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Abstract

Detecting bias in media content is crucial for001
maintaining information integrity and promot-002
ing inclusivity. Traditional methods analyze003
text from the writer’s perspective, which ana-004
lyzes textual features directly from the writer’s005
intent, leaving the reader’s perspective under-006
explored. This paper investigates whether007
Large Language Models (LLMs) can be lever-008
aged as readers for bias detection by gener-009
ating reader-perspective comments. Experi-010
ments are conducted on the BASIL (news bias)011
and BeyondGender (gender bias) datasets with012
LLMs Gemma-7B, Phi-3-3.8B, Llama3.1-8B,013
Llama3.1-70B, and GPT4. The results demon-014
strate the effectiveness of reader-perspective015
comments for open-source LLMs, achieving016
performance comparable to GPT4’s. The find-017
ings highlight the significance of emotion-018
related comments, which are generally more019
beneficial than value-related ones in bias detec-020
tion. In addition, experiments on Llamas show021
that comment selection ensures consistent per-022
formance regardless of model sizes and com-023
ment combinations. This study is particularly024
beneficial for small-size open-source LLMs.025

1 Introduction026

The rapid expansion of digital media has intensified027

concerns regarding biased content, characterized028

by deviations from objective representation that029

favor particular viewpoints, groups, or outcomes,030

whether introduced intentionally or unintentionally.031

Identifying such biased language (Bias Detection)032

in media content, such as news articles and social033

media posts, has become a critical challenge (Garg034

et al., 2023; Rodrigo-Ginés et al., 2024). Tradi-035

tional methods adopt writer’s perspective to ana-036

lyze textual features directly tied to the author’s037

intent. They assume that bias originates from the038

writer’s language and framing, implicitly adopt-039

Figure 1: The experiment workflow. Step-1: The Reader
generates comments based on the original data upon re-
ceiving it. Step-2: The generated comment is appended
to the original data, creating a new input. Step-3: The
Detector LLM makes an inference using the concate-
nated input.

ing Hall’s “encoding” perspective (Hall, 2019).1 040

However, existing methods neglect the “decoding” 041

process where readers actively interpret and con- 042

struct meaning (Rosenblatt, 1969). 043

Large Language Models (LLMs) have shown 044

remarkable capabilities in text understanding and 045

generation (Yang et al., 2024), often being used for 046

data synthesis and reasoning explanation. While 047

they have been used for bias detection, their po- 048

tential as a Reader, observing data and generating 049

rational or emotional comments instead of from 050

the writer’s perspective, remains underexplored. 051

On the other hand, bias detection datasets are an- 052

notated by human audience (readers) rather than 053

the content producer (writer). Therefore, we intu- 054

itively utilize LLMs to align with human annotation 055

1Hall’s communication model posits that meaning emerges
through the encoding by producers with various signs and
decoding by viewers with their own framework of knowledge.
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through this process, shifting the lens from what056

