
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CAMOE: COST-AWARE COMMUNICATION OPTIMIZA-
TION FOR MIXTURE-OF-EXPERTS INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts (MoE) is currently the most promising method for scaling the
parameters of large language models. Its architecture consists of different experts
at different layers, with a fixed number of top experts selected dynamically for
each token based on the token’s information during inference. Ideally, if all ex-
perts could be placed on the same device, token routing would not be impeded
by communication overhead. However, as the parameters of MoE models grow
toward trillion-scale, experts cannot be accommodated on a single device or even
a single node, leading to significantly increased tail latency during all-to-all com-
munications—the tokens with the highest communication cost slow down the in-
ference process.
In this paper, we thoroughly analyze the patterns of all-to-all communications
during inference in MoE models and develop a profiler to measure heterogene-
ity between devices. Using parameters obtained from profiler runs, we im-
plement a SystemC-based simulator to model communication times during all-
to-all communications. Based on detailed information about transmitted data,
we propose a cost-aware method designed to reduce tail latency during model
inference. Experimental results demonstrate that this method does not affect
model accuracy on downstream tasks and effectively reduces all-to-all commu-
nication time during inference. Our implementation is publicly available at
https://anonymous.4open.science/r/CAMoe-1FBB.

1 INTRODUCTION

Large Language Models (LLMs)(OpenAI et al., 2024)(Touvron et al., 2023)(DeepSeek-AI et al.,
2025)(Yang et al., 2025) have advanced rapidly in both capability and scale, demonstrating strong
performance in reasoning, coding, and multi-turn interaction. This progress is tightly coupled with
growth in parameter counts and compute investment, and with architectural evolution from dense
Transformers to sparse or modular forms. While larger models often increase utility, they also
strain training and inference budgets: memory footprints grow with parameters, and end-to-end
latency/throughput hinge on how efficiently the model exploits parallel hardware at deployment.

Mixture-of-Experts (MoE) architectures expand total parameter capacity while keeping per-token
FLOPs nearly constant by activating only a sparse subset of experts per token. This conditional
computation yields a favorable scaling path: increases in capacity primarily drive memory and com-
munication overhead rather than per-token compute. Consequently, MoE has become a leading
approach for scaling LLM capacity in production environments.

Early MoE introduced auxiliary balancing losses to achieve more uniform token-to-expert assign-
ment and stabilize training (Shazeer et al., 2017; Lepikhin et al., 2020); Switch Transformer(Fedus
et al., 2022) simplified routing to top-1 with capacity control to reduce FLOPs while preserving
quality. More recent methods adjust the number of active experts per token or alter routing dynam-
ics (e.g., XMoE, Adaptive Gating) to trade FLOPs for quality (Yang et al., 2024; Li et al., 2023).
These approaches primarily optimize model-side metrics (accuracy, FLOPs, overflow) and typically
assume a homogeneous communication environment, so they do not directly target system-level
All-to-All (A2A) latency on heterogeneous hardware.

We propose CAMoE, a training-free method that injects a small, deterministic, topology- and traffic-
aware bias into the router’s logits. The bias is a row-wise z-scored estimate of communication

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

time from each source endpoint (where a token resides) to each expert endpoint, computed via a
lightweight two-phase profiler and a direction-specific α–β model. At runtime, CAMOE reduces to
a single gather-and-add before the usual Top-K gating: no retraining, no new collectives, no changes
to capacity control, and full compatibility with data, tensor, pipeline, and expert parallelism.

Comparison with prior work. CAMOE distinguishes itself from prior work in several key ways.
Unlike gating-only methods (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Yang
et al., 2024; Li et al., 2023), which primarily focus on FLOPs or token-count balance, CAMOE
is not a new router objective but rather augments existing gating with a normalized cost term to
explicitly target A2A mean and p95 latency. In contrast to topology-aware training and place-
ment strategies (e.g., TA-MoE) (Chen et al., 2023), it requires neither offline re-placement nor
retraining; instead, it operates under any fixed expert layout by steering tokens away from high-
cost paths, making it complementary to improved placements. Furthermore, when compared with
systems and engineering stacks (DeepSpeed-MoE, FasterMoE, etc.) (Rajbhandari et al., 2022)(He
et al., 2021), CAMOE functions as a router-side drop-in that preserves underlying kernel and
overlap optimizations, as it acts at a different layer of the stack. It also achieves communi-
cation awareness without the complexity of inference-time deployment and scheduling (Huang
et al., 2024), relying on a single, stable hyperparameter λcost thanks to its row-wise normalization.

0

1000

2000

3000

In
fe

re
nc

e
tim

e
(µ

s)

243.1 215.5

2667.0

815.0

243.1

Attention
Router
AlltoAll dispatch
FFN compute
AlltoAll combine

Figure 1: Breakdown of MoE in-
ference components, highlighting the
dominance of All-to-All dispatch time.

Finally, CAMOE is orthogonal to inter-layer affinity and
regularization techniques (Yao et al., 2024; Muzio et al.,
2024); while affinity reduces cross-layer routing churn,
CAMOE reduces per-layer path cost, allowing the two
approaches to be combined for additive benefits.

We summarize the paper’s contributions as follows:

A drop-in, inference-time, topology- and traffic-aware
router bias. A small, deterministic logit bias computed
per (source endpoint, expert endpoint) from a lightweight
profiler and a direction-specific α–β link model. It is
row-wise z-scored, governed by a single hyperparame-
ter λcost, requires no retraining or new collectives, and
composes with data/tensor/pipeline/expert parallelism.

