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Abstract

Recent research on Self-Supervised Learning (SSL) has demonstrated its ability to1

extract high-quality representations from unlabeled samples. However, in continual2

learning scenarios where training data arrives sequentially, SSL’s performance3

tends to deteriorate. This study focuses on Continual Contrastive Self-Supervised4

Learning (CCSSL) and highlights that the absence of contrastive learning on inter-5

task data, due to the unavailability of historical samples, leads to a significant drop6

in performance. To tackle this issue, we introduce a simple and effective method7

called BGE, which Bridges the inter-task Gap of CCSSL using External data from8

publicly available datasets. BGE enables the contrastive learning of each task data9

with external data, allowing relationships between them to be passed along the tasks,10

thereby facilitating implicit inter-task data comparisons. To overcome the limitation11

of the external data selection and maintain its effectiveness, we further propose12

the One-Propose-One algorithm to collect more relevant and diverse high-quality13

samples from the chosen external data while filtering out distractions from the out-14

of-distribution data. Experiments show that BGE can generate better discriminative15

representation in CCSSL, especially for inter-task data, and improve classification16

results with various external data compositions. Additionally, the proposed method17

can be seamlessly integrated into existing continual learning methods yielding18

significant performance improvement.19

1 Introduction20

In recent years, deep neural networks [13, 22, 35] have achieved great success, but plenty of works21

are under the assumption that all data are available simultaneously for training. In practical scenarios,22

acquiring the entire dataset at once is often challenging due to data being constantly updated. In this23

case, training the network continually suffers from catastrophic forgetting [38], meaning that the24

network severely forgets old task knowledge after learning the new one. Hence, continual learning25

investigates methods to train networks incrementally while mitigating catastrophic forgetting.26

Although continual learning has been widely studied and numerous effective methods [32, 36, 40]27

have been proposed, most existing research remains focused on supervised learning, with Continual28

Contrastive Self-Supervised Learning (CCSSL) receiving relatively little attention. However, studying29

CCSSL is equally significant.30

To prevent catastrophic forgetting, prior CCSSL works CaSSLe [16], PFR [18], and POCON [19]31

use knowledge distillation, while CPPF [11] incorporates prototype clustering. In this paper, we32

highlight an important but generally overlooked issue in these works: Comparisons of inter-task33

data are absent. Specifically, a widely accepted opinion in continual learning is that if the sum of34

each task’s loss is minimized, then continual learning’s performance reaches its upper bound: joint35

learning. However, in CCSSL, even if each task’s loss is minimized, there is still a gap between joint36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



Compare Compare

Task t-1 Task t

Incomparable

External Dataset

…

Compare Compare

Bridge the 
Inter-task 
Gap

Compare

a) Fine-tune b) CaSSLe

d) Jointc) Ours

bottle fox cloud maple

Figure 1: Left: Overview of our method BGE. In typical CCSSL methods, the inter-task data
pairs are incomparable. We employ an external dataset to complement these missing comparisons,
effectively bridging the inter-task gap. Right: t-SNE [47] visualization of four classes belonging to
different tasks in continual learning. Compared to prior methods Fine-tune and CaSSLe [16], we
make the inter-task data more separable.

learning. Because joint learning requires any sample pair in the entire dataset to participate in the37

contrastive loss computation. In contrast, in continual learning, inter-task data are unavailable to each38

other, meaning this aspect of the contrastive loss is never computed and optimized. This omission39

increases the likelihood of inter-task class confusion, as illustrated in Figure 1 Right, despite classes40

from four different tasks having distinctly different semantics, they still show confusion in prior41

methods Fine-tune and CaSSLe [16]. In contrast, our method and joint training consider inter-task42

comparisons and can better distinguish them.43

Since we could not directly use data from other tasks for inter-task comparisons, we would like to44

compensate for these comparisons with the help of external data. Some prior works [31, 52, 56]45

have explored using external data for continual learning. GD [31] and ZSCL [56] use external46

data for distillation to stabilize the feature space, while requiring extensive external data and high47

computational costs. ST [52] employs external data as additional training data, but as a supervised48

method, it requires pseudo-labels, making it less robust to out-of-distribution (OOD) data. Tang et49

al. [45] enhance exemplar diversity with external data. Existing methods focus on using external50

data in supervised learning, but given that CCSSL does not require labels for training, we propose51

using external data in CCSSL, which avoids the need for pseudo-labels and is more generalizable and52

robust to OOD data. Besides, our motivation is to improve feature space by compensating for absent53

comparisons rather than merely stabilizing it, and it does not require extensive external data.54

In summary, we propose incorporating publicly available external data into training to compensate for55

the absent inter-task comparisons, as shown in Figure 1 Left. When the external dataset is sufficiently56

large, it is reasonable to assume a high probability that some external data share similar features with57

the task data, even if they are in different classes. By incorporating these high-quality external data58

into CCSSL, the data from each task can be compared with them. enables the inter-data relationship to59

be passed along the tasks, thereby constructing implicit inter-task comparisons. Further, considering60

that external data in open-world scenarios may contain extensive OOD data that is not beneficial for61

task training, we propose the One-Propose-One (OPO) sampling algorithm, to sample high-quality62

external data that are relevant to tasks and sufficiently diverse without any hyperparameters.63

