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Abstract

Quantizing large language models (LLMs) to001
1-bit precision significantly reduces compu-002
tational costs, but existing quantization tech-003
niques suffer from noticeable performance004
degradation when using weight and activation005
precisions below 4 bits (W4A4). In this paper,006
we propose a post-training quantization frame-007
work specifically designed for LLMs, utilizing008
a novel W(1+1)A(1×4) configuration, where009
weights are quantized to 1 bit and activations010
are quantized to 1 bit with a 4-fold increase011
in the number of channels. For weight quan-012
tization, we propose utilizing Hessian-aware013
fine-grained grouping along with an EM-based014
quantization scheme. For activation quanti-015
zation, we decompose INT4-quantized activa-016
tions into a 4 × INT1 format equivalently and si-017
multaneously smooth the scaling factors based018
on quantization errors, which further reduces019
the quantization errors in activations. This ef-020
fectively reduces activation quantization errors021
and enables the use of INT1 multiplication to022
accelerate overall inference computations. Our023
method surpasses state-of-the-art (SOTA) LLM024
quantization baselines on W2A4 across multi-025
ple tasks, pushing the boundaries of existing026
LLM quantization methods towards fully bina-027
rized models.028

1 Introduction029

The enormous computational and memory over-030

head of large language models (LLMs) limits their031

widespread adoption. Model quantization methods032

(Nagel et al., 2021; Huang et al., 2024b) is a major033

approach to alleviate this challenges. Recent stud-034

ies (Zhao et al., 2024) on post-training quantization035

(PTQ) techniques can attain nearly lossless quanti-036

zation under the W4A4 configuration, facilitating037

accelerated computation through the utilization of038

the INT4 format. However, lower-bit quantization039

of LLMs remains an unsolved problem when the040

bit number of both weight and activation is less041

Figure 1: The perplexity (↓) of GPTQ, QuaRot, Atom,
and our method on the LLAMA1-7B model under
various quantization bit-width settings reveals that
GPTQ, QuaRot, and Atom exhibit significant perfor-
mance degradation when weights are quantized to 1 bit,
whereas our method still demonstrates language genera-
tion capabilities close to those of the original model.

than 4. As shown in Figure 1, existing methods 042

(Zhao et al., 2024; Ashkboos et al., 2024) still can- 043

not resolve the performance collapse that occurs 044

when weights are represented using binarization. 045

Most PTQ LLM quantization work adopts the 046

Round To Nearest (RTN) method (Nagel et al., 047

2021) as the implementation scheme in practical 048

operations, majorly focused on how to preprocess 049

data for RTN quantization, i.e., how to process the 050

dataset before RTN quantization to make it eas- 051

ier to quantize. For example, LLM.int8 (Dettmers 052

et al., 2022) and Atom (Zhao et al., 2024) handle 053

outliers with high precision, effectively increasing 054

the numerator of the scaling factor for some key val- 055

ues, thereby reducing the difficulty of quantization. 056

An other line of Works, including SmoothQuant 057

(Xiao et al., 2023), QuaRot (Ashkboos et al., 2024), 058

and DuQuant (Lin et al., 2024) smooth the distri- 059

bution of data to be quantized via matrix rotation, 060

to reduce the denominator of the scaling factor and 061

also lowering the quantization difficulty. Although 062
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these works can achieve excellent 4-bit and 8-bit063

