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ABSTRACT

Mixture-of-Experts (MoE) is currently the most promising method for scaling the
parameters of large language models. Its architecture consists of different experts
at different layers, with a fixed number of top experts selected dynamically for
each token based on the token’s information during inference. Ideally, if all ex-
perts could be placed on the same device, token routing would not be impeded
by communication overhead. However, as the parameters of MoE models grow
toward trillion-scale, experts cannot be accommodated on a single device or even
a single node, leading to significantly increased tail latency during all-to-all com-
munications—the tokens with the highest communication cost slow down the in-
ference process.
In this paper, we thoroughly analyze the patterns of all-to-all communications
during inference in MoE models and develop a profiler to measure heterogene-
ity between devices. Using parameters obtained from profiler runs, we im-
plement a SystemC-based simulator to model communication times during all-
to-all communications. Based on detailed information about transmitted data,
we propose a cost-aware method designed to reduce tail latency during model
inference. Experimental results demonstrate that this method does not affect
model accuracy on downstream tasks and effectively reduces all-to-all commu-
nication time during inference. Our implementation is publicly available at
https://anonymous.4open.science/r/CAMoe-1FBB.

1 INTRODUCTION

Large Language Models (LLMs)(OpenAI et al., 2024)(Touvron et al., 2023)(DeepSeek-AI et al.,
2025)(Yang et al., 2025) have advanced rapidly in both capability and scale, demonstrating strong
performance in reasoning, coding, and multi-turn interaction. This progress is tightly coupled with
growth in parameter counts and compute investment, and with architectural evolution from dense
Transformers to sparse or modular forms. While larger models often increase utility, they also
strain training and inference budgets: memory footprints grow with parameters, and end-to-end
latency/throughput hinge on how efficiently the model exploits parallel hardware at deployment.

Mixture-of-Experts (MoE) architectures expand total parameter capacity while keeping per-token
FLOPs nearly constant by activating only a sparse subset of experts per token. This conditional
computation yields a favorable scaling path: increases in capacity primarily drive memory and com-
munication overhead rather than per-token compute. Consequently, MoE has become a leading
approach for scaling LLM capacity in production environments.

Early MoE introduced auxiliary balancing losses to achieve more uniform token-to-expert assign-
ment and stabilize training (Shazeer et al., 2017; Lepikhin et al., 2020); Switch Transformer(Fedus
et al., 2022) simplified routing to top-1 with capacity control to reduce FLOPs while preserving
quality. More recent methods adjust the number of active experts per token or alter routing dynam-
ics (e.g., XMoE, Adaptive Gating) to trade FLOPs for quality (Yang et al., 2024; Li et al., 2023).
These approaches primarily optimize model-side metrics (accuracy, FLOPs, overflow) and typically
assume a homogeneous communication environment, so they do not directly target system-level
All-to-All (A2A) latency on heterogeneous hardware.

We propose CAMoE, a training-free method that injects a small, deterministic, topology- and traffic-
aware bias into the router’s logits. The bias is a row-wise z-scored estimate of communication
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time from each source endpoint (where a token resides) to each expert endpoint, computed via a
lightweight two-phase profiler and a direction-specific α–β model. At runtime, CAMOE reduces to
a single gather-and-add before the usual Top-K gating: no retraining, no new collectives, no changes
to capacity control, and full compatibility with data, tensor, pipeline, and expert parallelism.

Comparison with prior work. CAMOE distinguishes itself from prior work in several key ways.
Unlike gating-only methods (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022; Yang
et al., 2024; Li et al., 2023), which primarily focus on FLOPs or token-count balance, CAMOE
is not a new router objective but rather augments existing gating with a normalized cost term to
explicitly target A2A mean and p95 latency. In contrast to topology-aware training and place-
ment strategies (e.g., TA-MoE) (Chen et al., 2023), it requires neither offline re-placement nor
retraining; instead, it operates under any fixed expert layout by steering tokens away from high-
cost paths, making it complementary to improved placements. Furthermore, when compared with
systems and engineering stacks (DeepSpeed-MoE, FasterMoE, etc.) (Rajbhandari et al., 2022)(He
et al., 2021), CAMOE functions as a router-side drop-in that preserves underlying kernel and
overlap optimizations, as it acts at a different layer of the stack. It also achieves communi-
cation awareness without the complexity of inference-time deployment and scheduling (Huang
et al., 2024), relying on a single, stable hyperparameter λcost thanks to its row-wise normalization.
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Figure 1: Breakdown of MoE in-
ference components, highlighting the
dominance of All-to-All dispatch time.

