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Abstract

Unsupervised Environment Design (UED) seeks to automatically generate train-
ing curricula for reinforcement learning (RL) agents, with the goal of improving
generalisation and zero-shot performance. However, designing effective curric-
ula remains a difficult problem, particularly in settings where small subsets of
environment parameterisations result in significant increases in the complexity of
the required policy. Current methods struggle with a difficult credit assignment
problem and rely on regret approximations that fail to identify challenging levels,
both of which are compounded as the size of the environment grows. We propose
Dynamic Environment Generation for UED (DEGen) to enable a denser level gen-
erator reward signal, reducing the difficulty of credit assignment and allowing for
UED to scale to larger environment sizes. We also introduce a new regret approxi-
mation, Maximised Negative Advantage (MNA), as a significantly improved metric
to optimise for, that better identifies more challenging levels. We show empirically
that MNA outperforms current regret approximations and when combined with
DEGen, consistently outperforms existing methods, especially as the size of the
environment grows. We have made all our code available here: https://github.
com/HarryMJMead/Dynamic-Environment-Generation-for-UED.

1 Introduction

Deep Reinforcement Learning (RL) has been effective in training highly-capable agents in a number
of different challenging settings, such as in real-world robotics applications [1, 2, 48, 28], or games
such as Go [52], Chess [53], Starcraft [58] and Dota [5]. However, these deep-RL agents tend to
exhibit poor generalisation when transferred to tasks or environments with only small changes to
those used to train on [62, 9].

In order to address this lack of robustness, domain-randomisation (DR), training over a diversity
of environment parameterisations, has proven successful in a number of applications. However,
DR relies on random parameterisations resulting in useful training examples, and in complex envi-
ronments this may not be the case. Automated Curriculum Learning (ACL) [16, 42] methods aim
to produce adaptive curricula for training that ensure the generation of useful training examples
whilst maintaining a sufficiently diverse distribution over these environment parameterisations. These
methods have shown success over naive domain-randomisation approaches [43, 38].

However, manually designing a suitable curriculum for learning may in itself be a challenge, whilst
also limiting the capacity for open-ended learning [59, 60]. Recent work has focused on Unsupervised
Environment Design (UED) [11], which has emerged as a widely applicable curriculum design method
as no prior environment knowledge is required. In the UED literature, each parameterisation of
the environment is referred to as a level, and so UED frames the curriculum design problem as the
interaction between a teacher agent designing levels and a student agent training on these levels. The
majority of existing work focuses on maximising student regret [11, 27, 40, 8], as prior work [11]
has shown that if the student and teacher reach a Nash equilibrium of a minimax regret game, the
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(a) No Key Required (b) Key Required

Figure 1: Examples of two possible randomly generated levels. In the first, the agent (red triangle)
can simply navigate to the goal (green square), whereas in the second, it is required to first obtain the
key (two blue triangles) in order to unlock the door (blue unfilled square) blocking the path to the
goal

student must necessarily be able to solve all solvable environments. However, computing regret is
intractable for many complex tasks, so these methods require regret approximations.

Generally UED methods can be categorised as either relying on a learnt level generator [11, 35, 3],
or a curation process that selects and replays levels from a randomly generated set [25, 27, 40].
Existing UED methods have focused on environments such as minigrid [11, 8] or bipedal walker
[40], where there is a relatively smooth transition in difficulty between levels. However, there are
many environments where a small subset of paramaterisations may induce a step-change in difficulty
for the student. For example, in the level shown in Figure 1(a), the addition of the door and key to the
level generation have no effect on the difficulty of the level for the student agent. The key can simply
be ignored and the door acts as any other wall, and so the agent is able to navigate to the goal directly.
However, in Figure 1(b), the door blocks the agent’s path to the goal, so it is necessary for the agent
to first find the key before being able to unlock the door and reach the goal. In this example, these
key-requiring mazes represent a very small subset of possible random levels, but they also represent
the levels potentially most difficult to learn. Thus, for UED to be effective in environments such as
these, it is necessary for methods to identify and train on this more challenging subset of levels.

Whilst replay-based methods are sufficient in small environments, the challenge of sampling and
identifying more difficult subsets of levels is amplified as the size of the environment increases. Due
to their reliance on random level generation, we show that replay methods fail in larger environments,
and thus it is necessary to use learnt level generators. However, training a generator that generates a
full level prior to student rollouts presents a challenging credit assignment task, given the long time
horizon and sparse rewards. In order to address these challenges with learnt level generation, we
propose Dynamic Environment Generation for Unsupervised Environment Design (DEGen). Our
method involves dynamically generating the environment as the student agent explores the level,
enabling a much denser teacher reward signal, and reducing the difficulty of credit assignment.

However, we show in this work that current regret approximations are insufficient, both for identifying
these most difficult subsets of levels and for use in training level generators. We propose Maximised
Negative Advantage (MNA) as a more effective regret approximation and show substantial empirical
performance improvements over existing regret approximation metrics. Using MNA, we show that
DEGen performs substantially better than existing generators that rely on full level generation upfront.
We show that DEGen is capable of matching or exceeding the performance of existing replay methods
in small environments, unlike previous learnt generators, but performs substantially better as the
size of the environment increases. We also show that MNA consistently improves performance over
current regret approximations for all UED methods.
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Our contributions are:

• We introduce Dyanamic Environment Generation for UED (DEGen) as a new method of
environment generation, showing performance improvements over existing learnt generators
in small environments and significant performance improvements over all methods in larger
environments.

• We introduce Maximised Negative Advantage (MNA) as a new regret approximation and
show substantial improvements over existing metrics.

2 Background

2.1 Unsupervised Environment Design

Given a specific environment, we can model a level as a Partially Observable Markov Decision
Process (POMDP). POMDPs can be defined by a tuple ⟨S,A,O, T , I,R, ρ0, γ⟩, where S, A and O
are the set of states, actions and observations respectively, T : S ×A → S is the transition function,
mapping a state-action pair (st, at) to the subsequent state st+1, I : S → O is the observation
function that maps a given state to an observation, R : S ×A → R is the reward function, ρ0 is the
distribution over initial states, and γ is the discount factor.

In order to extend this formulation to the framework of UED, the Underspecified POMDP (UPOMDP)
is introduced [11], defined by the tuple M = ⟨S,A,O, T M, IM,RM, ρM0 , γ⟩. The UPOMDP
formulation introduces Θ, the set of all possible free environment parameters θ, for which a specific
θ results in the environment configuration defined by the POMDP Mθ with the transition, state and
reward functions T θ, Iθ,Rθ and the initial state distribution ρθ0.

Generally, the UED objective is to identify training levels that maximise the student’s regret, given
the current student policy π. The regret is defined as:

Regret(π, θ) = −U(π, θ) + U(π∗
θ , θ) (1)

where π∗
θ is the optimal policy given θ, and U(π, θ) = Eπ,Mθ

[∑T
t=0 γ

trt

]
, or the expected dis-

counted return of the policy π. As such, UED can be framed as a two player minimax regret
game:

min
π∈Π

max
θ∈Θ

Regret(π, θ). (2)

By framing UED as this regret-based minimax game, if the environment satisfies the reward conditions
outlined in [11], we can guarantee that if the student and teacher policies reach a Nash equilibrium,
then the student policy must necessarily be capable of solving all solvable levels.

