
Under review as a conference paper at ICLR 2023

DECOUPLE GRAPH NEURAL NETWORKS: TRAIN MUL-
TIPLE SIMPLE GNNS SIMULTANEOUSLY INSTEAD OF
ONE

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNN) suffer from severe inefficiency due to the exponen-
tial growth of node dependency with the increase of layers. It extremely limits
the application of stochastic optimization algorithms so that the training of GNN
is usually time-consuming. To address this problem, we propose to decouple a
multi-layer GNN as multiple simple modules for more efficient training, which
is comprised of classical forward training (FT) and designed backward training
(BT). Under the proposed framework, each module can be trained efficiently in
FT by stochastic algorithms without distortion of graph information owing to its
simplicity. To avoid the only unidirectional information delivery of FT and suffi-
ciently train shallow modules with the deeper ones, we develop a backward training
mechanism that makes the former modules perceive the latter modules, inspired by
the classical backward propagation algorithm. The backward training introduces
the reversed information delivery into the decoupled modules as well as the forward
information delivery. To investigate how the decoupling and greedy training affect
the representational capacity, we theoretically prove that the error produced by
linear modules will not accumulate on unsupervised tasks in most cases. The
theoretical and experimental results show that the proposed framework is highly
efficient with reasonable performance, which may deserve more investigation.

1 INTRODUCTION

In recent years, neural networks (Simonyan & Zisserman, 2015; He et al., 2016), due to the impressive
performance, have been extended to graph data, known as graph neural networks (GNN) (Scarselli
et al., 2008). As GNNs significantly improve the results of graph tasks, it has been extensively
investigated from different aspects, such as graph convolution network (GCN) (Kipf & Welling, 2017;
Niepert et al., 2016), graph attention networks (GAT) (Velickovic et al., 2018; Kreuzer et al., 2021),
spatial-temporal GNN (STGNN) (Wang et al., 2020), graph auto-encoder (Kipf & Welling, 2016;
Park et al., 2019), graph contrastive learning (Hassani & Khasahmadi, 2020), etc.

Except for the variants that originate from different perspectives, an important topic is motivated by
the well-known inefficiency of GNN. In classical neural networks (He et al., 2016), the optimization
is usually based on stochastic algorithms with limited batch (Duchi et al., 2011; Kingma & Ba, 2015)
since samples are independent of each other. However, the aggregation-like operations defined in
(Hamilton et al., 2017) result in the dependency of each node on its neighbors and the amount of
dependent nodes for one node increases exponentially with the growth of layers, which results in the
unexpected increases of batch size. Some works are proposed based on neighbor sampling (Hamilton
et al., 2017; Chen et al., 2018b;a; Zeng et al., 2020) and graph approximation (Chiang et al., 2019) to
limit the batch size, while some methods (Wu et al., 2019; Zhu & Koniusz, 2021) attempt to directly
apply high-order graph operation and sacrifice the most non-linearity. The training stability is a
problem for neighbor sampling methods (Hamilton et al., 2017; Chen et al., 2018b; Zeng et al., 2020)
though VRGCN (Chen et al., 2018a) has attempted to control the variance via improving sampling.
Note that the required nodes may still grow (slowly) with the increase of depth. ClusterGCN (Chiang
et al., 2019) finds an approximate graph with plenty of connected components so that the batch size
is strictly upper-bounded. The major challenge of these methods is the information missing during
sampling. The simplified methods (Wu et al., 2019; Zhu & Koniusz, 2021) are efficient but the limited

1

Under review as a conference paper at ICLR 2023

Figure 1: Illustration of a stacked graph neural network decoupled from an L-layer GNN. To train
each module individually, some loss (e.g., semi-supervised loss, unsupervised loss, contrastive loss)
is required and it is denoted by L(t)

FT . To let the shallow modules perceive the deeper ones,Mt passes
back the expected input features toMt−1 during the backward training. The divergence between the
features output byMt and the expected features ofMt−1 formulates the BT loss L(t)

BT .

non-linearity may be the bottleneck of these methods. These methods may incorporate the idea of
GIN (Xu et al., 2019) to improve the capacity (Zhu & Koniusz, 2021).

To apply stochastic optimization while retaining the exact graph structure, we propose a framework,
namely stacked graph neural network (SGNN), which decouples a multi-layer GNN as multiple simple
GNN modules and then trains them simultaneously rather than connecting them with the increase of
the depth. Inspired by the backward propagation algorithm, we find that the main difference between
stacked networks (Vincent et al., 2010) and classical networks is no training information propagated
from the latter modules to the former ones. The lack of backward information delivery may be
the main reason of the performance limitation of stacked models. The contributions are concluded
as: (1) We accordingly propose a backward training strategy to let the former modules receive the
information from the final loss and latter modules, which leads to a cycled training framework to
control bias and train shallow modules correctly. (2) Under this framework, a multi-layer GNN can be
decoupled into multiple simple GNNs, named as separable GNNs in this paper, so that every training
step could use the stochastic optimization without any samplings or changes on graph. Therefore,
SGNN could take both non-linearity and high efficiency into account. (3) We investigate how the
decoupling and greedy training affect the representational capacity of the linear SGNN. It is proved
that the error would not accumulate in most cases when the final objective is graph reconstruction.

2 BACKGROUND

Graph Neural Networks Aiming to extend convolution operation into graph, graph convolution
became a hot topic (Niepert et al., 2016; Bruna et al., 2014; Defferrard et al., 2016) and graph convo-
lution network (GCN) (Kipf & Welling, 2017) has become an important baseline. By introducing
self-attention techniques (Vaswani et al., 2017), graph attention networks (GAT) (Velickovic et al.,
2018; Kreuzer et al., 2021) are proposed and applied to other applications (Kim et al., 2021; Guo
et al., 2021). As Li et al. (2018) claimed that GNNs suffer from the over-smoothing problem, GALA
(Park et al., 2019) develops the graph sharpening and ResGCN (Li et al., 2019) attempts to designs a
deeper architecture. The theoretical works (Li et al., 2018; Oono & Suzuki, 2020; Cong et al., 2021)
have different views towards the depth of GNNs. Some works (Li et al., 2018; Oono & Suzuki, 2020)
claimed that the expressive power of GNN decreases with the increase of layers, while the others
argue that the assumptions in (Oono & Suzuki, 2020) may not hold and deeper GNNs have stronger
power (Cong et al., 2021). Moreover, some works (Morris et al., 2019; Xu et al., 2019) investigate
the expressive capability by showing the connection between Weisfeiler-Lehman test (Weisfeiler &
Leman, 1968) and GNNs. Nevertheless, most of them neglect the inefficiency problem of GNNs.

2

Under review as a conference paper at ICLR 2023

Efficient Graph Neural Networks To accelerate the optimization through batch gradient descent
to GNN without too much deviation, several models (Hamilton et al., 2017; Chen et al., 2018b;a;
Zeng et al., 2020) propose to sample data points according to graph topology. These models propose
different sampling strategies to obtain stable results. GraphSAGE (Hamilton et al., 2017) produces a
subgraph with limited neighbors for each node while FastGCN (Chen et al., 2018b) samples fixed
nodes for each layer with the importance sampling. The variance of sampling is further controlled in
(Chen et al., 2018a). ClusterGCN (Chiang et al., 2019) aims to generate an approximate graph with
plenty of connected components so that each component can be used as a batch per step. SGC (Wu
et al., 2019) simplifies GCN by setting all activations of middle layers as linear functions and SSGC
(Zhu & Koniusz, 2021) further improves it. In summary, SGNN proposed in this paper retains the
non-linearity and requires no node sampling or sub-graph sampling.