quantization, they struggle to further reduce the064

quantization bit-width. This problem largely stems065

from the fact that the simple RTN quantization066

method itself is difficult to support the quantization067

quality required for very low-bit quantization.068

An other line of works use vector Quantization,069

such as VPTQ (Liu et al., 2024a) and GPTVQ (van070

Baalen et al., 2024). This method clusters the data071

to be quantized into several classes and maps the072

data in the same class to the value with the small-073

est total distance. The quantization accuracy of074

this method is often higher than that of the RTN075

method at the same level. However, since the quan-076

tized values obtained by this method are not equally077

spaced, inference cannot be accelerated using effi-078

cient low-bit arithmetic with the quantized values.079

Instead, dequantization must be performed before080

inference, which negates all the speed-up benefits081

of the quantization method.082

To address these issues, we propose a quantiza-083

tion framework, that can simultaneously achieve084

small model size, fast computation, and high-085

quality inferece outputs. It consists of three parts:086

1-bit weight quantization with another bit for fine-087

grain grouping, and 1× 4 bits activation quantiza-088

tion using 4 times 1-bit channel to represent 4bit089

quantization. By this way, we are able to compute090

the inner loop vector product in pure binary oper-091

ations drastically boosting the inference speed as092

well as reduce the model size. The main contribu-093

tions of this work are as follows:094

• We propose a novel W(1+1)A(1×4) post-095

training quantization framework, where096

weights are quantized to 1 bit with additional097

bit for fine-grain grouping and activations are098

quantized to 1 bit with a 4-fold increase in the099

number of channels.100

• We present an EM-based algorithm for search-101

ing (1+1) bit weight quantization, noticeably102

improved the performance compared with the103

usual RTN approach wildly used in other PTQ104

methods with fast inference speed and smaller105

model size.106

• We compare our proposed method with the107

current state-of-the-art quantization methods.108

Experimental results show that our method109

significantly outperforms existing methods,110

especially at very low bit-widths. On the111

Wikitext2 benchmark, our method achieves112

perplexities of 8.58 and 8.89 on LLaMA-7B 113

and LLaMA2-7B, respectively, using only the 114

W1A4 quantization setting. This significantly 115

surpasses the existing state-of-the-art meth- 116

ods and is comparable to the performance of 117

5.68 and 5.47 achieved by the original full- 118

precision models. 119

2 Related Works 120

In recent years, considerable research efforts have 121

been devoted to the low-bit quantization of LLMs. 122

Current works have achieved near-lossless quanti- 123

zation at W4A4 through methods such as mixed- 124

precision quantization (Zhao et al., 2024) and out- 125

lier smoothing using rotation factors (Ashkboos 126

et al., 2024; Liu et al., 2024b). However, these 127

methods encounter difficulties when attempting to 128

push towards even lower-bit quantization. 129

Consequently, some studies have begun to focus 130

on binarization methods (Courbariaux and Bengio, 131

2016; Qin et al., 2022) for LLMs. Most of these 132

works are based on Quantization-Aware Training 133

(QAT) theory. BitNet b1.58 (Wang et al., 2023), 134

BitNet a4.8 (Wang et al., 2024), OneBit (Xu et al., 135

2024), and FBI-LLM (Ma et al., 2024) have de- 136

signed 1-bit Transformer architectures specifically 137

for LLMs, replacing all linear layers in the original 138

LLMs with specific quantized linear layers. These 139

methods can reduce the quantization bit-width of 140

weights to 1 bit and demonstrate significant advan- 141

tages over baseline models. Nevertheless, these 142

QAT methods requires substantial computational 143

resources, making it impractical for the quantiza- 144

tion of LLMs. 145

Some studies have also explored the possibility 146

of binarizing LLMs within the PTQ framework. 147

BiLLM (Huang et al., 2024a) and STBLLM (Dong 148

et al., 2024), inspired by the distribution charac- 149

teristics of weight values and the Hessian matrix, 150

adopt binary residual approximations for signif- 151

icant weights and optimal partitioning for group 152

binarization of non-significant weights, pushing the 153

quantization boundary of LLM weights down to 1 154

bit. However, most of these works exhibit subopti- 155

mal performance and necessitate an additional bit 156

to store fine-grained grouping information. More- 157

over, these works neglect the quantization of acti- 158

vation values, which obstructs the computational 159

acceleration of the quantized model and ultimately 160

results in relatively poor performance. 161

Both ABQ-LLM (Zeng et al., 2024) and QBB 162
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Figure 2: binarized weight and activation attention

(Bulat et al., 2024) propose the idea of decompos-163

ing a high-bit matrix into a set of binary matrices164

for accelerated computation. These methods hold165

promise for achieving INT1 computational accel-166

eration but are constrained by the limitations of167

quantization bit-width and performance, prevent-168

ing further improvements.169

Based on current research on LLM binarization,170

we believe that weight binarization of LLMs within171

the PTQ framework is feasible. Compared to the172

current state-of-the-art (SOTA) W4A4 quantization173

efforts, W(1+1)A(1×4) quantized models can fur-174

ther reduce computational and memory overhead.175

Therefore, we propose our method, which further176

pushes the boundaries of LLM quantization and177

enriches the research on LLM binarization.178

3 Method179

In this section, we introduce our Binarized Weight180

and Activation (BWA) approach, a novel paradigm181

designed to simultaneously accelerate inference182

speed and reduce memory footprint in Large Lan-183

guage Models (LLMs). We begin by outlining the184

architectural framework of the proposed BWA at-185

tention module. Subsequently, we describe an EM-186

based method for computing binarized weights that187

are compatible with the proposed two-level group-188

ing structure. Finally, we discuss the strategies189

employed in this study and compare them to other190

relevant methods.191

3.1 Binarized weight and activation (BWA)192

attention193

Overall structure of BWA attention Our BWA194

framework is a quantization-aware modification of195

the standard attention module of a LLAMA-like 196

model. 197

Following the dataflow of the activations in Fig- 198

ure 2.(a), we introduce the overall structure. The in- 199

put activation is a C-dimensional FP16 vector. Af- 200

ter the RMSNorm layer, we quantize the activation 201

first from FP16 to INT4 using the standard Round- 202

To-Nearest (RTN) method, then further transform 203

it into four boolean variables. Next, the boolean 204

activations are fed into a binarized fully-connected 205

layers to compute K, Q, V matrices. The inner-loop 206

computation is boolean, but the outputs recovers 207

FP16 for query branch, and INT4 for key and value 208

branches, i.e., using 4-bit for KV cache. After the 209

attention, we transform the activation vectors to 210

boolean again so that all FC layer in the subsequent 211

projection operations are also binarized. 212

At the core of quantization task lies the binariza- 213

tion of fully connected (FC) layers, which account 214

for approximately 90% of memory bandwidth and 215

computation. In contrast, other components such 216

as normalization and attention score matrices con- 217

tribute to the remaining 10%. Consequently, our 218

work primarily focuses on the binarization of FC 219

layers, which are utilized in computing key (K), 220

query (Q), and value (V) matrices, as well as all 221

projection layers. Since the most computationally 222

expensive operation in these layers is the matrix- 223

vector multiplication within the inner loop, we pay 224

most effort to design a computational efficiency 225

FC layer, where the inner-loop only have binary 226

operations. 227

Binarized fully-connected layer The core mod- 228

ification of the proposed BWA attention module is 229

the binarization of the linear layer. To optimize the 230

tradeoff between model accuracy and efficiency, 231

we introduce a two-level weight grouping strategy 232

for weight binarization, and a binarized decompo- 233

sition to further quantize a 4-bit activations into 234

four 1-bit boolean variables. Consequently, in the 235

core inner-loop computation of the fully connected 236

layers, only boolean operations are involved, dras- 237

tically simplifying and boosting the computation. 238

Specifically, a FC layer computes a single token 239

y = Wx, where W ∈ RCin×Cout , x is the Cin- 240

dimensional vector represented as an input token, 241

and y is the output token vector. 242

1) Channel-wise grouping Both weights and ac- 243

tivations have a width dynamical range, which are 244

hard to quantize using the same scaling parameter. 245

We sort the input channels by the average activation 246

scales of test samples X , i.e., sort according to 247
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diag(XXT ) in an ascending order. Then, follow-248