2.2 Existing UED Methods

Whilst the optimal objective shown in Equation 1 has robustness guarantees, in practise, it is infeasible
for UED given π∗

θ is required. UED methods such as PAIRED [11] or CLUTR [3] introduce an
additional antagonist agent, and regret is approximated as the difference between the performance of
the antagonist and student policies. Both these methods rely on RL-trained teacher, where the teacher
aims to maximise the performance difference between the antagonist and the student. However,
these RL-trained teachers tend to struggle with maintaining diversity over training environments
[25]. Some techniques have shown to improve performance, such as behaviour cloning between the
antagonist and protagonist and the use of high entropy coefficients [35]. However these RL-based
methods still tend to be outperformed by replay-based methods.

Rather than relying on a learnt generator, PLR [27], relies on maintaining a replay buffer of high-
regret levels that have been sampled from a random generator. PLR alternates between sampling new
random levels and replaying previously sampled levels. PLR relies on a score function to approximate
regret, with the two most commonly used score functions being Positive Value Loss (PVL) and
Maximum Monte Carlo (MaxMC) [25, 40].

PVL is defined as
1

T

T∑
t=0

(
max(0,

T∑
k=t

(λγ)k−tδk)

)
(3)
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Algorithm 1 DEGen
Initialise: student policy πϕ1

, generator policy Λϕ2

while not converged do
// Sample N trajectories
for n ∈ 1 : N do

Initialise empty level
// Take T student steps
for ts ∈ 1 : T do

// Generate partial level
Sample Λ actions to generate section of level that has been observed but not generated
// Take student action
Sample π action

end for
compute score using student trajectory τs
assign reward to generator trajectory τg

end for
Update ϕ1 according to sampled student trajectories
Update ϕ2 according to sampled generator trajectories

end while

where γ is the discount factor, λ is from the Generalised Advantage Estimator [50] and δt is the
1-step TD-error at timestep t. We can view PVL as approximating regret as the average advantage,
but with the advantage clipped at 0. As such, maximising PVL can be seen as effectively maximising
states where the student does better than expected, which intuitively appears to be mismatched with
the regret objective. Despite this, empirically, PVL has been shown to be effective.

MaxMC approximates regret using the maximum achieved return (Rmax) on a given level, and is
defined as

1

T

T∑
t=0

(
Rmax − V̂ (st)

)
(4)

where V̂ (st) is the learnt value function approximation for the value of the current policy at state
st. MaxMC appears a more intuitive approximation for regret than PVL. However by relying on a
Monte Carlo approximation for regret, MaxMC requires a sufficient number of trials in a level such
that Rmax is a good approximation for the optimal return. Additionally, MaxMC can only be used in
environments where reward is obtained at the final step, as Rmax is dependent on the full episode
reward.

Whilst PLR has been shown to be effective in a number of domains, relying on random level
generation necessarily means that no insight is gained from past levels to influence future levels
generation. ACCEL [40] addresses this by augmenting PLR such that new levels are generated by
mutating existing levels previously in the replay buffer. This evolutionary approach enables some
capacity for learning from previously identified high-regret levels, but still relies on random mutations
for new level generation.

An alternate approach for UED is Sampling for Learnability (SFL) [49]. Similarly to PLR, SFL
relies on sampling a set of randomly generated levels and selecting those with the highest scores for
training. However, rather than this score metric approximating regret, SFL aims to train on levels
with high learnability, defined as p(1− p), where p is the success rate of the current policy on the
sampled level.

3 Dynamic Environment Generation

Existing work [25, 40, 35] has shown that replay-based UED methods generally outperform methods
relying on a learnt generator. This can be attributed to a number of factors, but primarily, level
generation presents difficulties for learning. The level generation learning problem has a long time
horizon and sparse rewards, and so credit assignment is challenging. Current UED have focused
on relatively small environments where it is feasible to sample useful training levels from random
level generation. However, as the size of the environment grows, and especially with environments
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with features that can add complexity, it becomes more difficult to sample useful levels. Therefore, it
becomes necessary to use a learnt generator instead.

…… ……

Figure 2: Illustration of how DEGen generates the level as the student agent explores the level, with
purple colouring indicating areas that are yet to be observed.

In order to address this, whilst also reducing the challenges inherent to RL-based learnt generators,
we propose Dynamic Environment Generation (DEGen), outlined in Algorithm 1. Rather than simply
generating the entire environment level initially, we exploit the partial observability of the student
agent and instead only generate those parts of the level the student observes, as illustrated in Figure 2.
This allows for a much denser reward signal, reducing the difficulty of credit assignment.

If we consider the PVL and MaxMC regret approximations shown in Equations 3 and 4 respectively,
both can be written in the form

Regret ≈ 1

T

T∑
t=0

Gt, (5)

where we approximate regret as the mean of some value Gt across the student trajectory. If the
entire level is generated initially, this approximation must simply be assigned as the reward for the
last step in the level generation trajectory, resulting in a very sparse reward signal for the generator.
However, if the level is generated as the student trajectory unrolls, we are able to assign a much
denser generator reward. If we have the function ts = T (tg) that maps the generator timestep tg to
the student timestep t, we can instead assign the generator reward (rg) at timestep tg as

rtg =
1

T

T (tg+1)−1∑
t=T (tg)

Gt. (6)

This increased reward density reduces some of the difficulty of the credit assignment challenge for
training the level generator. Additionally, DEGen reduces noise in the credit assignment by only
generating parts of the level the student observers. If the entire level is generated initially, it is likely
that some parts of the level will never be observed by the student, and so have no effect on the score
of the level. As such, these actions only serve to add additional noise to the credit assignment task, an
issue which is negated by DEGen.

Another issue present in existing RL-based generators is a lack of diversity in generated levels.
Previous work [35] has shown that a high entropy coefficient can reduce this issue, however we
still observed reduced level diversity with existing RL-based generators. As the student policy π
is stochastic, by generating the level based on where the student explores, we introduce an greater
degree of stochasticity in the level generation, which increases the diversity of generated levels. We
also found that introducing some additional randomness in level generation - specifically randomly
initialising the starting location of the student agent - improved training level diversity, and zero shot
agent performance.

4 Maximised Negative Advantage

Whilst the PVL and MaxMC regret approximations have shown success in a number of domain,
there are flaws with both metrics in relation to generating challenging levels. For PVL, high positive
advantage will result in a high PVL score, whereas generally, more challenging levels would tend to
be more difficult than expected, and so more likely to result in high negative advantage. For MaxMC,
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high scores require at least one high return rollout, and again, for the most challenging levels, this is
unlikely to occur. Whilst PVL and MaxMC have shown success with use in replay-based methods,
we observed poor performance when these metrics were directly optimised for, shown in Appendix
D.2. We instead propose Maximised Negative Advantage (MNA) as a more suitable metric.

