N$

855
 856
 857
 858 A.5 PROOF OF LEMMA 2
 859

860 **Lemma 4.** Both the Helmholtz free energy F^* with respect to \mathbf{z} and its upper bound \tilde{F}^* are non-
 861 convex. Assume $\|\mathbf{z}\| \leq \rho$ and $\|\mathbf{W}\mathbf{h}_i\| \leq \rho$ for all $i \in [N]$. The local minima of F^* is at-
 862 tained at the boundary $\|\mathbf{z}\| = \rho$ or when $\mathbf{z} = \sum_{i=1}^N p_i \mathbf{W}\mathbf{h}_i$ where $p_i = \frac{1}{Z} e^{-\frac{\|\mathbf{z} - \mathbf{W}\mathbf{h}_i\|^2}{2T}}$ and
 863 $Z = \sum_{i=1}^N e^{-\frac{\|\mathbf{z} - \mathbf{W}\mathbf{h}_i\|^2}{2T}}$. In addition, the local minima of \tilde{F}^* is attained at the boundary $\|\mathbf{z}\| = \rho$.

864 *Proof.* Recalling that $F^* = -T \log \sum_{i=1}^N e^{-\frac{\|z - Wh_i\|^2}{2T}}$. We can compute the derivative of F^* with
 865 respect to z as
 866

$$867 \quad \nabla_z F^* = -T \nabla_z \log \sum_{i=1}^N e^{-\frac{\|z - Wh_i\|^2}{2T}} = \sum_{i=1}^N p_i (z - Wh_i),$$

870 where $p_i = \frac{1}{Z} e^{-\frac{\|z - Wh_i\|^2}{2T}}$ and $Z = \sum_{i=1}^N e^{-\frac{\|z - Wh_i\|^2}{2T}}$. For notational simplicity, we denote
 871 $r_i = z - Wh_i$. To compute the Hessian matrix, we first calculate
 872

$$873 \quad \nabla_z p_i = \nabla_z \frac{e^{-\frac{\|r_i\|^2}{2T}}}{Z} = \frac{-\frac{1}{T} r_i e^{-\frac{\|r_i\|^2}{2T}} Z - e^{-\frac{\|r_i\|^2}{2T}} \sum_{j=1}^N e^{-\frac{\|r_j\|^2}{2T}} (-\frac{r_j}{T})}{Z^2}$$

$$874 \quad = -\frac{1}{T} p_i r_i + \frac{1}{T} p_i \sum_{j=1}^N p_j r_j$$

875 Therefore, the Hessian matrix of F^* with respect to z is
 876

$$877 \quad \nabla_z^2 F^* = \sum_{i=1}^N r_i \left(-\frac{1}{T} p_i r_i^T + \frac{1}{T} p_i \sum_{j=1}^N p_j r_j^T \right) + I = I - \frac{1}{T} \sum_{i=1}^N p_i r_i r_i^T + \frac{1}{T} \sum_{i=1}^N p_i r_i \sum_{j=1}^N p_j r_j^T$$

$$878 \quad = I - \frac{1}{T} \left[\sum_{i=1}^N p_i r_i r_i^T - (\nabla_z F^*) (\nabla_z F^*)^T \right].$$

879 Furthermore, for any $v \in \mathbb{R}^d$, we have
 880

$$881 \quad v^T \nabla_z^2 F^* v = \|v\|^2 - \frac{1}{T} \left[\sum_{i=1}^N p_i v_i^T r_i r_i^T v_i - (v^T \nabla_z F^*) (v^T F^*)^T \right] \quad (18)$$

882 Let $X_i = r_i^T v$ and define a random variable X such that $P(X = X_i) = p_i$. Then for the second
 883 term in Eq (18), we have
 884

$$885 \quad -\frac{1}{T} \left[\sum_{i=1}^N p_i \|r_i^T v\|^2 - \left(\sum_{i=1}^N p_i r_i^T v \right)^2 \right] = -\frac{1}{T} [\mathbb{E}(X_i^2) - \mathbb{E}^2(X_i)] = -\frac{1}{T} \text{Var}(X) \leq 0.$$