the writer says to how readers perceive them. In ad-057

dition, inspired by the fact that human perceptions058

of bias can be influenced by user comments (Hous-059

ton et al., 2011; Lee, 2012; Gearhart et al., 2020),060

we wonder whether LLMs can be leveraged as peer-061

readers to simulate this dynamic and enhance bias062

detection capability.063

The Research Questions are as follows: RQ1)064

Are reader-perspective comments effective in bias065

detection? RQ2) Can LLMs influenced by peer-066

reader’s comments? RQ3) What kind of comment067

generation policies are most / more beneficial?068

RQ4) Whether a trained selector deciding to add069

the comment or not improves the performance?070

Experiments are designed as follows: Initially,071

we utilize an LLM to generate comments that072

capture diverse viewpoints or express emotions073

evoked by the content. Then, LLMs make the in-074

ference with these comments combined with the075

original content. We evaluate on the news bias076

dataset BASIL (Fan et al., 2019) and the gender077

bias dataset BeyondGender (Luo et al., 2025) with078

different LLMs backbones: GPT, Phi, Gemma, and079

Llama, primarily focusing on small-size LLMs.080

The main contributions and findings are as fol-081

lows: 1) A novel perspective utilizing LLMs as082

Reader to generate comments for bias detection,083

which is effective on news bias and gender bias084

detection (RQ1), 2) Findings that small-size LLMs’085

performance is significantly improved by the influ-086

ence of peer-reader’s comments (RQ2), resource-087

efficient for computing. 3) Findings that emotion-088

related comments are generally more beneficial089

than value-related ones and that comments vary090

with the reader’s gender (RQ3), providing insights091

into how to utilize comments effectively in biased092

content analysis. 4) Findings that comment selec-093

tion may be helpful, yet the positive effects depend094

on the backbone, requiring further analysis. (RQ4).095

2 Experiment Design096

The workflow is illustrated in Figure 1. By default,097

we employ a greedy strategy, where the best pol-098

icy comments are appended to the original data099

(Section 4.1 and 4.2).2100

Further we explore the comment selection set-101

ting (Fig. 3 in Appx. C), where a Selector evalu-102

ates the usefulness of each comment and decides103

2The best policy is observed by the training set, which
leads to the best results.

whether it should be appended with. (Section 4.3). 104

2.1 Reader-Perspective Design 105

We categorize reader-perspective comments into 106

two primary dimensions: General and Individual. 107

General Perspective. Motivated by Stratton 108

(2021), this dimension examines the external and 109

rational aspects of content, focusing on: 110

1) Portrayals of target parties or groups: Se- 111

lective emphasis on certain parties can influence 112

public perception. Assessing how specific parties 113

or groups are depicted in the content helps identify 114

potential biases in media coverage. 115

2) Values: Media / User outlets may unintention- 116

ally or intentionally reflect certain values, influenc- 117

ing audience interpretation. Analyzing the values 118

expressed in the content reveals whether they align 119

with particular political ideologies. 120

Individual Perspective. Motivated by Han and 121

Arpan (2017), this dimension explores the internal 122

and emotional responses elicited by content: 123

1) Emotions: Identifying the emotions evoked 124

by the content—such as anger, sadness, or 125

joy—can indicate the presence of bias. 126

2) Sharing Willingness: Assessing the likeli- 127

hood of readers sharing the content. A higher 128

inclination to share may suggest that the content 129

resonates or conflicts with the reader’s emotions / 130

beliefs, potentially indicating bias in the reporting. 131

3) Life Impact: Content perceived as impactful 132

on life may be more engaging or persuasive, which 133

can be influenced by the way it is presented. 134

2.2 Component Design 135

Reader: Comment Generation. We employ 136

Llama3.1-70B (Grattafiori et al., 2024) to produce 137

reader-perspective comments from both dimen- 138

sions. For each sample, we instruct the LLM with 139

“If yes, please specify” under the policies, as shown 140

in the Appendix B Table 4 and 5.3 141

Detector: Bias Detection. Provided with the orig- 142

inal data and selected positive comments, the De- 143

tector (an LLM) is instructed to detect bias in a 144

zero-shot setting. The prompt is, “ news : + orig- 145

inal_data + comment : + generated_comments + 146

Is the news biased? ”. The word “news” is re- 147

placed with an appropriate term based on the data. 148

Selector: Comment Selection. We utilize gen- 149

erated comments to train a comment selector 150

3Preliminary experiments show that combining a large-size
LLM with simple prompts yields better comments. Simple
prompts also lead to better performance during inference.
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LLM
BASIL BeyondGender

Inf/ Lex / non Sexism Gender Misogyny Misandry
micro-F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