An open-sourced lightweight cost-aware toolkit. We
provide a minimal profiling/simulation toolkit that fits
(α, β) per direction, exports per-endpoint cost tables, and
plugs into Megatron-LM with a concise gather-and-add integration for cost-aware routing.

End-to-end performance gains with negligible accuracy movement. On Qwen3-30B-A3B, the
method reduces per-layer All-to-All mean latency by up to 15.8% and p95 by up to 19.1%, with
small average accuracy changes across nine downstream tasks; a Pareto region λcost ∈ [0.15, 0.20]
offers strong latency gains at near-baseline quality (cf. Table 1).

2 BACKGROUND AND MOTIVATION

2.1 MIXTURE-OF-EXPERTS (MOE)

Mixture-of-Experts (MoE) models scale neural network capacity via conditional computation: a
learned router activates only a sparse subset of specialized FFN experts for each token, thereby
expanding total parameters while keeping per-token FLOPs nearly constant. As illustrated in Fig-
ure 2(a), an MoE layer typically replaces the conventional feed-forward network within a Trans-
former decoder block with a bank of experts governed by the router.

The selection of experts is governed by a learned gating network (router), which determines the
most relevant experts for processing each token. A commonly used choice in prior work is the Noisy
Top-k Gating mechanism. For completeness, we briefly summarize its formulation. Given an input
representation x ∈ Rd, gating weights Wgate ∈ Rd×N , noise weights Wnoise ∈ Rd×N , and a set of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

N experts Eii = 1N , the router first computes the base logits and applies noise:

H(x) = xWgate (1)

σ(x) = Softplus
(
xWnoise

)
(2)

H̃i(x) = Hi(x) + σi(x) ξi, ξi ∼ N (0, 1) (3)

Next, to enforce sparsity, only the top k experts are selected. Let T be the set of indices correspond-
ing to the top k values in the noisy logits H̃(x). The router then creates masked logits Ĥ(x) where
non-selected expert logits are set to −∞:

Ĥi(x) =

{
H̃i(x), if i ∈ T

−∞, otherwise
(4)

The final gating scores are obtained via a softmax over the masked logits:

G(x) = softmax
(
Ĥ(x)

)
(5)

Finally, the MoE layer aggregates the outputs from all experts, weighted by their gating scores.
Since the scores for non-selected experts are zero, this effectively combines the outputs of only the
top k experts:

MoE(x) =
N∑
i=1

Gi(x)Ei(x) (6)

Within Transformer-based architectures, MoE layers are integrated into the decoder blocks by re-
placing conventional Feed-Forward Networks (FFN). Each decoder block comprises a layer normal-
ization step, followed by masked self-attention, and subsequently, an MoE sub-layer that selectively
routes input tokens to different experts based on the router’s decision. After expert processing, the
outputs from different experts are combined to maintain the integrity of the token sequence and fed
into subsequent layers.

Input Tokens

Positional Embedding

Layer Norm

Self- attention

+

Layer Norm

Router

FFN0 FFN1 FFN
127

FFN
128….

….

+
….

+

N × Decoder Block

Linear Layer

Softmax

Output Tokens

Decoder
Block

Selected
experts

(a) Structure of
an Transformer
decoder block
with MoE.

Attention

Add&Norm

Router

Expert0

Expert31

…..

Add

Attention

Add&Norm

Router

Expert32

Expert63

…..

Add

Attention

Add&Norm

Router

Expert96

Expert127

…..

Add

…...

Device0 Device1 Devicee-1

All-to-All Dispatch

All-to-All Combine

(b) Communication in expert paral-
lelism for MoE models.

Figure 2: Illustration of MoE architecture and par-
allel communication strategy.

Although MoE architectures reduce per-token
computation via sparse expert activation, the
total parameter count (and thus model/opti-
mizer states) still grows with the number of ex-
perts, making it infeasible to replicate all ex-
perts on every device. Expert parallelism ad-
dresses this by sharding the expert bank across
multiple GPUs or compute nodes—while typi-
cally replicating the non-expert layers—as de-
picted in Figure 2(b). This design (i) unlocks
capacities far beyond a single GPU’s mem-
ory budget, (ii) improves throughput by ag-
gregating many token assignments into large,
well-batched GEMMs on each device at nearly
constant per-token FLOPs, and (iii) composes
cleanly with data/tensor/pipeline parallelism
for multi-dimensional scaling. Because tokens
must be processed by the specific experts they
select, EP necessarily introduces communica-
tion to route tokens to the owning devices and
reassemble the sequence; operationally this is
realized with two collective operations:

All-to-All Dispatch: Redistributes input to-
kens across different devices according to their assigned experts, ensuring that each token reaches
the device hosting its corresponding expert.

All-to-All Combine: Collects processed token outputs from all devices, restoring the original token
order on the originating devices.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Simulator
Token

Manager
Device
Module

Network
Module

Input Files Communication Model

Routing.json
Place.json
Com.json

Profiler
Mock
data

Per-edge
measurement

Edge
Info.

Edge
Para.

One-shot
measurement

Mock
data

CAMOENetwork Plane

Device Topology

H100 H100

H100 H100

…..

…..

NVSwitch

CPU

GPU GPU GPU GPU

PCIe Switch PCIe Switch

….. …..

Spine
Switch

Leaf
Switch

Token

Expert

Cost

Node

Token

Expert

Cost

Node

Migration One-shot
Measurement

Gating bias

Network Plane

Device Topology

H100 H100

H100 H100

…..

…..

NVSwitch

CPU

GPU GPU GPU GPU

PCIe Switch PCIe Switch

….. …..