886 Considering that the identity matrix is positive semi-definite, we obtain
 887

$$888 \quad \nabla_z^2 F^* = I - \underbrace{\frac{1}{T} \left[\sum_{i=1}^N p_i r_i r_i^T - (\nabla_z F^*) (\nabla_z F^*)^T \right]}_{\succeq 0} \underbrace{\succeq 0}_{\preceq 0}.$$

889 Therefore, we obtain that F^* is neither convex nor concave and when $\|z\| \leq \rho$, its local minima
 890 can only be attained at the boundary $\|z\| = \rho$ or at interior points where $\nabla_z F^* = 0$, that is,
 891 $z = \sum_{i=1}^N p_i Wh_i$.
 892

893 Similarly, we can obtain the Hessian matrix of \tilde{F}^* as
 894

$$895 \quad \nabla_z^2 \tilde{F}^* = -\frac{1}{T} \left[\sum_{i=1}^N p_i (Wh_i) (Wh_i)^T - (\nabla_z \tilde{F}^*) (\nabla_z \tilde{F}^*)^T \right] \preceq 0,$$

896 where $p_i = \frac{e^{z^T Wh_i/T}}{Z}$ and $Z = \sum_{i=1}^N e^{\frac{z^T Wh_i}{T}}$. Therefore, we can get that \tilde{F}^* is concave and when
 897 $\|z\| \leq \rho$, its local minima can only be attained at the boundary $\|z\| = \rho$. \square
 898

913 A.6 PROOF OF THEOREM 2

914 **Theorem 4.** *Let the energy function $E_i = E(z, h_i)$ take the parameterized elastic potential form
 915 in the h -th subspace, that is,*

$$916 \quad E_{\theta_h}(z, h_i) = \frac{1}{2} \|W_{1,h}z - W_{2,h}h_i\|^2,$$

918 where $\mathbf{W}_{1,h}, \mathbf{W}_{2,h} \in \mathbb{R}^{d_h \times d}$ and $\boldsymbol{\theta}_h = \{\mathbf{W}_{1,h}, \mathbf{W}_{2,h}\}$ denotes the parameters. Then the average
919 Helmholtz free energy can be formalized as
920

$$921 \quad F^* = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}.$$

924 Assuming that $\|\mathbf{W}_{1,h}\mathbf{z}\| = \|\mathbf{W}_{2,h}\mathbf{h}_i\| = \rho$ for all $i \in [N], h \in [H]$, the forward inference of
925 the multi-head attention defined in Eq (11) can be modeled as one gradient descent step for min-
926 imizing F^* with the learning rate η when setting $\mathbf{W}_{Q,h}^T \mathbf{W}_{K,h} = \mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ and $\mathbf{W}_{O,h} \mathbf{W}_{V,h} =$
927 $\frac{\eta T}{H} \mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ for all $h \in [H]$.
928

929 *Proof.* Using the assumption that $\|\mathbf{W}_{1,h}\mathbf{z}\| = \|\mathbf{W}_{2,h}\mathbf{h}_i\| = \rho$ for all $i \in [N], h \in [H]$, we have
930

$$931 \quad F^* = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}} = \tilde{F}^* + \rho^2, \quad (19)$$

933 where $\tilde{F}^* = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{\mathbf{z}^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i}{T}}$. We can take the derivative of F with respect
934 to \mathbf{z} to obtain
935

$$936 \quad \nabla_{\mathbf{z}} F^* = \nabla_{\mathbf{z}} \tilde{F}^* = -\frac{T}{H} \sum_{h=1}^H \sum_{i=1}^N \frac{e^{\mathbf{z}^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i / T}}{Z_h} \mathbf{W}_{1,h} \mathbf{h}_i, \quad (20)$$

938 where $Z_h = \sum_{j=1}^N e^{\mathbf{z}^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_j / T}$. Then, given an initial value $\mathbf{z}^{(0)}$, we can apply gradient
939 descent to minimize the objective \tilde{F}^* . Suppose the learning rate is η , the iteration is given by
940

$$941 \quad \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \nabla_{\mathbf{z}^{(k)}} \tilde{F}^* = \mathbf{z}^{(k)} + \sum_{h=1}^H \sum_{i=1}^N \frac{e^{(\mathbf{z}^{(k)})^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i / T}}{Z_h} \frac{\eta T}{H} \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i. \quad (21)$$