ing the sorted order, we group the channels with249

similar activation scale. In our implementation, we250

divide the Cout = 4096 channels into 32 groups.251

Each group has B = 128 channels.252

yj =

⌈Cout/B⌉−1∑
ℓ=0

B−1∑
i=0

Wj,(Bℓ+i)xBℓ+i,

j = 1, 2, . . . , Cout

(1)253

Note that channel-wise group is implemented by254

a proper permutation of rows and columns of the255

weight matrix. Therefore, channel-wise grouping256

does not introduce any dditional computational or257

memory cost.258

2) Element-wise grouping Directly binarization259

of W to 1-bit is not enough resulting severe model260

degeneration forbidding practical usage, especially261

combined the target to reduce the activation to 4262

bit or lower. Similar to BiLLM, we use additional263

element-level group to further group weight, and264

quantize them separately.265

Define the set Dℓ,1 ⊆ {0, 1, 2, . . . , B − 1} , and266

its complementary Dℓ,0 = {0, 1, 2, . . . , B − 1} \267

Dℓ,1. We quantized the two group separately using268

1-bit for each weight element269

Wj,(Bℓ+i) ≈ Ŵj,(Bℓ+i) = αj,ℓ,sqj,(Bℓ+i) + βj,ℓ,s,
(2)270

for s = 1 if i ∈ Dℓ otherwise s=0, in which αj,ℓ,s271

and βj,ℓ,s are two quantization parameters for each272

fine-grained group. In the standard LLAMA 7b273

model, each column-wise group contains has 128274

channels. They are further categorized into two275

element-wise group, of which the sizes may not276

equal. The element-wise group are represented us-277

ing a bit map. Together another bit qj,i representing278

weight sign. The weight matrix uses 1+1 bit per279

element.280

This fine-grained level grouping can effectively281

the accuracy at the expense of increase additional282

computational cost. On the other hand, with proper283

usage of bitmap operations, the cost can be sup-284

pressed to be marginal. The element-wise grouping285

has been used in the works (Huang et al., 2024a;286

Dong et al., 2024), we improve this strategy by287

leveraging EM-based parameter searching with288

Hessian metric information to determine the op-289

timal weighted split point.290

3) Activation binarization. The input activation291

is quantized before feeding into the FC layer from292

FP16 to INT4 using the standard RTN method (3).293

Specifically, the quantization process of RTN to 294

obtain Xq with b bits is expressed as 295

Xq = clamp(⌊X
µ
⌉+ z, 0, 2b − 1), (3) 296

where µ = max(X)−min(X)
2b−1

is the scaling 297

parameter,z = −⌊min(X)
µ ⌉ is the shift parameter. 298

The clamp function denotes restricting the quanti- 299

zation result to the range between [0, 2b − 1]. The 300

notion ⌊⌉ signifies the nearest rounding operation. 301

µ is the quantization step size and z represents the 302

zero point. 303

To further binarize the activation, we first trans- 304

form the 4bit integer xi to four 1bit boolean vari- 305

ables bi,a with a = 0, 1, 2, 3 306

xi ≈ x̂i = µpi + z =

3∑
a=−1

µabi,a, (4) 307

where µa = 2aµ for a = 0, 1, 2, 3 and a special 308

notation of µ−1 = z and bi,−1 ≡ 1 for the shift 309

constant. Moreover, we can also relax µk as a 310

free quantization parameter to be tuned manually 311

or learn from data. Note that as the weight is re- 312

ordered and grouped, the elements of the input 313

activation vector will be permuted accordingly. 314

4) Binarized FC layer We utilize the commu- 315

tative property of summation to make sure the in- 316

ner multiplication summation is binary, so that the 317

proposed method is actually boosting the computa- 318

tional speed. 319

Substituting (2) and (4) 320

yj ≈
⌈Cin/B⌉−1∑

ℓ=0

B−1∑
i=0

[(
αj,ℓ,sqj,(Bℓ+i) + βj,ℓ,s

)
321

3∑
a=−1

µℓ,ab(Bℓ+i),a

]
322

=

⌈⌈Cin/B⌉−1∑
ℓ=0

3∑
a=−1

µℓ,a

∑
s=0,1

323[
αj,ℓ,svj,ℓ,s + βj,ℓ,srj,ℓ,s

]
, (5) 324

with the bit-wise inner product vj,ℓ,s and counting 325

number of bits valued 1 326

vj,ℓ,s =
∑

i∈Dℓ,s

qj,(Bℓ+i)b(Bℓ+i), rj,ℓ,s =
∑

i∈Dℓ,s

b(Bℓ+i).