Consider the policy π with the value-function V (s). We are aiming for an approximation of Equa-
tion 1, requiring an approximation for both U(π∗

θ , θ) and U(π, θ). If we assume a deterministic
environment, given a trajectory of length T , if V (s) is the true value function, we can lower bound
U(π∗

θ , θ)

U(π∗
θ , θ) ≥ max



V (s0),

γV (s1) + r(s0, a0),

...

γTV (sT ) +

T−1∑
k=0

γkr(sk, ak)


. (7)

We label this maximum over value functions

V max
n (st) = max


V (st),

...

γnV (st+n) +

t+n−1∑
k=t

γk−tr(sk, ak)

 . (8)

Given this, as the true value function V (s0) gives us the expected performance of the current policy,
and the maximum over value functions V max

T (s0) lower bounds the performance of the optimal
policy, we can lower bound the regret as

Regret ≥ −V (s0) + V max
T (s0). (9)

However, in practise, the exact value function V (s) will generally be unknown, and instead must
be approximated with a learnt value function V̂ (s). As this learnt value function may overestimate
the value of the state, the inequality in Equation 7 does not necessarily hold when V (s) is replaced
with V̂ (s). Additionally, the V̂ (s0) approximation for U(π, θ) will be biased, being a learnt value
approximation. We can reduce the likelihood of V̂ max

T (s0) exceeding U(π∗
θ , θ) by instead using

the approximation V̂ max
n (s0), where n < T , although this instead results in a potentially overly

conservative approximation. Similarly, we can reduce the bias of our approximation for U(π, θ) by
instead using the approximation γnV (sn)+

∑n−1
k=t γ

kr(sk, ak), however this then introduces greater
variance. We therefore define the n-step regret approximation at timestep t as

Ĝ
(n)
t = −

(
γnV (st+n) +

t+n−1∑
k=t

γk−tr(sk, ak)
)
+ V̂ max

n (st) (10)

and we note the similarity between this regret approximation and the negative n-step advantage
estimation [50]. In order to balance both the bias and variance of the U(π, θ) approximation, and the
conservativeness of the U(π∗

θ , θ) approximation, in line with the Generalised Advantage Estimator
[50], we introduce the regret approximation

Ĝλ
t = (1− λ)

∞∑
n=0

λnĜ
(n)
t . (11)

Empirically, we find that rather than just approximating regret at the first state, using the mean regret
approximation was a more effective metric

1

T

T∑
t=0

Ĝλ
t . (12)

We show empirically that this regret approximation is much suitable optimisation metric for learnt
generators, whilst also showing improved performance when used in replay-based methods.
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4.1 Solvability

Whilst the metric in Equation 12 does allow for more challenging levels to be sampled than existing
metrics, the reliance on the learnt value function V̂ (s) to determine maximum possible performance
does present issues with ensuring level solvability. If the environment satisfies the reward conditions
[11] that ensure the teacher-student regret Nash equilibrium results in an student policy capable of
solving all possible solvable levels, then regret is maximised by generating solvable levels. Therefore,
a good regret approximation metric should not result in high scores for unsolvable levels. Both PVL
and MaxMC implicitly score low for unsolvable levels. For the Nash equilibrium result to hold,
the reward conditions [11] necessitate that the maximum achievable return for an unsolvable level
Fmax must not exceed the minimum return achievable in a solved level Smin. In the case of MaxMC,
a higher Rmax can be achieved if the level is solvable, and so solvable levels will generally score
higher. For PVL, higher returns will tend to result in higher advantage, and therefore a higher score,
so solvable levels that can achieve higher returns will score high.

The issue with this implicit bias towards solvable levels is that in practice, this manifests as a bias
towards levels with a high success rate [49], i.e. the current policy solves the level with a high
probability. Therefore, these metrics generally do not produce sufficiently challenging levels for
training. SFL [49] has shown that training using levels with approximately 50% success rate results
in strong training performance. However, determining the exact success rate for a given level requires
substantially more environment rollouts than necessary for metrics such as PVL or MaxMC.

While MNA is capable of identifying challenging levels with significantly fewer rollouts than directly
scoring based on success rate, over-approximations of state value V̂ (s) may result in high scores for
unsolvable levels. In order to compensate for this, we introduce an explicit penalisation for unsolvable
levels. As it is often intractable to determine exact solvability of levels in complex environments, we
instead introduce approximate unsolvablilty, where we define a level as approximately unsolvable
if it has never been solved, e.g. has a success rate of 0%. Therefore, if a level is approximately
unsolvable, we set the score for the level to zero. As such, our final proposed regret approximation is

MNA =

(
1

T

T∑
t=0

Ĝλ
t

)
· Ĉ (13)

where Ĉ is 0 if the level is approximately unsolvable and 1 otherwise.

5 Experimental Setup

For this work, we examine the standard minigrid environment used in previous UED work [11, 25, 40],
as well as evaluating UED performance on the modified minigrid with the addition of a key and
locked door. In line with exisiting UED work, our main evaluation metric is zero-shot performance
on a set of hand-designed test levels. For the standard minigrid, we use the set of 8 test levels used in
previous work [10, 49]. For the modified key minigrid, we modify this set of levels so as to require
the agent to unlock the door to reach the goal. Previous work has only examined minigrid when
students are trained using 13x13 levels, but in order to scale UED to larger environments, we need
to ensure that the student is still capable of learning complex skills, such as unlocking a door, even
when trained in larger environments. To assess the student’s ability to solve levels that require the
door to be unlocked, we evaluate student performance on the existing key minigrid test levels but
when trained on levels that are 17x17 and 21x21.

Baselines: In order to assess the effectiveness of both MNA and DEGen, we compare a number
of different existing level generation methods and a number of regret approximation metrics. For
regret approximation metrics, we compare MNA to the existing metrics, MaxMC and PVL. For
assessing these metrics, we use the existing UED methods PLR [25] and ACCEL [40]. We include
Domain Randomisation (DR) to show the relative performance of UED compared to a naive, random
approach. Additionally, we include SFL [49] for a non-regret based approach. For the standard
minigrid environment, we also include the Initial Gen baseline, corresponding to an RL-trained
teacher that generates the full environment prior to student rollouts, however we show that this
performs substantially worse than all other methods so do not include it in the key minigrid domain.
All student agents are trained using PPO [51], as well as the teacher agents used in DEGen and Initial
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Gen. Detailed training hyperparameters for all domains and UED methods are found in Appendix
B.2.

6 Results

6.1 Minigrid

Figure 3 illustrates the performance of MNA and DEGen compared to existing baselines. From these
plots, it is clear that Intial Gen performs substantially worse than all other methods, whereas DEGen
performs comparably to existing replay-based methods. This substantial performance deficit can
likely be attributed to a lack of diversity in the generated levels, see Appendix D.5. We see a far
greater diversity in the levels generated via DEGen, and this, along with the reduced credit assignment
challenge, allows for DEGen to substantially outperform Initial Gen, despite the former also relying
on an RL-trained teacher. We also see that for both PLR and ACCEL, MNA outperforms the existing
MaxMC and PVL regret approximations. However, Figure 3 also shows that in this setting, early in
training, DEGen is outperformed by replay-based methods using MNA. This suggests that, whilst
the final DEGen performance is equal or greater than the performance of replay-based methods, the
additional challenge of learning the generator does impact initial performance.
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ACCEL - MNA

PLR - MNA
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(b) Mean Solve Rate

Figure 3: Minigrid zero-shot performance on hand-designed test set, showing mean and standard
error across 8 runs.