Connections to Existing Models Stacked Auto-Encoder (SAE) (Vincent et al., 2010) is a model
applied to the pre-training of neural networks. It trains the current two-layer auto-encoder (Hinton
& Salakhutdinov, 2006) and then feeds the latent features output by the middle layer to the next
auto-encoder. The model is often used as a pre-training model instead of a formal model. MGAE
(Wang et al., 2017) is an extension of SAE and its fundamental module is graph auto-encoder (Kipf
& Welling, 2016). The main difference compared with the proposed model is whether each module
could be perceived by modules from both forward and backward directions. The stack paradigm
is similar to the classical boosting models (Freund & Schapire, 1997; Friedman, 2001; Chen &
Guestrin) while some works (Schwenk & Bengio, 2000; Zhou et al., 2002) also investigated the
boosting algorithm of neural networks. In recent years, some boosting GNN models (Ivanov &
Prokhorenkova, 2021; Sun et al., 2021) are also developed. The most boosting algorithms (e.g.,
(Schwenk & Bengio, 2000; Ivanov & Prokhorenkova, 2021)) aim to learn a prediction function
gradually while the proposed SGNN aims to learn ideal embeddings gradually. Note that AdaGCN
(Sun et al., 2021) is also trained gradually and the features are combined using AdaBoost (Freund &
Schapire, 1997). More importantly, all these boosting methods for GNNs are only trained forward
and the backward training is missing. Deep neural interface (Jaderberg et al., 2017) proposes to
decouple neural networks to asynchronously accelerate the computation of gradients. The decoupling
is an acceleration trick to compute the gradients of L-layer networks, while SGNN proposed in this
paper explicitly separates an L-layer GNN into L simple modules. In other words, the ultimate goal
of SGNN is not to optimize an L-layer GNN.

3 PROPOSED METHOD

Motivated by SAE (Vincent et al., 2010) and the fact that the simplified models (Wu et al., 2019;
Zhu & Koniusz, 2021) are highly efficient for GNN, we therefore rethink the substantial difference
between the stacked networks and multi-layer GNNs. To sum up, we attempt to answer the following
two questions in this paper:

Q1: How to decouple a complex GNN into multiple simple GNNs and train them simultaneously?
Q2: How does the decoupling affect the representational capacity and final performance?

We will discuss the first question in this section and then elaborate on another one in Section 4.

3.1 PRELIMINARY

Each decoupled GNN model of the proposed model is named as a module and the t-th module is
denoted byMt for simplicity. The vector and matrix are denoted by lower-case and upper-case
letters in bold, respectively. ∥ · ∥ represents the Frobenius norm. Given a graph, let A ∈ Rn×n be
adjacency matrix and X ∈ Rn×d be node features. A typical GNN layer can be usually defined as

H = f(A,X,W) = φ(PXW), (1)
where W is projection coefficient and P = ϕ(A) is a function of A. When we discuss each
individual module, we assume that W ∈ Rd×k for simplicity. For example, GCN (Kipf & Welling,
2017) defines P as PGCN = D− 1

2 (A + I)D− 1
2 and D is the degree matrix of A + I . When

multiple layers are integrated, the learned representation given by multiple GNN layers can be written
as

H = f1 ◦ f2 ◦ · · · ◦ fL(A,X,W1, . . . ,WL) = φL(PφL−1(· · ·φ1(PXW1) · · ·)WL), (2)

3

Under review as a conference paper at ICLR 2023

where L is the amount of layers. Assume that the average number of neighbors is c. To compute H ,
each sample will need O(cL) extra samples. If the depth is large and the graph is connected, then all
nodes have to be engaged to compute for one node. The uncontrolled batch size results in the time-
consuming training. In vanilla GNNs, the computational complexity is O(KL∥A∥0

∑m−1
i=0 didi+1)

on sparse graphs where K is the number of iterations and di is the dimension of Wi. For large-scale
datasets, both time and space complexity are too expensive.

3.2 STACKED GRAPH NEURAL NETWORKS

Although the stacked networks usually have more parameters than multi-layer networks, which
frequently indicates that the stacked networks may be more powerful, they only serve as a technique
for pre-training. Specifically speaking, they simply transfer the representations learned by the current
network to the next one but no feedback is passed back. It causes the invisibility of the succeeding
modules and the final objective. As a result of the unreliability of the former modules, the stacked
model is conventionally used as an unsupervised pre-training model.

Rethinking the learning process of a network, multiple layers are optimized simultaneously by
gradient-based methods where the gradient is calculated by the well-known backward propagation
algorithm (Rumelhart et al., 1986). The algorithm consists of forward propagation (FP) and backward
propagation (BP). FP computes the required values for BP, which can be viewed as an information
delivery process. Note that FP is similar to the training of the stacked networks. Specifically,
transferring the output of the current module to the next one in the stacked network is like the
computation of neurons layer by layer during FP. Inspired by this, we aim to design a BP-like training
strategy, namely backward training (BT), so that the former modules could be tuned according to the
feedback. The core idea of our stacked graph neural network (SGNN) is shown in Figure 1.

Before introducing SGNN in detail, we formally introduce the key concept and core motivation of
how to accelerate GNN via SGNN.
Definition 3.1. If a GNN model can be formulated as f(A,X,W) = f1(f0(A,X),W), then
it is a separable GNN. If it can be further formulated as f(A,X,W) = f1(f0(A,X),W) =
g1(A, g0(X,W)), then it is a fully-separable GNN.

To keep simplicity, define the set of separable GNNs as Fk = {f : Rn×n × Rn×d × Rd×k 7→
Rn×k|f(A,X,W) = f1(f0(A,X),W)} and the set of fully-separable GNNs as F∗

k = {f :
Rn×n × Rn×d × Rd×k 7→ R|f(A,X,W) = f1(f0(A,X),W) = g1(A, g0(X,W))}. Note
that most single-layer GNN models are fully-separable. For instance, SGC (Wu et al., 2019) is
fully-separable where f0(A,X) = PmX and f1(f0(A,X),W) = φ(f0(A,X) ·W), while the
single-layer GIN (Scarselli et al., 2008) is separable but not fully-separable since P ·MLP(X) ̸=
MLP(PX) usually holds. However, a single-layer GAT (Velickovic et al., 2018) is not separable
since the graph operation is relevant to W .

The separable property actually factorizes a GNN model to 2 parts, graph operation f0 and neural
operation f1. Since all dependencies among nodes in GNNs are caused by the graph operation, one
can compute X ′ = f0(A,X) once (like preprocessing) in separable GNNs and then the GNN is
converted into a typical network. After computing X ′, the information contained in graph has been
passed into X ′ and the succeeding sampling would not affect the topology of graph. Therefore, we
can obtain a highly efficient GNN model that can be optimized by SGD, provided that each module
is separable. On the other hand, the fully-separable condition is essential for the backward training
to pass back the information over multiple modules. Since most single-layer GNNs are separable but
not fully-separable, we show how to revise separable GNNs to introduce the fully-separability.