Finally, CAMOE is orthogonal to inter-layer affinity and
regularization techniques (Yao et al., 2024; Muzio et al.,
2024); while affinity reduces cross-layer routing churn,
CAMOE reduces per-layer path cost, allowing the two
approaches to be combined for additive benefits.

We summarize the paper’s contributions as follows:

A drop-in, inference-time, topology- and traffic-aware
router bias. A small, deterministic logit bias computed
per (source endpoint, expert endpoint) from a lightweight
profiler and a direction-specific α–β link model. It is
row-wise z-scored, governed by a single hyperparame-
ter λcost, requires no retraining or new collectives, and
composes with data/tensor/pipeline/expert parallelism.

An open-sourced lightweight cost-aware toolkit. We
provide a minimal profiling/simulation toolkit that fits
(α, β) per direction, exports per-endpoint cost tables, and
plugs into Megatron-LM with a concise gather-and-add integration for cost-aware routing.

End-to-end performance gains with negligible accuracy movement. On Qwen3-30B-A3B, the
method reduces per-layer All-to-All mean latency by up to 15.8% and p95 by up to 19.1%, with
small average accuracy changes across nine downstream tasks; a Pareto region λcost ∈ [0.15, 0.20]
offers strong latency gains at near-baseline quality (cf. Table 1).

2 BACKGROUND AND MOTIVATION

2.1 MIXTURE-OF-EXPERTS (MOE)

Mixture-of-Experts (MoE) models scale neural network capacity via conditional computation: a
learned router activates only a sparse subset of specialized FFN experts for each token, thereby
expanding total parameters while keeping per-token FLOPs nearly constant. As illustrated in Fig-
ure 2(a), an MoE layer typically replaces the conventional feed-forward network within a Trans-
former decoder block with a bank of experts governed by the router.

The selection of experts is governed by a learned gating network (router), which determines the
most relevant experts for processing each token. A commonly used choice in prior work is the Noisy
Top-k Gating mechanism. For completeness, we briefly summarize its formulation. Given an input
representation x ∈ Rd, gating weights Wgate ∈ Rd×N , noise weights Wnoise ∈ Rd×N , and a set of

2
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N experts Eii = 1N , the router first computes the base logits and applies noise:

H(x) = xWgate (1)

σ(x) = Softplus
(
xWnoise

)
(2)

H̃i(x) = Hi(x) + σi(x) ξi, ξi ∼ N (0, 1) (3)

Next, to enforce sparsity, only the top k experts are selected. Let T be the set of indices correspond-
ing to the top k values in the noisy logits H̃(x). The router then creates masked logits Ĥ(x) where
non-selected expert logits are set to −∞:

Ĥi(x) =

{
H̃i(x), if i ∈ T

−∞, otherwise
(4)

The final gating scores are obtained via a softmax over the masked logits:

G(x) = softmax
(
Ĥ(x)

)
(5)

Finally, the MoE layer aggregates the outputs from all experts, weighted by their gating scores.
Since the scores for non-selected experts are zero, this effectively combines the outputs of only the
top k experts:

MoE(x) =
N∑
i=1

Gi(x)Ei(x) (6)

Within Transformer-based architectures, MoE layers are integrated into the decoder blocks by re-
placing conventional Feed-Forward Networks (FFN). Each decoder block comprises a layer normal-
ization step, followed by masked self-attention, and subsequently, an MoE sub-layer that selectively
routes input tokens to different experts based on the router’s decision. After expert processing, the
outputs from different experts are combined to maintain the integrity of the token sequence and fed
into subsequent layers.
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(b) Communication in expert paral-
lelism for MoE models.

Figure 2: Illustration of MoE architecture and par-
allel communication strategy.

Although MoE architectures reduce per-token
computation via sparse expert activation, the
total parameter count (and thus model/opti-
mizer states) still grows with the number of ex-
perts, making it infeasible to replicate all ex-
perts on every device. Expert parallelism ad-
dresses this by sharding the expert bank across
multiple GPUs or compute nodes—while typi-
cally replicating the non-expert layers—as de-
picted in Figure 2(b). This design (i) unlocks
capacities far beyond a single GPU’s mem-
ory budget, (ii) improves throughput by ag-
gregating many token assignments into large,
well-batched GEMMs on each device at nearly
constant per-token FLOPs, and (iii) composes
cleanly with data/tensor/pipeline parallelism
for multi-dimensional scaling. Because tokens
must be processed by the specific experts they
select, EP necessarily introduces communica-
tion to route tokens to the owning devices and
reassemble the sequence; operationally this is
realized with two collective operations:

All-to-All Dispatch: Redistributes input to-
kens across different devices according to their assigned experts, ensuring that each token reaches
the device hosting its corresponding expert.