944 Comparing with Eq (11), we can set $\mathbf{W}_{1,h}^T \mathbf{W}_{2,h} = \mathbf{W}_{Q,h}^T \mathbf{W}_{K,h}$ and $\mathbf{W}_{O,h} \mathbf{W}_{V,h} = \frac{\eta T}{H} \mathbf{W}_{Q,h}^T \mathbf{W}_{K,h}$
945 for $h = 1, \dots, H$. Then, we will have $Z'_h = Z_h$ and the above equation can be reformulated as
946

$$947 \quad \mathbf{z}^{(k+1)} = \text{MHA}(\mathbf{z}^{(k)}) = \mathbf{z}^{(k)} + \sum_{h=1}^H \sum_{i=1}^N \frac{e^{\mathbf{z}^T \mathbf{W}_{Q,h}^T \mathbf{W}_{K,h} \mathbf{h}_i / T}}{Z_h} \mathbf{W}_{O,h} \mathbf{W}_{V,h} \mathbf{h}_i, \quad (22)$$

949 which has the same form as Eq (11). Thus, we complete our proof. \square
950

951 A.7 PROOF OF LEMMA 5

953 **Lemma 5.** Both the Helmholtz free energy F^* with respect to \mathbf{z} and its upper bound \tilde{F}^* are non-
954 convex. Assume $\|\mathbf{W}_{1,h}\mathbf{z}\| \leq \rho$ and $\|\mathbf{W}_{2,h}\mathbf{h}_i\| \leq \rho$ for all $i \in [N]$ and $h \in [H]$. The local minima of
955 F^* are attained at the boundary $\|\mathbf{z}\| = \rho$ or when $\sum_{h=1}^H \sum_{i=1}^N p_{i,h} \mathbf{W}_{1,h}^T (\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i) = 0$
956 where $p_{i,h} = \frac{1}{Z_h} e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}$ and $Z_h = \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}$. In addition, the local
957 minima of \tilde{F}^* are attained at the boundary $\|\mathbf{z}\| = \rho$.
958

960 *Proof.* Recalling that $F^* = -\frac{1}{H} \sum_{h=1}^H T \log \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}$. We compute the derivative
961 of F^* with respect to \mathbf{z} as
962

$$963 \quad \nabla_{\mathbf{z}} F^* = \frac{1}{H} \sum_{h=1}^H \sum_{i=1}^N p_{i,h} \mathbf{W}_{1,h}^T (\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i),$$

966 where $p_{i,h} = \frac{1}{Z_h} e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}$ and $Z_h = \sum_{i=1}^N e^{-\frac{\|\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i\|^2}{2T}}$. Since the attention heads
967 are independent of each other, the proof for each head is similar to that of Lemma 2. We denote
968 $\mathbf{r}_{i,h} = \mathbf{W}_{1,h}^T (\mathbf{W}_{1,h}\mathbf{z} - \mathbf{W}_{2,h}\mathbf{h}_i)$ and to compute the Hessian matrix, we first calculate
969

$$970 \quad \nabla_{\mathbf{z}} p_{i,h} = -\frac{1}{T} p_{i,h} \mathbf{r}_{i,h} + \frac{1}{T} p_{i,h} \sum_{j=1}^N p_{j,h} \mathbf{r}_{j,h}.$$

972 Then the Hessian matrix of F^* with respect to \mathbf{z} is
 973

$$\begin{aligned} 974 \nabla_{\mathbf{z}}^2 F^* &= \frac{1}{H} \sum_{h=1}^H \left[\sum_{i=1}^N \mathbf{r}_{i,h} \left(-\frac{1}{T} p_{i,h} \mathbf{r}_{i,h}^T + \frac{1}{T} p_{i,h} \sum_{j=1}^N p_{j,h} \mathbf{r}_{j,h}^T \right) + \mathbf{W}_{1,h}^T \mathbf{W}_{1,h} \right] \\ 975 \\ 976 &= \frac{1}{H} \sum_{h=1}^H \underbrace{\left[\mathbf{W}_{1,h}^T \mathbf{W}_{1,h} - \frac{1}{T} \left(\sum_{i=1}^N p_{i,h} \mathbf{r}_{i,h} \mathbf{r}_{i,h}^T - (\nabla_{\mathbf{z}} F_h^*) (\nabla_{\mathbf{z}} F_h^*)^T \right) \right]}_{\succeq 0} \underbrace{\succeq 0}_{\preceq 0}, \\ 977 \\ 978 \\ 979 \\ 980 \\ 981 \end{aligned}$$