Experiments demonstrate that BGE can be seamlessly integrated into existing methods, resulting64

in significant performance improvement. We also point out that although it may seem unsurprising65

that network performance improves with more training data, this improvement is not due to richer66

input features, because when we add equal external data into joint training, the performance doesn’t67

improve even sometimes decreases. Instead, BGE compensates for the absent comparisons caused by68
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inter-task data unavailability, which is much more meaningful in continual learning. Our contributions69

can be summarized as follows:70

• We point out that existing methods overlook the issue of inter-task data comparisons, and71

propose BGE to incorporate external data into training to address this gap.72

• We propose the One-Propose-One (OPO) sampling algorithm to sample external data that73

are relevant to tasks and sufficiently diverse, while also filtering out OOD data that are not74

beneficial for learning.75

• Experiments show that BGE can be seamlessly integrated into existing CCSSL methods and76

consistently yields significant improvement.77

2 Related work78

Self-Supervised Learning (SSL) SSL trains the network without the need for supervised signals.79

One of the prominent branches is contrastive learning [5, 8–10, 21, 23, 53]. The objective of80

contrastive learning can be roughly explained as reducing the distance between positive pairs while81

enlarging it between negative pairs. SimCLR [8] simply follows this objective but requires a large82

batch size. MoCo [10, 23] introduces a momentum encoder and a negative sample dictionary to83

solve this problem. SwAV [5] and Barlow Twins [53] introduces prototype comparisons and cross-84

decorrelation loss, respectively. Then BYOL [21] and SimSiam [9] can conduct contrastive learning85

without negative samples. However, all these methods assume that a large dataset is available for86

pre-training, which is often impractical in real-world scenarios where data acquisition is incremental.87

Therefore, we research a continual method, which is more practical.88

Since no labeling requirement, incorporating external data into SSL is straightforward. Prior long-89

tailed SSL works [3, 28] leverage external data to balance head and tail classes. Instead, we extend the90

exploration to continual learning, aiming to use external data to compensate for the absent inter-task91

comparisons while further preventing catastrophic forgetting.92

Continual learning Continual learning allows the network to learn from sequentially arriving data93

and prevent catastrophic forgetting. Existing continual learning methods can be categorized into94

three groups, which are 1) Regularization-based methods [1, 14, 29, 32, 34, 50, 54] add additional95

regularization constraints such as knowledge distillation [14, 32, 50] or limiting important parameters96

update [1, 29, 34, 54] to network training. 2) Replay-based methods [4, 26, 40, 43, 55] save few97

representative data from old tasks called exemplars to recover the distribution of old data when the98

new task is trained. 3) Architecture-based methods [15, 36, 37, 41, 51], which adjust the architecture99

or parameters of the network during each task training. Currently, most continual learning methods100

still focus on supervised learning. While some of them [6, 33, 44] draw on the idea of contrastive101

learning, there are still few works consider continual learning without any supervision. Among them,102

CaSSLe [16], PFR[18], and POCON[19] use distillation, and CPPF[11] adds clustering to form103

a more complete framework. Sy-CON [7] also reveals the distinction between CCSSL and joint104

training, but it only additionally passes current task data into the old network to get more diverse105

intra-task negative features, which still fails to provide effective inter-task comparisons. Thus it106

underperforms in most contrastive learning frameworks. Compared to them, we introduce external107

data to facilitate implicit inter-task comparisons to solve the problem of absent inter-task comparisons.108

3 Proposed method109

3.1 Preliminary110

Contrastive Self-Supervised Learning (CSSL) In Self-Supervised Learning (SSL), the dataset D111

contains only n image inputs {x1, x2, ..., xn} without labels. SSL trains a network fθ parameterized112

by θ to map these inputs to embeddings {z1, z2, ..., zn}. Many well-known SSL works [5, 8, 21, 23,113

53] use contrastive learning framework. In contrastive learning, a random augmentation function114

A is pre-designed. Given an input x, two augmented views (xa, xb) are obtained by applying A115

twice. Subsequently, embeddings za = fθ(xa) and zb = fθ(xb) are passed through a projector hθ′116

parameterized by θ′ to get z′a = hθ′(za), z′b = hθ′(zb), which are involved in LSSL. In essence,117
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LSSL expects the network to output similar embeddings for two views of the same input (i.e. positive118

pair), while ensuring that embeddings from views of different inputs (i.e. negative pair) are dissimilar.119

Continual CSSL (CCSSL) In CCSSL setting, The overall dataset D is divided into multiple tasks.120

Assuming that T tasks {T1, T2, ..., TT } are to be learned, D can be divided into {D1, D2, ..., DT },121

where Di ∩Dj = ∅,∀i, j ∈ {1 : T}. Also as SSL, for each task Tt , Dt is only composed of nt122

images {x1, x2, ..., xnt} without labels. Continual learning requires the network to learn knowledge123

as each task’s data arrives sequentially, with dataset Di only available at Ti. The optimization124

objective is to continually train the network parameter θ to satisfy every task, which is defined as:125

argmin
θ

T∑
t=1

E(xa,xb)∼A(Dt)LSSL(hθ′(fθ(xa)), hθ′(fθ(xb))) (1)

3.2 Revising and improving CCSSL via external data126

Typical contrastive learning paradigms [8, 23, 53] can be generalized as reducing distances between127

positive pairs and enlarging them between negative pairs on feature hyperspheres. Adjusting the128

interrelationships of sample pairs in this way enables the network to effectively represent features129