Then, we introduce the core idea of SGNN by aiming to handle the two main problems.

Forward Training (FT) The first challenge is how to set the training objective for each module
Mt. It is crucial to apply SGNN to both supervised and unsupervised scenes. Suppose that we have a
separable GNN moduleM and let H = f(A,X,W) be the features learned by the separable GNN
module. For the unsupervised cases, ifMt is a GAE, then the loss of FT is formulated as

LFT = ℓ(A,X,H) = d(A, κ(H)), (3)
where d(·, ·) represents the metric function and κ : Rn×k 7→ Rn×n is a mapping function. For
instance, a simple loss introduced by (Kipf & Welling, 2016) is d(A, κ(H)) = KL(A∥σ(HHT))

4

Under review as a conference paper at ICLR 2023

where σ(·) is the sigmoid function, and KL(·∥·) is the Kullback-Leibler divergence. The other
options include but not limited to symmetric content reconstruction (Park et al., 2019) and graph
contrastive learning (Hassani & Khasahmadi, 2020). For modules with supervision information, a
projection matrix R ∈ Rk×c is introduced to map the k-dimension embedding vector into soft labels
with c classes. For the node classification, the loss can be simply set as

LFT = KL(Y ∥softmax(HR)), (4)

where Y ∈ Rn×c is the supervision information for supervised tasks. Note that the above loss is
equivalent to the classical softmax regression if H is constant. The loss could also be link prediction,
graph classification, etc. Although base modules can utilize diverse losses, we only discuss the
situation that all modules use the same kind of loss in this paper for simplicity.

Algorithm 1: Procedure of Stacked Graph Neural Networks Composed of L Modules
Input :Adjacency matrix A, feature matrix X , balance coefficient η, the number of epochs K,

L separable GNN modules {Mt}Lt=1, H0 ←X .
Output :Features output byML.
for i = 1, . . . ,K do

Forward Train Stacked Graph Neural Networks
for t = 1, 2, . . . , L− 1 do

Feed the current features toMt and reset Ut: Xt ←Ht−1, Ut ← I .
Train with only LFT at the first forward training
Xt

′ = f
(t)
0 (A,Xt) # Preprocessing for mini-batch algorithms

Compute loss L(t) ← L(t)
FT if i == 1 else L(t)

FT + ηL(t)
BT

TrainMt by optimizing minWt
L(t) based on mini-batch algorithms.

Obtain the features: Ht ← f
(t)
1 (Xt

′,Wt).

XL ←Ht, UL ← I , X ′
L = f

(L)
0 (A, XL).

TrainML by optimizing minWL,UL
L(L)
FT based on mini-batch algorithms.

Backward Train Stacked Graph Neural Networks
for t = L− 1, L− 2, . . . , 1 do

Compute the expected output feature ofMt: Zt+1 ← (g∗0)t+1(Xt+1,Ut+1).
TrainMt by optimizing minWt,Ut

L(t)
FT + ηL(t)

BT based on mini-batch algorithms.

Backward Training (BT) The second challenge is how to train multiple separable GNNs simul-
taneously in order to ensure performance. Roughly speaking, the gradients of all layers in neural
networks are computed exactly due to the repeated delivery of information by FP and BP. BP lets the
shallow layers perceive the deep ones through the feedback, while the tail modules are invisible to the
head ones in FT. We accordingly design the backward training (BT) for SGNN. To achieve the reverse
information delivery, a separable GNN layer is modified by introducing the fully-separability,

H = f̂(A,X,W) = f̂1(f̂0(A,X),W) = f̂1(f
∗(A,X,U),W), ∀f̂ ∈ Fk, f

∗ ∈ F∗
d , (5)

where U ∈ Rd×d and W ∈ Rd×k. Note that f∗(A,X,U) = g∗1(A, g∗0(X,U)). Clearly, if U
is fixed as a constant, then the modified layer is equivalent to the original separable GNN layer f̂ .
Denote Z = g∗0(X,U) and Z is the expected features. Specifically, Zt is the learned feature during
the backward training ofMt, and it is also the expected input ofMt, i.e., fromMt−1. In the forward
training, the delivery of information is based on the learned features Ht, and Z plays the similar role
in the backward training. The loss of backward training attempts to shrink the difference between the
output feature Ht ofMt and expected input Zt+1 ofMt+1,

L(t)
BT = d(Ht,Zt+1) = d(f∗

t (A,Xt,Ut),Zt+1). (6)

Note that LBT is only activated after the first forward training leading to the final loss ofMt as

L(t) = L(t)
FT + ηL(t)

BT , (7)

and it is updated during each backward training. The introduction of Z will not limit the application
of stochastic optimization since the expected features can also be sampled at each iteration without
restrictions. The procedure is summarized as Algorithm 1.

5

Under review as a conference paper at ICLR 2023

(a) GCN on Cora (b) SGNN on Cora (c) GCN on Citeseer (d) SGNN on Citeseer

Figure 2: Visualization of SGNN comprised of 3 modules and 3-layer GCN on node classification.
For SGNN, the output ofM3 is visualized. For GCN, the output of the final GCN-layer is visualized.

Remark that Ut remains as the identity matrix during FT. This setting leads to each forward computa-
tion across L base modules being equivalent to a forward propagation L-layer GNN. In other words,
an SGNN with L modules can be regarded as a decomposition of an L-layer GNN. One may concern
that why not to learn Ut and Wt together in FT. In this case, we prefer to use Ut only for learning
the expected features ofMt+1 and the capability improvement from the co-learning Ut in FT could
also be implemented by W , which is equivalent to use GIN (Xu et al., 2019) as base modules. The
complexity can be found in Appendix D due to the limitation of space.

4 THEORETICAL ANALYSIS

To answer the second question raised in the beginning of Section 3, we discuss the impact of the
decoupling in this section. Intuitively speaking, if an L-layer GNN achieves satisfactory results, then
there exists {Wt}Lt=1 such that an SGNN with L modules could achieve the same results. However,
eachMt is trained greedily according to the forward training loss LFT , while middle layers of a
multi-layer GNN are trained according to the same objective. The major concern is whether the
embedding learned by a greedy strategy leads to an irreversible deviation in the forward training.

In this section, we investigate the possible side effects on a specific SGNN comprised of unsupervised
modules defined in Eq. (3) with linear activations. The conclusion is not apparent since simply setting
W as an identity matrix does not prove it for GNN due to the existence of P . Remark that a basic
premise is that the previous module has achieved a reasonable result.

Given a linear separable-GNN moduleM which is defined as H = PXW ∈ Rn×k, suppose that
the forward training uses the reconstruction error ∥P −HHT ∥ as LFT . We first introduce the
matrix angle to better understand whether the preconditions of Theorem 4.1 are practicable.
Definition 4.1. Given two matrices B1,B2 ∈ Rn×n, we define the matrix angle as θ(B1,B2) =
arccos⟨B1,B2⟩/(∥B1∥ · ∥B2∥).

Before elaborating on theorems, we introduce the following assumption, which separates the discus-
sions into two cases.
Assumption 4.1. XXT does not share the same eigenspace with P −XXT .