(6) 327

Since the above two summation only involves bit 328

variable qj,(Bℓ+i), b(Bℓ+i), and the set Dℓ,1 and 329
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Dℓ,2 is represented by a bitmap, therefore, they can330

be implemented efficiently by bit-wise XOR/AND331

and popc operation.332

For the bit-operation of (6), let e = q ∧ b. Then,333

v, r in (6) can be computed by334

vj,ℓ,s=0 = Popc (e ∧m),

vj,ℓ,s=1 = Popc (e ∧ (¬m))

rj,ℓ,s=0 = Popc (b ∧m),

rj,ℓ,s=1 = Popc (b ∧ (¬m)

(7)335

The inner loop, which originally be a336

multiplication-summation operation of 64 num-337

bers, reduces to four bit-wise operations on 128338

bits length variables, which can be efficiently im-339

plemented on both GPU and CPU.340

5) Outlier activation In this paper, we trick the341

last channel-wise group as outlier, and use INT8342

to quantize rather then the two bits following the343

work (Yuan et al., 2023; Zhao et al., 2024). It is344

hardware-friendly and can efficiency implemented345

via reordering the channels. Different from other346

methods, which usually use 256 channel for for347

outliers, we only use minimal 1 group, which only348

contain 128 channels for the outliers. This min-349

imizes the outlier overhead to approximately 3%350

of the total channels in INT8 and representing all351

other normal channels in INT1. Experiments for set352

more outlier groups are done in Appendix, which353

can further improve the performance at the expense354

of costing extra bits.355

3.2 Weight binarization and parameterization356

by Fine-Grained Group Hessian-Aware357

Quantization358

In this subsection, we propose an EM-based359

method to determine the binarized values of the360

weight matrices and the associated parameters for361

dequantization.362

The weight matrix is quantized according to (2),363

where qj,(Bℓ+i) represents the binarized weight,364

and αj,ℓ,s, βj,ℓ,s denote the scaling and shifting365

parameters, respectively, used for dequantization.366

Furthermore, we also require a bit map matrix of367

identical dimension to the weight matrix, which368

serves to determine the fine-group affiliation of369

each corresponding element.370

We start from minimizing the L2 norm of the371

weight matrix W , utilizing an approximate Hes-372

sian weight as proposed in (Hassibi and Stork,373

1992; Frantar and Alistarh, 2022) 374

LŴ =
∥∥∥ 1

diag(H−1)
(W − Ŵ)

∥∥∥2
2
, (8) 375

where the Hessian matrix H = XXT is deter- 376

mined using a validation dataset, encapsulates in- 377

formation about the activation values during the 378

computation of linear layers and gradient informa- 379

tion during back propagation. 380

In our binarized parameterization (2), each chan- 381

nel (indexed by j) and each channel-wise group (in- 382

dexed by ℓ) are parameterized independently. With- 383

out loss of generality, we only focus on a single 384

channel-wise group, which has B weight elements 385

wi, i ∈ 0, 1, . . . , B − 1. The binary representation 386

of W with a binary element-wise group can at most 387

have four different float-point values. Therefore, 388

the quantization problem boils down to a 1-D clus- 389

tering problem to determine 4 clusters, centered 390

at ŵ(0, 0), ŵ(0, 1), ŵ(1, 0), ŵ(1, 1). Formally, for 391

each group, we solve the following minimization 392

problem 393

min
s,q∈{0,1}B ,ŵ∈R4

B−1∑
i=0

(
wi−ŵ(si, qi)

)2
/diag(H−1)i ,

(9) 394

where s, q represents the fine-group affiliation and 395

the binary weight value respectively. Knowing the 396

four values of ŵ, one can recover the scaling and 397

shifting parameters αj,ℓ,s and βj,ℓ,s by the method 398

of undetermined coefficients formalized as a set of 399

4-D linear equations. 400

In practice, we spare the last channel-group for 401

outlier activation using more bits, in which the 402

corresponding weights are also quantized to the 403

same type INT8. We implement a revised EM 404

algorithm, as shown in Algorithm 1, to solve the 405

above optimization problem with the last channel 406

group as INT8 quantization. 407

3.3 Remarks on quantization strategies 408

We provide additional discussion on the quanti- 409

zation strategies employed in our approach, com- 410

paring them to existing methods such as the RTN 411

quantization, vector quantization for weight quan- 412

tization, and a recent work on binarized residual 413

decomposition for activation quantization. 414

RTN quantization v.s. fine-group binary 415

weight In our method, we utilize 1 bit to store 416

binary weights and an additional 1 bit to represent 417

element-wise group affiliation, effectively using 418
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Algorithm 1 Main Framework of our method
Require:

W ∈ RCout×Cin , weight matrix
X ∈ RT×Cin , calibration data
B, block size
K, outliers keep in INT8
iters, EM steps

Ensure:
B, weights after dequantization
D, fine-grained group information

1: W = reorder(W, diag(XXT ))
2: H = 2XXT ▷ Hessian matrix
3: Hc = Cholesky((H + λI)−1)
4: B = 0Cin×Cout

5: for i = 0, B, 2B, ..., Cout −K −B do
6: Wp = W:,i:i+B

7: Hcp = diag(Hc
i:i+B,i:i+B)

8: C = init_centers(Wp,Hcp)
9: for j = 1 to iters do

10: D = get_groups(Wp,Hcp,C) ▷ E-step
11: I = get_clusters(Wp,Hcp,C,D) ▷

M-step
12: C = update_centers(Wp,Hcp, I,D) ▷

M-step
13: end for
14: B:,i:i+B = binary(Wp,C, I,D)

15: E = (Wp−B)
Hcp

16: W:,i+B:Cout−K = W:,i+B:Cout−K − E ·
Hc

i:i+B,i+B:

17: end for
18: B:,Cout−K: = quant_int8(W:,Cout−K:)
19: Return B,D

2 bits of information. It enables each weight ele-419

ment to take on four distinct values. In contrast420

to the RTN quantization method widely used in421

other post-training quantization (PTQ) methods,422

where dequantized values are equally spaced, our423

model allows the four values to be chosen arbitrar-424

ily, which is optimized by the proposed EM-based425

algorithm.426

Vector quantization v.s. fine-group binary427

weight The optimization process for dequantiza-428

tion parameters in our approach is similar to that429

employed in vector-quantization-based methods430

(Frantar et al., 2022; van Baalen et al., 2024), where431

2n floating-point values are stored as representa-432

tive values for n-bit quantization. In these ap-433

proaches, dequantization must be performed before434

computing the vector inner product. In contrast, our435

method further parameterizes the representatives 436

using binary weights and fine-grained group bits, 437

along with floating-point scaling and shift param- 438

eters. This enables us to compute the vector inner 439

product using pure Boolean operations as shown in 440

(7), resulting in a significant boost in computational 441

speed. 442

Binarized residual decomposition and 1 × 4 443

bit representation of activation The work (Zeng 444

et al., 2024) explored the approach of transforming 445

arbitrary integer weight and activation WxAa into 446

xa × W1A1 to achieve computational acceleration. 447

It make use of bit operation to computation inner- 448

loop vector product, but the original work can not 449

get good below W4A4. On the other hand, the ex- 450

pansion of high bits weight and activation usually 451

result heavy over head, as the number of chan- 452

nel vectors (relates to memory bandwidth) roughly 453

from (x + a) bits to (xa) bits. In this work, we 454

manage to reduce W (1 + 1)A(1 × 4), together 455

with bitmap operation on the fine-grain group, the 456

over-head cost is marginal. 457

4 Experiments 458

Setup. We implemented our method on the Py- 459

Torch (Paszke et al., 2019) framework, where all 460

linear layer weights in the original model are quan- 461

tized to 1+1 bit, and input activations of all linear 462

layers are quantized to 1×4 bits. For weights, we 463

adopt per-channel asymmetric quantization with 464

a clipping ratio set to 1.0 across all experiments, 465

utilizing the GPTQ quantization framework to com- 466

pensate for quantization errors. For activations, we 467

employ per-token asymmetric quantization with a 468

clipping ratio of 1.0. To optimize performance, we 469

use RTN for dynamic quantization of the activa- 470

tion matrix. For KV caches, we uniformly apply 471

4 bits quantization to store and load. The quanti- 472

zation group size is 128, and the number of outlier 473

channels is 128 (approximately 3% of all channels). 474

We use 128 random samples from the WikiText2 475

(Merity et al., 2016) training set as the calibration 476

dataset, with a sequence length of 2048. The exper- 477

iments related to the 7B model were conducted on 478

a single NVIDIA GeForce RTX 3090 GPU, while 479

the experiments involving the 13B model and ac- 480

celeration efficiency were carried out on a single 481

NVIDIA GeForce RTX A6000 GPU. All experi- 482

ments were conducted more than three times, and 483

the average values were recorded. 484

Models and Datasets. We apply our method 485
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Table 1: Perplexity(↓) and Zero-shot QA accuracy(↑) results under the W4A4 and W2A4 settings on LLAMA1-7B
and LLAMA2-7B. "FP16" denotes the performance of the original model represented in FLOAT16 format, with the
best quantization performance highlighted in bold. The experimental results on the 13B model are presented in
Table 3, Table 4, and Table 5.

Model Bits Method Wiki.↓ PTB↓ C4↓ PIQA↑ ARC-E↑ ARC-C↑ BoolQ↑ Hella.↑ Wino.↑ Avg.↑

LLAMA1
-7B

FP16 - 5.68 27.34 7.08 77.37 52.48 41.38 73.06 73.00 67.01 64.05

W4A4
QuaRot 6.41 49.73 8.43 74.81 50.13 38.74 70.98 68.80 61.56 61.01
Atom 6.30 30.28 7.98 75.35 51.60 36.69 70.86 67.27 64.33 62.21

W2A4
QuaRot 14.39 222.95 27.70 59.52 37.88 26.62 62.20 41.56 54.62 47.07
Atom 16.65 298.78 33.87 57.24 35.23 26.11 53.98 36.77 50.51 43.31

W(1+1)A16 BiLLM 35.04 421.27 39.59 61.20 36.00 25.70 62.70 36.80 51.10 45.58
W(1+1)A4 BiLLM 18304 17152 20736 50.05 25.38 26.54 49.63 26.05 49.49 37.86

W(1+1)A(1×4) Ours 8.58 76.09 12.27 68.88 45.03 30.89 69.63 55.41 59.35 54.87

LLAMA2
-7B

FP16 - 5.47 22.51 6.97 76.93 53.58 40.53 71.07 72.96 67.17 63.71

W4A4
QuaRot 6.32 71.21 8.67 74.32 51.60 38.23 68.41 69.24 61.56 60.89
Atom 6.18 27.94 8.05 75.24 52.74 37.12 71.16 67.89 63.93 62.58

W2A4
QuaRot 49.98 571.22 80.14 54.41 28.45 23.21 57.89 28.57 48.15 40.11
Atom 19.49 508.82 39.85 56.69 32.32 23.21 58.53 35.74 49.49 42.66

W(1+1)A16 BiLLM 32.48 3877.38 40.52 60.60 36.20 24.40 61.80 34.80 52.40 45.03
W(1+1)A4 BiLLM 16128 17152 15168 50.22 26.30 27.90 45.23 26.10 49.88 37.61