All-to-All Combine: Collects processed token outputs from all devices, restoring the original token
order on the originating devices.
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Figure 4: Real-deployment view and CAMOE pipeline. Left: Network Plane (spine–leaf fabric)
and Device Topology (NVSwitch/NVLink/PCIe Switch/host paths). Middle: Profiler generates per-
edge parameters and a one-shot calibration; Simulator predicts All-to-All time from routing/place-
ment and a hop-wise communication model. Right: CAMOE injects a deterministic, topology-aware
cost bias into gating, normalizes costs (z-score), and migrates a small fraction of tokens off expen-
sive links while preserving accuracy.

2.2 MOE INFERENCE IN REAL DEPLOYMENT

As illustrated in Figure 1, the All-to-All dispatch step overwhelmingly dominates inference latency,
significantly surpassing other computational components such as attention mechanisms, routing pro-
cesses, and Feed-Forward Network (FFN) computations. More importantly, in real deployment
environments, node resources and network connectivity are typically heterogeneous and variable,
making these production environments particularly susceptible to tail latency issues. This inherent
heterogeneity further exacerbates the unpredictability and inefficiency of actual inference perfor-
mance. Therefore, in this section, we provide a concise overview of heterogeneous connectivity
within such real-world deployment environments and discuss the resulting tail latency phenomena.

2.2.1 HETEROGENEOUS CONNECTIVITY IN REAL DEPLOYMENTS
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Figure 3: Intra-node GPU-to-GPU
write-operation latency under different
interconnect types.

Large production clusters commonly combine
NVLink/NVSwitch, PCIe, and host paths, and are
operated under practical constraints (scheduler fragmen-
tation, partial GPU availability on nodes, maintenance
windows, and cross-rack placement). These factors
create diverse communication costs that directly impact
MoE collectives.

Intra-nodeHowever, a critical and often-overlooked
challenge in the real-world deployment of modern multi-
GPU servers is the extreme heterogeneity of intra-node
communication. While it is commonly assumed that
inter-GPU communication within the same server is ho-
mogeneous and efficient, our empirical measurements re-
veal a starkly different reality.

As shown in Figure3, depending on the physical inter-
connect topology between a pair of GPUs, their point-
to-point write latency can differ by orders of magnitude.
Communication can be routed over high-speed direct
NVLink (latency 429 ns), multi-hop NVLink requiring data forwarding, next-best PCIe switches,
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or in the worst case, host paths that detour through the CPU (latency as high as 8325 ns). The
performance gap between the fastest and slowest paths is nearly a factor of 20.

Inter-node Beyond a single server, production clusters are built as spine-leaf network fabrics, as
illustrated on the Network Plane of Figure 4. Due to the static and exclusive allocation mechanism
of GPU resources, resource utilization within nodes is often insufficient, forcing some tasks to be
distributed across multiple nodes. When the resources of a single node cannot fully meet the re-
quirements of an individual task, the task must be allocated across multiple nodes for execution(Wu
et al., 2023)(Amaral et al., 2017)(Xiao et al., 2018).
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Figure 5: Impact of tail latency on the
dispatch time in All-to-All communi-
cation, indicating that the slowest node
significantly determines overall perfor-
mance.

All-to-All is a barrier-synchronized collective commu-
nication: a step completes only when every destination
node has received all of its messages. Therefore, a sin-
gle slow receiver—whether caused by a high-cost path or
transient congestion—gates the completion of the entire
step. As illustrated in figure, we use Linux’s tc utility to
perturb a single device’s path, injecting additional latency
while holding other devices near their baseline.

The measured All-to-All dispatch time tracks the slow-
est node almost one-for-one: as the injected delay grows,
TA2A increases nearly linearly with the maximum per-
node latency, while reducing delay on non-bottleneck
nodes has a negligible effect on the overall step time.

2.3 MOTIVATION

A2A is fundamentally a barrier-synchronized collective
communication: the entire step completes only when its
slowest receiver has finished. Our perturbation experi-
ments corroborate this; increasing delay on a single re-

ceiver node inflates the total time of TA2A almost one-for-one, whereas accelerating non-bottleneck
nodes has a negligible effect. This mechanism is a direct driver of tail latency.

Furthermore, router behavior is another, more subtle driver of tail latency. At inference time, to
ensure determinism, the router’s decisions are completely decoupled from underlying link costs.
Consequently, a large volume of tokens may be routed to experts that happen to reside behind high-
cost communication paths. This not only increases the average data transfer cost but, more critically,
exacerbates the load imbalance between nodes, thereby elevating the overall latency ceiling.