Note that the above assumption is weak and frequently holds in most cases. For simplicity, Ur ∈
Rn×r (r ∈ N+) is the eigenvectors associated with r leading eigenvalues. Under this assumption, we
find that the error ofM is upper-bounded by ε.
Theorem 4.1. Let δ = 1 − cos(θ∗/2) and θ∗ = θ((P −XXT)Q,Q(P −XXT)) where Q =
UoU

T
o − I/2 and o = min(rank(X), k). Under Assumption 4.1, if ∥P −HHT ∥ = ε ≤ O(δ) and

σ∗ ≤ O(
√
δ) where σ∗ is the (o+ 1)-th largest singular value of X , then there exists W ∈ Rd×k

so that ∥P −HHT ∥ ≤ ε. In other words, if ε is small enough, then HHT could be a better
approximation than XXT .

Specially, if rank(X) ≤ k or k = d, σ∗ = 0 so that σ∗ ≤ O(
√
δ) holds. From the above theorem,

we claim that the error throughM will not accumulate (i.e., bound by ε) provided that the input X ,
the output of the previous modules, is well-trained. We further provide an upper-bound of error if
Assumption 4.1 does not hold. The following theorem shows the increasing speed of error is at most
linear with the tail singular-values.
Theorem 4.2. If Assumption 4.1 does not hold, then there exists W ∈ Rd×k so that ∥P −HHT ∥ ≤
ε+O(σ2

∗).

6

Under review as a conference paper at ICLR 2023

Table 1: Node clustering results

Datasets Cora Citeseer PubMed Reddit
ACC NMI ACC NMI ACC NMI ACC NMI

K-Means 0.4922 0.3210 0.5401 0.3054 0.5952 0.2780 0.1927 0.2349
ARGA 0.6400 0.4490 0.5730 0.3500 0.6807 0.2757 N/A N/A
MGAE 0.6806 0.4892 0.6691 0.4158 0.5932 0.2957 N/A N/A
GraphSAGE 0.6163 0.4826 0.5664 0.3425 0.5554 0.0943 0.6225 0.7291
FastGAE 0.3527 0.1553 0.2672 0.1178 0.4262 0.0442 0.1115 0.0715
ClusterGAE 0.4579 0.2261 0.4182 0.1767 0.3913 0.0001 N/A N/A
GAE 0.5960 0.4290 0.4080 0.1760 0.6861 0.2957 N/A N/A
AGC (SGC) 0.6892 0.5368 0.6700 0.4113 0.6978 0.3159 0.5833 0.6894
SGNN-FT 0.6278 0.5075 0.6141 0.3776 0.6444 0.2312 0.5943 0.7156
SGNN-BT 0.7463 0.5546 0.6730 0.4159 0.6951 0.3337 0.7042 0.7601
S2GC 0.6960 0.5471 0.6911 0.4287 0.7098 0.3321 0.7011 0.7509
GAE-S2GC 0.6976 0.5317 0.6435 0.3969 0.6528 0.2452 0.6272 0.7158
SGNN-S2GC 0.7223 0.5404 0.6822 0.4243 0.7084 0.3302 0.7023 0.7575

Corollary 4.1. Given an SGNN with L linear modules {Mt}Lt=1 with L(t)
FT = ∥P −HtH

T
t ∥, if

P −H1H
T
1 and H1H

T
1 share the same eigenspace, then L(L)

FT ≤ L
(1)
FT +

∑L−1
t=1 O(σ2

∗(Ht)).

Based on Theorem 4.2, we conclude that the residual would not accumulate rapidly when Assumption
4.1 does not hold. All proofs and more discussions are put in Appendix A-C.

5 EXPERIMENTS

In this section, we conduct experiments to investigate whether the performance of SGNN could
approach the performance of the original L-layer GNN in a highly-efficient way and what the impact
of the non-linearity and flexibility brought by the decoupling is. To sufficiently answer the above 2
problems, both node clustering and semi-supervised node classification are used. Due to the limitation
of space, only 4 common datasets, including Cora, Citeseer, Pubmed (Sen et al., 2008), and Reddit
(Hamilton et al., 2017). More experiments (e.g., on OGB datasets) can be found in Appendix E.

5.1 NODE CLUSTERING

Experimental Settings We first testify the effectiveness of SGNN on the node clustering. We
compare our method against 10 methods, including a baseline clustering model K-means, three GCN
models without considering training efficiency (GAE (Kipf & Welling, 2016), ARGA (Pan et al.,
2018), MGAE (Wang et al., 2017)), and six fast GCN models with GAE-loss (GraphSAGE (Hamilton
et al., 2017), FastGAE (Chen et al., 2018b), ClusterGAE (Chiang et al., 2019), AGC (Zhang et al.,
2019) (an unsupervised extension of SGC (Wu et al., 2019)), S2GC (Zhu & Koniusz, 2021), and
GAE-S2GC).

The used codes are based on the publicly released implementation. To ensure fairness, all multi-layer
GNN models consist of two layers and SGNN is comprised of two modules. For models that could
be trained by stochastic algorithms, the size of mini-batch is set as 128. The learning rate is set as
0.001 and the number of epochs is set as 100. We set the size first layer as 128 and the second layer
size as 64. In particular, when training every module of SGNN, 20% entries of the adjacency matrix
are ignored. U is initialized as an identity matrix, and η is set as 103 by default. The number of
backward training is set as 5 or 10. To investigate the effectiveness of backward training, we report the
experimental results with sufficient training for each module, which is denoted by SGNN-FT, while
SGNN with the proposed backward training is represented by SGNN-BT. To study the performance
of SGNN with different base models, we choose a fully-separable GNN, S2GC, as the base model
and this method is marked as SGNN-S2GC. As S2GC does not use the GAE framework, we also
added a competitor, namely GAE-S2GC, which uses S2GC as the encoder, to ensure fairness. All
methods are run five times and the average scores are recorded. The result are summarized in Table 1.

7

Under review as a conference paper at ICLR 2023

Table 2: Test accuracy (%) averaged over 10 runs on 3 cita-
tion datasets

Datasets Cora Citeseer Pubmed
GAT 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
DGI 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
GCNII 85.5 ± 0.5 73.4 ± 0.6 80.2 ± 0.4
FastGCN† 79.8 ± 0.3 68.8 ± 0.6 77.4 ± 0.3
GraphSAGE† 77.4 ± 0.6 66.7 ± 0.3 79.0 ± 0.3
Cluster-GCN† 65.3 ± 3.9 57.7 ± 2.3 71.5 ± 1.9
GCN 81.4 ± 0.4 70.9 ± 0.5 79.0 ± 0.4
SGC 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0
SGNN-BT 81.4 ± 0.5 70.2 ± 0.4 77.8 ± 0.3
S2GC 83.5 ± 0.0 73.6 ± 0.1 80.2 ± 0.0
SGNN-S2GC 83.8 ± 0.2 73.2 ± 0.3 80.2 ± 0.4

Table 3: Test accuracy (%) averaged
over 5 runs on Reddit

Methods Reddit
GAT N/A
DGI 94.0
SAGE-mean 95.0
SAGE-GCN 93.0
FastGCN 93.7
Cluster-GCN 96.6
GCN N/A
SGC 94.9
SGNN-BT 95.10 ± 0.02
S2GC 95.3
SGNN-S2GC 95.28 ± 0.03

Performance From Table 1, we find that SGNN outperforms in most datasets. If the released codes
could not run on Reddit due to out-of-memory (OOM), we put the notation “N/A” instead of results.
In particular, SGNN-BT obtains good improvements on Reddit with high efficiency. Specifically
speaking, it is about 8% higher than the well-known GraphSAGE. SGNN-FT performs above the
average on some datasets. It usually outperforms GraphSAGE but fails to exceed SGC. Due to the
deeper structure caused by multiple modules, the performance of SGNN excels the simple GAE. It
also outperforms SGC due to more non-linearity brought by multiple modules. Note that S2GC and
SGC are strong competitors, while SGNN can easily employ them as a base module since they are
separable. From the ablation experiments, SGNN-BT works better than SGNN-FT, which indicates
the necessity of the backward training. We also investigate how the number of modules L affects the
node clustering accuracy and the results averaged over 5 runs are reported in Appendix E.