982 where F_h^* is the Helmholtz free energy in the h -th subspace and $\nabla_{\mathbf{z}} F_h^* = \sum_{i=1}^N p_{i,h} \mathbf{r}_{i,h}$. Therefore, we obtain that F^* is neither convex nor concave and when $\|\mathbf{z}\| \leq \rho$, its local minima can only be attained at the boundary $\|\mathbf{z}\| = \rho$ or at interior points where $\nabla_{\mathbf{z}} F^* = 0$, that is, $\sum_{h=1}^H \sum_{i=1}^N p_{i,h} (\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i) = 0$. Similarly, we can obtain the Hessian matrix of \tilde{F}^* as

$$986 \nabla_{\mathbf{z}}^2 \tilde{F}^* = -\frac{1}{HT} \sum_{h=1}^H \left[\sum_{i=1}^N p_{i,h} \mathbf{r}_{i,h} \mathbf{r}_{i,h}^T - (\nabla_{\mathbf{z}} \tilde{F}_h^*) (\nabla_{\mathbf{z}} \tilde{F}_h^*)^T \right] \preceq 0, \\ 987 \\ 988$$

989 where $p_{i,h} = \frac{e^{\mathbf{z}^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i / T}}{Z_h}$ and $Z_h = \sum_{i=1}^N e^{\frac{\mathbf{z}^T \mathbf{W}_{1,h}^T \mathbf{W}_{2,h} \mathbf{h}_i}{T}}$. Therefore, we can get that \tilde{F}^* is
 990 concave and when $\|\mathbf{z}\| \leq \rho$, its local minima can only be attained at the boundary $\|\mathbf{z}\| = \rho$. \square
 991

993 A.8 DETAILED DESIGN OF MHAtten2nd AND MHAtten2nd-1st

994 As in the single-head case, we extend the Newton's method-inspired modification of the attention
 995 structure to the multi-head setting. The update rule derived from the first-order gradient descent
 996 method for F^* is
 997

$$998 \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta \nabla_{\mathbf{z}^{(k)}} F^* = \mathbf{z}^{(k)} - \frac{\eta}{H} \sum_{h=1}^H \sum_{i=1}^N p_{i,h} \mathbf{W}_{1,h}^T (\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i), \quad (23) \\ 999 \\ 1000$$

1001 where $p_{i,h} = \frac{1}{Z_h} e^{-\frac{\|\mathbf{W}_{1,h} \mathbf{z} - \mathbf{W}_{2,h} \mathbf{h}_i\|^2}{2T}}$. The basic form using Newton's method based on second-order
 1002 gradients is
 1003

$$1004 \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \eta [\nabla_{\mathbf{z}^{(k)}}^2 F^*]^{-1} \nabla_{\mathbf{z}^{(k)}} F^*, \quad (24)$$

1005 where $[\nabla_{\mathbf{z}^{(k)}}^2 F^*]^{-1}$ is the Hessian matrix at $\mathbf{z}^{(k)}$. We denote the Helmholtz free energy in the h -th
 1006 subspace as $F_h^* = -T \log \sum_{i=1}^N Z_h$ and then $F^* = \frac{1}{H} F_h^*$. Instead of applying Newton's method
 1007 directly to F^* , we apply it independently to each subspace F_h^* , which can be formalized as
 1008

$$1009 \mathbf{z}^{(k+1)} = \mathbf{z}^{(k)} - \frac{\eta}{H} \sum_{h=1}^H [\nabla_{\mathbf{z}^{(k)}}^2 F_h^*]^{-1} \nabla_{\mathbf{z}^{(k)}} F_h^* \quad (25) \\ 1010 \\ 1011$$