W(1+1)A(1×4) Ours 8.89 69.46 12.74 68.72 46.13 30.55 66.12 55.76 58.01 54.22

to the open-source LLAMA1 (7B, 13B) (Touvron486

et al., 2023a), LLAMA2 (7B, 13B) (Touvron et al.,487

2023b), and Vicuna (7B, 13B) (Chiang et al., 2023)488

models and evaluate their performance on language489

generation and commonsense QA tasks. The pri-490

mary metric for language generation tasks is per-491

plexity, assessed on datasets including WikiText2,492

PTB (Marcus et al., 1994), and C4 (Raffel et al.,493

2020). For commonsense QA tasks, the main met-494

ric is zero-shot accuracy, evaluated on datasets495

such as PIQA (Bisk et al., 2020), ARC (Clark496

et al., 2018), BoolQ (Clark et al., 2019), HellaSwag497

(Zellers et al., 2019), and WinoGrande (Sakaguchi498

et al., 2021). Except for the C4 dataset, where we499

randomly select 256 samples of length 2048 from500

the test set for evaluation, we utilize the entire test501

set portion of these datasets for our testing.502

Baseline. We compare our approach with state-503

of-the-art (SOTA) PTQ methods for weights and504

activations. Since few existing methods explore the505

W2A4 quantization setting, we implement W2A4506

quantization for all compared methods to ensure507

fairness before evaluation. Our main baselines in-508

clude Atom (Zhao et al., 2024), QuaRot (Ashkboos509

et al., 2024), and BiLLM (Huang et al., 2024a).510

Atom and QuaRot are SOTA methods under the511

W4A4 quantization setting, while BiLLM is the512

SOTA for the W(1+1)A16 quantization setting.513

4.1 Main Results514

Language Generation Tasks. We assess the per-515

plexity of our method on language generation tasks516

and conduct a fair comparison with existing SOTA517

methods. As shown in Table 1 and Table 3, Atom518

and QuaRot, as SOTA methods under the W4A4 519

setting, experience significant performance drops 520

under the W2A4 setting. In contrast, our method 521

significantly outperforms these methods on all 522

datasets under the W(1+1)A(1×4) setting which 523

is equivalent to W2A4, and our method’s perplex- 524

ity evan approaches that of the FP16 model. It is 525

noteworthy that BiLLM also utilizes an additional 1 526

bit to store extra fine-grained grouping information, 527

thus we consider it as a W(1+1)A16 approach. As 528

a similar method that employs fine-grained group- 529

ing like our method, its performance under the 530

W(1+1)A16 configuration is significantly outper- 531

formed by our method with the W(1+1)A(1×4) 532

setting. Furthermore, when its activation values 533

are quantized to 4 bits, the performance of BiLLM 534

rapidly deteriorates. 535

Zero-Shot Tasks. We also evaluate our method 536

on six important zero-shot tasks. Table 1 and Ta- 537

ble 3 presents the comparison results between our 538

method and the baselines. our method significantly 539

outperforms existing methods under the W2A4 540

quantization setting and demonstrates stable ac- 541

curacy, approaching the performance of the FP16 542

model. 543

4.2 Performance Analysis 544

Speedup. To evaluate the inference acceleration 545

provided by our method, we adopt the kernel im- 546

plementation from ABQ-LLM (Zeng et al., 2024), 547

which supports decomposing arbitrary-dimensional 548

WxAx operations into multiple W1A1 computa- 549

tions and leverages the acceleration effect of INT1 550

multiplication for significant speedup in matrix 551

7



Figure 3: A comparison of the time cost between the
W(1+1)A(1×4) kernel and the INT4, INT8 kernels of
CUTLASS for matrix multiplication on the A6000.
More results are presented in Figure 4.

multiplication. We test the speedup of our method552

under the W(1+1)A(1×4) setting on an A6000 com-553

pared to different bit-width settings supported by554

CUTLASS, such as W8A8 and W4A4. Because555

the weights actually involved in the computations556

in our method are 1 bit, with an additional 1 bit557

solely used for storing fine-grained grouping infor-558

mation, we consider our method as a quantization559

method that can be viewed as a decomposition from560

W2A4 downwards in terms of computational accel-561

eration comparison. As shown in Figure 3, in terms562

of single-layer matrix computations, our method563

exhibits a more substantial speedup in comparison564

to other bit-width settings, surpassing the kernel ac-565

celeration of CUTLASS by a factor of 3 in matrix566

computations. This demonstrates that the approach567

of using INT1 for acceleration in our method can568

fully leverage the speedup benefits of low-bit com-569

putations. Moreover, since both the weights and570

activations in our method are quantized to very low571

bit-widths, the additional computational overhead572

introduced by the decomposition does not signif-573

icantly impact the gains achieved through INT1574

computation.575

4.3 Ablation Studies576

To evaluate the effectiveness of different quanti-577

zation modules in our method, we compared the578

accuracy gains or losses among various quantiza-579

tion techniques employed within our method. The580

results presented in Table 2 demonstrate that outlier581

handling, Minimum distance quantization, and fine-582

grained grouping, as the basic processing schemes583

Table 2: Ablation experiments on the effects of different
quantized components used in our method, with all ex-
perimental results based on LLAMA1-7B and a group
size of 128.