0 0.01 0.02 0.03 0.04 0.05

time / s

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
C

C

GraphSAGE

FastGCN

Cluster-GCN

SGC

S
2
GC

SGNN-BT

(a) Pubmed

10
-2

10
-1

10
0

10
1

time / s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
C

C

GraphSAGE

FastGCN

SGC

S
2
GC

SGNN-BT

(b) Reddit

Figure 3: Performance and training efficiency of several
scalable GNNs. The efficiency metric is computed by “Con-
suming Time / # Iterations”.

Efficiency Figure 3 shows the con-
suming time of several GNNs with
higher efficiency on Pubmed and Red-
dit. Instead of neglecting the prepro-
cessing operation, we measure the ef-
ficiency through a more rational way.
We record the totally consuming time
after loading data into RAM and then
divide the total number of updating pa-
rameters of GNNs. The measurement
could reflect the real difference of di-
verse training techniques aiming to ap-
ply batch-based algorithms to GNN. It
should be emphasized the reason why
SGC is worse than SGNN regarding
the consuming time. The key point
is the different costs of their preprocessing operation. For an L-order SGC, the computation
cost of PLX is at least O(∥A∥0Ld) while SGNN with L first-order modules totally requires
O(∥A∥0

∑L
i=1 di) for the same preprocessing operation. The metric also provides a fair comparison

between SGC and other models since the stopping criteria are always different.

5.2 NODE CLASSIFICATION

Experimental Setting We also conduct experiments of semi-supervised classification on four
datasets. The split of datasets following (Wu et al., 2019) could be found in Appendix E. We compare
SGNN against GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), DGI (Velickovic et al.,
2019), FastGCN (Chen et al., 2018b), GraphSAGE (Hamilton et al., 2017), Cluster-GCN (Chiang
et al., 2019), SGC (Wu et al., 2019), GCNII (Chen et al., 2020), and S2GC (Zhu & Koniusz, 2021).
Similarly, we testify SGNN with two different base models, namely SGNN-BT and SGNN-S2GC.
For GraphSAGE, we use the mean operator by default and some notations are added if the extra

8

Under review as a conference paper at ICLR 2023

operators are used. On citation networks, the learning rate is set as 0.01, while it is 10−4 on Reddit.
Since the nodes for training are less than 200 on citation networks, we use all training points in
each iteration for all methods while we sample 256 points as a mini-batch for approaching expected
features during backward training of SGNN. On Reddit, the batch size of all batch-based models is
set as 512. We do not apply the early stopping criterion used in (Kipf & Welling, 2017) and the max
iteration follows the setting of SGC. The embedding dimensions of each module are the same as the
setting in node clustering. For the sake of fairness, we report the results obtained by SGNN with two
modules using first-order operation. The forward training loss is defined in Eq. (4). Moreover, all
compared models share an identical implementation of their mini-batch iterators, loss function and
neighborhood sampler (when applicable). The balance coefficient of LFT and LBT is set as 1 by
default. We report the results averaged over 10 runs on citation datasets and 5 runs on Reddit in Table
2 and Table 3. The hyper-parameters are shared for different datasets which are optimized on Cora.

Performance The results of compared methods in Table 2 are taken from the corresponding papers.
When the experimental results are missed, we run the publicly released codes and the corresponding
records are superscripted by †. From Tables 2 and 3, we conclude that SGNN outperforms the models
with neighbor sampling such as GraphSAGE, FastGCN, and ClusterGCN on citation networks and
the performance of SGNN exceeds most models on Reddit. On simple citation networks, SGNN
loses the least accuracy compared with other batch-based models, which is close to GCN. Owing to
the separability of each module, the batch sampling requires no neighbor sampling and causes no
loss of graph information. Note that we simply employ the single-layer GCN as the base modules in
our experiments, while some high-order methods that obtain competitive results are also available
for SGNN. Although some methods achieve preferable results, they either fail to run or obtain
unsatisfactory results on large-scale datasets.

0 100 200 300 400

0

1

2

3

L
o

s
s

SGC

SGNN-FT

SGNN-BT

(a) Cora

100 200 300 400

0

0.5

1

1.5

2

L
o

s
s

SGC

SGNN-FT

SGNN-BT

(b) Pubmed

Figure 4: Convergence curve of the final loss.
The order of SGC is set as L. The backward
training significantly decreases the final loss and
the non-linearity also plays an important role.

Visualization to Show Impact of the Decoupling
In Figure 2, we visualize the output of a 3-module
SGNN and a 3-layer GCN to directly show that
the decoupling would not cause the trivial fea-
tures, which corresponds to the theoretical con-
clusion in Section 4. To show the benefit of the
non-linearity brought by SGNN and the backward
training, the convergence curves of SGC, SGNN-
FT, and SGNN-BT are shown in Figure 4. Note
that the figure shows the variation of the final loss.
In SGNN, the final loss is the loss ofML, while
it is the unique training loss in SGC. SGC with
L-order graph operation is used. From this figure,
we can conclude that: (1) The non-linearity does
lead to a better loss value; (2) The backward train-
ing significantly decreases the loss. More visualization and discussions could be found in Appendix
E. In summary, the decoupling empirically does not cause the negative impact.

6 CONCLUSION AND FUTURE WORKS

In this paper, we propose the Stacked Graph Neural Networks (SGNN). We first decouple a multi-
layer GNN into multiple simple GNNs, which is formally defined as separable GNNs in our paper to
ensure the availability of batch-based optimization without loss of graph information. The bottleneck
of the existing stacked models is that the information delivery is only unidirectional, and therefore
a backward training mechanism is developed to make the former modules perceive the latter ones.
We also theoretically prove that the residual of linear SGNN would not accumulate in most cases for
unsupervised graph tasks. The theoretical and experimental results show that the proposed framework
is more than an efficient method and it may deserve further investigation in the future. The theoretical
analysis focuses on linear SGNN and the generalization bound is also not investigated in this paper.
Therefore, they will be the core of our future work. Moreover, as LFT could be any losses, how to
choose the most appropriate loss for each module will be also a crucial topic in our future works.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. In 2nd International Conference on Learning Representations,
2014.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional networks with
variance reduction. In International Conference on Machine Learning, pp. 942–950, 2018a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: Fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018b.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119, pp. 1725–1735, 2020.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Balaji Krishnapuram,
Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi (eds.),
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 785–794.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
257–266, 2019.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34, 2021.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems,
pp. 3844–3852, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Dongyan Guo, Yanyan Shao, Ying Cui, Zhenhua Wang, Liyan Zhang, and Chunhua Shen. Graph
attention tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9543–9552, 2021.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International Conference on Machine Learning, pp. 4116–4126. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

