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Abstract

Quantizing large language models (LLMs) to
1-bit precision significantly reduces compu-
tational costs, but existing quantization tech-
niques suffer from noticeable performance
degradation when using weight and activation
precisions below 4 bits (W4A4). In this paper,
we propose a post-training quantization frame-
work specifically designed for LLMs, utilizing
a novel W(1+1)A(1x4) configuration, where
weights are quantized to 1 bit and activations
are quantized to 1 bit with a 4-fold increase
in the number of channels. For weight quan-
tization, we propose utilizing Hessian-aware
fine-grained grouping along with an EM-based
quantization scheme. For activation quanti-
zation, we decompose INT4-quantized activa-
tions into a 4 x INT1 format equivalently and si-
multaneously smooth the scaling factors based
on quantization errors, which further reduces
the quantization errors in activations. This ef-
fectively reduces activation quantization errors
and enables the use of INT1 multiplication to
accelerate overall inference computations. Our
method surpasses state-of-the-art (SOTA) LLM
quantization baselines on W2A4 across multi-
ple tasks, pushing the boundaries of existing
LLM quantization methods towards fully bina-
rized models.

1 Introduction

The enormous computational and memory over-
head of large language models (LLMs) limits their
widespread adoption. Model quantization methods
(Nagel et al., 2021; Huang et al., 2024b) is a major
approach to alleviate this challenges. Recent stud-
ies (Zhao et al., 2024) on post-training quantization
(PTQ) techniques can attain nearly lossless quanti-
zation under the W4A4 configuration, facilitating
accelerated computation through the utilization of
the INT4 format. However, lower-bit quantization
of LLMs remains an unsolved problem when the
bit number of both weight and activation is less
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Figure 1: The perplexity () of GPTQ, QuaRot, Atom,
and our method on the LLAMAI1-7B model under
various quantization bit-width settings reveals that
GPTQ, QuaRot, and Atom exhibit significant perfor-
mance degradation when weights are quantized to 1 bit,
whereas our method still demonstrates language genera-
tion capabilities close to those of the original model.

than 4. As shown in Figure 1, existing methods
(Zhao et al., 2024; Ashkboos et al., 2024) still can-
not resolve the performance collapse that occurs
when weights are represented using binarization.

Most PTQ LLM quantization work adopts the
Round To Nearest (RTN) method (Nagel et al.,
2021) as the implementation scheme in practical
operations, majorly focused on how to preprocess
data for RTN quantization, i.e., how to process the
dataset before RTN quantization to make it eas-
ier to quantize. For example, LLM.int8 (Dettmers
et al., 2022) and Atom (Zhao et al., 2024) handle
outliers with high precision, effectively increasing
the numerator of the scaling factor for some key val-
ues, thereby reducing the difficulty of quantization.
An other line of Works, including SmoothQuant
(Xiao et al., 2023), QuaRot (Ashkboos et al., 2024),
and DuQuant (Lin et al., 2024) smooth the distri-
bution of data to be quantized via matrix rotation,
to reduce the denominator of the scaling factor and
also lowering the quantization difficulty. Although



these works can achieve excellent 4-bit and 8-bit
quantization, they struggle to further reduce the
quantization bit-width. This problem largely stems
from the fact that the simple RTN quantization
method itself is difficult to support the quantization
quality required for very low-bit quantization.

An other line of works use vector Quantization,
such as VPTQ (Liu et al., 2024a) and GPTVQ (van
Baalen et al., 2024). This method clusters the data
to be quantized into several classes and maps the
data in the same class to the value with the small-
est total distance. The quantization accuracy of
this method is often higher than that of the RTN
method at the same level. However, since the quan-
tized values obtained by this method are not equally
spaced, inference cannot be accelerated using effi-
cient low-bit arithmetic with the quantized values.
Instead, dequantization must be performed before
inference, which negates all the speed-up benefits
of the quantization method.

To address these issues, we propose a quantiza-
tion framework, that can simultaneously achieve
small model size, fast computation, and high-
quality inferece outputs. It consists of three parts:
1-bit weight quantization with another bit for fine-
grain grouping, and 1 x 4 bits activation quantiza-
tion using 4 times 1-bit channel to represent 4bit
quantization. By this way, we are able to compute
the inner loop vector product in pure binary oper-
ations drastically boosting the inference speed as
well as reduce the model size. The main contribu-
tions of this work are as follows:

e We propose a novel W(1+1)A(1x4) post-
training quantization framework, where
weights are quantized to 1 bit with additional
bit for fine-grain grouping and activations are
quantized to 1 bit with a 4-fold increase in the
number of channels.

e We present an EM-based algorithm for search-
ing (1+1) bit weight quantization, noticeably
improved the performance compared with the
usual RTN approach wildly used in other PTQ
methods with fast inference speed and smaller
model size.

e We compare our proposed method with the
current state-of-the-art quantization methods.
Experimental results show that our method
significantly outperforms existing methods,
especially at very low bit-widths. On the
Wikitext2 benchmark, our method achieves

perplexities of 8.58 and 8.89 on LLaMA-7B
and LLaMAZ2-7B, respectively, using only the
W1A4 quantization setting. This significantly
surpasses the existing state-of-the-art meth-
ods and is comparable to the performance of
5.68 and 5.47 achieved by the original full-
precision models.