Spine
Switch

Leaf
Switch

Network Plane

Device Topology

H100 H100

H100 H100

…..

…..

NVSwitch

CPU

GPU GPU GPU GPU

PCIe Switch PCIe Switch

….. …..

Spine
Switch

Leaf
Switch

Figure 4: Real-deployment view and CAMOE pipeline. Left: Network Plane (spine–leaf fabric)
and Device Topology (NVSwitch/NVLink/PCIe Switch/host paths). Middle: Profiler generates per-
edge parameters and a one-shot calibration; Simulator predicts All-to-All time from routing/place-
ment and a hop-wise communication model. Right: CAMOE injects a deterministic, topology-aware
cost bias into gating, normalizes costs (z-score), and migrates a small fraction of tokens off expen-
sive links while preserving accuracy.

2.2 MOE INFERENCE IN REAL DEPLOYMENT

As illustrated in Figure 1, the All-to-All dispatch step overwhelmingly dominates inference latency,
significantly surpassing other computational components such as attention mechanisms, routing pro-
cesses, and Feed-Forward Network (FFN) computations. More importantly, in real deployment
environments, node resources and network connectivity are typically heterogeneous and variable,
making these production environments particularly susceptible to tail latency issues. This inherent
heterogeneity further exacerbates the unpredictability and inefficiency of actual inference perfor-
mance. Therefore, in this section, we provide a concise overview of heterogeneous connectivity
within such real-world deployment environments and discuss the resulting tail latency phenomena.

2.2.1 HETEROGENEOUS CONNECTIVITY IN REAL DEPLOYMENTS

Interconnect Type0

2000

4000

6000

8000

La
te

nc
y

(n
s)

429 865 1276
2076 2238

7302
8325C2C NVLink

2-hop NVLink
3-hop NVLink
Intra-Switch PCIe
Inter-Switch PCIe
Intra-socket host PCIe
Inter-socket host PCIe

Figure 3: Intra-node GPU-to-GPU
write-operation latency under different
interconnect types.

Large production clusters commonly combine
NVLink/NVSwitch, PCIe, and host paths, and are
operated under practical constraints (scheduler fragmen-
tation, partial GPU availability on nodes, maintenance
windows, and cross-rack placement). These factors
create diverse communication costs that directly impact
MoE collectives.

Intra-nodeHowever, a critical and often-overlooked
challenge in the real-world deployment of modern multi-
GPU servers is the extreme heterogeneity of intra-node
communication. While it is commonly assumed that
inter-GPU communication within the same server is ho-
mogeneous and efficient, our empirical measurements re-
veal a starkly different reality.

As shown in Figure3, depending on the physical inter-
connect topology between a pair of GPUs, their point-
to-point write latency can differ by orders of magnitude.
Communication can be routed over high-speed direct
NVLink (latency 429 ns), multi-hop NVLink requiring data forwarding, next-best PCIe switches,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

or in the worst case, host paths that detour through the CPU (latency as high as 8325 ns). The
performance gap between the fastest and slowest paths is nearly a factor of 20.

Inter-node Beyond a single server, production clusters are built as spine-leaf network fabrics, as
illustrated on the Network Plane of Figure 4. Due to the static and exclusive allocation mechanism
of GPU resources, resource utilization within nodes is often insufficient, forcing some tasks to be
distributed across multiple nodes. When the resources of a single node cannot fully meet the re-
quirements of an individual task, the task must be allocated across multiple nodes for execution(Wu
et al., 2023)(Amaral et al., 2017)(Xiao et al., 2018).

1 ms 3 ms 5 ms
Tail Latency (ms)

0

5

10

15

Di
sp

at
ch

 T
im

e
(m

s)

Figure 5: Impact of tail latency on the
dispatch time in All-to-All communi-
cation, indicating that the slowest node
significantly determines overall perfor-
mance.

All-to-All is a barrier-synchronized collective commu-
nication: a step completes only when every destination
node has received all of its messages. Therefore, a sin-
gle slow receiver—whether caused by a high-cost path or
transient congestion—gates the completion of the entire
step. As illustrated in figure, we use Linux’s tc utility to
perturb a single device’s path, injecting additional latency
while holding other devices near their baseline.

The measured All-to-All dispatch time tracks the slow-
est node almost one-for-one: as the injected delay grows,
TA2A increases nearly linearly with the maximum per-
node latency, while reducing delay on non-bottleneck
nodes has a negligible effect on the overall step time.

2.3 MOTIVATION

A2A is fundamentally a barrier-synchronized collective
communication: the entire step completes only when its
slowest receiver has finished. Our perturbation experi-
ments corroborate this; increasing delay on a single re-

ceiver node inflates the total time of TA2A almost one-for-one, whereas accelerating non-bottleneck
nodes has a negligible effect. This mechanism is a direct driver of tail latency.

Furthermore, router behavior is another, more subtle driver of tail latency. At inference time, to
ensure determinism, the router’s decisions are completely decoupled from underlying link costs.
Consequently, a large volume of tokens may be routed to experts that happen to reside behind high-
cost communication paths. This not only increases the average data transfer cost but, more critically,
exacerbates the load imbalance between nodes, thereby elevating the overall latency ceiling.

Taken together, the core motivation of this work is to address the following question: How can we
effectively mitigate the communication-dominated tail latency of MoE inference in heterogeneous
and dynamically changing deployment environments, without sacrificing model accuracy, batching
efficiency, or compatibility with existing parallelism strategies?