1012 Considering the analogous roles of $\mathbf{W}_{1,h}^T \mathbf{W}_{2,h}$ and $\mathbf{W}_{Q,h}^T \mathbf{W}_{K,h}$ in Theorem 2, we use the notation
 1013 $\mathbf{q}_h = \mathbf{W}_{1,h} \mathbf{z}$, $\mathbf{k}_{i,h} = \mathbf{W}_{2,h} \mathbf{h}_i$ and $\bar{\mathbf{k}}_h = \sum_{i=1}^N p_{i,h} \mathbf{W}_{2,h} \mathbf{h}_i$. Then the Hessian matrix of F_h^* can be
 1014 formulated as

$$1015 \nabla_{\mathbf{z}}^2 F_h^* = \mathbf{W}_{1,h}^T \left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_{i,h} (\mathbf{k}_{i,h} - \bar{\mathbf{k}}_h) (\mathbf{k}_{i,h} - \bar{\mathbf{k}}_h)^T \right] \mathbf{W}_{1,h}. \quad (26) \\ 1016 \\ 1017 \\ 1018$$

1019 Note that due to $\mathbf{W}_{1,h} \in \mathbb{R}^{\frac{d}{H} \times d}$, the Hessian matrix $\nabla_{\mathbf{z}}^2 F_h^* \in \mathbb{R}^{d \times d}$ is non-invertible. Therefore, we
 1020 employ the range-space approach in Newton's method, or equivalently, use the pseudoinverse⁹ of
 1021 the Hessian, i.e.,

$$1022 [\nabla_{\mathbf{z}}^2 F_h^*]^{-1} = \mathbf{W}_{1,h}^T (\mathbf{W}_{1,h} \mathbf{W}_{1,h}^T)^{-1} \left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_{i,h} \mathbf{d}_{i,h} \mathbf{d}_{i,h}^T \right]^{-1} \mathbf{W}_{1,h}, \quad (27) \\ 1023 \\ 1024$$

1025 ⁹Here we use $(\mathbf{W}^T \mathbf{C} \mathbf{W})^\dagger = \mathbf{W}^T (\mathbf{W} \mathbf{W}^T)^{-1} \mathbf{C}^{-1} \mathbf{W}$ when $\mathbf{W} \in \mathbb{R}^{m \times n}$ and $m < n$.

1026 where we use $\mathbf{d}_{i,h} = \mathbf{k}_{i,h} - \bar{\mathbf{k}}_h$ for simplicity. Furthermore, by parameterize $\mathbf{W}_{1,h}, \mathbf{W}_{2,h}$ as
 1027 $\mathbf{W}_{Q,h}, \mathbf{W}_{K,h}$, the Atten2nd(\mathbf{z}) can be extended as
 1028

$$\begin{aligned} 1029 \quad \text{MHA2nd}(\mathbf{z}) &= \mathbf{z} + \frac{\eta}{H} \sum_{h=1}^H \mathbf{P}_h (\mathbf{q}_h - \bar{\mathbf{k}}_h), \\ 1030 \quad \mathbf{P}_h &= \mathbf{W}_{Q,h}^T (\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T)^{-1} \left[\mathbf{I} - \frac{1}{T} \sum_{i=1}^N p_{i,h} \mathbf{d}_{i,h} \mathbf{d}_{i,h}^T \right]^{-1} \mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T. \end{aligned} \quad (28)$$

1035 Below, we first consider the computational cost for a single head. The cost to compute $\mathbf{q}_h - \bar{\mathbf{k}}_h$
 1036 and all $\mathbf{d}_{i,h}$ is $O(\frac{Nd}{H} + \frac{d^2}{H})$. It should be noted that $\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T$ and its inverse only need to be
 1037 pre-computed once and therefore the cost can be ignored when generating a large number of tokens.
 1038 The cost of computing the outer products of N vectors and the inverse are $O(N \frac{d^2}{H^2} + \frac{d^3}{H^3})$. And
 1039 performing the remaining matrix multiplications need $O(\frac{d^2}{H^2} + \frac{d^2}{H})$. Thus the total cost for one head
 1040 is $O(N \frac{d^2}{H^2} + \frac{d^2}{H} + \frac{d^3}{H^3})$. Considering there are H heads, the final cost is $O(Nd \frac{d}{H} + d^2 + d^2 \frac{d}{H^2})$.
 1041 Compared with $O(Nd + d^2)$ of standard attention, this incurs a higher computational cost.
 1042