2 Related Works

In recent years, considerable research efforts have
been devoted to the low-bit quantization of LLMs.
Current works have achieved near-lossless quanti-
zation at W4A4 through methods such as mixed-
precision quantization (Zhao et al., 2024) and out-
lier smoothing using rotation factors (Ashkboos
et al., 2024; Liu et al., 2024b). However, these
methods encounter difficulties when attempting to
push towards even lower-bit quantization.

Consequently, some studies have begun to focus
on binarization methods (Courbariaux and Bengio,
2016; Qin et al., 2022) for LLMs. Most of these
works are based on Quantization-Aware Training
(QAT) theory. BitNet b1.58 (Wang et al., 2023),
BitNet a4.8 (Wang et al., 2024), OneBit (Xu et al.,
2024), and FBI-LLM (Ma et al., 2024) have de-
signed 1-bit Transformer architectures specifically
for LLMs, replacing all linear layers in the original
LLMs with specific quantized linear layers. These
methods can reduce the quantization bit-width of
weights to 1 bit and demonstrate significant advan-
tages over baseline models. Nevertheless, these
QAT methods requires substantial computational
resources, making it impractical for the quantiza-
tion of LLMs.

Some studies have also explored the possibility
of binarizing LL.Ms within the PTQ framework.
BiLLM (Huang et al., 2024a) and STBLLM (Dong
et al., 2024), inspired by the distribution charac-
teristics of weight values and the Hessian matrix,
adopt binary residual approximations for signif-
icant weights and optimal partitioning for group
binarization of non-significant weights, pushing the
quantization boundary of LLM weights down to 1
bit. However, most of these works exhibit subopti-
mal performance and necessitate an additional bit
to store fine-grained grouping information. More-
over, these works neglect the quantization of acti-
vation values, which obstructs the computational
acceleration of the quantized model and ultimately
results in relatively poor performance.

Both ABQ-LLM (Zeng et al., 2024) and QBB
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Figure 2: binarized weight and activation attention

(Bulat et al., 2024) propose the idea of decompos-
ing a high-bit matrix into a set of binary matrices
for accelerated computation. These methods hold
promise for achieving INT1 computational accel-
eration but are constrained by the limitations of
quantization bit-width and performance, prevent-
ing further improvements.

Based on current research on LLM binarization,
we believe that weight binarization of LLMs within
the PTQ framework is feasible. Compared to the
current state-of-the-art (SOTA) W4A4 quantization
efforts, W(1+1)A(1x4) quantized models can fur-
ther reduce computational and memory overhead.
Therefore, we propose our method, which further
pushes the boundaries of LLM quantization and
enriches the research on LLM binarization.

3 Method

In this section, we introduce our Binarized Weight
and Activation (BWA) approach, a novel paradigm
designed to simultaneously accelerate inference
speed and reduce memory footprint in Large Lan-
guage Models (LLMs). We begin by outlining the
architectural framework of the proposed BWA at-
tention module. Subsequently, we describe an EM-
based method for computing binarized weights that
are compatible with the proposed two-level group-
ing structure. Finally, we discuss the strategies
employed in this study and compare them to other
relevant methods.

3.1 Binarized weight and activation (BWA)
attention

Overall structure of BWA attention Our BWA
framework is a quantization-aware modification of

the standard attention module of a LLAMA-like
model.

Following the dataflow of the activations in Fig-
ure 2.(a), we introduce the overall structure. The in-
put activation is a C-dimensional FP16 vector. Af-
ter the RMSNorm layer, we quantize the activation
first from FP16 to INT4 using the standard Round-
To-Nearest (RTN) method, then further transform
it into four boolean variables. Next, the boolean
activations are fed into a binarized fully-connected
layers to compute K, Q, V matrices. The inner-loop
computation is boolean, but the outputs recovers
FP16 for query branch, and INT4 for key and value
branches, i.e., using 4-bit for KV cache. After the
attention, we transform the activation vectors to
boolean again so that all FC layer in the subsequent
projection operations are also binarized.

At the core of quantization task lies the binariza-
tion of fully connected (FC) layers, which account
for approximately 90% of memory bandwidth and
computation. In contrast, other components such
as normalization and attention score matrices con-
tribute to the remaining 10%. Consequently, our
work primarily focuses on the binarization of FC
layers, which are utilized in computing key (K),
query (Q), and value (V) matrices, as well as all
projection layers. Since the most computationally
expensive operation in these layers is the matrix-
vector multiplication within the inner loop, we pay
most effort to design a computational efficiency
FC layer, where the inner-loop only have binary
operations.