6.2 Key Minigrid

Figure 4 compares the performance of the various tested UED methods in the key minigrid domain.
Due to the increased challenge of level generation with the addition of a key and locked door, there
is far more variance in the relative performance of each of the methods. In this domain, we see
DEGen outperform all existing baselines, as well as the MNA-based replay methods. We see that
PLR using either MaxMC or PVL performs extremely poorly, whereas PLR using MNA, which is
much more capable of identifying challenging levels, is the best performing baseline. This highlights
the improved regret approximation of MNA compared to existing metrics. We also note that SFL
performs poorly in this key-minigrid setting. Learnability only considers the final outcome of an
episode, rather than the full student trajectory, and this result suggests that this may be insufficient in
domains where additional environment features result in a more complex subset of levels.

6.3 Increased Environment Size for Key Minigrid

Up to this point, we have examined only the relatively small 13x13 environment setting. However, as
outlined above, with the aim of scaling UED to larger, more complex environments, we examine the
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Figure 4: Minigrid with key and locked door zero-shot performance on hand-designed test set, trained
on 13x13 training levels, showing mean and standard error across 8 runs.
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Figure 5: Minigrid with key and locked door zero-shot performance on hand-designed test set, trained
on larger training levels, showing mean and standard error across 8 runs.

performance of current UED methods when simply scaling up a version of minigrid to sizes larger
than 13x13. Figure 5 shows the performance of DEGen, PLR and ACCEL using MNA when training
levels are 17x17 and 21x21. Whilst there is a performance drop compared to the 13x13 levels, as
the size of the environment grows, DEGen substantially outperforms existing methods. This result
highlights that, with any domains with additional environment features such as the key and door
that can potentially add additional complexity to policy learning, as the environment size grows, it
becomes substantially harder to sample useful levels where these features are necessary. Therefore
it is necessary to use a trained generator and DEGen is able to overcome the credit assignment
challenges present in previous methods for training learnt generators.

7 Discussion

It is clear that from these results that DEGen does substantially outperform existing baselines in both
the minigrid, and key minigrid environments, and this performance improvement is increased as the
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environment size increases. Scaling environment size is likely a necessity if future work aims to move
UED from the current set of toy small-scale environments used, to more useful real-world domains,
and this work shows that replay-based methods perform poorly with relatively small increases to
environment size. We have demonstrated that DEGen is an effective method of addressing these
issues, both compared to generating the full level prior to student rollouts, and replay-based methods.

8 Limitations

Whilst the results we have presented in this paper do show strong performance from DEGen compared
to existing baselines, the domains presented in this paper present relatively simple mappings between
the level representation and the agent’s current observation. In more complex domains, such as
3D Games [22, 15, 20], or real-world robotics applications [39, 63, 21], it will be more complex
to determine how specific environment parameters affect what the agent is currently observing. In
order for UED to bridge the gap from the current set of game domains to real-world applications, it
would be necessary for DEGen or DEGen-like methods to address this limitation. We believe that
World Models [19] represent a promising direction for future research to address this. In its current
form, DEGen relies on both the agent and the generator interacting with a fixed environment, where
the environment has an explicit mapping between the agent’s observation and the level parameters,
and the generator is only able to generate the level where the agent has observed. However, a world
model guided by a regret approximation such as MNA would represent a generator that could directly
generate observations for the agent. Rather than relying on explicit mapping between level and
observation, this mapping could be learnt with environment data when training the world model.
Whilst the training of a world model would add additional computational cost to the training process,
it would enable DEGen methodology to be applied to substantially more complex environments. With
the advent of highly general world models such as the Genie series of world models [6], this could
represent a path to training highly general policies that are effective in a wide variety of applications.

Additionally, in line with previous work [25, 40, 8], we have compared the relative performance
of UED methods based on the number of student PPO update steps. However, training the DEGen
teacher agent adds a high computational cost to the training loop, and so training using DEGen takes
approximately four times as long as training using methods such as PLR and ACCEL. Full details on
compute time and experiment specification can be found in Appendix B. Therefore, replay-based
methods may be preferable for small environment sizes where similar performance is achieved.
However again, it is clear than as environment size grows, the maximum performance achieved
by DEGen exceeds replay-based methods, and so the additional time cost is justified, given the
performance gains.

9 Conclusion

In this paper, we introduce a new level generation method, Dynamic Environment Generation for
UED, and a new regret approximation metric, Maximised Negative Advantage. We outline how
current UED methods fail as training environment size increases, and show that DEGen is capable
of mitigating the issues associated both with these larger environments, and with RL-based level
generation. We show that the use of MNA enables DEGen to outperform existing baselines, whilst
also showing that the use of MNA consistently improves the performance of existing UED methods.
These performance improvements are most evident in the more complex key minigird domain. We
believe there is significant potential for future UED research to address larger and more complex
environments, and that approaches based on MNA and DEGen provide a promising foundation for
this advancement.
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A Related Work

This research presents a new method for Unsupervised Environment Design (UED) [11], an area of research
focused on improving the generalisation of policies trained using reinforcement learning and enabling open-
ended learning. Domain Randomisation (DR) can be categorised as the most basic form of UED, where
environment parameters are simply randomised naively for training. DR has shown to be effective in applications
such transferring policies from simulations to real world robotics deployments [55, 41, 2]. Prioritised Level
Replay (PLR) [27, 25] augments domain randomisation by maintaining a replay buffer of levels that have been
scored as effective for training. PLR has been employed in a diverse set of domains, such as in training World
Models [45] or meta-reinforcement learning [24]. Additional work has examined dealing with distribution shift
between training and deployment [26]. Whilst PLR relies on replaying levels from a fixed random generator,
other work has focused on generating new levels through evolving prior levels [40]. POET [59, 60] examines
co-evolving both the environment levels, but also a population of agents playing those levels. More similarly to
DEGen, other existing work focuses on explicitly learning a level generator [11, 3, 35, 8].

PAIRED [11] introduced the formalisation for UED, framing the level design problem as a minimax regret
game between the student and teacher. PAIRED relies on the performance difference between a protagonist and
antagonist agent to score level suitability, and uses these scores to train a level generator. CLUTR [3] improves
on PAIRED by learning a latent representation of levels to reduce the challenge of learning the generator. ADD
[8] has used a diffusion model to generate levels instead. More recent work has examined using non-regret based
scoring of levels [57, 56] such as learnability [49, 37, 17].

UED can be seen as a form of Automatic Curriculum Learning (ACL) [43, 16], where ACL aims to provide an
automatic curriculum to enable learning of increasingly challenging tasks. Unlike UED, ACL often relies on
specific knowledge of the target task [14, 34].