GPT4 0.83 0.89 0.84 0.74 0.51 0.67 0.81 0.71 0.25 0.42
GPT4 + AUG 0.82 0.88 0.85 ↑ 0.75 ↑ 0.50 0.66 0.82 ↑ 0.73 ↑ 0.21 0.52 ↑
Existing SOTA - 0.81 0.79 0.67 0.40 0.30 0.69 0.59 0.19 0.30
Llama-70B 0.54 0.54 0.22 0.30 0.40 0.28 0.12 0.29 0.09 0.89
Llama-70B + AUG 0.64 ↑ 0.76 0.83 ↑ 0.72 ↑ 0.39 0.26 0.83 ↑ 0.73 ↑ 0.16 0.20
Llama-8B 0.62 0.62 0.73 0.61 0.32 0.33 0.72 0.62 0.16 0.43
Llama-8B + AUG 0.70 ↑ 0.80 0.80 ↑ 0.70 ↑ 0.41 ↑ 0.46 ↑ 0.81 ↑ 0.71 ↑ 0.18 0.34
Phi-3-3.8B 0.28 0.52 0.83 0.72 0.33 0.22 0.78 0.69 0.14 0.47
Phi-3-3.8B + AUG 0.73 ↑ 0.83 ↑ 0.84 ↑ 0.73 ↑ 0.42 ↑ 0.35 ↑ 0.80 ↑ 0.70 ↑ 0.20 ↑ 0.60 ↑
Gemma-7B 0.27 0.51 0.51 0.47 0.32 0.22 0.55 0.51 0.19 0.73
Gemma-7B + AUG 0.80 ↑ 0.87 ↑ 0.73 0.61 0.40 0.32 ↑ 0.76 ↑ 0.64 ↑ 0.21 ↑ 0.73

Table 1: Main results of baselines and comment-augmented models (+ AUG). The values are F1-scores and
accuracy. The best results among open-source models and closed-source GPT4 are bolded separately. ↑ denotes
that +AUG surpasses both the baseline and existing SOTA (Maab et al. (2023) for BASIL and Luo et al. (2025) for
BeyondGender). The McNemar’s test between baselines and comment-augmented models (+AUG), p < 0.05.

(BERT Devlin et al., 2019) capable of distinguish-151

ing between positive (useful) and negative (unuse-152

ful) comments. Training details are in Appx. C.153

3 Experiment Settings154

3.1 Datasets155

Our method is evaluated on the following datasets:156

BASIL (Fan et al., 2019). It is a news bias de-157

tection dataset, with around 8K sentences labeled158

as informational bias, lexical bias, or unbiased. Fol-159

lowing the formulation of the dataset, we classify160

the news data as “Inf”, “Lex”, or “non-bias”. 4161

BeyondGender (Luo et al., 2025). It is a gender162

bias detection dataset, with over 13K English posts163

collected from social media. Following Luo et al.’s164

settings, we separately detect the 4 bias-related165

labels: sexism, gender, misogyny, and misandry.166

The statistics of original datasets are in Table 2.167

Dataset Label Train Test

BASIL
Inf 349 123
Lex 138 32

Non-bias 2,067 641

BeyondGender

Sexism 4,381 485
Gender 5,233 367

Misogyny 5,233 367
Misandry 5,233 367

Table 2: Statistic of the original datasets.

3.2 Models and SOTAs168

We evaluate the detection performance of Phi-3-169

3.8B (Abdin et al., 2024), Gemma-7B (Team et al.,170

2024), Llama3.1-8B, Llama3.1-70B (Grattafiori171

4According to Maab et al. (2023), prior work utilizing
BASIL with inconsistencies in the task formulation, which are
derived from how these labels are interpreted and used.

et al., 2024), and GPT4 (OpenAI, 2023). LLMs are 172

utilized with their default hyperparameters. 173

For BASIL, the state-of-the-art (SOTA) method 174

for three-class classification is proposed by Maab 175

et al. (2023), which utilizes supervised learning 176

with augmented training data. For BeyondGender, 177

the SOTA is Llama’s few-shot in-context learning 178

performance reported in Luo et al. (2025). 179

4 Results 180

4.1 Main Results 181

The main results with greedy strategy, in Ta- 182

ble 1, address RQ1 (effectiveness) and RQ2 (peer- 183

reader’s comments). 184

The effectiveness of our method is evidenced 185

by substantial and consistent improvements in 186

both F1-score and accuracy (mean of three runs) 187

achieved by Llama, Phi, and Gemma, comparing 188

the baselines and +AUG. Regarding model size, 189

while baseline Llama-70B performs much worse 190

than Llama-8B, they achieve comparable results 191

with comment augmentation (Llama-70B+AUG vs. 192

Llama-8B+AUG), underscoring the effectiveness 193

of reader-perspective comments. (RQ1) 194

Even though the results baselines vary, the 195

generated comments consistently improve small- 196

size open-source models’ performance. In con- 197

trast, comments provide limited benefit for GPT-4, 198

whose high performance is likely attributed to its 199

extensive pre-training on sensitive topics with a 200

vast volume of labeled data. Notably, small-size 201

models perform on par with GPT-4 on both datasets, 202

indicating that small-size LLMs are more suscepti- 203

ble to peer-reader(LLama-70B)’s comments com- 204

pared to LLama-70B and GPT4. (RQ2) 205
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LLM
BeyondGender