[27, 49]. However, in CCSSL, the data is divided by tasks. During the learning process of task Tt, data130

from other tasks are unavailable. This prevents adequate tuning of inter-sample relationships, resulting131

in suboptimal network training. We identify two reasons for this suboptimality: 1) The network132

rapidly forgets knowledge about old data due to catastrophic forgetting, so their features cannot133

be well extracted in subsequent tasks. 2) Insufficient learning about each task occurs because data134

from one task cannot act as negative samples for another task. While prior works address problem 1135

through techniques like distillation [16, 18, 19] and clustering [11], problem 2 remains underexplored.136

However, we argue that this is unreasonable, and solving problem 2 is equally important.137

Prior works [20, 32] widely agree that in the ideal case, continual learning can perform up to joint138

learning, wherein no forgetting occurs and each task reaches optimality. However, in CSSL, even if139

no forgetting occurs, there is still an optimization gap between continual and joint learning due to the140

absence of inter-task data comparisons in the training objective. Unlike supervised learning which141

guides the network through labels, CSSL relies on data interactions for network learning. When data142

is incomplete, the training objective also becomes incomplete. For better comprehension, we can143

decompose the joint training contrastive loss into two terms as in Eq. 2, representing the comparisons144

of intra-task and inter-task data, denoted as Lintra and Linter, respectively. Lintra is the training145

objective of the conventional CCSSL, also referred to as Lcontinual. However, for input x ∈ Dt146

in task Tt, negative samples come exclusively from Dt rather than the overall dataset D, making147

direct comparisons between inter-task data infeasible. Consequently, Linter can not be computed and148

optimized in continual learning forever, resulting in a Linter gap between Lcontinual and Ljoint.149

Ljoint =
1

T

T∑
t=1

( Lintra = Lcontinual︷ ︸︸ ︷
E(xa,xb)∼A(Dt)LSSL (hθ′ (fθ (xa)) , hθ′ (fθ (xb)))

+ E xa∼A(Dt),
xb∼A(D−Dt)

LSSL (hθ′ (fθ (xa)) , hθ′ (fθ (xb)))︸ ︷︷ ︸
Linter

) (2)

We argue that the lack of optimization for Linter leads to confusion between inter-task data. Figure 1150

Right compares the t-SNE visualizations of features from 4 CIFAR100 classes under joint and 10151

tasks continual training (4 classes belong to different tasks during continual training). Compared to152

the joint-trained network, the continually trained network shows poor clustering and severe class153

boundary confusion. More experiments about inter-task confusion can be found at Appendix A.2.1.154

Despite CaSSLe [16] employing distillation to consolidate old knowledge, the issue of inter-task class155

boundary confusion remains. To address the overlooked problem of Linter, a straightforward idea156

is to save exemplars for each task. However, this may raise serious privacy concerns. We therefore157

explore an alternative method to optimize Linter without exemplars and protect the discriminative158
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class boundaries. Figure 1c shows the feature distribution of our method, with all 4 inter-task classes159

better distinguished, and the overall distribution closer to joint training.160

To compensate for Linter, bridging the gap of inter-task comparisons is essential. This requires161

introducing additional comparisons into each task, implying extra data incorporation. Under the162

constraints of continual learning, simultaneous access to data from multiple tasks is infeasible.163

Therefore, the idea emerges to incorporate publicly available external data into CCSSL to address the164

lack of inter-task comparisons. Each task’s data can be directly compared with external data, enabling165

relationships between data to be passed along the task sequence. Moreover, using external data better166

protects privacy, and the costs of obtaining unlabeled data from public data sources are extremely low.167

We thus propose our method BGE, meaning Bridging the inter-task comparison Gap with External168

data, as shown in Figure 1 Left. BGE incorporates external data into each task’s training except169

the first one, and resamples part of them after each task using our sampling algorithm ( detailed in170

Section 3.3). This external data acts as a bridge for inter-task comparisons, constructing implicit171

comparisons for inter-task data. For task Tt, with Dt−1
e as the external data sampled after task Tt−1,172

the training objective is defined as:173

Lt = E(xa,xb)∼A(Dt∪Dt−1
e )LSSL (hθ′ (fθ (xa)) , hθ′ (fθ (xb))) (3)

Incorporating external data aligns the optimization objective of continual learning more closely with174

Eq. 2, enhancing the mutual understanding of inter-task classes.175

3.3 One-Propose-One (OPO) sampling176

While abundant external data features generally cover in-task data comprehensively, incorporating all177

external data into continual learning is impractical due to computational constraints. Additionally,178

open-world external data may include substantial task-irrelevant out-of-distribution (OOD) data,179

which is unhelpful for training. Therefore, a sampling algorithm is needed to select high-quality180

external data. We observe that Linter includes comparisons of current task data Dt with both old task181

data D1:t−1 and future task data Dt+1:T . So sampled external data should ideally proxy for both old182

and future task data. To represent old data, sampled data should have similar features to them, while183

representing future data requires imaginative sampling. Therefore, our sampling algorithm is based184

on both proximity and diversity considerations, and integrates these two aspects into a single objective185

without any hyperparameters. We noted that prior sampling algorithms [3, 28] for long-tailed learning186

also consider proximity and diversity, but they require hyperparameters selection.187

We measure proximity using the cosine distance between sample features. On the other hand, prior188

work [49] indicates that to avoid collapse, contrastive learning methods tend to map all inputs to189

a uniform distribution within the feature hypersphere (i.e. uniformity). Thus we assume that the190

entire distribution of the current task data approximately covers the hypersphere, ensuring diversity.191

Based on the above, we propose a sampling algorithm called One-Propose-One (OPO) as depicted192

in Algorithm 1. After training each task Tt, OPO constructs the external dataset Dt
e, which is then193

incorporated in training task Tt+1. Specifically, OPO considers that each in-task sample can equally194

propose an external sample with the closest feature distance to itself and has not been proposed.195