This work also relates to the field of Procedural Content Generation (PCG) [32, 46]. PCG has focused on level
design for games, such as with terrain generation [54], task design [12, 31] or puzzle setting [30, 4]. Much of
this work has focused on level design for human play, and some of this work relies on specific user input for
level generation [33, 7, 44]. Methods using RL for training level generators [29, 13] require hand-designed,
environment specific generation rewards, which differs from the domain-agnostic level scoring used in UED.

Unlike previous UED work, DEGen relies on a teacher that generates the environment based on the student’s
current observations. This shares similarities with existing work in World Models [19]. Whilst the DEGen
teacher is able to control the observations of the student, the environment is designed to explicitly disallow
infeasible observations to be generated. World Models are instead trained on example trajectories, and the
feasibility of generated observations is implicitly learnt. These learnt models are capable of training agents
without access to the real environment [47, 36, 20]. Large open-ended world models [61, 23, 6] may potentially
enable the training of highly generally capable agents . Recent work has examined applying UED methods,
specifically PLR, to training agents in world models [18].
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B Detailed Experimental Setup

B.1 Environment Details

B.1.1 Minigrid

We use the standard minigrid implementation from exisiting UED work [11, 25, 40, 49, 8]. Examples of levels
are shown in Figure 9.

Observations: The agent, depicted in red, observes a 5x5 square in front of it. It also has access to its absolute
direction, e.g. whether it is facing North, South, East or West.

(a) Environment State (b) Agent Observation

Figure 6: Minigrid Agent Observations

Rewards: The agent receives reward rg if it reaches the goal. The size of this reward is determined by the
number of steps taken to reach the goal T , and the parameter Tmax, specifying the maximum number of steps
before an episode terminates.

rg = 1− 0.9

(
T

Tmax

)
(14)

Actions: At each step, the agent can either move forward, turn left or turn right.

B.1.2 Key Minigrid

The key minigrid implementation is identical to the standard minigrid level, except for the the addition of a key
and locked door.

Observations: The agent is additionally able to observe whether it has collected the key.

Rewards: The reward remains identical to the standard minigrid, with reward only being received on reaching
the goal. Note that there are no specific rewards associated with collecting the key or unlocking the door.

Actions: The agent has an additional use action. The agent will pick up the key if it reaches the grid square the
key is on. In order to unlock the door, the agent must select the use action when it has the key and the door is
directly ahead of the agent.

(a) Locked Door (b) use action (c) Unlocked Door

Figure 7: Key Minigrid Door Unlocking
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B.1.3 DEGen Teacher

Observations: The teacher’s observations are an augmented version of the student agent. Similarly to the
student, the teacher observes a 5x5 square in front of the student. However, this is augmented by an overlayed
5x5 square that indicates which squares have yet to be generated.

(a) Environment State (b) Teacher Observation

Figure 8: DEGen Teacher Observations

Actions: At each step, the teacher is able to fill any ungenerated grid square the student is currently observing.
The teacher action a is composed of two sub-actions (a1, a2) where a1 selects which cell will be filled, and a2

selects what the cell will be filled with, e.g. wall, empty, goal, key, door. We use action masking to ensure that
only previously ungenerated cells are filled, as well as enforce that only one goal, key and door can be placed for
each level.

Rewards: The teacher rewards are determined by the chosen regret approximation. These dense rewards are
calculated using Equation 6.

Dynamics: As the environment is rolled out, at each step, either the teacher or the student will act. If there are
ungenerated cells in the agent’s observation, the teacher must fill all ungenerated cells currently observed before
the student is able to take another action.

As both the student and teacher have partial observability, both policy networks include an LSTM layer, so
actions are conditioned on all previous observations. The teacher is conditioned on all previous observations,
whereas the student is conditioned only on the fully-generated observations.

KL Regularisation

Prior work [35] has shown that entropy regularisation is necessary when using reinforcement learning to train a
teacher for UED. The policy gradient loss is augmented with an entropy loss

Lentropy = Es∼π

[
−H

(
π(·|s)

)]
. (15)

Entropy regularisation biases the policy towards a more uniform distribution of action probabilities. However, as
there can only be a maximum of a single goal, key and door per level, the distribution of cell objects will be
highly non-uniform, as the vast majority of cells will be either wall or empty. Therefore rather than including an
entropy loss for the a2 sub-action, we instead add KL regularisation with a fixed categorical distribution q(a2),
defined with the parameter pg , such that

q(a2) = Cat(α), α = (pw, pw, pg, pg, pg), pw =
1− 3pg

2
(16)

and

Lemtopy + KL = Es∼π

[
−H

(
πa1(·|s)

)
+DKL

(
πa2(·|s)

∣∣∣∣∣∣q(·))]. (17)

For all experiments, we used pg = 0.01.

17



B.2 Hyperparameters

Full code and instructions on how to run can be found at
https://github.com/HarryMJMead/Dynamic-Environment-Generation-for-UED.
All existing methods were trained using implementations based on JaxUED [10],
available at https://github.com/DramaCow/jaxued, and SFL [49], available at
https://github.com/amacrutherford/sampling-for-learnability. Learning hyperparameters are
shown in Table 1 and the replay UED hyperparameters are shown in Table 2.

Table 1: Learning Hyperparameters.

Parameter Minigrid Key Minigrid 13x13 17x17 and 21x21
Student PPO
Number of Updates 30000 15000
γ 0.995
λGAE 0.95
PPO number of steps 512
PPO epochs 4
PPO minibatches per epoch 4
PPO clip range 0.04
PPO # parallel environments 256
Adam learning rate 5e-4 2.4e-4
Anneal LR yes no
Adam ϵ 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
value loss coefficient 0.5
entropy coefficient 1e-3
Hidden dimension size 256

Teacher PPO
γ 0.998 0.99
λGAE 0.95
PPO epochs 4
PPO minibatches per epoch 4
PPO clip range 0.2
Adam learning rate 1e-3
Anneal LR yes no
Adam ϵ 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
value loss coefficient 0.5
entropy coefficient 5e-2
Hidden dimension size 256
Num Teacher Steps (Initial Gen) 60
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Table 2: UED Hyperparameters.

Parameter Minigrid Key Minigrid
PLR
Replay rate, p 0.5
Buffer size, K 8000
Prioritisation Rank
Temperature, β 1.0
staleness coefficient 0.3

ACCEL
Number of Edits 20
Buffer size, K 8000
Prioritisation Rank
Temperature, β 1.0

SFL
Batch Size N 25000
Rollout Length L 20000
Update Period T 100
Buffer Size K 1000
Sample Ratio ρ 0.5

B.3 Compute Details

For all experiments, each run was on 1 Nvidia A40. We show the mean compute time for both domains and each
UED method in Table 3.

Table 3: Compute Time.