Quantization Method Wiki. ↓

LLAMA-7B FP16 5.68
W1A4 GPTQ (Group size 128) 216713
+ Keep 128 outlier channels in INT8 6749
+ Minimum distance quantization 126.89
+ Fine-grained group, W(1+1) 8.69
+ Hessian-weighted distance metric 8.65
+ Binarized Residual Decomposition, A(1×4) 8.58

in our method. Each step significantly enhances 584

the performance of the quantized model, effectively 585

mitigating the performance collapse issue observed 586

in the W1A4 quantized model. The introduction 587

of the Hessian-weighted distance metric and bi- 588

narized residual decomposition further boosts the 589

quantized model’s performance. Although numeri- 590

cally, the improvements in perplexity brought about 591

by these two methods are not substantial, this is 592

because the previous enhancements have already 593

pushed the performance metrics close to those of 594

the original model, leaving limited room for further 595

improvement. Theoretically, the Hessian-weighted 596

distance metric reveals a measure of weight impor- 597

tance, while the binarized residual decomposition 598

elucidates the direction of performance enhance- 599

ment after binarization decomposition. 600

5 Limitations 601

Although our our method can achieve fully bina- 602

rized computation to reduce computational over- 603

head during inference, a trade-off must be made re- 604

garding the accuracy of the quantized model. Con- 605

sequently, we need to utilize additional bits to store 606

the information of the quantized matrices, with 607

the actual storage bits for weights and activations 608

equivalent to 2 bits and 4 bits, respectively. This 609

implies that our model has not been compressed to 610

the theoretical extreme of a boolean model, leav- 611

ing room for further improvement. Meanwhile, 612

although the performance of our our method across 613

various evaluation tasks is close to that of the pre- 614

quantized model, it is not truly lossless quantiza- 615

tion. This loss indicates that the quantized model 616

has not fully restored the representational capacity 617

of the original model. In the future, we consider em- 618

ploying methods that integrate quantization-aware 619

8



training to further enhance the efficiency and per-620

formance of our method.621
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A Additional Experimental Results 799

Time required for quantization. Our method 800

quantizes the weight matrices within all linear lay- 801

ers of the full-precision model. The quantization 802

process for the 7B model can be completed in ap- 803

proximately 20 minutes, while the 13B model re- 804

quires only about 30 minutes. 805

Results on 13B models. As shown in Table 4 806

and Table 5, we evaluated the performance of our 807

method and other quantization methods on lan- 808

guage generation tasks and zero-shot QA task ac- 809

curacy using LLAMA1-13B and LLAMA2-13B 810

models. Our findings indicate that, in general, the 811

model performance adheres to the principle that 812

increasing the number of model parameters leads 813

to improved model performance. Furthermore, our 814

method achieved state-of-the-art results across all 815

evaluated metrics. 816

Results of different outlier channel number set- 817

tings. In Table 6, we compare the relationship 818

between different numbers of outlier channels and 819

the quantization performance of our method. Since 820

the group size is set to 128, we also use 128 as 821

the unit here. The results demonstrate that preserv- 822

ing a small number of outliers with high precision 823

can ensure overall quantization performance. Fur- 824

thermore, when the number of outlier channels is 825

increased, the model performance exhibits a nearly 826

linear upward trend, with only a modest overall im- 827

provement. Therefore, we adopt 128 outlier chan- 828

nels as our baseline setting. 829
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Table 3: Perplexity(↓) and Zero-shot QA accuracy(↑) results under the W4A4 and W2A4 settings on Vicuna family.
"FP16" denotes the performance of the original model represented in FLOAT16 format, with the best quantization
performance highlighted in bold.

Model Bits Method Wiki.↓ PTB↓ C4↓ PIQA↑ ARC-E↑ ARC-C↑ BoolQ↑ Hella.↑ Wino.↑ Avg.↑

Vicuna
-v1.5-7B

FP16 - 6.78 26.78 8.55 77.80 56.06 39.93 75.69 71.06 67.80 64.72

W4A4
QuaRot 7.80 52.44 10.87 73.67 53.20 37.71 72.45 67.66 60.93 62.12
Atom 7.22 31.75 9.36 75.14 55.60 37.63 77.25 67.08 64.40 64.42

W2A4
QuaRot 39.51 226.50 65.17 55.66 33.38 22.75 62.08 31.71 50.51 44.03
Atom 15.96 107.68 25.13 56.64 31.90 29.61 64.07 46.30 55.33 47.31

W(1+1)A(1×4) Ours 9.51 45.61 13.35 69.97 50.00 33.45 71.96 57.81 59.43 57.10

Vicuna
-v1.5-13B

FP16 - 5.95 25.15 7.78 78.40 56.44 44.80 76.51 74.63 69.06 66.64

W4A4
QuaRot 6.81 54.16 9.64 74.81 51.43 40.53 70.73 70.96 62.12 62.51
Atom 6.32 27.64 8.25 76.44 54.67 43.34 74.83 72.07 66.46 65.37

W2A4
QuaRot 18.32 273.86 37.86 56.69 36.49 26.11 62.42 38.40 53.59 45.54
Atom 19.84 174.63 36.39 54.95 34.13 25.68 61.74 37.55 52.17 44.37

W(1+1)A(1×4) Ours 7.91 49.71 11.45 71.44 52.36 38.65 68.93 62.34 62.35 59.35

Table 4: Perplexity(↓) results under the W4A4 and W2A4 settings on LLAMA1-13B and LLAMA2-13B. "FP16" de-
notes the performance of the original model represented in FLOAT16 format, with the best quantization performance
highlighted in bold.

Model Bits Method Perplexity↓ Model Bits Method Perplexity↓
Wiki. PTB C4 Wiki. PTB C4

LLAMA1
-13B

FP16 - 5.09 19.23 6.61

LLAMA2
-13B

FP16 - 4.88 28.87 6.47

W4A4
QuaRot 5.71 36.10 7.57

W4A4
QuaRot 5.59 64.27 7.84

Atom 5.47 22.16 7.04 Atom 5.26 32.46 6.95

W2A4
QuaRot 11.14 156.30 20.80

W2A4
QuaRot 17.49 386.40 38.88

Atom 11.69 115.62 19.55 Atom 11.24 152.68 18.15
W(1+1)A(1×4) Ours 7.19 37.20 10.18 W(1+1)A(1×4) Ours 7.17 56.91 10.44

Table 5: Zero-shot QA accuracy(↑) results under the W4A4 and W2A4 settings on LLAMA1-13B and LLAMA2-
13B. "FP16" denotes the performance of the original model represented in FLOAT16 format, with the best
quantization performance highlighted in bold.