Given the current task budget Kt, we collect all proposed samples as a candidate set Dc, and select196

the Kt minimum distance samples to be added to the external dataset Dt
e. We follow iCaRL [40]’s197

exemplar update algorithm, maintaining an equal budget for each task within the total budget K.198

OPO ensures proximity and diversity without hyperparameters, maintaining similarity to old data and199

adequate coverage of future data features.200

4 Experiments201

4.1 Experimental setup202

Dataset setup We conduct experiments with the following datasets: 1) CIFAR100 [30], which203

contains 100 classes, each with 500 train images and 100 test images. Each image is 32×32 pixels.204

We follow the class incremental learning setting to split the classes equally by the number of tasks.205

Experiments are conducted under 4 tasks and 10 tasks settings, wherein each task contains 25 classes206
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Algorithm 1 One-Propose-One(OPO) Sampling Algorithm
Input: current task ID t, current task dataset Dt, entire external dataset Dout, last task sampled

external dataset Dt−1
e , model f , total budget K, cosine distance metric cos(·, ·)

Output: sampled external dataset Dt
e

1: Calculate current task budget Kt =
K
t , Adjust Dt−1

e = REDUCEDATA(Dt−1
e ,Kt) [40]

2: Create candidate set Dc = {}
3: while | Dc |< Kt do
4: for each x ∈ Dt do
5: u = argminx′∈(Dout−Dt−1

e )cos(f(x), f(x
′)), du = minxi∈Dt

cos(f(xi), f(u))

6: Dc = Dc ∪ {u}, Dout = Dout − {u}
7: end for
8: end while
9: D′

c = SORT(Dc, key = du) [: Kt], Dt
e = Dt−1

e ∪D′
c

10: return Dt
e

and 10 classes. 2) ImageNet100 [46], which consists of 100 classes selected from ImageNet [12],207

with a total of 130K images of 224×224 pixels. It is equally split under 5 tasks and 10 tasks settings.208

External dataset setup For CIFAR100, the selected external datasets include CIFAR10,209

Places365test (the test set of Places365 [57]) and ImageNet-R [24], among them, Places365test and210

ImageNet-R are OOD for CIFAR100. CIFAR10 contains 50,000 images with 32×32 pixels in 10211

classes. Places365 is a scene recognition dataset with its test set containing 328,500 images of various212

scenes. ImageNet-R contains 24,000 images featuring art, cartoons, and other styles. We resize both213

Places365test and ImageNet-R to 32×32 pixels. We consider three compositions of external datasets,214

CIFAR (CIFAR10), CP (CIFAR10+Places365test) and CPI (CIFAR10+Places365test+ImageNet-R)215

For ImageNet100, the external datasets include ImageNet900, Places365 and DomainNet [39].216

ImageNet900 is all data in ImageNet excluding ImageNet100, totaling 1.1 million images. Places365217

contains 1.8 million images, and DomainNet contains 0.6 million images of 6 domains. They are also218

used here as OOD data. All data are 224×224 pixels. We consider three compositions of external219

datasets, IN (ImageNet-900), INP (ImageNet900+Places365) and IND (ImageNet900+DomainNet).220

Baselines We compare the original performance of existing exemplar-free CCSSL methods to their221

performance when with BGE. The methods we compare include 1) Fine-Tune (FT): Sequentially222

training the network with data from each task without additional prevention of catastrophic forgetting.223

2) CaSSLe [16]: Introducing a distillation loss between the current model and the old model in224

the form of contrastive loss. 3) PFR [18]: Addressing catastrophic forgetting based on functional225

regularization [17]. We slightly optimized its network structure and training procedure.226

Training and evaluation setup Unless specified otherwise, all experiments employ Barlow Twins227

[53] as the contrastive learning framework and Resnet18 [22] as the backbone. The sampling budget228

is uniformly set at 10K. For evaluation, we follow [16, 18, 19] to report the linear evaluation accuracy229

of the final network across all classes as the evaluation metric. For other setups see Appendix A.1.230

4.2 Results231

Performance improvement on prior methods We compare the performance improvement BGE232

yields to the base methods when using different external data compositions. Table 1 shows that233

on CIFAR100, BGE can consistently and significantly improve base methods. It is worth noting234

that as the number of tasks increases, BGE yields even greater improvement, with improvement of235

1.5%-3.5% for 4 tasks and 2.5%-7% for 10 tasks. This is also in line with our motivation, as an236

increasing number of tasks results in more missing inter-task data comparisons.237

Moreover, across different external dataset compositions, we observe that CIFAR yields the most238

significant improvement. This is attributed to the CIFAR10 dataset best matches the distribution of239

CIFAR100, thereby offering highly relevant features, even if their classes do not intersect. When in-240

corporating datasets like Places365 or ImageNet-R, which are OOD for CIFAR100, the improvement241

decreases. Thanks to our OPO sampling algorithm can well resist the harm of OOD data (detailed in242

6



Table 1: Comparison of BGE’s performance improvement on CIFAR100. CIFAR, CP, and CPI are
different external dataset compositions. Performance was evaluated by linear evaluation accuracy of
the final network. We equally divided classes into 4 tasks and 10 tasks. BGE consistently improves
base methods across different external dataset compositions. As for Joint training, ED represents
adding equivalent external data, which does not improve the performance.