Compute Time (hh:mm)
Method Minigrid Key Minigrid
DR 11:16 ± 00:02 12:01 ± 00:02
Initial Gen 13:39 ± 00:01 13:49 ± 00:02
PAIRED 23:32 ± 00:02 23:33 ± 00:01
SFL 10:53 ± 00:01 10:48 ± 00:02
PLR 06:53 ± 00:02 06:53 ± 00:01
ACCEL 05:43 ± 00:02 05:45 ± 00:01
DEGen 25:49 ± 00:00 25:53 ± 00:01
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B.4 Zero-shot Transfer Levels

Figures 9 and 10 show the hand designed levels used for evaluating zero-shot performance. The minigrid levels
were taken directly from JaxUED [10]. The key minigrid levels have been modified so that the student is required
to unlock the door to reach the goal. Note that we have chosen to include the FourRooms_Key levels rather than
modified versions of the labyrinth levels, as the key would trivially be on the path to the goal for these labyrinth
levels.

SixteenRooms SixteenRooms2 Labyrinth LabyrinthFlipped

Labyrinth2 StandardMaze StandardMaze2 StandardMaze3

Figure 9: Hand designed evaluation levels for minigird

SixteenRooms_Key SixteenRooms2_Key FourRooms_Key FourRooms2_Key

FourRooms3_Key StandardMaze_Key StandardMaze2_Key StandardMaze3_Key

Figure 10: Hand designed evaluation levels for key minigird
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B.5 Tabular Results

Minigrid Results

Table 4: Minigrid Solve Rate (1)

Level Initial Gen - MNA DR SFL PLR - MaxMC ACCEL - MaxMC

SixteenRooms 0.93 ± 0.06 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SixteenRooms2 0.48 ± 0.14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Labyrinth 0.04 ± 0.04 0.51 ± 0.16 0.60 ± 0.13 0.45 ± 0.12 0.69 ± 0.13
LabyrinthFlipped 0.11 ± 0.10 0.38 ± 0.15 0.68 ± 0.13 0.64 ± 0.12 0.50 ± 0.13
Labyrinth2 0.05 ± 0.04 0.40 ± 0.14 0.83 ± 0.12 0.75 ± 0.07 0.81 ± 0.09
StandardMaze 0.28 ± 0.11 0.99 ± 0.01 1.00 ± 0.00 0.98 ± 0.02 0.90 ± 0.05
StandardMaze2 0.30 ± 0.10 0.85 ± 0.06 0.95 ± 0.05 0.84 ± 0.12 1.00 ± 0.00
StandardMaze3 0.56 ± 0.14 0.93 ± 0.04 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00
Mean 0.34 ± 0.05 0.76 ± 0.05 0.88 ± 0.04 0.83 ± 0.03 0.86 ± 0.02

Table 5: Minigrid Solve Rate (2)

Level PLR - PVL ACCEL - PVL PLR - MNA ACCEL - MNA DEGen - MNA

SixteenRooms 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
SixteenRooms2 0.95 ± 0.04 0.88 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Labyrinth 0.71 ± 0.09 0.86 ± 0.04 0.88 ± 0.06 0.68 ± 0.09 0.98 ± 0.02
LabyrinthFlipped 0.63 ± 0.11 0.78 ± 0.07 0.73 ± 0.11 0.73 ± 0.08 0.91 ± 0.09
Labyrinth2 0.51 ± 0.07 0.73 ± 0.08 0.93 ± 0.06 0.95 ± 0.02 0.79 ± 0.12
StandardMaze 0.63 ± 0.09 0.84 ± 0.06 0.98 ± 0.02 1.00 ± 0.00 1.00 ± 0.00
StandardMaze2 0.63 ± 0.10 0.88 ± 0.07 0.86 ± 0.08 0.99 ± 0.01 1.00 ± 0.00
StandardMaze3 0.91 ± 0.05 0.99 ± 0.01 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00
Mean 0.75 ± 0.03 0.87 ± 0.03 0.92 ± 0.02 0.91 ± 0.01 0.96 ± 0.03
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Key Minigrid 13x13 Results

Table 6: Key Minigrid 13x13 Solve Rate (1)

Level Initial Gen - MNA DR SFL PLR - MaxMC ACCEL - MaxMC

SixteenRooms_Key 0.18 ± 0.12 0.59 ± 0.12 0.58 ± 0.12 0.41 ± 0.11 0.83 ± 0.04
SixteenRooms2_Key 0.12 ± 0.12 0.55 ± 0.13 0.83 ± 0.10 0.19 ± 0.05 0.83 ± 0.08
FourRooms_Key 0.03 ± 0.02 0.55 ± 0.13 0.98 ± 0.02 0.10 ± 0.08 0.96 ± 0.02
FourRooms2_Key 0.05 ± 0.04 0.88 ± 0.06 0.93 ± 0.07 0.79 ± 0.10 0.98 ± 0.02
FourRooms3_Key 0.29 ± 0.14 0.51 ± 0.14 0.85 ± 0.06 0.10 ± 0.06 0.95 ± 0.05
StandardMaze_Key 0.01 ± 0.01 0.09 ± 0.04 0.35 ± 0.12 0.24 ± 0.07 0.20 ± 0.10
StandardMaze2_Key 0.00 ± 0.00 0.61 ± 0.13 0.60 ± 0.14 0.40 ± 0.11 0.26 ± 0.07
StandardMaze3_Key 0.00 ± 0.00 0.36 ± 0.14 0.30 ± 0.14 0.09 ± 0.06 0.75 ± 0.05

Mean 0.08 ± 0.04 0.52 ± 0.05 0.68 ± 0.04 0.29 ± 0.03 0.72 ± 0.02

Table 7: Key Minigrid 13x13 Solve Rate (2)

Level PLR - PVL ACCEL - PVL PLR - MNA ACCEL - MNA DEGen - MNA

SixteenRooms_Key 0.15 ± 0.10 0.55 ± 0.04 0.95 ± 0.03 0.99 ± 0.01 1.00 ± 0.00
SixteenRooms2_Key 0.00 ± 0.00 0.63 ± 0.10 0.90 ± 0.06 0.88 ± 0.10 1.00 ± 0.00
FourRooms_Key 0.00 ± 0.00 0.60 ± 0.12 0.95 ± 0.04 0.98 ± 0.02 0.94 ± 0.05
FourRooms2_Key 0.06 ± 0.03 0.80 ± 0.06 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00
FourRooms3_Key 0.00 ± 0.00 0.66 ± 0.09 0.95 ± 0.03 0.98 ± 0.02 1.00 ± 0.00
StandardMaze_Key 0.00 ± 0.00 0.00 ± 0.00 0.46 ± 0.10 0.85 ± 0.08 0.93 ± 0.06
StandardMaze2_Key 0.00 ± 0.00 0.06 ± 0.02 0.73 ± 0.11 0.75 ± 0.08 0.63 ± 0.14
StandardMaze3_Key 0.00 ± 0.00 0.30 ± 0.09 0.78 ± 0.07 0.84 ± 0.09 0.94 ± 0.05
Mean 0.03 ± 0.01 0.45 ± 0.01 0.84 ± 0.01 0.90 ± 0.03 0.93 ± 0.02