G. E Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507, 2006.

Sergei Ivanov and Liudmila Prokhorenkova. Boost then convolve: Gradient boosting meets graph
neural networks. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

10

Under review as a conference paper at ICLR 2023

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, David
Silver, and Koray Kavukcuoglu. Decoupled neural interfaces using synthetic gradients. In
Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70, pp. 1627–1635, 2017.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph representation of brain
connectome with spatio-temporal attention. In Advances in Neural Information Processing Systems,
volume 34, pp. 4314–4327. Curran Associates, Inc., 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In Advances in Neural Information Processing
Systems, volume 34, pp. 21618–21629, 2021.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
9267–9276, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4602–4609, 2019.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In International Conference on Machine Learning, pp. 2014–2023, 2016.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations, 2020.

Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. Adversarially
regularized graph autoencoder for graph embedding. In IJCAI, pp. 2609–2615, 2018.

Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. Symmetric graph
convolutional autoencoder for unsupervised graph representation learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 6519–6528, 2019.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. nature, 323(6088):533–536, 1986.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2008.

Holger Schwenk and Yoshua Bengio. Boosting neural networks. Neural Comput., 12(8):1869–1887,
2000.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Mag., 29(3):93–106, 2008.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

11

Under review as a conference paper at ICLR 2023

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks into
deep models. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, pp.
5998–6008, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In 6th International Conference on Learning Representations,
2018.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019, 2019.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
Stacked denoising autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 11:3371–3408, 2010.

Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae: Marginalized graph
autoencoder for graph clustering. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pp. 889–898, 2017.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In Proceedings of The Web
Conference 2020, pp. 1082–1092, 2020.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
Simplifying graph convolutional networks. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pp. 6861–6871, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna.
Graphsaint: Graph sampling based inductive learning method. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph clustering via adap-
tive graph convolution. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, pp. 4327–4333, 2019.

Zhi-Hua Zhou, Jianxin Wu, and Wei Tang. Ensembling neural networks: Many could be better than
all. Artif. Intell., 137(1-2):239–263, 2002.

Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In 9th International Conference on
Learning Representations, 2021.

12

Under review as a conference paper at ICLR 2023

A LEMMA FOR PROOFS

Lemma A.1. For two given symmetric matrices A and B, A and B share the same eigenspace if
and only if A and B commute.

Proof. First, if A and B share the same eigenspace, then there exists P such that

A = PΛAP
T ,B = PΛBP

T . (A.1)

Accordingly, we have AB = PΛAΛBP
T = BA.

Then, we turn to prove the converse. If A and B commute, suppose that Au = λu and then

ABu = BAu = λBu. (A.2)

Apply eigenvalue decomposition, we have A = UΛUT . Note that if Au1 = λ1u1, Au2 = λ2u2,
and λ1 ̸= λ2, then uT

2 Bu1 = 0 since Bu1 is also an eigenvector associated with λ1. Therefore,
UTBU is a block-diagonal matrix, i.e.,

UTBU =


C1

C2

. . .
Ck

 . (A.3)

Apply eigendecomposition to Ci,
Ci = UiΛiU

T
i . (A.4)

Denote

T =


U1

U2

. . .
Uk

,

 (A.5)

and V = UT , which leads to

T TUTBUT = ΛB and T TUTAUT = ΛA (A.6)

where V TV = I . Hence, the lemma is proved.

B PROOF OF THEOREM 4.1

Theorem. Let δ = 1 − cos(θ∗/2) and θ∗ = θ((P − XXT)Q,Q(P − XXT)) where Q =
UoU

T
o − I/2 and o = min(rank(X), k). Under Assumption 4.1, if ∥P −HHT ∥ = ε ≤ O(δ) and

σ∗ ≤ O(
√
δ) where σ∗ is the (o+ 1)-th largest singular value of X , then there exists W ∈ Rd×k

so that ∥P −HHT ∥ ≤ ε In other words, if ε is small enough, then HHT could be a better
approximation than XXT .

Proof. Use the notation ℓ(·, ·, ·) as the reconstruction loss

ℓ(P ,X,W) = ∥P − PXWW TXTP T ∥. (B.1)

According to the conditions, we define

E = P −XXT ⇒ ∥E∥ = ε. (B.2)

Apply SVD, we can factorize X as

X = UoΣoV
T
o +UeΣeV

T
e , (B.3)

where e = d− o. Clearly, we have V T
o Ve = 0 and thus

P = XXT +E = UkΣ
2
kU

T
k +UeΣ

2
eU

T
e +E. (B.4)

13

Under review as a conference paper at ICLR 2023

Therefore, HHT can be written as

HHT = P (UoΣoV
T
o +UeΣeV

T
e)WW T (VoΣoU

T
o + VeΣeU

T
e)P . (B.5)

Let W0 be a valid solution as

W0 =

{
W0 s.t. V T

k W0 = Σ−2
k if rank(X) = k

[Wr;0] s.t. V T
r Wr = Σ−2

r if rank(X) = r ≤ k
. (B.6)

By the above definition, V T
e W = 0. Therefore, with rank(X) > k,

∥HHT − P ∥
=∥UkΣ

3
kVkW0W

T
0 VkΣ

3
kU

T
k +EUkΣkVkW0W

T
0 VkΣ

3
kU

T
k

+UkΣ
3
kVkW0W

T
0 VkΣkU

T
k E +EUkΣkVkW0W

T
0 VkΣkU

T
k E − P ∥

=∥UkΣ
2
kU

T
k +EUkU

T
k +UkU

T
k E +EUkΣ

−2
k UT

k E −UkΣ
2
kU

T
k −UeΣ

2
eU

T
e −E∥

=∥EUkU
T
k +UkU

T
k E +EUkΣ

−2
k UT

k E −UeΣ
2
eU

T
e −E∥

≤∥EUkU
T
k +UkU

T
k E −E∥+ ∥EUkΣ

−2
k UT

k E∥+ ∥UeΣ
2
eU

T
e ∥.