Methods CIFAR CP CPI

4tasks 10tasks 4tasks 10tasks 4tasks 10tasks

FT 56.19 49.36 56.19 49.36 56.19 49.36
FT+BGE 59.49(+3.30) 56.62(+7.26) 58.69(+2.50) 55.14(+5.78) 58.71(+2.52) 55.74(+6.38)

CaSSLe [16] 60.04 53.89 60.04 53.89 60.04 53.89
CaSSLe+BGE 62.38(+2.34) 58.14(+4.25) 61.72(+1.68) 56.92(+3.03) 61.51(+1.47) 56.36(+2.47)

PFR [18] 60.92 55.57 60.92 55.57 60.92 55.57
PFR+BGE 64.37(+3.45) 61.02(+5.45) 63.15(+2.23) 60.31(+4.74) 62.88(+1.96) 59.99(+4.42)

Joint Acc
Joint 68.09 68.09 68.09
Joint+ED 68.15(+0.06) 67.11(-0.98) 68.19(+0.10)

Table 2: Performance improvement yielded by BGE on ImageNet100. IN, INP, and IND are different
external dataset compositions. ED represents adding equivalent external data in joint training.

Methods IN INP IND

5tasks 10tasks 5tasks 10tasks 5tasks 10tasks

FT 64.02 56.72 64.02 56.72 64.02 56.72
FT+BGE 68.20(+4.18) 64.16(+7.44) 67.84(+3.82) 64.08(+7.36) 69.06(+5.04) 65.00(+8.28)

CaSSLe [16] 70.02 60.68 70.02 60.68 70.02 60.68
CaSSLe+BGE 72.46(+2.44) 66.80(+6.12) 71.44(+1.42) 65.94(+5.26) 72.68(+2.66) 67.10(+6.42)

PFR [18] 70.14 63.12 70.14 63.12 70.14 63.12
PFR+BGE 72.52(+2.38) 69.28(+6.16) 72.94(+2.80) 68.40(+5.28) 72.60(+2.46) 68.94(+5.82)

Joint Acc
Joint 80.44 80.44 80.44
Joint+ED 80.24(-0.20) 79.70(-0.74) 78.88(-1.56)

Section 4.3). On ImageNet100, the performance improvement is shown in Table 2, showcasing a243

similar improvement regularity to that observed on CIFAR100. BGE achieves 1.5%-4% improvement244

for 5 tasks and 5%-7.5% improvement for 10 tasks. More experiments see Appendix A.2.7.245

We also emphasize that although it might seem intuitive that network performance would improve246

with richer data because of richer features, BGE yielded improvement does not simply stem from247

using more data. In Table 1 and Table 2, we incorporate an equal amount of external data into248

joint training. However, the results do not improve, and may even decrease when the external data249

contains OOD samples. We believe this is because incorporating irrelevant external data into the250

training process causes the model to allocate some capacity to learning these unrelated data, thereby251

weakening its focus on the in-task data. Hence, the learning of external data can not directly contribute252

to the learning of in-task data.253

Long task sequence experiments We conduct experiments with 100 tasks on CIFAR100, which254

means one task only contains one class, to verify the effectiveness of BGE on long task sequences.255

We set the sampling budget to 1000. Figure 2 shows the performance of different base methods256

with or without BGE as the learned tasks increase. On one hand, BGE improves the final network257

performance, especially evident in FT and PFR. On the other hand, the network’s performance258

increases even more rapidly with BGE, indicating that the network’s generalization ability to unseen259
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Figure 2: Performance improvement of BGE at CIFAR100 100 tasks setting.

Table 3: Accuracy on CIFAR100 and ImageNet100 with different sampling algorithms. Bold
indicates better performance.

CIFAR100 FT CIFAR100 PFR

External dataset CP CPI CP CPI

Sampling algorithm 4tasks 10tasks 4tasks 10tasks 4tasks 10tasks 4tasks 10tasks

random 57.41 52.78 57.22 52.56 62.57 59.33 62.58 58.45
OPO 58.69 55.14 58.71 55.74 63.15 60.31 62.88 59.99

ImageNet100 FT ImageNet100 PFR

External dataset INP IND INP IND

Sampling algorithm 4tasks 10tasks 4tasks 10tasks 4tasks 10tasks 4tasks 10tasks

random 66.50 61.90 66.90 61.90 71.36 67.26 72.56 67.98
OPO 67.84 64.08 69.06 65.00 72.94 68.40 72.60 68.94

tasks is higher. This stems from BGE can both overcome catastrophic forgetting and compare with260

future tasks it guessed, thus accumulating more knowledge in the early training stages.261

4.3 Ablation study262
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Figure 3: FID score of different sam-
pling algorithms when CIFAR and
CPI as external data.

Sampling algorithm Table 3 shows the effect of OPO sam-263

pling compared to random sampling for FT and PFR improve-264

ment when external datasets contain OOD data. OPO algo-265

rithm consistently provides more improvement than random266

sampling. However, we also observed that when all external267

data are in-distribution (ID), the improvement from OPO algo-268

rithm is not stable. This suggests that external data quality is269

sufficiently high, making random sampling sufficient for our270

needs. To validate this, we calculated the Fréchet Inception271

Distance (FID) scores [25] between the in-task dataset and272

external datasets obtained by different sampling algorithms273

under CIFAR and CPI compositions, as shown in Figure 3.274

A lower FID score indicates greater similarity between two275

datasets, and vice versa. Figure 3 shows that with the CIFAR276

composition, the FID score is lower, and the effect of the OPO277

algorithm is little, indicating that this dataset is already of278

high quality. In contrast, under CPI, the FID score is higher when random sampling, while shows a279

significant decrease when OPO sampling. It indicates that the OPO algorithm adjusts the distribution280

of the external dataset considerably to make it more compatible with the in-task dataset. Therefore281

OPO algorithm will have more advantages when the external dataset contains OOD data.282

Besides, we observed that the advantage of OPO sampling algorithm is more significant on the283

ImageNet100 dataset. We believe this can be attributed to two factors: 1) Higher image pixels contain284
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more information, and fewer images will satisfy the proximity. 2) With a larger quantity of external285

data, there are more potentially high-quality data, facilitating better sampling.286

Table 4: Comparison of additional
positive and negative pairs’ effects.