Sexism Gender Misogyny Misandry
F1 ACC F1 ACC F1 ACC F1 ACC

Best of open-source in Table 1 0.84 0.73 0.42 0.46 0.83 0.73 0.21 0.89
Existing SOTA 0.79 0.67 0.40 0.30 0.69 0.59 0.19 0.30
Llama-8B 0.73 0.61 0.32 0.33 0.72 0.62 0.16 0.43
Top-1 (Greedy Strategy) 0.80 ↓ 0.70 ↓ 0.41 ↓ 0.46 ↓ 0.81 ↓ 0.71 ↓ 0.18 ↓ 0.34 ↓
Top-1 + Selector 0.84 ↑ 0.74 ↑ 0.40 0.37 ↓ 0.84 ↑ 0.75 ↑ 0.17 0.26 ↓
Top-2 0.75 0.62 0.40 0.43 0.76 0.65 0.12 0.41
Top-2 + Selector 0.84 ↑ 0.73 ↑ 0.39 0.40 ↓ 0.83 ↑ 0.72 ↑ 0.17 ↑ 0.22 ↓
Random-1 0.72 0.64 0.40 0.42 0.78 0.66 0.13 0.40
Random-1 + Selector 0.83 ↑ 0.73 ↑ 0.42 ↑ 0.40 ↓ 0.84 ↑ 0.75 ↑ 0.18 ↑ 0.24 ↓
Random-2 0.73 0.61 0.35 0.43 0.72 0.61 0.15 0.45
Random-2 + Selector 0.85 ↑ 0.75 ↑ 0.40 ↑ 0.38 ↓ 0.85 ↑ 0.76 ↑ 0.18 ↑ 0.23 ↓

Table 3: Results of different combinations of comments using Llama-8B as Detector. Top-k/Random-k: choose
comments from the top/random k policies, whether positive or negative, and provide them together to Detector.
Top-k/Random-k + selector: after choosing the top-k/random-k comments, only provide the positive comment(s)
together to detector. ↑ denotes the improvement of +Selector. Best results are in bold.

4.2 Policy Analysis206

To answer RQ3, we juxtapose the results of all207

policies (Table 4 and 5) in Fig. 2 for Llama-8B. 5208

For BASIL, individual perspectives are generally209

above the average and the best policy is No.13. Sur-210

prisingly, the value-related or politial-party related211

comments (except for No.4 focusing on language)212

have negative impact on news bias detection.213

For BeyondGender, each label achieves the best214

performance with policy No.11, 5, 10, and 10,215

respectively. Moreover, Sexism, Misogyny, and216

Miandry have a similar trend, with policies No.6-7217

and 9-11 above the average. Specifically, the gen-218

der difference between policies No.7 vs 10 and 12219

vs 13 leads to performance gaps, revealing the dis-220

parity of comments regarding the reader’s gender.221

Figure 2: The F1-scores of each policy by Llama-8B.
The red line with triangles is BASIL; the blue, orange,
green, and light blue lines with circles are Sexism, Gen-
der, Misogyny, and Misandry, respectively. The dashed
lines indicate the averages. Policy No.1-6 are general
perspectives and No.7-13 are individual perspectives.

5Figure 5 and 4 for Gemma and Phi-3 are in the Appx. D.