Model Bits Method Zero-shot Accuracy↑
PIQA ARC-E ARC-C BoolQ HellaSwag WinoGrande Avg.

LLAMA1-13B

FP16 - 79.05 59.89 44.71 68.47 76.23 70.24 66.43

W4A4
QuaRot 76.61 55.30 41.64 67.09 73.02 65.59 64.24
Atom 77.64 58.38 41.81 68.50 73.75 65.98 64.64

W2A4
QuaRot 64.42 41.50 28.75 63.36 48.49 56.67 50.53
Atom 59.68 36.62 29.01 58.56 44.84 52.01 46.79

W(1+1)A(1×4) Ours 72.09 48.57 34.13 62.54 62.63 64.88 57.47

LLAMA2-13B

FP16 - 79.00 57.95 44.28 69.02 76.58 69.69 66.09

W4A4
QuaRot 76.93 52.10 40.70 68.10 72.70 62.51 62.99
Atom 77.37 56.73 42.32 67.62 74.07 68.27 65.46

W2A4
QuaRot 59.09 34.60 24.23 62.11 35.03 51.38 44.41
Atom 61.15 40.36 29.52 61.56 45.62 51.22 48.24

W(1+1)A(1×4) Ours 71.98 49.92 36.26 65.90 60.52 61.80 57.73

Comparison of different kernels. In Figure 4, we830

comprehensively evaluate the performance of the831

W(1+1)A(1×4) kernel and the INT8, INT4 kernels832

from CUTLASS, based on the matrix multiplica-833

tion sizes that may occur in the LLAMA model.834

Since our method incorporates a small amount of835

INT8 mixed-precision quantization, for the han-836

dling of outliers, we separately measure the com-837

putational efficiency of outliers and normal values.838

Subsequently, we derive the overall computational839

efficiency by considering the proportion of these840

two components. 841

Model Size. We present in Table 7 the theoretical 842

compression effectiveness of our method on mod- 843

els of various sizes within the LLAMA family. In 844

our calculation of the model size, we have included 845

both the quantization parameters and the additional 846

storage incurred by fine-grained grouping, which 847

results in our findings being slightly larger than 848

those reported in BiLLM (Huang et al., 2024a). 849

The binarization of weights significantly reduces 850

the storage size of quantized LLMs and the GPU 851
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Table 6: The impact of different outlier channel number settings of the quantized model on the perplexity (↓) and the
zero-shot QA accuracy(↑). "FP16" denotes the performance of the original model represented in FLOAT16 format.

Model Ch. Wiki.↓ PTB↓ C4↓ PIQA↑ ARC-E↑ ARC-C↑ BoolQ↑ Hella.↑ Wino.↑ Avg.↑

LLAMA1
-7B

FP16 5.68 27.34 7.08 77.37 52.48 41.38 73.06 72.99 67.01 64.05
0 471.19 1025.28 228.17 53.59 28.75 24.57 50.73 28.13 50.51 39.38
128 8.58 76.09 12.27 68.88 45.03 30.89 69.63 55.41 59.35 54.87
256 8.20 65.97 11.70 69.75 45.33 32.42 65.87 56.31 57.85 54.59
512 7.80 57.44 10.90 71.27 47.94 34.22 65.57 58.46 59.19 56.11
768 7.52 52.06 10.44 71.38 47.31 34.04 66.12 60.09 61.17 56.69
1024 7.26 50.42 9.95 72.14 47.01 34.39 69.30 61.16 61.01 57.50

LLAMA2
-7B

FP16 5.47 22.51 6.97 76.93 53.58 40.53 71.07 72.96 67.17 63.71
128 8.89 69.46 12.74 68.72 46.13 30.55 66.12 55.76 58.01 54.22
256 8.52 61.01 12.16 69.97 47.64 31.57 68.50 56.22 59.19 55.51
512 8.00 56.77 11.43 69.80 46.97 31.66 67.83 57.55 60.77 55.76

Vicuna
-v1.5-7B

FP16 6.78 26.78 8.55 77.80 56.06 39.93 75.69 71.06 67.80 64.72
128 9.51 45.61 13.35 69.97 50.00 33.45 71.96 57.81 59.43 57.10
256 9.28 44.01 12.94 70.35 51.05 34.04 72.97 58.42 61.40 58.04
512 8.88 41.49 12.42 71.87 50.76 34.22 73.79 58.80 64.09 58.92

Figure 4: A comparison of the computational efficiency between the W(1+1)A(1×4) kernel and the INT4, INT8
kernels of CUTLASS for matrix multiplication with varying input lengths is conducted on the A6000.

memory and bandwidth requirements during infer-852

ence. Across LLAMA models of different sizes,853

our method achieves a compression ratio of over854

5×.855

Table 7: Model size comparison of LLAMA family.

Models FP16 Ours

LLAMA-7B 13.5GB 2.69GB
LLAMA-13B 24.2GB 4.82GB
LLAMA-30B 60.5GB 12.05GB
LLAMA-65B 121.0GB 24.11GB

B Ai Assistants in Research or Writing856

We use a local LLama3.3 model to polish the draft857

for checking grammar and improving expression.858

Research ideas, experiment design and discussion859

contents are all original by the authors.860
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