Negative Positive Acc

52.79
✓ 53.40

✓ 55.61
✓ ✓ 56.21

Effect of additional positive and negative pairs We fur-287

ther investigate whether additional positive or negative pairs288

provided by BGE contribute more to performance improve-289

ment. We conduct experiments based on CaSSLe [16] on the290

CIFAR100 4 tasks setting. Because this experiment requires291

explicitly calculating the loss incurred by each positive and292

negative pair, we convert the framework to SimCLR [8]. We293

masked the additional positive or negative pairs in Table 4.294

The results show that both types of pairs improve performance295

individually, and negative pairs yield more significant improve-296

ment, supporting our emphasis that the impact of absent inter-task comparisons is severe but neglected.297

But positive pairs also yield performance improvement, which is because high-quality external data298

have feature intersections with in-task data, proving that external data can prevent catastrophic299

forgetting as well. With the synergistic effect of both, the improvement reaches the highest.300

Experiments with only OOD external data In the experiments presented in Table 1 and Table 2,301

all external data contain some amount of ID data. To assess BGE’s performance without any ID data302

in the external dataset, we conduct experiments on CIFAR100 4 tasks based on PFR, as shown in303

Table 5. The external dataset is only composed of ImageNet-R or Places365test. In joint training,304

these data are detrimental. While in continual training, BGE consistently improves the base method305

by nearly 2%, regardless of the composition of OOD data used. It indicates that the performance306

improvement from BGE does not only come from imitating in-task data features, but also from307

introducing similar additional comparisons into each task itself, which is beneficial for constructing308

implicit inter-task comparisons. Even if the external data has few recognizable similar features to309

the in-task data, the network can still try its best to mine valuable knowledge from external data to310

compensate for inter-task comparisons.311

Table 5: Effectiveness of BGE when external data are totally OOD.

External dataset compositions PFR +BGE Joint Joint+ED
ImageNet-R Places365test

✓ 60.92 62.85(+1.93) 68.09 68.03(-0.06)
✓ 60.92 62.81(+1.89) 68.09 67.75(-0.34)

✓ ✓ 60.92 62.88(+1.96) 68.09 67.15(-0.94)

Table 6: Performance of BGE
when choosing more types of
datasets.

External datasets Acc

N/A 60.92
GenImage [58] 64.37

CC3M [42] 63.53
CUB200 [48] 62.42

BGE with more types of datasets We validate the effective-312

ness of BGE across more aspects of external datasets. Table 6313

presents the results when using GenImage [58], a dataset of gen-314

erated images; CC3M [42], a dataset sourced from the Internet;315

and CUB200 [48], a fine-grained bird dataset as external dataset.316

Experiments with GenImage and CC3M demonstrate BGE’s effec-317

tiveness with both model-generated and real-world Internet data,318

demonstrating its practical value. Since CUB200 is fine-grained319

and lacking in diversity, it is extremely unfriendly to BGE, yet320

BGE can still improve the base method.321

5 Conclusion322

In this paper, we address a commonly overlooked but severe issue in Continual Contrastive Self-323

Supervised Learning (CCSSL): the lack of inter-task comparisons. To tackle this, we propose our324

method BGE to incorporate external data into training, bridging the inter-task gap and facilitating325

implicit inter-task data comparisons. We also design the One-Propose-One sampling algorithm to326

select high-quality external data and filter out irrelevant OOD data. BGE can be seamlessly integrated327

into existing methods and yield significant improvement.328
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A Appendix / supplemental material492

A.1 Experimental details493

We use SGD optimizer with warmup cosine scheduler to train the network with batchsize of 256. For494

CIFAR100, we train 500 epochs per task with a learning rate of 0.3 and weight decay of 1e-4 for495

FT and CaSSLe[16]. For PFR[18], we use the learning rate as 0.4. For ImageNet100, we train 400496

epochs per task with a learning rate of 0.4 and weight decay of 1e-4.497

We use one RTX 3090 for CIFAR100 experiments and one A40 for ImageNet100 experiments. For498

CIFAR100 experiments, it takes about 5 hours in 4 tasks setting and 8 hours in 10 tasks setting. For499

ImageNet100 experiments, it takes about 17 hours in 5 tasks setting and 27 hours in 10 tasks setting.500

A.2 More experiments501

A.2.1 BGE’s improvement to inter-task confusion502

We categorize the results of classification errors into two types, inter-task confusion (the wrong503

prediction belongs to a different task than the target) and intra-task confusion (the wrong prediction504

belongs to the same task as the target). Under the CIFAR100 4 tasks setting, we compare the505

probability of each of the two types of confusion occurring for the class contained in the last task for506

the three baseline methods, as shown in Table 7. Ideally, the ratio of intra-task confusion to inter-task507

confusion should be 1:3, since the ratio of the number of current task classes to the total number508

of previous task classes is 1:3. However, the inter-task confusion in Table 7 is 5 to 7 times higher509

than the intra-task confusion, suggesting that the lack of Linter optimization has a severe impact on510

performance, while BGE improves this and decreases inter-task confusion.