3 CAMOE

3.1 COMMUNICATION PERFORMANCE MODEL

In this section, we formally characterize the communication cost of the All-to-All operations within
a single Mixture-of-Experts (MoE) layer. We adopt the classical α-β model to describe the network
fabric’s performance, decomposing the communication path between any device pair (u, v) into
multiple hops (e.g., NIC-to-ToR, ToR-to-Spine, NVLink, PCIe). Each hop h has a startup latency
αu,v,h and a per-byte transmission cost βu,v,h. Thus, the total communication time for transmitting
a payload of size B bytes is expressed as:

Tuv(B) =

Huv∑
h=1

(αu,v,h + βu,v,h ·B) (7)

These parameters (αuv, βuv) can be empirically measured for a given hardware topology.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.1.1 ROUTING-INDUCED COMMUNICATION VOLUME

The data transmission volume between devices directly depends on the gating network’s routing
decisions. Let D denote the set of devices, define π(e) as the mapping from expert e to its device,
and σ(i) as the mapping from token i to its device. When token i is routed to K experts, let Cie

represent the assignment count from token i to expert e. Thus, the number of tokens dispatched
from device u to device v is given by:

N disp
uv =

∑
i:σ(i)=u,
e:π(e)=v

Cie (8)

Assuming no tokens are dropped, the communication volume in the combine step matches the dis-
patch step, i.e., N comb

uv = N disp
uv .

3.2 ALL-TO-ALL COMMUNICATION SEQUENCE AND TIMING

Expert-parallel communication within an MoE layer involves three sequential collective operations:

Preprocess (metadata): Expert metadata (token counts per expert), total size E · scnt bytes.

Dispatch (embeddings & routing probabilities): Token embeddings combined with routing prob-
abilities, total size (M · sh + sp) bytes per token.

Combine (processed embeddings): Processed token embeddings returned from experts, total size
M · sh bytes per token.

By explicitly integrating the α-β model, the total All-to-All communication time within a single
MoE layer is formally expressed as:

TA2A = Tpreprocess + Tdispatch + Tcombine

= max
(u,v)∈D2

[αuv + βuv · (E · scnt)]︸ ︷︷ ︸ preprocess (metadata)

+max (u, v) ∈ D2
[
αuv + βuv ·N disp

uv (M · sh + sp)
]︸ ︷︷ ︸ dispatch (embeddings & routing probs.)

+max (u, v) ∈ D2
[
αuv + βuv ·N comb

uv (M · sh)
]︸ ︷︷ ︸

combine (processed embeddings)

(9)

3.3 PROFILER

We estimate (αp
uv, β

p
uv) for use in equation 9 via a two-phase, minimal procedure with no warm-

ups or repeated trials: (1) Baseline — for each (u, v) and a set of message sizes, measure isolated
point-to-point transfers and fit (α0,p

uv , β
0,p
uv); (2) Congestion-aware — for each source u, issue one-

to-many patterns, use the baseline model to predict the bottleneck edge, and sample only that edge
to refine (αp

uv, β
p
uv) under contention. The specific algorithm is shown in Appendix1.

3.4 METHODOLOGY

Per-layer expert placement. For each MoE layer ℓ, fix the expert→device map πℓ(e)∈D and the
device→endpoint map δ : D→N . Let νℓ(e) = δ(πℓ(e)) be the endpoint of expert e. Encode the
placement by a one-hot matrix

Mℓ ∈ {0, 1}E×|N|, [Mℓ]e,v = 1{νℓ(e) = v},

so that M⊤
ℓ ∈ {0, 1}|N |×E maps endpoint indices to expert indices.

One-shot traffic accounting. Run one forward pass with λcost=0 and stack tokens i = 1, . . . , I .
Let the source-endpoint indicator be

S ∈ {0, 1}I×|N|, [S]i,u = 1{σ(i) = u},

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

and the (pre-drop) routing assignment be

Aℓ ∈ NI×E , [Aℓ]i,e = C
(ℓ)
ie .

Then the dispatched token-count matrix (source u to expert-endpoint v) is

Ndisp
ℓ = S⊤ Aℓ Mℓ ∈ N|N |×|N| =⇒ Ndisp

u,v,ℓ =
[
Ndisp

ℓ

]
u,v

. (10)

Let Sdisp
ℓ = (Hℓb+ sprob) and Scomb

ℓ = (Hℓb) be per-token bytes. The byte-volume matrices are

Bdisp
ℓ = Sdisp

ℓ Ndisp
ℓ , Bcomb

ℓ = Scomb
ℓ Ndisp

ℓ .

Direction-specific link model. From profiling (Alg. 1), let

αd, βd, αc, βc ∈ R|N |×|N|

collect the dispatch/combine intercepts and per-byte slopes (Hadamard product ⊙ below). A dis-
patch u→v plus a combine v→u yields the traffic-weighted time proxy

Ctw
ℓ = αd + βd ⊙Bdisp

ℓ +
(
αc

)⊤
+

(
βc

)⊤ ⊙Bcomb
ℓ . (11)

Row-wise z-score. Let 1 ∈ R|N | be the all-ones vector. Define row means and standard devia-
tions:

µℓ =
1

|N | C
tw
ℓ 1 ∈ R|N |×1, σℓ = stdrow

(
Ctw

ℓ

)
∈ R|N |×1.

Then the row-wise standardized matrix is

Ĉtw
ℓ =

(
Ctw

ℓ − µℓ1
⊤)⊘ (

σℓ1
⊤ + ε

)
, (12)

so each row is zero-mean and unit-variance across destinations v.

Topology-aware gate bias. Precompute a gate-bias table and inject it into logits:

G(ℓ) := −λcost Ĉ
tw
ℓ M⊤

ℓ ∈ R|N |×E ⇒ Z′(ℓ) = Z(ℓ) + SG(ℓ). (13)

Here λcost controls the strength of the bias; the z-score makes it dimensionless and comparable
across sources.