Taken together, the core motivation of this work is to address the following question: How can we
effectively mitigate the communication-dominated tail latency of MoE inference in heterogeneous
and dynamically changing deployment environments, without sacrificing model accuracy, batching
efficiency, or compatibility with existing parallelism strategies?

3 CAMOE

3.1 COMMUNICATION PERFORMANCE MODEL

In this section, we formally characterize the communication cost of the All-to-All operations within
a single Mixture-of-Experts (MoE) layer. We adopt the classical α-β model to describe the network
fabric’s performance, decomposing the communication path between any device pair (u, v) into
multiple hops (e.g., NIC-to-ToR, ToR-to-Spine, NVLink, PCIe). Each hop h has a startup latency
αu,v,h and a per-byte transmission cost βu,v,h. Thus, the total communication time for transmitting
a payload of size B bytes is expressed as:

Tuv(B) =

Huv∑
h=1

(αu,v,h + βu,v,h ·B) (7)

These parameters (αuv, βuv) can be empirically measured for a given hardware topology.

5
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3.1.1 ROUTING-INDUCED COMMUNICATION VOLUME

The data transmission volume between devices directly depends on the gating network’s routing
decisions. Let D denote the set of devices, define π(e) as the mapping from expert e to its device,
and σ(i) as the mapping from token i to its device. When token i is routed to K experts, let Cie

represent the assignment count from token i to expert e. Thus, the number of tokens dispatched
from device u to device v is given by:

N disp
uv =

∑
i:σ(i)=u,
e:π(e)=v

Cie (8)

Assuming no tokens are dropped, the communication volume in the combine step matches the dis-
patch step, i.e., N comb

uv = N disp
uv .

3.2 ALL-TO-ALL COMMUNICATION SEQUENCE AND TIMING

Expert-parallel communication within an MoE layer involves three sequential collective operations:

Preprocess (metadata): Expert metadata (token counts per expert), total size E · scnt bytes.

Dispatch (embeddings & routing probabilities): Token embeddings combined with routing prob-
abilities, total size (M · sh + sp) bytes per token.

Combine (processed embeddings): Processed token embeddings returned from experts, total size
M · sh bytes per token.

By explicitly integrating the α-β model, the total All-to-All communication time within a single
MoE layer is formally expressed as:

TA2A = Tpreprocess + Tdispatch + Tcombine

= max
(u,v)∈D2

[αuv + βuv · (E · scnt)]︸ ︷︷ ︸ preprocess (metadata)

+max (u, v) ∈ D2
[
αuv + βuv ·N disp

uv (M · sh + sp)
]︸ ︷︷ ︸ dispatch (embeddings & routing probs.)

+max (u, v) ∈ D2
[
αuv + βuv ·N comb

uv (M · sh)
]︸ ︷︷ ︸

combine (processed embeddings)

(9)

3.3 PROFILER

We estimate (αp
uv, β

p
uv) for use in equation 9 via a two-phase, minimal procedure with no warm-

ups or repeated trials: (1) Baseline — for each (u, v) and a set of message sizes, measure isolated
point-to-point transfers and fit (α0,p

uv , β
0,p
uv ); (2) Congestion-aware — for each source u, issue one-

to-many patterns, use the baseline model to predict the bottleneck edge, and sample only that edge
to refine (αp

uv, β
p
uv) under contention. The specific algorithm is shown in Appendix1.

3.4 METHODOLOGY

Per-layer expert placement. For each MoE layer ℓ, fix the expert→device map πℓ(e)∈D and the
device→endpoint map δ : D→N . Let νℓ(e) = δ(πℓ(e)) be the endpoint of expert e. Encode the
placement by a one-hot matrix

Mℓ ∈ {0, 1}E×|N|, [Mℓ]e,v = 1{νℓ(e) = v},

so that M⊤
ℓ ∈ {0, 1}|N |×E maps endpoint indices to expert indices.

One-shot traffic accounting. Run one forward pass with λcost=0 and stack tokens i = 1, . . . , I .
Let the source-endpoint indicator be

S ∈ {0, 1}I×|N|, [S]i,u = 1{σ(i) = u},

6
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and the (pre-drop) routing assignment be

Aℓ ∈ NI×E , [Aℓ]i,e = C
(ℓ)
ie .

Then the dispatched token-count matrix (source u to expert-endpoint v) is

Ndisp
ℓ = S⊤ Aℓ Mℓ ∈ N|N |×|N| =⇒ Ndisp

u,v,ℓ =
[
Ndisp

ℓ

]
u,v

. (10)

Let Sdisp
ℓ = (Hℓb+ sprob) and Scomb

ℓ = (Hℓb) be per-token bytes. The byte-volume matrices are

Bdisp
ℓ = Sdisp

ℓ Ndisp
ℓ , Bcomb

ℓ = Scomb
ℓ Ndisp

ℓ .