Key Minigrid 17x17 Results

Table 8: Key Minigrid 17x17 Solve Rate

Level PLR - MNA ACCEL - MNA DEGen - MNA

SixteenRooms_Key 0.99 ± 0.01 0.86 ± 0.05 1.00 ± 0.00
SixteenRooms2_Key 0.86 ± 0.03 0.40 ± 0.13 0.95 ± 0.05
FourRooms_Key 0.80 ± 0.11 0.64 ± 0.09 0.94 ± 0.05
FourRooms2_Key 0.92 ± 0.05 0.81 ± 0.10 0.95 ± 0.04
FourRooms3_Key 0.88 ± 0.07 0.65 ± 0.09 0.94 ± 0.04
StandardMaze_Key 0.69 ± 0.13 0.19 ± 0.08 0.23 ± 0.05
StandardMaze2_Key 0.29 ± 0.09 0.21 ± 0.07 0.50 ± 0.07
StandardMaze3_Key 0.73 ± 0.09 0.83 ± 0.06 0.73 ± 0.09

Mean 0.77 ± 0.04 0.57 ± 0.03 0.78 ± 0.03
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Key Minigrid 21x21 Results

Table 9: Key Minigrid 21x21 Solve Rate

Level PLR - MNA ACCEL - MNA DEGen - MNA

SixteenRooms_Key 0.60 ± 0.11 0.60 ± 0.12 1.00 ± 0.00
SixteenRooms2_Key 0.40 ± 0.09 0.45 ± 0.11 0.99 ± 0.01
FourRooms_Key 0.21 ± 0.10 0.41 ± 0.11 0.99 ± 0.01
FourRooms2_Key 0.93 ± 0.04 0.59 ± 0.09 0.93 ± 0.05
FourRooms3_Key 0.35 ± 0.12 0.19 ± 0.08 0.98 ± 0.02
StandardMaze_Key 0.34 ± 0.11 0.06 ± 0.03 0.56 ± 0.11
StandardMaze2_Key 0.26 ± 0.12 0.00 ± 0.00 0.39 ± 0.12
StandardMaze3_Key 0.38 ± 0.11 0.16 ± 0.07 0.61 ± 0.11
Mean 0.43 ± 0.05 0.31 ± 0.04 0.80 ± 0.03
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C Sokoban Environment

We have additionally performed experiments in a Sokoban-style environment. As in standard Sokoban, the
agent aims to get all boxes to their storage locations. The agent receives a sparse reward when completing a
level inversly proportional to how many steps were required to complete the level. For this domain, similarly to
minigrid the agent has 5x5 observation space ahead of the agent, and an action space of move forward, turn left
or turn right. The agent also has a reset action that resets the agent and boxes to their starting locations.

We used 9x9 levels for training - for DR, PLR and SFL, the random level generator generated levels that had
15 walls, and between 1 and 10 boxes. For DEGen, the generator could fill each newly observed cell in the
environment with an empty square/wall/box/storage location/box on storage location. For all methods, we used
identical hyperparameters to the minigrid environment (See Table 1).

C.1 Sokoban Results

From the results shown in Figure 11 and Tables 10 and 11, we see a large range in the performance of the
various UED methods. We see that ACCEL using MaxMC is the best performing method, although comparable
performance is achieved using DEGen. In Sokoban, we see that MaxMC outperforms MNA in the replay-based
methods, with a substantial performance difference when used with ACCEL. Sokoban presents unique challenges
compared to the previous environments used in this work. Primarily, the majority of randomly-sampled levels
tend to be impossible, given that it only takes one box or storage location to be unreachable to make the entire
level unsolvable. However, it is also likely that a high proportion of the solvable randomly-sampled levels will
be difficult.

As all impossible levels will necessarily score zero with both MaxMC and MNA, We hypothesise that MaxMC
may be a better metric than MNA in domains where difficult levels represent a higher proportion of the non-zero
scoring randomly-sampled levels. The high performance of ACCEL in Sokoban is likely due to the clear
difficulty scaling that can be achieved with ACCEL-like level evolution. In our implementation of ACCEL,
one of the possible mutations is to add or remove a box/storage-location pair. This enables gradual difficulty
evolution in Sokoban, which is less likely in the minigrid enviroments. As such, ACCEL is highly effective at
generating an curriculum.
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Figure 11: Sokoban zero-shot performance on hand-designed test set, showing mean and standard
error across 8 runs.

We do however see in Tables 10 and 11 that a number of levels, those marked in italics, are not solved by any
method. This suggests that there is room for future work to enable zero-shot performance on more difficult
levels, and that Sokoban may be an interesting environment for future UED research.
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C.2 Sokoban Zero-shot Transfer Levels

For the zero-shot transfer set, we have used the first 20 Sokoban Jr levels that do not exceed 13x13 in size.

Sokoban_Jr_1_01 Sokoban_Jr_1_02 Sokoban_Jr_1_03 Sokoban_Jr_1_04 Sokoban_Jr_1_05

Sokoban_Jr_1_06 Sokoban_Jr_1_07 Sokoban_Jr_1_08 Sokoban_Jr_1_09 Sokoban_Jr_1_12

Sokoban_Jr_1_15 Sokoban_Jr_1_16 Sokoban_Jr_1_17 Sokoban_Jr_1_18 Sokoban_Jr_1_19

Sokoban_Jr_1_20 Sokoban_Jr_1_21 Sokoban_Jr_1_22 Sokoban_Jr_1_23 Sokoban_Jr_1_24

Figure 12: Hand designed evaluation levels for sokoban
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C.3 Sokoban Tabular Results

Table 10: Sokoban Solve Rate (1)

Level DR SFL PLR - MaxMC ACCEL - MaxMC

Sokoban_Jr_1_01 0.00 ± 0.00 0.23 ± 0.15 1.00 ± 0.00 1.00 ± 0.00
Sokoban_Jr_1_02 0.00 ± 0.00 0.18 ± 0.12 0.94 ± 0.05 0.98 ± 0.02
Sokoban_Jr_1_03 0.00 ± 0.00 0.00 ± 0.00 0.46 ± 0.13 0.83 ± 0.12
Sokoban_Jr_1_04 0.00 ± 0.00 0.00 ± 0.00 0.16 ± 0.07 0.30 ± 0.09
Sokoban_Jr_1_05 0.00 ± 0.00 0.00 ± 0.00 0.42 ± 0.14 0.45 ± 0.12
Sokoban_Jr_1_06 0.00 ± 0.00 0.00 ± 0.00 0.74 ± 0.11 0.75 ± 0.11
Sokoban_Jr_1_07 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.14 0.96 ± 0.03
Sokoban_Jr_1_08 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 0.09 0.50 ± 0.13
Sokoban_Jr_1_09 0.00 ± 0.00 0.00 ± 0.00 0.65 ± 0.05 0.81 ± 0.04
Sokoban_Jr_1_12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.29 ± 0.06
Sokoban_Jr_1_15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_16 0.00 ± 0.00 0.00 ± 0.00 0.93 ± 0.04 0.96 ± 0.02
Sokoban_Jr_1_17 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_18 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.03 0.46 ± 0.10
Sokoban_Jr_1_19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.23 ± 0.11
Sokoban_Jr_1_20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_21 0.00 ± 0.00 0.00 ± 0.00 0.96 ± 0.03 1.00 ± 0.00
Sokoban_Jr_1_22 0.00 ± 0.00 0.00 ± 0.00 0.14 ± 0.02 0.64 ± 0.10
Sokoban_Jr_1_23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_24 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.03 0.14 ± 0.05
Mean 0.00 ± 0.00 0.02 ± 0.01 0.36 ± 0.01 0.51 ± 0.02