4.3 Selector Analysis 222

To address RQ4, we compare comment selection 223

with greedy strategy and try several comment com- 224

binations, as detailed in Table 3. Compared to the 225

Llama-8B baseline, both Top combinations signif- 226

icantly enhance performance, whereas both Ran- 227

dom combinations offer little improvement. When 228

comparing Top-1 to -2 and Random-1 to -2, it is 229

evident that an increased number of comments can 230

negatively impact performance, potentially due to 231

the extended length. More results in Appx. E. 232

Although only the Top-1 policy surpasses the 233

existing SOTA across all labels, the selector boosts 234

performance to a comparable level regardless of the 235

comment combinations. They suggest that the po- 236

tential bottleneck of the Reader-Selector-Detector 237

pipeline may be the quality of the comments and 238

the accuracy of the selector. However, selectors 239

do not work well with Gemma and Phi backbones 240

(see Appendix E). Comment selection enhances the 241

performance less than the greedy strategy. These 242

findings provide a partially confirmed answer to 243

RQ4, depending on the LLM backbones. 244

5 Conclusion 245

In this work, we explore leveraging LLMs as read- 246

ers to generate reader-perspective comments for 247

bias detection. Through the design of comment 248

generation policies and experiments on various 249

LLMs, the results demonstrate significant effec- 250

tiveness and robustness in detecting bias for both 251

news and gender bias. The findings highlight the 252

potential of utilizing large-size LLMs as dynamic 253

readers in various roles and small-size LLMs as ef- 254

ficient detectors for other types of content analysis. 255
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Limitations256

The experimental results suggest that a key bot-257

tleneck may lie in the quality of the generated258

comments, as LLama’s performance stabilizes af-259

ter comment selection. This indicates that the260

power of our method is closely tied to the qual-261

ity of the generated comments. However, there262

is a lack of standardized methods for evaluating263

the upper-bound of generation quality across dif-264

ferent Large Language Models. A potential avenue265

for future improvement could involve developing266

self-improvement strategies to enhance comment267

quality.268

Additionally, although our findings highlight the269

significance of emotion-related comments in bias270

detection, the exact nature of this relationship re-271

mains unclear and warrants further investigation.272

We also observe that comments are particularly273

beneficial when the baseline performance is sub-274

optimal. In contrast, for large closed-source mod-275

els like GPT-4, which already exhibit strong bias276

detection capabilities, the impact of comment aug-277

mentation is less pronounced.278

Since our focus is the small-size open-source279

LLMs, few large-size and closed-source models280

are evaluated.281

Ethical Considerations282

it is crucial to acknowledge the ethical implica-283

tions and potential risks associated with the use284

of Large Language Models (LLMs). LLMs are285

trained on vast datasets that may contain inherent286

biases, which can lead to the generation of content287

that reflects and potentially amplifies these biases.288

Despite the straightforwardness and effectiveness289

of our method, the generated comments are not290

actively monitored, raising concerns about fairness291

and the potential amplification of existing societal292

biases, including gender and political biases. The293

other issue is the risk of contaminating online data294

if these comments are released or distributed.295
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A Related Work497