Direction-specific link model. From profiling (Alg. 1), let

αd, βd, αc, βc ∈ R|N |×|N|

collect the dispatch/combine intercepts and per-byte slopes (Hadamard product ⊙ below). A dis-
patch u→v plus a combine v→u yields the traffic-weighted time proxy

Ctw
ℓ = αd + βd ⊙Bdisp

ℓ +
(
αc

)⊤
+

(
βc

)⊤ ⊙Bcomb
ℓ . (11)

Row-wise z-score. Let 1 ∈ R|N | be the all-ones vector. Define row means and standard devia-
tions:

µℓ =
1

|N | C
tw
ℓ 1 ∈ R|N |×1, σℓ = stdrow

(
Ctw

ℓ

)
∈ R|N |×1.

Then the row-wise standardized matrix is

Ĉtw
ℓ =

(
Ctw

ℓ − µℓ1
⊤)⊘ (

σℓ1
⊤ + ε

)
, (12)

so each row is zero-mean and unit-variance across destinations v.

Topology-aware gate bias. Precompute a gate-bias table and inject it into logits:

G(ℓ) := −λcost Ĉ
tw
ℓ M⊤

ℓ ∈ R|N |×E ⇒ Z′(ℓ) = Z(ℓ) + SG(ℓ). (13)

Here λcost controls the strength of the bias; the z-score makes it dimensionless and comparable
across sources.

Multi-hop & asymmetry: Prefer end-to-end, per-direction fitted (αuv, βuv); if only per-hop pa-
rameters are available, aggregate via store-and-forward (sum) or cut-through/pipelined (sum on α,
max on β).

Dynamic adaptation: A lightweight controller can tune λcost from observed vs. predicted A2A
time and sparsely micro-probe predicted bottlenecks to refresh a few (α, β); overhead is negligible
and off the training fast path.

Complexity. Online cost reduces to a single gather-and-add SG(ℓ) per layer. Stacking {G(ℓ)}Lℓ=1

yields, for each source endpoint u, a tiny cache Gu ∈ RL×E (8 KiB in FP16 for L=64, E=64).

4 EVALUATION

4.1 EXPERIMENT SETUP

Implementation We implemented a prototype of CAMOE based on Megatron-LM, consisting of
approximately 1.5k lines of Python and 0.5k lines of C++. Given that the alltoall communi-
cation is synchronous and blocking, it is impossible to probe the status of all communication links
within a single regular alltoall operation. Therefore, we introduced a new token dispatcher to
generate sufficient communication data, ensuring high accuracy in cost model fitting.

By reusing the parallel state abstraction provided by Megatron-core, we can invoke built-in
alltoall primitives without modifying the core framework code. This approach allows us to
accurately record timing information for various computational operations within the framework,
such as statistical aggregation, reordering, and sorting. Compared to real inference scenarios, our
system provides a more precise measurement of link status, as it is free from routing uncertainties.

7
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(a) A2A combine (0→1) (b) A2A combine (1→2) (c) A2A dispatch (0→1) (d) A2A dispatch (1→2)

Figure 6: Verification of α–β fits for four All-to-All cases. Each panel shows measured latencies
across message sizes with the fitted model overlaid.

Hardware We conducted our experiments using four NVIDIA ADA6000 GPUs (48GB each),
dual Intel(R) Xeon(R) Gold 6544Y CPUs, and 2TB of RAM.

Environment Setup We captured latency and bandwidth data from actual nodes in real cloud
service scenarios and utilized Docker to configure a distributed environment that traverses network
stacks, emulating real public cloud environments. Detailed setup instructions can be found in the
appendixA.3.

4.2 EVALUATION BENCHMARKS

We evaluate with the lm-evaluation-harness (Gao et al., 2024) on nine standard down-
stream tasks with zero/few-shot: BoolQ (0-shot, Accuracy)(Clark et al., 2019), RTE (0-shot, Ac-
curacy)(Wang et al., 2018), OBQA (0-shot, Accuracy with length normalization)(Mihaylov et al.,
2018), PIQA (0-shot, Accuracy with length normalization)(Bisk et al., 2019), MMLU (5-shot, Ac-
curacy)(Hendrycks et al., 2021), WinoGrande (5-shot, Accuracy)(Sakaguchi et al., 2019), GSM8K
(5-shot, Exact Match)(Cobbe et al., 2021), HellaSwag (10-shot, Accuracy with length normaliza-
tion)(Zellers et al., 2019), and ARC-C (25-shot, Accuracy with length normalization)(Clark et al.,
2018).