Table 11: Sokoban Solve Rate (2)

Level PLR - PVL ACCEL - PVL PLR - MNA ACCEL - MNA DEGen - MNA

Sokoban_Jr_1_01 1.00 ± 0.00 0.99 ± 0.01 0.98 ± 0.02 0.89 ± 0.11 1.00 ± 0.00
Sokoban_Jr_1_02 0.24 ± 0.05 0.46 ± 0.06 0.98 ± 0.02 0.49 ± 0.07 1.00 ± 0.00
Sokoban_Jr_1_03 0.09 ± 0.07 0.25 ± 0.10 0.71 ± 0.11 0.15 ± 0.08 0.49 ± 0.14
Sokoban_Jr_1_04 0.00 ± 0.00 0.00 ± 0.00 0.44 ± 0.09 0.14 ± 0.08 0.35 ± 0.09
Sokoban_Jr_1_05 0.10 ± 0.10 0.01 ± 0.01 0.58 ± 0.12 0.48 ± 0.12 0.24 ± 0.16
Sokoban_Jr_1_06 0.05 ± 0.03 0.03 ± 0.02 0.50 ± 0.14 0.46 ± 0.12 0.94 ± 0.03
Sokoban_Jr_1_07 0.19 ± 0.13 0.51 ± 0.16 0.35 ± 0.09 0.19 ± 0.07 1.00 ± 0.00
Sokoban_Jr_1_08 0.00 ± 0.00 0.00 ± 0.00 0.15 ± 0.11 0.00 ± 0.00 0.50 ± 0.15
Sokoban_Jr_1_09 0.14 ± 0.04 0.13 ± 0.07 0.68 ± 0.06 0.18 ± 0.06 0.85 ± 0.06
Sokoban_Jr_1_12 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.15
Sokoban_Jr_1_15 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_16 0.25 ± 0.05 0.13 ± 0.06 0.95 ± 0.03 0.60 ± 0.08 0.95 ± 0.03
Sokoban_Jr_1_17 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_18 0.00 ± 0.00 0.03 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.69 ± 0.14
Sokoban_Jr_1_19 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.06
Sokoban_Jr_1_20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_21 0.51 ± 0.09 0.56 ± 0.12 0.76 ± 0.09 0.68 ± 0.12 0.99 ± 0.01
Sokoban_Jr_1_22 0.00 ± 0.00 0.06 ± 0.05 0.09 ± 0.05 0.00 ± 0.00 0.30 ± 0.11
Sokoban_Jr_1_23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Sokoban_Jr_1_24 0.00 ± 0.00 0.01 ± 0.01 0.05 ± 0.04 0.00 ± 0.00 0.09 ± 0.03

Mean 0.13 ± 0.01 0.16 ± 0.01 0.36 ± 0.01 0.21 ± 0.02 0.49 ± 0.02

26



D Additional Results

D.1 MNA and Existing Methods

To directly examine the effectiveness of MNA compared to existing regret metics, we show zero-shot performance
of ACCEL and PLR using MNA, PVL and MaxMC.

Minigrid

In Figures 13 and 14, we illustrate the relative performance of each of these metrics in the standard minigrid
domain and show that MNA clearly outperforms other metrics, whether using either PLR or ACCEL.
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Figure 13: Minigrid - comparison of PLR performance using different metrics
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Figure 14: Minigrid - comparison of ACCEL performance using different metrics
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Key Minigrid

In Figures 15 and 16, we compare the same methods but on the key minigrid domain instead. Here, we again see
that MNA outperforms existing methods - including a substantial performance improvement when using PLR.
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Figure 15: Key Minigrid - comparison of PLR performance using different metrics
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Figure 16: Key Minigrid - comparison of ACCEL performance using different metrics
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D.2 DEGen and Existing Regret Approximations

In order to illustrate the ineffectiveness of existing regret approximations when used as optimisation objectives
for training a teacher, we show the relative performance of DEGen using MNA, PVL and MaxMC. Figures
17 and 18 show that MNA consistently outperforms PVL and MaxMC. We also see here that using a teacher
trained using PVL and MaxMC results in at best equivalent, but generally worse, performance compared to
naive domain randomisation.
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Figure 17: Minigrid - comparison of DEGen performance using different metrics
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Figure 18: Key Minigrid - comparison of DEGen performance using different metrics
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D.3 DEGen vs Initial Gen

In Figures 19 and 20, we show the performance of DEGen compared to the performance of a generator that
generates the full level prior to student rollouts. We include both a standard level generator Initial Gen, identical
to the PAIRED generator in JaxUED [10], as well as Initial Gen (Rand), which randomly places the agent in
the level before the rest of the level is constructed. We see that both methods performance worse than domain
randomisation.
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Figure 19: Minigrid - comparison of Initial Gen and DEGen
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Figure 20: Key Minigrid - comparison of Initial Gen and DEGen
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D.4 PAIRED

Finally, we examine the performance of DEGen compared to PAIRED [11]. In standard minigrid, we see that
PAIRED performs very similarly to domain randomisation, and worse than DEGen. Additionally, we see in the
key minigrid domain the limitations of the PAIRED regret approximation. As PAIRED relies on the antagonist’s
performance to approximate the best possible level return, high scoring levels require the antagonist to perform
well. However, if a level is challenging due to some obstacle the student has not previously encountered, it is
likely that the antagonist will also perform poorly, given it has been trained on the same set of levels as the
student. Therefore, the PAIRED generator is unlikely to generate levels requiring the antagonist to use the key,
and so as the student agent has not encountered levels similar to the zero-shot hand-designed levels that require
the key, zero-shot performance is extremely poor.
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Figure 21: Minigrid - comparison of PAIRED and DEGen
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Figure 22: Key Minigrid - comparison of PAIRED and DEGen
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D.5 Training Level Examples

We have included examples of levels generated by each method in the repository at
https://github.com/HarryMJMead/Dynamic-Environment-Generation-for-UED. These levels
were all sampled from the final training step.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: This paper contains no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The full method used is outlined in Sections 3 and 4, and further detail is provided in
Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We include the code and instructions in the supplementary material

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All addtional hyperparameters and experiment details are included in Appendix B.2

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are taken over multiple seeds with standard error

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Details on compute and time are provided in Appendix B

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: Our work is not expected to have direct societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: Our paper does not present any of these risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All prior work that has been used has been cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We have provided details on training, as well as code and documentation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve research with human subjects.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in any important, original or non-standard components of this
reserach.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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