Multi-hop & asymmetry: Prefer end-to-end, per-direction fitted (αuv, βuv); if only per-hop pa-
rameters are available, aggregate via store-and-forward (sum) or cut-through/pipelined (sum on α,
max on β).

Dynamic adaptation: A lightweight controller can tune λcost from observed vs. predicted A2A
time and sparsely micro-probe predicted bottlenecks to refresh a few (α, β); overhead is negligible
and off the training fast path.

Complexity. Online cost reduces to a single gather-and-add SG(ℓ) per layer. Stacking {G(ℓ)}Lℓ=1

yields, for each source endpoint u, a tiny cache Gu ∈ RL×E (8 KiB in FP16 for L=64, E=64).

4 EVALUATION

4.1 EXPERIMENT SETUP

Implementation We implemented a prototype of CAMOE based on Megatron-LM, consisting of
approximately 1.5k lines of Python and 0.5k lines of C++. Given that the alltoall communi-
cation is synchronous and blocking, it is impossible to probe the status of all communication links
within a single regular alltoall operation. Therefore, we introduced a new token dispatcher to
generate sufficient communication data, ensuring high accuracy in cost model fitting.

By reusing the parallel state abstraction provided by Megatron-core, we can invoke built-in
alltoall primitives without modifying the core framework code. This approach allows us to
accurately record timing information for various computational operations within the framework,
such as statistical aggregation, reordering, and sorting. Compared to real inference scenarios, our
system provides a more precise measurement of link status, as it is free from routing uncertainties.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) A2A combine (0→1) (b) A2A combine (1→2) (c) A2A dispatch (0→1) (d) A2A dispatch (1→2)

Figure 6: Verification of α–β fits for four All-to-All cases. Each panel shows measured latencies
across message sizes with the fitted model overlaid.

Hardware We conducted our experiments using four NVIDIA ADA6000 GPUs (48GB each),
dual Intel(R) Xeon(R) Gold 6544Y CPUs, and 2TB of RAM.

Environment Setup We captured latency and bandwidth data from actual nodes in real cloud
service scenarios and utilized Docker to configure a distributed environment that traverses network
stacks, emulating real public cloud environments. Detailed setup instructions can be found in the
appendixA.3.

4.2 EVALUATION BENCHMARKS

We evaluate with the lm-evaluation-harness (Gao et al., 2024) on nine standard down-
stream tasks with zero/few-shot: BoolQ (0-shot, Accuracy)(Clark et al., 2019), RTE (0-shot, Ac-
curacy)(Wang et al., 2018), OBQA (0-shot, Accuracy with length normalization)(Mihaylov et al.,
2018), PIQA (0-shot, Accuracy with length normalization)(Bisk et al., 2019), MMLU (5-shot, Ac-
curacy)(Hendrycks et al., 2021), WinoGrande (5-shot, Accuracy)(Sakaguchi et al., 2019), GSM8K
(5-shot, Exact Match)(Cobbe et al., 2021), HellaSwag (10-shot, Accuracy with length normaliza-
tion)(Zellers et al., 2019), and ARC-C (25-shot, Accuracy with length normalization)(Clark et al.,
2018).

4.3 SIMULATOR FIDELITY EVALUATION

We verify the α–β model using a single micro-benchmark sweep in which the number of tokens
sent per All-to-All ranges from 128 to 1024 in steps of 128. For each case we fit t = α + βn

(with t in milliseconds and n in bytes), obtaining: dispatch 0→ 1 α̂ = 2.5480ms, β̂ = 5.5823 ×
10−6 ms/byte; dispatch 1→ 2 α̂ = 2.9142ms, β̂ = 8.4092 × 10−7 ms/byte; combine 0→ 1

α̂ = 0.9744ms, β̂ = 5.5532 × 10−6 ms/byte; combine 1→ 2 α̂ = 0.9454ms, β̂ = 8.0976 ×
10−7 ms/byte. As shown in Fig. 6, the fitted curves closely track the measured latencies across the
entire size range for both dispatch and combine phases.

4.4 MAIN RESULTS

We evaluate the cost-aware routing coefficient λcost on Qwen3-30B-A3B by sweeping
{0, 0.05, 0.10, 0.15, 0.20, 0.25} and measuring (i) mean forward All-to-All latency per MoE layer
(ms) and (ii) accuracy on nine downstream tasks (BoolQ, OpenBookQA (norm), PIQA (norm), RTE,
MMLU, WinoGrande, ARC-Challenge, HellaSwag, GSM8K). λcost scales a z-scored, α–β-derived
per-(source node, expert) communication-cost bias added to gating logits; larger values steer tokens
toward lower-cost experts without changing model parameters or FLOPs. Results are summarized
in Table 1.