1043 To reduce the computational cost, as in the previous case, we replace the matrix inversion with the
 1044 first-order Taylor expansion, which can be formalized as
 1045

$$\begin{aligned} 1046 \quad \text{MHA2nd1st}(\mathbf{z}) &= \mathbf{z} + \frac{\eta}{H} \sum_{h=1}^H \mathbf{P}_h (\mathbf{q}_h - \bar{\mathbf{k}}_h), \\ 1047 \quad \mathbf{P}_h &= \mathbf{W}_{Q,h}^T (\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T)^{-1} \left[\mathbf{I} + \frac{1}{T} \sum_{i=1}^N p_{i,h} \mathbf{d}_{i,h} \mathbf{d}_{i,h}^T \right] \mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T. \end{aligned} \quad (29)$$

1052 In fact, this can be further simplified as

$$\begin{aligned} 1053 \quad \text{MHA2nd1st}(\mathbf{z}) &= \mathbf{z} + \frac{\eta}{H} \sum_{h=1}^H \mathbf{W}_{Q,h}^T [(\mathbf{q}_h - \bar{\mathbf{k}}_h) + \mathbf{b}_h], \\ 1054 \quad \mathbf{b}_h &= (\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T)^{-1} \frac{1}{T} \sum_{i=1}^N p_{i,h} \mathbf{d}_{i,h} [\mathbf{d}_{i,h}^T \mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T (\mathbf{q}_h - \bar{\mathbf{k}}_h)]. \end{aligned} \quad (30)$$

1059 In this case, the cost to compute $\mathbf{q}_h - \bar{\mathbf{k}}_h$ and all $\mathbf{d}_{i,h}$ is still $O(\frac{Nd}{H} + \frac{d^2}{H})$. However, computing \mathbf{b}_h
 1060 only needs $O(\frac{d^2}{H} + \frac{Nd}{H} + \frac{d^2}{H^2})$ by prioritizing the computation of inner products between vectors.
 1061 Finally, the remaining cost of matrix multiplication is $O(\frac{d^2}{H})$. Therefore, the cost for each head is
 1062 $O(\frac{Nd}{H} + \frac{d^2}{H})$ and the total cost for H heads is $O(Nd + d^2)$, which is of the same order as standard
 1063 attention.
 1064

1065 In practice, to avoid additionally computing and storing $d_{i,h}$, we adopt the following form.
 1066

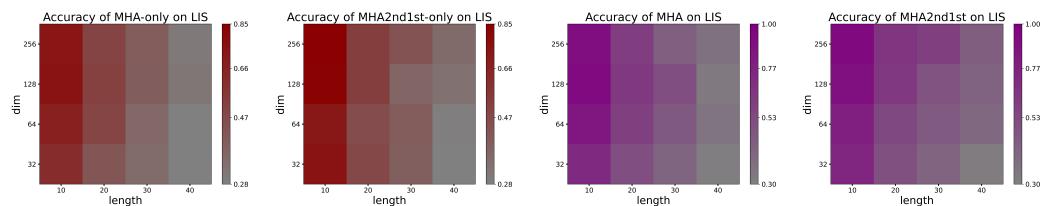
$$\begin{aligned} 1067 \quad \text{MHA2nd1st}(\mathbf{z}) &= \mathbf{z} + \frac{\eta}{H} \sum_{h=1}^H \mathbf{W}_{Q,h}^T [(\mathbf{q}_h - \bar{\mathbf{k}}_h) + \mathbf{b}_h], \\ 1068 \quad \mathbf{b}_h &= (\mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T)^{-1} \frac{1}{T} \left[\sum_{i=1}^N p_{i,h} \mathbf{k}_{i,h} (\mathbf{k}_{i,h}^T \mathbf{u}_h) - \bar{\mathbf{k}}_h (\bar{\mathbf{k}}_h^T \mathbf{u}_h) \right]. \\ 1069 \quad \mathbf{u}_h &= \mathbf{W}_{Q,h} \mathbf{W}_{Q,h}^T (\mathbf{q}_h - \bar{\mathbf{k}}_h) \end{aligned} \quad (31)$$