Table 7: Comparison of intra-task confusion and inter-task confusion. ↓ means the value is the lower
the better.

Method Intra-task confusion↓ Inter-task confusion↓
FT 4.56% 33.48%
FT+BGE 4.60%(+0.04%) 30.12%(-3.36%)
CaSSLe 6.84% 32.08%
CaSSLe+BGE 6.08%(-0.76%) 28.52%(-3.56%)
PFR 6.32% 29.64%
PFR+BGE 6.44%(+0.12%) 27.36%(-2.28%)

511

A.2.2 Experiments on the method without negative samples512

While the results in Table 4 indicate that the effectiveness of BGE mainly stems from additional513

negative samples, we conducted experiments using the contrastive learning framework BYOL, which514

calculates contrastive loss without the need of negative samples, as shown in Table 8. The results515

indicate that our method still achieves improvement, demonstrating its applicability even in methods516

without negative samples.

Table 8: Performance improvement yielded by BGE in BYOL.

Methods CIFAR CP

4tasks 10tasks 4tasks 10tasks

FT 52.36 47.97 52.36 47.97
FT+BGE 56.88(+4.52) 49.42(+1.45) 56.37(+4.01) 49.22(+1.25)

CaSSLe 57.46 52.61 57.46 52.61
CaSSLe+BGE 59.20(+1.78) 56.16(+3.55) 58.92(+1.46) 55.22(+2.61)

517
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A.2.3 Visualization of sample algorithm518

We visualize the relationship between external and in-task samples obtained by different sampling519

algorithms under CIFAR and CPI compositions, as shown in Figure 4. When CIFAR10 as external520

data, the distributions of random and OPO samples are similar, both covering the entire area effectively.521

While in the CPI setting, random sampling fails to cover the entire area, in contrast, the OPO algorithm522

achieves superior proximity and diversity, consequently leading to greater performance improvement.523

This observation corroborates our discussion about the sampling algorithm in Section 4.3.

CPICIFAR10

Random OPO Random OPO

In-task data Sampled external data

Figure 4: Comparison of external data sampled by different algorithms. When the entire external data
quality is high (CIFAR), there is little difference between random and OPO sampling. When the data
contains many OOD data (CPI), OPO outperforms random in sampling relevant and diverse samples.

524

A.2.4 Self-supervised learning feature characteristics525

Previous work [2] points out that self-supervised trained networks map inputs together according526

to feature characteristics rather than according to labels as supervised trained networks tend to do.527

Inspired by them, we validate that we adopted network also has such characteristics. Table 9 shows528

the average number of one sample’s k-nearest neighbors belonging to the class of this sample for529

networks trained in the supervised or self-supervised manner. It is evident that supervised networks530

consistently have more same-class neighbors, indicating that they cluster images based on labels. In531

contrast, self-supervised networks are less influenced by image classes, which is advantageous for532

incorporating external data.

Table 9: Statistics on how many of the k-nearest neighbors of a sample belong to the same class as
this sample in self-supervised and supervised networks.

k 3 5 10 20 30 50 100 Acc

Supervised 1.76 2.93 5.58 10.87 15.63 24.38 40.86 71.64
Self-supervised 1.36 2.25 4.14 7.24 9.96 14.53 22.00 68.09

533

Table 10 presents the class statistics of the top 100 nearest neighbors of the "willow tree" class on the534

CIFAR100 dataset, as learned by self-supervised and supervised networks. Self-supervised learning535

results in a lower proportion of same-class neighbors, indicating less influence from class labels.536

Additionally, the neighbors of other classes in the self-supervised network exhibit features more537

similar to the "willow tree" class.538

This insight suggests that external data, despite having different actual classes with in-task data,539

can proxy for the in-task data in self-supervised learning due to shared features. Thus giving us540

confidence that using external data in self-supervised learning as in BGE can yield good results and541

justify our cosine distance based sampling algorithm.542

A.2.5 Fairness alignment543

Introducing external data incurs additional iterations and new knowledge. To ensure fairness, we544

train the base method PFR for more epochs and use pre-training with external data to initialize the545

weights for in-task data training. Experimental results, as shown in Table 11, reveal that training546
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Table 10: The class name and average number of the top 5 classes with the highest number of the top
100 neighbors of the "willow tree" class.

Supervised learning Self-supervised learning

Neighbor class Avg number Neighbor class Avg number

willow tree 48.59 willow tree 18.68
mushroom 7.85 oak tree 18.47

girl 4.19 maple tree 16.45
butterfly 3.05 pine tree 8.48

bus 2.94 forest 8.10

for more epochs and pre-training with external data do not lead to performance improvement. This547

highlights the effectiveness of BGE under fairer conditions.

Table 11: Comparison of the performance improvement of BGE and other factors to ensure fairness.

Methods Acc

Base 60.92
Train more epochs 61.21
Use external data to pre-train 61.28
Ours 64.37

548

A.2.6 Experiment statistical significance549

Due to limited computational resources, we report the mean and standard deviation of three random550

trials for only the primary experiments in Tables 12 and 13. The performance of the BGE on the three551

base methods when using CIFAR and CPI as external dataset compositions under the CIFAR100552

4 tasks and 10 tasks setting is shown in Table 12. Table 13 shows the performance of BGE using553

different sampling algorithms with CPI as the external dataset, also in the CIFAR100 4 tasks and 10554

tasks setting, across the same three baseline methods.