Latency. All-to-All latency decreases monotonically with λcost: from 177.56 ms at 0 to 149.50 ms
at 0.25 (−28.06ms; −15.8%). Intermediate settings yield smooth improvements: 171.49 ms
(−3.4%) at 0.05, 166.02 ms (−6.5%) at 0.10, 160.24 ms (−9.8%) at 0.15, and 152.51 ms (−14.1%)
at 0.20. These per-layer savings compound across MoE layers (subject to overlap), directly tar-
geting the communication bottleneck. Tail latency (p95) shows a similarly monotonic drop: from
235.51 ms at 0 to 190.57 ms at 0.25 (−44.94ms; −19.1%). Intermediate settings are 220.88 ms

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Downstream Tasks

λcost All-to-All mean (ms) All-to-All p95 (ms) BoolQ OpenBookQA PIQA RTE MMLU WinoGrande ARC-Challenge HellaSwag GSM8K

0.00 177.56 235.51 0.8856 0.4500 0.8047 0.8231 0.7960 0.6993 0.6980 0.7792 0.8984
0.05 171.49 220.88 0.8872 0.4420 0.8036 0.8303 0.7953 0.7088 0.6869 0.7789 0.8939
0.10 166.02 209.50 0.8890 0.4420 0.7911 0.8281 0.7945 0.6993 0.6928 0.7767 0.8817
0.15 160.24 208.43 0.8829 0.4420 0.7867 0.8195 0.7913 0.6985 0.6843 0.7751 0.8802
0.20 152.51 197.80 0.8795 0.4300 0.7709 0.8267 0.7893 0.6961 0.6877 0.7709 0.8855
0.25 149.50 190.57 0.8780 0.4280 0.7650 0.8375 0.7822 0.6977 0.6860 0.7640 0.8840

Table 1: Evaluating the cost-aware routing coefficient (λcost) on the Qwen3-30B-A3B MoE model.
Column 2 reports mean forward All-to-All latency per MoE layer (ms; lower is better); Column 3
reports p95 (95th percentile) forward All-to-All latency (ms). Remaining columns list accuracies
on nine downstream tasks. Best per task is bolded. Larger λcost biases routing toward lower-cost
experts, reducing latency with generally minor accuracy movement.

(−6.2%) at 0.05, 209.50 ms (−11.0%) at 0.10, 208.43 ms (−11.5%) at 0.15, and 197.80 ms
(−16.0%) at 0.20, indicating that cost-aware routing reduces not only mean but also tail All-to-All
latency, with larger relative gains in the tail.

Accuracy. Best scores are dispersed across λcost (bold in the table), and most tasks remain near
baseline. Notable improvements include RTE peaking at 0.25 (+0.0144 abs., 0.8231→0.8375) and
WinoGrande at 0.05 (+0.0095 abs., 0.6993→0.7088); both changes are comparable to their reported
± intervals. The strongest declines at high λ appear on PIQA (0.8047→0.7650, −0.0397), MMLU
(0.7960→0.7822, −0.0138), HellaSwag (0.7792→0.7640, −0.0152), GSM8K (0.8984→0.8840,
−0.0144), and OpenBookQA (0.4500→0.4280, −0.0220); several of these exceed the typical re-
ported uncertainty bands (e.g.,±0.003–0.013), indicating a real trade-off for those tasks. On average
(unweighted across nine tasks), accuracy at 0.25 is ∼1.2 pp below baseline.

4.5 EXPERT CHOICE ANALYSIS

λcost cv avg layer cv KL ↓ avg layer kl ↓
0.0000 0.3368 1.5118 0.0000 0.0000
0.0500 0.3379 1.5122 0.0006 0.0098
0.1000 0.3437 1.5137 0.0023 0.0213
0.1500 0.3525 1.5132 0.0053 0.0321
0.2000 0.3622 1.5108 0.0097 0.0447
0.2500 0.3742 1.5079 0.0149 0.0588

Table 2: Expert selectivity & routing shift vs. λcost. Higher
cv indicates stronger selectivity; avg layer cv is the mean
per-layer CV. KLs are measured against the λ=0 baseline
(nats).

With fixed expert placement and
dataset, Table 2 shows a monotonic
rise in global selectivity: cv increases
from 0.3368 to 0.3742 (+11.1%) as
λcost grows, indicating tokens shift
toward cheaper-link experts. Cru-
cially, per-layer imbalance remains flat
(avg layer cv ≈ 1.51), implying
Top-K gating and capacity limits pre-
serve within-layer balance and avoid
saturation. The routing distribution
changes smoothly: KL(λ : 0) rises
from 5.6 × 10−4 to 1.49 × 10−2 (with
avg layer kl≤ 5.9×10−2), which
may slightly affect precision-sensitive
tasks (e.g., PIQA, HellaSwag, GSM8K). A practical Pareto region is λcost ∈ [0.15, 0.20], yielding
cv gains of 4.7%–7.6% with KL at the 10−2 scale, steering traffic onto shorter paths and reducing
All-to-All latency with minimal quality impact.

5 CONCLUSIONS

As Mixture-of-Experts (MoE) models scale by distributing experts across increasingly heteroge-
neous hardware, communication overhead, particularly tail latency from All-to-All operations, be-
comes the dominant inference bottleneck. This work introduces CAMoE, a framework that mit-
igates this by making routing cost-aware. We profile system topology to model communication
latency and inject a lightweight, topology-aware bias into the gating function at inference time.
CAMoE reduces mean and tail All-to-All latency by up to 15.8% and 19.1% on a 30B-parameter
model, with minimal accuracy impact and no retraining.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 LLM USAGE

During the writing process of this paper, a large language model (LLM) was used only for minor
text polishing and spell checking. The research design, experimental analysis, and conclusions were
independently completed by the authors. The LLM was not used to generate data, code, or results.

REFERENCES

Marcelo Amaral, Jordà Polo, David Carrera, Seetharami Seelam, and Malgorzata Steinder.
Topology-aware gpu scheduling for learning workloads in cloud environments. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and Analy-
sis, pp. 1–12, 2017.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language, 2019. URL https://arxiv.org/abs/1911.
11641.