(B.7)

Similarly, if rank(X) = r ≤ k,

∥HHT − P ∥ =∥EUrU
T
r +UrU

T
r E +EUrΣ

−2
r UT

r E −E∥ (B.8)

≤∥EUrU
T
r +UrU

T
r E −E∥+ ∥EUrΣ

−2
r UT

r E∥. (B.9)

Now we focus on the general case, rank(X) > k and the conclusion can be easily extended into the
low-rank case. Note that

∥E(UkU
T
k −

1

2
I)∥ = ∥(UkU

T
k −

1

2
I)E∥, (B.10)

and the first term can be written as

∥EUkU
T
k +UkU

T
k E −E∥2

=∥E(UkU
T
k −

1

2
I) + (UkU

T
k −

1

2
I)E∥2

=∥E(UkU
T
k −

1

2
I)∥2 + ∥(UkU

T
k −

1

2
I)E∥2 + 2⟨E(UkU

T
k −

1

2
I), (UkU

T
k −

1

2
I)E⟩

=2∥E(UkU
T
k −

1

2
I)∥2 + 2s∥E(UkU

T
k −

1

2
I)∥2

=2(1 + s)∥E(UkU
T
k −

1

2
I)∥2,

where

s =
⟨E(UkU

T
k − 1

2I), (UkU
T
k − 1

2I)E⟩
∥E(UkUT

k −
1
2I)∥2

. (B.11)

Due to that

∥E(UkU
T
k −

1

2
I)∥2 = tr(E2(UkU

T
k −

1

2
I))

= tr(E2(UkU
T
k UkU

T
k − 2× 1

2
UkU

T
k +

1

4
I))

=
1

4
tr(E2) =

1

4
ε2,

we have

∥EUkU
T
k +UkU

T
k E −E∥ =

√
2(1 + s)∥E(UkU

T
k −

1

2
I)∥ =

√
1 + s

2
ε. (B.12)

Let Q = (UkU
T
k − I/2) and s can be reformulated as

s = cos(EQ,QE), (B.13)

14

Under review as a conference paper at ICLR 2023

and we have the following definition

θ∗ = arccos(s) = θ(EQ,QE). (B.14)

According to Lemma A.1, Assumption 4.1 indicates that

E(UkU
T
k −

1

2
I) = (UkU

T
k −

1

2
I)E ⇒ s < 1. (B.15)

And therefore,
√

(1 + s)/2 ∈ [0, 1). Let δ = 1−
√

(1 + s)/2 = 1− cos(θ∗/2) > 0 and the above
equation can be reformulated as

∥EUkU
T
k +UkU

T
k E −E∥ = (1− δ)ε. (B.16)

The second term can be formulated as

∥EUkΣ
−2
k UT

k E∥ ≤∥UkΣ
−2
k UT

k ∥ε2 (B.17)

=ε2
√

tr(UkΣ
−4
k UT

k) = ε2
√
tr(Σ−4UT

k Uk) (B.18)

=ε2

√√√√ k∑
i=1

1

σ4
i

≤
√
r
ε2

σ2
k

, (B.19)

while the third term is

∥UeΣ
2
eU

T
e ∥ = ∥Σ2

e∥ = (

n∑
i=k+1

σ4
i)

1/2 ≤
√
n− kσ2

∗, (B.20)

To sum up, the error ofM is bounded as

∥HHT − P ∥ ≤ (1− δ)ε+
√
k
ε2

σ2
k

+
√
eσ2

∗. (B.21)

If
√
k
ε

σ2
k

≤ δ

2
⇒ ε ≤ δσ2

k

2
√
k
, (B.22)

and
√
n− kσ2

∗ ≤
δ

2
⇒ σ∗ ≤

√
δ

2
√
n− k

. (B.23)

then ∥HHT −P ∥ ≤ ε. In other words, when ε ≤ O(δ) and σ∗ ≤ O(
√
δ), the error will be bounded

by ε.

For the case that rank(X) = r < k, it is not hard to verify that

∥HHT − P ∥ ≤ ∥EUrU
T
r +UrU

T
r E −E∥+ ∥EUrΣ

−2
r UT

r E∥ (B.24)

≤ (1− δ)ε+
√
r
ε2

σ2
r

. (B.25)

As
√
r
ε

σ2
r

≤ δ

2
⇒ ε ≤ δσ2

r

2
√
r
= O(δ), (B.26)

and σ∗ = 0 ≤ O(
√
δ), we get ∥HHT − P ∥ ≤ ε. Hence, we have

min
W

ℓ(P ,X,W) ≤ ℓ(P ,X,W0) ≤ ε, (B.27)

and the theorem is proved.

15

Under review as a conference paper at ICLR 2023

Table 4: Data Information

Dataset Nodes Edges Classes Features Train / Val / Test Nodes
Cora 2,708 5,429 7 1,433 140 / 500 / 1,000
Citeseer 3,327 4,732 6 3,703 120 / 500 / 1,000
Pubmed 19,717 44,338 3 500 60 / 500 / 1,000
Reddit 233K 11.6M 41 602 152K / 24K / 55K

(a) H0: Input of M1 (b) H1: From M1 to M2 (c) H2: From M2 to M3 (d) H3: Output of M3

(e) H0: Input of M1 (f) H1: From M1 to M2 (g) H2: From M2 to M3 (h) H3: Output of M3

Figure 5: Visualization of a trained SGNN comprised of 3 modules on node classification of Cora and
Citeseer. The first line shows the visualization of Cora and the bottom line shows the visualization of
Citeseer.

C PROOF OF THEOREM 4.2

Theorem. If Assumption 4.1 does not hold, then there exists W ∈ Rd×k so that ∥P −HH∥ ≤
ε+O(σ2

∗).

Proof. According to Ineq. (B.7),

∥HHT − P ∥ ≤ ∥EUkU
T
k +UkU

T
k E −E∥+ ∥EUkΣ

−2
k UT

k E∥+ ∥UeΣ
2
eU

T
e ∥. (C.1)

Suppose that E = UΛUT so that P = U(S +Λ)UT where S = ΣΣT = diag(Σ2
k;0).

P = U(S +Λ)UT = [Ur,Ue]

[
Σ2

r +Λr 0
0 Σ2

e +Λe

] [
UT

r

UT
e

]
= Uk(Σ

2
k +Λk)U

T
k +Ue(Σ

2
e +Λe)U

T
e

Then let VkW = (Σ3
k +ΛkΣk)

†(Σ2
k +Λk)

1/2

∥P −HHT ∥ = ∥U(S +Λ)ΣV TWW TV ΣT (S +Λ)UT − P ∥
= ∥Uk(Σ

3
k +ΛkΣk)V

T
k WW TVk(Σ

3
k +ΛkΣk)U

T
k − P ∥

= ∥UkÎ(Σ
2
k +Λk)ÎU

T
k −Uk(Σ

2
k +Λk)U

T
k −Ue(Σ

2
e +Λe)U

T
e ∥

= ∥Ue(Σ
2
e +Λe)U

T
e ∥ ≤ ∥Σ2

e∥+ ∥Λe∥
≤ ε+O(σ2

∗)

(C.2)

where Î = (Σ3
k + ΛkΣk)(Σ

3
k + ΛkΣk)

† = Σk(Σ
2
k + Λk)(Σ

2
k + Λk)

†Σ−1
k . Clearly, Î =

1{Σ2
r +Λr ̸= 0}. Therefore, Hence, the theorem is proved.

Corollary C.1. If Assumption 4.1 does not hold and rank(X) ≤ k, then there exists W ∈ Rd×k so
that ∥P −HH∥ ≤ ε.

16

Under review as a conference paper at ICLR 2023

(a) H0: Input of M1 (b) H1: From M1 to M2 (c) H2: From M2 to M3 (d) H3: Output of M3

(e) H0: Input of M1 (f) H1: From M1 to M2 (g) H2: From M2 to M3 (h) H3: Output of M3

Figure 6: Visualization of a trained SGNN comprised of 3 modules on node clustering of Cora and
Citeseer. The first line is visualization on Cora and the second line is visualization on Citeseer.