4.3 SIMULATOR FIDELITY EVALUATION

We verify the α–β model using a single micro-benchmark sweep in which the number of tokens
sent per All-to-All ranges from 128 to 1024 in steps of 128. For each case we fit t = α + βn

(with t in milliseconds and n in bytes), obtaining: dispatch 0→ 1 α̂ = 2.5480ms, β̂ = 5.5823 ×
10−6 ms/byte; dispatch 1→ 2 α̂ = 2.9142ms, β̂ = 8.4092 × 10−7 ms/byte; combine 0→ 1

α̂ = 0.9744ms, β̂ = 5.5532 × 10−6 ms/byte; combine 1→ 2 α̂ = 0.9454ms, β̂ = 8.0976 ×
10−7 ms/byte. As shown in Fig. 6, the fitted curves closely track the measured latencies across the
entire size range for both dispatch and combine phases.

4.4 MAIN RESULTS

We evaluate the cost-aware routing coefficient λcost on Qwen3-30B-A3B by sweeping
{0, 0.05, 0.10, 0.15, 0.20, 0.25} and measuring (i) mean forward All-to-All latency per MoE layer
(ms) and (ii) accuracy on nine downstream tasks (BoolQ, OpenBookQA (norm), PIQA (norm), RTE,
MMLU, WinoGrande, ARC-Challenge, HellaSwag, GSM8K). λcost scales a z-scored, α–β-derived
per-(source node, expert) communication-cost bias added to gating logits; larger values steer tokens
toward lower-cost experts without changing model parameters or FLOPs. Results are summarized
in Table 1.

Latency. All-to-All latency decreases monotonically with λcost: from 177.56 ms at 0 to 149.50 ms
at 0.25 (−28.06ms; −15.8%). Intermediate settings yield smooth improvements: 171.49 ms
(−3.4%) at 0.05, 166.02 ms (−6.5%) at 0.10, 160.24 ms (−9.8%) at 0.15, and 152.51 ms (−14.1%)
at 0.20. These per-layer savings compound across MoE layers (subject to overlap), directly tar-
geting the communication bottleneck. Tail latency (p95) shows a similarly monotonic drop: from
235.51 ms at 0 to 190.57 ms at 0.25 (−44.94ms; −19.1%). Intermediate settings are 220.88 ms
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Downstream Tasks

λcost All-to-All mean (ms) All-to-All p95 (ms) BoolQ OpenBookQA PIQA RTE MMLU WinoGrande ARC-Challenge HellaSwag GSM8K

0.00 177.56 235.51 0.8856 0.4500 0.8047 0.8231 0.7960 0.6993 0.6980 0.7792 0.8984
0.05 171.49 220.88 0.8872 0.4420 0.8036 0.8303 0.7953 0.7088 0.6869 0.7789 0.8939
0.10 166.02 209.50 0.8890 0.4420 0.7911 0.8281 0.7945 0.6993 0.6928 0.7767 0.8817
0.15 160.24 208.43 0.8829 0.4420 0.7867 0.8195 0.7913 0.6985 0.6843 0.7751 0.8802
0.20 152.51 197.80 0.8795 0.4300 0.7709 0.8267 0.7893 0.6961 0.6877 0.7709 0.8855
0.25 149.50 190.57 0.8780 0.4280 0.7650 0.8375 0.7822 0.6977 0.6860 0.7640 0.8840

Table 1: Evaluating the cost-aware routing coefficient (λcost) on the Qwen3-30B-A3B MoE model.
Column 2 reports mean forward All-to-All latency per MoE layer (ms; lower is better); Column 3
reports p95 (95th percentile) forward All-to-All latency (ms). Remaining columns list accuracies
on nine downstream tasks. Best per task is bolded. Larger λcost biases routing toward lower-cost
experts, reducing latency with generally minor accuracy movement.

(−6.2%) at 0.05, 209.50 ms (−11.0%) at 0.10, 208.43 ms (−11.5%) at 0.15, and 197.80 ms
(−16.0%) at 0.20, indicating that cost-aware routing reduces not only mean but also tail All-to-All
latency, with larger relative gains in the tail.

Accuracy. Best scores are dispersed across λcost (bold in the table), and most tasks remain near
baseline. Notable improvements include RTE peaking at 0.25 (+0.0144 abs., 0.8231→0.8375) and
WinoGrande at 0.05 (+0.0095 abs., 0.6993→0.7088); both changes are comparable to their reported
± intervals. The strongest declines at high λ appear on PIQA (0.8047→0.7650, −0.0397), MMLU
(0.7960→0.7822, −0.0138), HellaSwag (0.7792→0.7640, −0.0152), GSM8K (0.8984→0.8840,
−0.0144), and OpenBookQA (0.4500→0.4280, −0.0220); several of these exceed the typical re-
ported uncertainty bands (e.g.,±0.003–0.013), indicating a real trade-off for those tasks. On average
(unweighted across nine tasks), accuracy at 0.25 is ∼1.2 pp below baseline.