The study of bias and discrimination has deep roots498

in psychology and social science. Research in these499

fields has shown that human perception of bias is500

often influenced by cognitive frameworks, social501

norms, and individual perspectives.502

Traditional methods for bias detection often rely503

on supervised learning, focusing on identifying504

the appropriate contextual information for train-505

ing (van den Berg and Markert, 2020; Lee et al.,506

2021; Lei et al., 2022) and training data augmen-507

tation through rule-based alterations or transla-508

tion (Chiril et al., 2021; Maab et al., 2023). Recent509

advancements in Large Language Models (LLMs)510

have simplified data augmentation (Sen et al., 2023)511

and also bring new possibilities for bias detec-512

tion (Yang et al., 2024). For instance, Maab et al.513

(2024) explore the potential of LLMs in news bias514

detection using prompt-based techniques while Bo-515

rah and Mihalcea (2024) leverage multi-agent LLM516

interactions to detect gender bias.517

However, existing studies primarily analyze text518

from the writer’s perspective. On the other hand,519

research in psychology and social science has dis-520

covered the importance of external perspectives in521

bias perception (Houston et al., 2011; Lee, 2012;522

Gearhart et al., 2020). Drawing inspiration from523

this, we utilize LLMs as readers to generate reader-524

perspective comments, providing additional signals525

for bias detection.526

B Comment Generation Prompt527

Table 4 and 5 are the prompts for generating reader-528

perspective comments for BASIL (news bias detec-529

tion) and BeyondGender (gender bias detection),530

respectively.531

C Training of Selector532

The followings are the role, training, and labeling533

procedure.534

Role & Workflow. Before Step 2 in the Fig-535

ure 1, these reader-perspective comments are fil-536

tered by a fine-tuned model, such as BERT, to de-537

termine whether append it to the original data or538

not. This Reader-Selector-Detector workflow is539

illustrated in Figure 3.540

Labeling. The labeling process are as follows:541

Initially, we record the LLM’s prediction for each542

original sample. Then, we append the generated543

comment to the original data and observe LLM’s544

prediction on the comment-augmented input. A545

Figure 3: The workflow of the selector setting. Three
roles: Reader for reader-perspective comments genera-
tion, Selector for positive (helpful) comment selection,
and Detector for bias detection utilizing original data
and positive comments combined.

comment is labeled as positive if it changes an 546

incorrect prediction to correct, and negative if it 547

alters a correct prediction to incorrect. With these 548

comment-augmented inputs and labels, we train a 549

selector (binary classifier). 550

Training. The hyperparameters are pre-defined. 551

Specifically, the seed=42, learning rate=1e-5, op- 552

timizer=AdamW, and epoch=1 to 15. The train 553

set of the original datasets are randomly divided to 554

70% for training and 30% for evaluation (dev set) 555

in each epoch. The best selector (BERT) models 556

are selected with the 30% dev set and used for com- 557

ment selection during testing. The classification 558

performance is between 80% to 92%. Only the 559

test set of the original datasets is used for pipeline 560

evaluation. 561

D Policy Analysis Figure 562

Figure 4 and 5 show the F1-scores of each policy 563

by Phi-3-3.8B and Gemma-7B, respectively. Phi-3 564

has similar pattern to Llama while Gemma has less 565

fluctuation among different policies. 566

E Selector Analysis Table 567

Table 6 shows results of Llama-3.1-8B with more 568

combinations and a negative comment. The de- 569

graded performance of negative comments demon- 570

strate the selection capability of Selector. 571

Table 7 shows the results of Phi-3-3.8B and 572

Gemma-7B with comment selection. 573
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No. Prompt
General: Does the news depict a particular party’s image?
1 Does the news have a positive or negative impact on a particular party or politician?
2 Does the news highlight any achievements, failures, or controversies associated with a

particular party or politician?
3 Are there any specific statements, quotes, or actions mentioned in the news that could be

seen as promoting or criticizing a particular party or politician?
4 Does the news use biased or critical language to describe a particular party or politician:
General: What values are expressed, and which party do they align with:
5 Do the values or policies mentioned in the news align more with a particular party’s stance?
6 Are there any specific words or phrases used in the news that emphasize a particular party’s

values or policies?
Individual: What emotional response does the news elicit:
7 How do you feel after reading the news? (e.g. angry, disappointed, excited, satisfied, etc.)
8 Does the news have a positive, negative, or neutral tone?
9 Does the news use sensational/exaggerated language to evoke a specific emotional response?
Individual: Do you want to share the news with others:
10 Do you want to share the news with friends or family?
11 Is the news intriguing enough to spark discussion or sharing?
Individual: Does the news have an impact on your life:
12 Is the news relevant to your personal life or interests?
13 Does the news mention specific policies or actions that could affect your life?

Table 4: Reader-perspective comment generation policies for news bias detection.

No. Prompt
General: Does the post depict a particular gender’s image:
1 Does the post have a positive or negative impact on a particular gender?
2 Does the post highlight any achievements, failures, or controversies associated with a

particular gender?
3 Does the post express dominance or objectification over a particular gender?
4 Does the post use biased or critical language to describe a particular gender?
General: What values are expressed, and which gender do they favor:
5 Do the values mentioned in the post favor or advantage a particular gender? If yes, please

specify the values and the gender.
6 Are there any specific words or phrases used in the post that emphasize values that advantage

or disadvantage a particular gender?
Individual: What emotional response does the post elicit:
7/10 How do you feel after reading the post if you are a man / woman? (e.g. angry, disappointed,

excited, etc.)
8 Does the post have a positive, negative, or neutral tone?
9 Does the post use sensational or exaggerated language to evoke a specific emotional response?
Individual: Do you want to share the post with others:
11 Is the post intriguing enough to spark discussion on sexism?
Individual: Does the post have an impact on your life:
12 Does the post mention specific policies or actions that could affect you if you are a woman?
13 Does the post mention specific policies or actions that could affect you if you are a man?