1075 In practice, we also introduce new parameters $\mathbf{W}_O \in \mathbb{R}^{d \times d_h}$ to replace $\frac{\eta}{H} \mathbf{W}_{Q,h}^T$ to make the model
 1076 more flexible. Moreover, to maintain stability, we set the temperature T in the attention score $p_{i,h}$
 1077 as a head-wise learnable parameter with initialization as d_h and the temperature in \mathbf{b}_h is treated in
 1078 the same way.
 1079

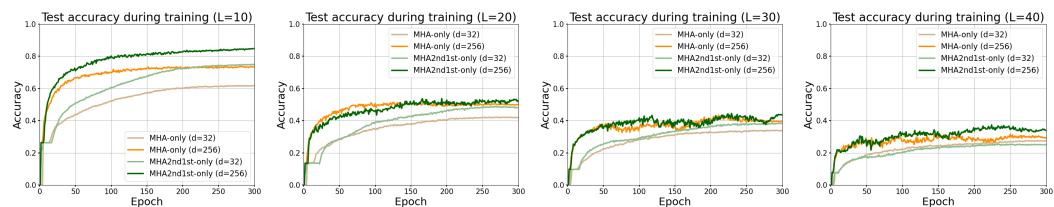
1080 A.9 MORE DETAILS OF EXPERIMENTS
1081

1082 We mainly follow the setup of Feng et al. (2024); Yang et al. (2024a). For the LIS task, we investigate
1083 different task lengths $L = \{10, 20, 30, 40\}$ which denotes the length of the input sequence to solve.
1084 For each problem size, the training and test sets were generated independently with sizes of 51,200
1085 and 5,120 respectively. We uniformly set the batch size to 128. The model dimensions is selected
1086 from $d = \{32, 64, 128, 256\}$ and the number of layers is set to 3 by default for all models. We use
1087 a fixed dropout ratio of 0.1 for all experiments to improve generalization. For positional encoding,
1088 we use the absolute positional encoding as in Vaswani et al. (2017). All models are trained for 300
1089 epochs using AdamW(Loshchilov, 2017) with $\beta_1 = 0.9$, $\beta_2 = 0.999$, $lr = 1e-4$ and weight
1090 decay of 0.01. During training, the model is optimized using cross-entropy loss on the answer
1091 tokens, while a greedy decoding strategy is employed during testing. For the results presented in the
1092 form of heat maps, we report the average test accuracy over the last five epochs as the final accuracy.
1093 Furthermore, our experiments were conducted on four 24GB NVIDIA GeForce RTX 3090 GPUs
1094 and can be completed within two days.

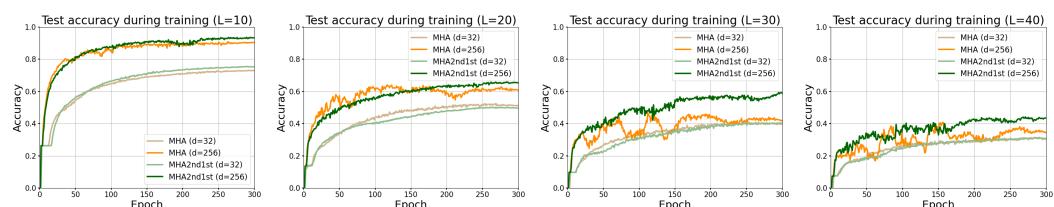
1094 For more experimental results, we present Figure 2 the test accuracy under different task difficulties
1095 and model sizes under the attention-only configuration and the configuration incorporating MLP. In
1096 Figures 3 and 4, we show the test accuracy of MHA(-only) and MHA2nd1st(-only) during training.
1097



1105 Figure 2: Test accuracy on LIS tasks across different task lengths and model sizes. **Left part:** The
1106 accuracy of MHA-only and MHA2nd1st-only. **Right part:** The accuracy of MHA and MHA2nd1st.
1107



1116 Figure 3: Test accuracy on LIS tasks of MHA-only and MHA2nd1st-only during training when the
1117 task length $L = \{10, 20, 30, 40\}$ and the model dimension $d = 32/256$.
1118



1127 Figure 4: Test accuracy on LIS tasks of MHA and MHA2nd1st during training when the task length
1128 $L = \{10, 20, 30, 40\}$ and the model dimension $d = 32/256$.
1129
1130
1131
1132
1133