Chang Chen, Min Li, Zhihua Wu, Dianhai Yu, and Chao Yang. Ta-moe: Topology-aware large scale
mixture-of-expert training, 2023. URL https://arxiv.org/abs/2302.09915.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan

10

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/2302.09915
https://aclanthology.org/N19-1300/
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

Seokjin Go and Divya Mahajan. Moetuner: Optimized mixture of expert serving with balanced
expert placement and token routing, 2025. URL https://arxiv.org/abs/2502.06643.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fastmoe: A fast
mixture-of-expert training system, 2021. URL https://arxiv.org/abs/2103.13262.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Shruti Bhosale, Hsien-Hsin S. Lee, Carole-
Jean Wu, and Benjamin Lee. Toward efficient inference for mixture of experts. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=stXtBqyTWX.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong.
Tutel: Adaptive mixture-of-experts at scale, 2023. URL https://arxiv.org/abs/2206.
03382.

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. Moe++: Accelerating mixture-of-experts methods
with zero-computation experts, 2024. URL https://arxiv.org/abs/2410.07348.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding, 2020. URL https://arxiv.org/abs/2006.
16668.

Jiamin Li, Qiang Su, Yitao Yang, Yimin Jiang, Cong Wang, and Hong Xu. Adaptive gating in
mixture-of-experts based language models, 2023. URL https://arxiv.org/abs/2310.
07188.

Wenxiang Lin, Xinglin Pan, Lin Zhang, Shaohuai Shi, Xuan Wang, and Xiaowen Chu. Hiermoe:
Accelerating moe training with hierarchical token deduplication and expert swap, 2025. URL
https://arxiv.org/abs/2508.09591.

Xinyi Liu, Yujie Wang, Fangcheng Fu, Xupeng Miao, Shenhan Zhu, Xiaonan Nie, and Bin CUI.
Netmoe: Accelerating moe training through dynamic sample placement. In The Thirteenth In-
ternational Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=1qP3lsatCR.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pp. 2381–2391, Brussels, Belgium, October-
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260. URL
https://aclanthology.org/D18-1260/.

Alexandre Muzio, Alex Sun, and Churan He. Seer-moe: Sparse expert efficiency through regular-
ization for mixture-of-experts, 2024. URL https://arxiv.org/abs/2404.05089.

11

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2502.06643
https://arxiv.org/abs/2103.13262
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=stXtBqyTWX
https://openreview.net/forum?id=stXtBqyTWX
https://arxiv.org/abs/2206.03382
https://arxiv.org/abs/2206.03382
https://arxiv.org/abs/2410.07348
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2006.16668
https://arxiv.org/abs/2310.07188
https://arxiv.org/abs/2310.07188
https://arxiv.org/abs/2508.09591
https://openreview.net/forum?id=1qP3lsatCR
https://openreview.net/forum?id=1qP3lsatCR
https://aclanthology.org/D18-1260/
https://arxiv.org/abs/2404.05089

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Samyam Rajbhandari, Conglong Li, Zhewei Yao, Minjia Zhang, Reza Yazdani Aminabadi, Am-
mar Ahmad Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale, 2022. URL https://arxiv.org/
abs/2201.05596.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019. URL https://arxiv.org/abs/1907.
10641.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/2201.05596
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2017. URL https://arxiv.org/abs/1701.06538.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Tal Linzen,
Grzegorz Chrupała, and Afra Alishahi (eds.), Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pp. 353–355, Brussels, Belgium,
November 2018. Association for Computational Linguistics. doi: 10.18653/v1/W18-5446. URL
https://aclanthology.org/W18-5446/.

Bingyang Wu, Zili Zhang, Zhihao Bai, Xuanzhe Liu, and Xin Jin. Transparent {GPU} sharing in
container clouds for deep learning workloads. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pp. 69–85, 2023.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun Kwatra, Zhen-
hua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective
cluster scheduling for deep learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pp. 595–610, 2018.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Yuanhang Yang, Shiyi Qi, Wenchao Gu, Chaozheng Wang, Cuiyun Gao, and Zenglin Xu. Xmoe:
Sparse models with fine-grained and adaptive expert selection, 2024. URL https://arxiv.
org/abs/2403.18926.

Jinghan Yao, Quentin Anthony, Aamir Shafi, Hari Subramoni, Dhabaleswar K., and Panda. Exploit-
ing inter-layer expert affinity for accelerating mixture-of-experts model inference, 2024. URL
https://arxiv.org/abs/2401.08383.

Yueming Yuan, Ahan Gupta, Jianping Li, Sajal Dash, Feiyi Wang, and Minjia Zhang. X-moe:
Enabling scalable training for emerging mixture-of-experts architectures on hpc platforms, 2025.
URL https://arxiv.org/abs/2508.13337.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

13

https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/2302.13971
https://aclanthology.org/W18-5446/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2403.18926
https://arxiv.org/abs/2403.18926
https://arxiv.org/abs/2401.08383
https://arxiv.org/abs/2508.13337
https://aclanthology.org/P19-1472/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHM

Algorithm 1 Two-Phase α–β Profiling
Input: endpoint count N , message-size setM.
Output: {(αp

uv, β
p
uv)}u̸=v, p∈{m,d,c}.