4.5 EXPERT CHOICE ANALYSIS

λcost cv avg layer cv KL ↓ avg layer kl ↓
0.0000 0.3368 1.5118 0.0000 0.0000
0.0500 0.3379 1.5122 0.0006 0.0098
0.1000 0.3437 1.5137 0.0023 0.0213
0.1500 0.3525 1.5132 0.0053 0.0321
0.2000 0.3622 1.5108 0.0097 0.0447
0.2500 0.3742 1.5079 0.0149 0.0588

Table 2: Expert selectivity & routing shift vs. λcost. Higher
cv indicates stronger selectivity; avg layer cv is the mean
per-layer CV. KLs are measured against the λ=0 baseline
(nats).

With fixed expert placement and
dataset, Table 2 shows a monotonic
rise in global selectivity: cv increases
from 0.3368 to 0.3742 (+11.1%) as
λcost grows, indicating tokens shift
toward cheaper-link experts. Cru-
cially, per-layer imbalance remains flat
(avg layer cv ≈ 1.51), implying
Top-K gating and capacity limits pre-
serve within-layer balance and avoid
saturation. The routing distribution
changes smoothly: KL(λ : 0) rises
from 5.6 × 10−4 to 1.49 × 10−2 (with
avg layer kl≤ 5.9×10−2), which
may slightly affect precision-sensitive
tasks (e.g., PIQA, HellaSwag, GSM8K). A practical Pareto region is λcost ∈ [0.15, 0.20], yielding
cv gains of 4.7%–7.6% with KL at the 10−2 scale, steering traffic onto shorter paths and reducing
All-to-All latency with minimal quality impact.

5 CONCLUSIONS

As Mixture-of-Experts (MoE) models scale by distributing experts across increasingly heteroge-
neous hardware, communication overhead, particularly tail latency from All-to-All operations, be-
comes the dominant inference bottleneck. This work introduces CAMoE, a framework that mit-
igates this by making routing cost-aware. We profile system topology to model communication
latency and inject a lightweight, topology-aware bias into the gating function at inference time.
CAMoE reduces mean and tail All-to-All latency by up to 15.8% and 19.1% on a 30B-parameter
model, with minimal accuracy impact and no retraining.
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6 LLM USAGE

During the writing process of this paper, a large language model (LLM) was used only for minor
text polishing and spell checking. The research design, experimental analysis, and conclusions were
independently completed by the authors. The LLM was not used to generate data, code, or results.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 Two-Phase α–β Profiling
Input: endpoint count N , message-size setM.
Output: {(αp

uv, β
p
uv)}u̸=v, p∈{m,d,c}.

Phase 1: Baseline for u← 0 to N − 1 do
foreach v ∈ [0, N − 1] \ {u} do

foreach p ∈ {m,d, c} do
D0,p

uv ← ∅ foreach M ∈M do
P ← ISOPATTERN(u, v,M, p) // only (u→v) active in phase p
B ← BYTES(u, v,P, p), t← TIME(P) D0,p

uv ← D0,p
uv ∪ {(B, t)}

end
(α0,p

uv , β
0,p
uv )← FIT(D0,p

uv )
end

end
end
Phase 2: Congestion-aware for u← 0 to N − 1 do

foreach M ∈M do
P ← ONETOMANY(u,M) v⋆ ← argmaxv ̸=u α0,d

uv + β0,d
uv · BYTES(u, v,P, d) td ←

TIME(P) Dd
uv⋆ ← Dd

uv⋆ ∪ {(BYTES(u, v⋆,P,d), td)}
// Use the symmetric choice for combine
v⋆ ← argmaxv ̸=u α0,c

vu + β0,c
vu · BYTES(v, u,P, c) tc ← TIME(P) Dc

v⋆u ← Dc
v⋆u ∪

{(BYTES(v⋆, u,P, c), tc)}
end

end
forall u ̸= v do

(αd
uv, β

d
uv)← FIT(Dd

uv); (αc
uv, β

c
uv)← FIT(Dc

uv); (αm
uv, β

m
uv)← (α0,m

uv , β0,m
uv ).

end

A.2 RELATED WORK

Mixture-of-Experts Models. Early MoE work introduced sparse expert routing with auxiliary
balancing losses(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2022). Later variants
explored adaptive expert selection and lightweight modifications such as gating residuals or zero-
compute experts (Yang et al., 2024; Li et al., 2023; Jin et al., 2024). These efforts mainly target
model quality and theoretical efficiency, but generally assume homogeneous all-to-all communica-
tion and measure gains in FLOPs rather than real deployment latency. Recent large-scale systems
such as DeepSeek-V3 (DeepSeek-AI et al., 2025) and Qwen3-MoE (Yang et al., 2025) demonstrate
the practicality of scaling sparse activation to hundreds of billions of parameters, highlighting the
need to also optimize system-level efficiency.