Table 12: Results with multiple runs.

Methods CIFAR CPI

4tasks 10tasks 4tasks 10tasks

FT 59.80±0.27 56.92±0.29 59.06±0.39 55.18±0.51
CaSSLe 62.39±0.41 57.99±0.28 61.86±0.36 56.52±0.21

PFR 64.13±0.24 60.01±0.02 63.12±0.33 59.94±0.05

Table 13: Results with multiple runs.

Methods 4tasks 10tasks

random OPO random OPO

FT 57.61±0.42 59.06±0.39 52.81±0.23 55.18±0.51
CaSSLe 61.59±0.25 61.86±0.36 55.50±0.23 56.52±0.21

PFR 62.50±0.11 63.12±0.33 58.66±0.27 59.94±0.05

555

A.2.7 Full experiments556

We present here the full set of experiments, encompassing various base methods, sampling bud-557

gets, sampling methods, and compositions of external datasets, demonstrating the performance558

improvement of BGE on CIFAR100 (Table 14) and ImageNet100 (Table 15).559
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Table 14: Full experiment results on CIFAR100 dataset.

Methods
External Dataset CIFAR10 CP CPI

Budget Sample
method 4tasks 10tasks 4tasks 10tasks 4tasks 10tasks

FT

0 - 56.19 49.36 56.19 49.36 56.19 49.36

5K
random 58.65(+2.46) 54.78(+5.42) 57.54(+1.35) 52.09(+2.73) 56.95(+0.76) 52.3(+2.94)

OPO 58.51(+2.32) 54.39(+5.03) 57.56(+1.37) 54.59(+5.23) 58.3(+2.11) 53.15(+3.79)

10K
random 60.01(+3.82) 56.56(+7.20) 57.41(+1.22) 52.78(+3.42) 57.22(+1.03) 52.56(+3.20)

OPO 59.49(+3.30) 56.62(+7.26) 58.69(+2.50) 55.14(+5.78) 58.71(+2.52) 55.74(+6.38)

CaSSLe

0 - 60.04 53.89 60.04 53.89 60.04 53.89

5K
random 61.26(+1.22) 56.72(+2.83) 60.86(+0.82) 54.47(+0.58) 61.06(+1.02) 54.52(+0.63)

OPO 61.35(+1.31) 56.63(+2.74) 61.39(+1.35) 55.24(+1.35) 61.30(+1.26) 55.77(+1.88)

10K
random 62.49(+2.45) 57.49(+3.60) 60.98(+0.94) 55.48(+1.59) 61.44(+1.40) 55.40(+1.51)

OPO 62.38(+2.34) 58.14(+4.25) 61.72(+1.68) 56.92(+3.03) 61.51(+1.47) 56.36(+2.47)

PFR

0 - 60.92 55.57 60.92 55.57 60.92 55.57

5K
random 62.84(+1.92) 60.01(+4.44) 62.39+(1.47) 58.49(+2.92) 62.16(+1.24) 57.78(+2.21)

OPO 62.79(+1.87) 59.66(+4.09) 62.16(+1.24) 59.29(+3.72) 62.87(+1.95) 58.41(+2.84)

10K
random 63.51(+2.59) 61.58(+6.01) 62.57(+1.65) 59.33(+3.76) 62.58(+1.66) 58.45(+2.88)

OPO 64.37(+3.45) 61.02(+5.45) 63.15(+2.23) 60.31(+4.74) 62.88(+1.96) 59.99(+4.42)

Table 15: Full experiment results on ImageNet100 dataset.

Methods
External Dataset IN INP IND

Budget Sample
method 5tasks 10tasks 5tasks 10tasks 5tasks 10tasks

FT

0 - 64.02 56.72 64.02 56.72 64.02 56.72

10K
random 67.66(+3.64) 63.02(+6.30) 66.50(+2.48) 61.90(+5.18) 66.90(+2.88) 61.90(+5.18)

OPO 68.20(+4.18) 64.16(+7.44) 67.84(+3.82) 64.08(+7.36) 69.06(+5.04) 65.00(+8.28)

CaSSLe

0 - 70.02 60.68 70.02 60.68 70.02 60.68

10K
random 71.52(+1.50) 65.02(+4.34) 71.04(+1.02) 64.34(+3.66) 70.98(+0.96) 65.44(+4.76)

OPO 72.46(+2.44) 66.80(+6.12) 71.44(+1.42) 65.94(+5.26) 72.68(+2.66) 67.10(+6.42)

PFR

0 - 70.14 63.12 70.14 63.12 70.14 63.12

10K
random 72.82(+2.68) 68.20(+5.08) 71.36(+1.22) 67.26(+4.14) 72.56(+2.42) 67.98(+4.86)

OPO 72.52(+2.38) 69.28(+6.16) 72.94(+2.80) 68.40(+5.28) 72.60(+2.46) 68.94(+5.82)

A.3 Limitations and future directions560

There are still limitations to BGE, such as increased data volume for training, leading to additional561

computational costs. For future directions, we believe BGE can inspire further research into continual562

learning from the perspective of inter-task data relationships. Additionally, BGE’s use of external563

data instead of exemplars to compensate for inter-task comparisons enhances privacy preservation,564

offering a pathway for future work to address privacy concerns associated with using exemplars. We565

research methods to allow the network to learn continually, which have no negative impact on society,566

and at the same time, we proposed method facilitates privacy protection and has a positive impact on567

society.568
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