Table 5: Reader-perspective comment generation policies for gender bias detection.
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LLM
BeyondGender

Sexism Gender Misogyny Misandry
F1 ACC F1 ACC F1 ACC F1 ACC

Best of open-source in Table 1 0.84 0.73 0.42 0.46 0.83 0.73 0.21 0.89
Existing SOTA 0.79 0.67 0.40 0.30 0.69 0.59 0.19 0.30
Llama-8B 0.73 0.61 0.32 0.33 0.72 0.62 0.16 0.43
Top-1 (Greedy Strategy) 0.80 0.70 0.41 0.46 0.81 0.71 0.18 0.34
Top-1 + Selector 0.84 0.74 0.40 0.37 0.84 0.75 0.17 0.26
Top-2 0.75 0.62 0.40 0.43 0.76 0.65 0.12 0.41
Top-2 + Selector 0.84 0.73 0.39 0.40 0.83 0.72 0.17 0.22
Random-1 0.72 0.64 0.40 0.42 0.78 0.66 0.13 0.40
Random-1 + Selector 0.83 0.73 0.42 0.40 0.84 0.75 0.18 0.24
Random-2 0.73 0.61 0.35 0.43 0.72 0.61 0.15 0.45
Random-2 + Selector 0.85 0.75 0.40 0.38 0.85 0.76 0.18 0.23
Top-3 0.75 0.63 0.37 0.45 0.77 0.65 0.18 0.43
Top-3+ Selector 0.83 0.72 0.41 0.41 0.85 0.76 0.19 0.25
Random-3 0.72 0.60 0.38 0.43 0.74 0.62 0.14 0.48
Random-3 + Selector 0.84 0.74 0.41 0.38 0.84 0.75 0.18 0.25
Llama8B + negativeAUG 0.55 0.48 0.32 0.37 0.43 0.44 0.16 0.50

Table 6: More Results of different combinations of comments using Llama-8B as Detector. Top-k/Random-k:
choose comments from the top/random k policies, whether positive or negative, and provide them together to
Detector. Top-k/Random-k + selector: after choosing the top-k/random-k comments, only provide the positive
comment(s) together to detector. +negativeAUG refers to appending one negative comment.

LLM
BASIL BeyondGender

Inf/ Lex / non Sexism Gender Misogyny Misandry
F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

Phi-3-3.8B 0.28 0.52 0.83 0.72 0.33 0.22 0.78 0.69 0.14 0.47
Phi-3-3.8B + Selector 0.37 0.58 0.83 0.72 0.34 0.38 0.78 0.68 0.12 0.60
Gemma-7B 0.27 0.51 0.51 0.47 0.32 0.22 0.55 0.51 0.19 0.73
Gemma-7B + Selector 0.43 0.62 0.50 0.48 0.34 0.28 0.52 0.48 0.15 0.60

Table 7: Results of Phi-3-3.8B and Gemma-7B with comment selection.

Figure 4: The F1-scores of each policy by Phi-3-3.8B.
The red line with triangles is BASIL; the blue, orange,
green, and light blue lines with circles are Sexism, Gen-
der, Misogyny, and Misandry, respectively. The dashed
lines indicate the averages. Policy No.1-6 are general
perspectives and No.7-13 are individual perspectives.

Figure 5: The F1-scores of each policy by Gemma-7B.
The red line with triangles is BASIL; the blue, orange,
green, and light blue lines with circles are Sexism, Gen-
der, Misogyny, and Misandry, respectively. The dashed
lines indicate the averages. Policy No.1-6 are general
perspectives and No.7-13 are individual perspectives.
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