Phase 1: Baseline for u← 0 to N − 1 do
foreach v ∈ [0, N − 1] \ {u} do

foreach p ∈ {m,d, c} do
D0,p

uv ← ∅ foreach M ∈M do
P ← ISOPATTERN(u, v,M, p) // only (u→v) active in phase p
B ← BYTES(u, v,P, p), t← TIME(P) D0,p

uv ← D0,p
uv ∪ {(B, t)}

end
(α0,p

uv , β
0,p
uv)← FIT(D0,p

uv)
end

end
end
Phase 2: Congestion-aware for u← 0 to N − 1 do

foreach M ∈M do
P ← ONETOMANY(u,M) v⋆ ← argmaxv ̸=u α0,d

uv + β0,d
uv · BYTES(u, v,P, d) td ←

TIME(P) Dd
uv⋆ ← Dd

uv⋆ ∪ {(BYTES(u, v⋆,P,d), td)}
// Use the symmetric choice for combine
v⋆ ← argmaxv ̸=u α0,c

vu + β0,c
vu · BYTES(v, u,P, c) tc ← TIME(P) Dc

v⋆u ← Dc
v⋆u ∪

{(BYTES(v⋆, u,P, c), tc)}
end

end
forall u ̸= v do

(αd
uv, β

d
uv)← FIT(Dd

uv); (αc
uv, β

c
uv)← FIT(Dc

uv); (αm
uv, β

m
uv)← (α0,m

uv , β0,m
uv).

end

A.2 RELATED WORK

Mixture-of-Experts Models. Early MoE work introduced sparse expert routing with auxiliary
balancing losses(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022). Later variants
explored adaptive expert selection and lightweight modifications such as gating residuals or zero-
compute experts (Yang et al., 2024; Li et al., 2023; Jin et al., 2024). These efforts mainly target
model quality and theoretical efficiency, but generally assume homogeneous all-to-all communica-
tion and measure gains in FLOPs rather than real deployment latency. Recent large-scale systems
such as DeepSeek-V3 (DeepSeek-AI et al., 2025) and Qwen3-MoE (Yang et al., 2025) demonstrate
the practicality of scaling sparse activation to hundreds of billions of parameters, highlighting the
need to also optimize system-level efficiency.

System optimization A complementary line of work addresses the performance bottlenecks of
distributed MoE. FastMoE (He et al., 2021) and Tutel (Hwang et al., 2023) improve scalability
through expert placement and overlapping communication with computation. Other frameworks in-
troduce padding-free dispatch, hybrid parallelism, or hierarchical deduplication (Yuan et al., 2025;
Lin et al., 2025). Most relevant to our approach, NetMoE (Liu et al., 2025) and MoETuner (Go
& Mahajan, 2025) formulate topology-aware token routing and expert placement strategies, ex-
plicitly modeling communication cost. However, these systems still assume relatively stable or
offline-optimized topologies. Our work differs by profiling heterogeneous links at inference time
and incorporating a lightweight, cost-aware gating bias without retraining.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 ENVIRONMENT SETTINGS

Node1

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.65ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.56ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 0.55ms
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node2

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.645ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.63ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 0.65ms
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node3

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.56ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.63ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 70us
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node4

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.565ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.65ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 65us
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:3

A.4 METRICS

Let E be the expert set with E = |E| and L be the set of MoE layers with L = |L|. Let nℓ,e denote
the (post-drop) token count processed by expert e ∈ E at layer ℓ ∈ L.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Global coefficient of variation (cv). Aggregate expert loads across layers: ne =
∑

ℓ∈L nℓ,e.
Define

n̄ =
1

E

∑
e∈E

ne, s =

√
1

E

∑
e∈E

(ne − n̄)2, cv =
s

n̄
. (14)

A larger cv indicates stronger global selectivity (more concentration on a subset of experts).

Per-layer coefficient of variation (avg layer cv). For each layer ℓ, compute

n̄ℓ =
1

E

∑
e∈E

nℓ,e, sℓ =

√
1

E

∑
e∈E

(nℓ,e − n̄ℓ)2, cvℓ =
sℓ
n̄ℓ

. (15)

Then
avg layer cv =

1

L

∑
ℓ∈L

cvℓ. (16)

Routing shift KL (KL). We compare a baseline run (base) and a comparison run (cmp) via layer-
aggregated expert-load histograms. Let cbasee =

∑
ℓ n

base
ℓ,e and ccmp

e =
∑

ℓ n
cmp
ℓ,e be global expert

counts. Convert them to probability distributions with ε-smoothing:

Pe =
cbasee + ε∑

j∈E c
base
j + εE

, Qe =
ccmp
e + ε∑

j∈E c
cmp
j + εE

. (17)

The global KL divergence (in nats) is

KL = DKL(P∥Q) =
∑
e∈E

Pe log
Pe

Qe
. (18)

Average per-layer KL (avg layer kl). Form layer-wise distributions by smoothing and normal-
izing counts per layer:

P (ℓ)
e =

nbase
ℓ,e + ε∑

j∈E n
base
ℓ,j + εE

, Q(ℓ)
e =

ncmp
ℓ,e + ε∑

j∈E n
cmp
ℓ,j + εE

. (19)

Compute per-layer KLs DKL

(
P (ℓ)∥Q(ℓ)

)
=

∑
e P

(ℓ)
e log

P (ℓ)
e

Q
(ℓ)
e

and average:

avg layer kl =
1

L

∑
ℓ∈L

DKL

(
P (ℓ)∥Q(ℓ)

)
. (20)

16

	Introduction
	Background and Motivation
	Mixture-of-Experts (MoE)
	MoE inference in Real deployment
	Heterogeneous Connectivity in Real Deployments

	Motivation

	CAMOE
	Communication Performance Model
	Routing-Induced Communication Volume

	All-to-All Communication Sequence and Timing
	Profiler
	Methodology

	Evaluation
	Experiment Setup
	Evaluation Benchmarks
	Simulator fidelity evaluation
	Main Results
	Expert choice analysis

	Conclusions
	LLM Usage
	Appendix
	Algorithm
	Related Work
	Environment Settings
	Metrics