System optimization A complementary line of work addresses the performance bottlenecks of
distributed MoE. FastMoE (He et al., 2021) and Tutel (Hwang et al., 2023) improve scalability
through expert placement and overlapping communication with computation. Other frameworks in-
troduce padding-free dispatch, hybrid parallelism, or hierarchical deduplication (Yuan et al., 2025;
Lin et al., 2025). Most relevant to our approach, NetMoE (Liu et al., 2025) and MoETuner (Go
& Mahajan, 2025) formulate topology-aware token routing and expert placement strategies, ex-
plicitly modeling communication cost. However, these systems still assume relatively stable or
offline-optimized topologies. Our work differs by profiling heterogeneous links at inference time
and incorporating a lightweight, cost-aware gating bias without retraining.
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A.3 ENVIRONMENT SETTINGS

Node1

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.65ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.56ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 0.55ms
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node2

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.645ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.63ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 0.65ms
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node3

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.56ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.63ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 70us
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.6/32 flowid 1:3

Node4

tc qdisc add dev eth0 root handle 1: prio bands 3
tc qdisc add dev eth0 parent 1:1 handle 10: netem delay 0.565ms
tc qdisc add dev eth0 parent 10: handle 11: tbf rate 1500mbit burst 2mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.3/32 flowid 1:1
tc qdisc add dev eth0 parent 1:2 handle 20: netem delay 0.65ms
tc qdisc add dev eth0 parent 20: handle 21: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.4/32 flowid 1:2
tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 65us
tc qdisc add dev eth0 parent 30: handle 31: tbf rate 10000mbit burst 10mbit latency 50ms
tc filter add dev eth0 protocol ip parent 1: prio 1 u32 match ip dst 172.17.0.5/32 flowid 1:3

A.4 METRICS

Let E be the expert set with E = |E| and L be the set of MoE layers with L = |L|. Let nℓ,e denote
the (post-drop) token count processed by expert e ∈ E at layer ℓ ∈ L.
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Global coefficient of variation (cv). Aggregate expert loads across layers: ne =
∑

ℓ∈L nℓ,e.
Define

n̄ =
1

E

∑
e∈E

ne, s =

√
1

E

∑
e∈E

(ne − n̄)2, cv =
s

n̄
. (14)

A larger cv indicates stronger global selectivity (more concentration on a subset of experts).

Per-layer coefficient of variation (avg layer cv). For each layer ℓ, compute

n̄ℓ =
1

E

∑
e∈E

nℓ,e, sℓ =

√
1

E

∑
e∈E

(nℓ,e − n̄ℓ)2, cvℓ =
sℓ
n̄ℓ

. (15)

Then
avg layer cv =

1

L

∑
ℓ∈L

cvℓ. (16)

Routing shift KL (KL). We compare a baseline run (base) and a comparison run (cmp) via layer-
aggregated expert-load histograms. Let cbasee =

∑
ℓ n

base
ℓ,e and ccmp

e =
∑

ℓ n
cmp
ℓ,e be global expert

counts. Convert them to probability distributions with ε-smoothing:

Pe =
cbasee + ε∑

j∈E c
base
j + εE

, Qe =
ccmp
e + ε∑

j∈E c
cmp
j + εE

. (17)

The global KL divergence (in nats) is

KL = DKL(P∥Q) =
∑
e∈E

Pe log
Pe

Qe
. (18)

Average per-layer KL (avg layer kl). Form layer-wise distributions by smoothing and normal-
izing counts per layer:

P (ℓ)
e =

nbase
ℓ,e + ε∑

j∈E n
base
ℓ,j + εE

, Q(ℓ)
e =

ncmp
ℓ,e + ε∑

j∈E n
cmp
ℓ,j + εE

. (19)

Compute per-layer KLs DKL

(
P (ℓ)∥Q(ℓ)

)
=

∑
e P

(ℓ)
e log

P (ℓ)
e

Q
(ℓ)
e

and average:

avg layer kl =
1

L

∑
ℓ∈L

DKL

(
P (ℓ)∥Q(ℓ)

)
. (20)
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