(a) H1 after 1 epoch (b) H1 after 2 epochs (c) H1 after 3 epochs (d) H1 after 5 epochs

Figure 7: t-SNE Visualization of the output ofM1 from a trained SGNN comprised of 3 modules on
node classification of Citeseer.

Proof. Suppose that E = UΛUT so that P = U(S +Λ)UT where S = ΣΣT = diag(Σ2
r;0).

P = U(S +Λ)UT = [Ur,Ue]

[
Σ2

r +Λr 0
0 Λe

] [
UT

r

UT
e

]
= Ur(Σ

2
r +Λr)U

T
r +UeΛeU

T
e

(C.3)
Let W = [Wr;0] subjected to V T

r Wr = (Σ3
r +ΛrΣr)

†(Σ2 +Λr)
1/2 Then

∥HHT − P ∥ = ∥U(S +Λ)ΣV TWW TV ΣT (S +Λ)UT − P ∥
= ∥Ur(Σ

3
r +ΛrΣr)V

T
r WW TVr(Σ

3
r +ΛrΣr)U

T
r − P ∥

= ∥UrÎ(Σ
2
r +Λr)ÎU

T
r −Ur(Σ

2
r +Λr)U

T
r −UeΛeU

T
e ∥,

where Î = (Σ3
r +ΛrΣr)(Σ

3
r +ΛrΣr)

† = Σr(Σ
2
r +Λr)(Σ

2
r +Λr)

†Σ−1
r . Clearly, Î = 1{Σ2

r +
Λr ̸= 0}. Therefore,

∥HHT − P ∥ = ∥UeΛeU
T
e ∥ = ∥Λe∥ ≤ ε. (C.4)

Hence, the corollary is proved.

D COMPLEXITY

As each base module is assumed as a separable GNN, both FT and BT ofMt can be divided into two
steps, the preprocessing step for graph operation and the training step for parameters learning. Denote
the output dimension ofMt as dt and the dimension of original content feature as d0 = d. The
preprocessing to compute X ′

t = f0(A,Xt) requires O(∥A∥0dt) cost. Suppose that each module is
trained E iterations and the batch size is set as m. Then the computation cost of the training step
is O(Emdt−1dt). Note that only the GNN mapping is considered and the computation of the loss
is ignored. Overall, the computational complexity of an SGNN with L modules is approximately

17

Under review as a conference paper at ICLR 2023

A
C

C

N
M

I

ACC

NMI

(a) Cora

A
C

C

N
M

I

ACC

NMI

(b) Citeseer

Figure 8: Impact of η to node clustering on Cora and Citeseer

O(K∥A∥0
∑L−1

t=0 dt + Em
∑L

t=1 dt−1dt). Remark that the graph is only used once during every
epoch and no sampling is processed on the graph such that the graph structure is completely retained
which is unavailable in the existing fast GNNs. The coefficient of ∥A∥0 is only K

∑L−1
t=1 dt. The

space complexity is only O(∥A∥0 +mdt−1dt). Therefore, the growth of graph scale will not affect
the efficiency of SGNN. Due to the efficiency, all experiments can be conducted on a PC with an
NVIDIA 1660 (6GB) and 16GB RAM.

E MORE EXPERIMENTS

E.1 OMITTED INFORMATION IN SECTION 5

The details of four common datasets are shown in Table 4. We also provide more visualizations which
are not included in the main paper in Figures 5 and 6 due to the limitation of space. We run SGNN
with 3 GNN modules and visualize the input and output ofM1,M2, andM3 through t-SNE on
Cora and Citeseer, for node clustering and node classification. The purpose of these two figures is to
empirically investigate whether the decoupling would cause the accumulation of residuals and errors.
The experimental results support the theoretical results that are provided in Section 4. One may
concern the impact of η (trade-off coefficient between LFT and LBT) on the performance. We testify
SGNN with different η from {10−5, 10−3, 10−1, 101, 103, 105} and find that η = 103 usually leads
to good results. Accordingly, we only report results SGNN with η = 103 in this paper. Moreover,
we show the impact of η to node clustering on Cora and Citeseer in Figure 8.

Moreover, we show the output ofM1 of different periods in Figure 7, in order to show the impact of
the backward training. From the figure, we find that BT indeed affects the latent features, which is
particularly apparent in Figure 7d.

For SGNN-S2GC and GAE-S2GC, all extra hyper-parameters are simply set according to the original
paper of S2GC for both node clustering and node classification. We do not tune the hyper-parameters
of S2GC manually.

E.2 EXPERIMENTS ON MORE DATASETS

We further show some experiments of node classification on two OGB datasets, OGB-Products and
OGB-Arxiv, which are downloaded from https://ogb.stanford.edu/docs/nodeprop/.
The OGB-Products contains more than 2 million nodes and OGB-Arxiv contains more than 150
thousand nodes.

It should be emphasized that we only use the simple single-layer GCN as the base module of SGNN.
The performance can be further improved by incorporating different models such as GCNII, GIN, etc.
In particular, we only tune hyper-parameters on Arxiv, and we simply report results of SGNN with
settings from Reddit.

18

https://ogb.stanford.edu/docs/nodeprop/

Under review as a conference paper at ICLR 2023

Table 5: Node Classification Results on Large Datasets

Datasets Products Arxiv
Test Acc Val Acc Test Acc Val Acc

MLP 61.06 75.54 55.50 57.65
GCN 75.64 92.00 71.74 73.00
GraphSAGE 78.50 92.24 71.49 72.77
Cluster-GCN 78.97 92.12 N/A N/A
Softmax 47.70 N/A 52.77 N/A
SGC 68.87 N/A 68.78 N/A
S2GC 70.22 N/A 70.15 N/A
SGNN-BT 74.44 91.13 71.57 71.66

Table 6: Investigation about the impact of L on SGNN and GAE regarding node clustering.

L
Cora Citeseer Pubmed

SGNN GAE FastGAE SGNN GAE FastGAE SGNN GAE FastGAE
2 0.75 0.60 0.35 0.67 0.41 0.27 0.70 0.69 0.43
3 0.66 0.63 0.33 0.65 0.58 0.25 0.64 0.64 0.42
4 0.68 0.65 0.33 0.59 0.58 0.24 0.64 0.60 0.41
5 0.69 0.62 0.33 0.53 0.45 0.24 0.64 0.60 0.41
6 0.69 0.53 0.32 0.44 0.32 0.24 0.64 0.48 0.41
7 0.68 0.52 0.32 0.44 0.31 0.24 0.64 0.46 —

E.3 INVESTIGATION OF DEPTH

We also conduct sufficient experiments on the depth of SGNN. All results are reported in Ta-
ble 6. To ensure fairness, we also show the performance of GAE with the same depth though
deeper GCN and GAE usually return unsatisfied results. Note that the dimensions are set as
[256, 128, 64, 32, 16, 16, 16].

F SOURCE CODE

All codes will be publicly available on our GitHub homepage after the formal publication. The source
codes are also uploaded in supplementary materials.

19

	Introduction
	Background
	Proposed Method
	Preliminary
	Stacked Graph Neural Networks

	Theoretical Analysis
	Experiments
	Node Clustering
	Node Classification

	Conclusion and Future Works
	Lemma for Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Complexity
	More Experiments
	Omitted Information in Section 5
	Experiments on More Datasets
	Investigation of Depth

	Source Code