Binarized fully-connected layer The core mod-
ification of the proposed BWA attention module is
the binarization of the linear layer. To optimize the
tradeoff between model accuracy and efficiency,
we introduce a two-level weight grouping strategy
for weight binarization, and a binarized decompo-
sition to further quantize a 4-bit activations into
four 1-bit boolean variables. Consequently, in the
core inner-loop computation of the fully connected
layers, only boolean operations are involved, dras-
tically simplifying and boosting the computation.

Specifically, a FC layer computes a single token
y = Wa, where W € REnxCou g is the Cjy-
dimensional vector represented as an input token,
and y is the output token vector.

1) Channel-wise grouping Both weights and ac-
tivations have a width dynamical range, which are
hard to quantize using the same scaling parameter.
We sort the input channels by the average activation
scales of test samples X, i.e., sort according to



diag(X XT) in an ascending order. Then, follow-
ing the sorted order, we group the channels with
similar activation scale. In our implementation, we
divide the Coy = 4096 channels into 32 groups.
Each group has B = 128 channels.
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Note that channel-wise group is implemented by
a proper permutation of rows and columns of the
weight matrix. Therefore, channel-wise grouping
does not introduce any dditional computational or
memory cost.

2) Element-wise grouping Directly binarization
of W to 1-bit is not enough resulting severe model
degeneration forbidding practical usage, especially
combined the target to reduce the activation to 4
bit or lower. Similar to BiLLM, we use additional
element-level group to further group weight, and
quantize them separately.

Define the set Dy; C {0,1,2,...,B —1},and
its complementary Dy = {0,1,2,...,B — 1} \
Dy 1. We quantized the two group separately using
1-bit for each weight element

W (Beti) = Wi (Bevi) = @,595,(Beti) + Bjtss

2
for s = 1if i € Dy otherwise s=0, in which o 4
and 3; ¢, are two quantization parameters for each
fine-grained group. In the standard LLAMA 7b
model, each column-wise group contains has 128
channels. They are further categorized into two
element-wise group, of which the sizes may not
equal. The element-wise group are represented us-
ing a bit map. Together another bit g; ; representing
weight sign. The weight matrix uses 1+1 bit per
element.

This fine-grained level grouping can effectively
the accuracy at the expense of increase additional
computational cost. On the other hand, with proper
usage of bitmap operations, the cost can be sup-
pressed to be marginal. The element-wise grouping
has been used in the works (Huang et al., 2024a;
Dong et al., 2024), we improve this strategy by
leveraging EM-based parameter searching with
Hessian metric information to determine the op-
timal weighted split point.

3) Activation binarization. The input activation
is quantized before feeding into the FC layer from
FP16 to INT4 using the standard RTN method (3).

Specifically, the quantization process of RTN to
obtain X, with b bits is expressed as

X
X, = clamp(| =] +2,0,2° = 1),  (3)
H

max(X)—min(X)
nix)
min

where p is the scaling

parameter,z = is the shift parameter.
The clamp function denotes restricting the quanti-
zation result to the range between [0, 2% — 1]. The
notion | | signifies the nearest rounding operation.
1 1s the quantization step size and z represents the
Zero point.

To further binarize the activation, we first trans-
form the 4bit integer x; to four 1bit boolean vari-
ables b; , witha = 0,1,2,3

3
miR B =ppi+z= ) fabia, (4

a=—1

where p, = 2%u for a = 0,1,2,3 and a special
notation of 1 = z and b; _1 = 1 for the shift
constant. Moreover, we can also relax pj as a
free quantization parameter to be tuned manually
or learn from data. Note that as the weight is re-
ordered and grouped, the elements of the input
activation vector will be permuted accordingly.

4) Binarized FC layer We utilize the commu-
tative property of summation to make sure the in-
ner multiplication summation is binary, so that the
proposed method is actually boosting the computa-
tional speed.

Substituting (2) and (4)

[Cin/B1-1B-1

Y~ Z Z [(Oéj,&sqj,(BHz‘) + ﬁj,ﬁvs)
=0 =0
3
Z Nl,ab(BEJri),a}
a=—1
[[Ci/B]l-1 3
- Y Yy
/=0 a=—1 s=0,1
[Oéj,z,svj,z,s + Bj,e,srj,f,s} , )

with the bit-wise inner product v; ¢ ; and counting
number of bits valued 1

Vjs = Z 4, (Be+i)b(Bevi)s Ties = Z bBeti)-
i€Dy 5 1€Dy 5

(0)

Since the above two summation only involves bit

variable q; pei4), b(Beti), and the set Dy and



Dy 5 is represented by a bitmap, therefore, they can
be implemented efficiently by bit-wise XOR/AND
and popc operation.

For the bit-operation of (6), let e = ¢ A b. Then,
v, r in (6) can be computed by

vj0s—=0 = Popc (e Am),

vjes=1 = Popc (e A (—m)) o
6,s=0 = Popc (b Am),

rj6,s=1 = Popc (b A (—m)

The inner loop, which originally be a
multiplication-summation operation of 64 num-
bers, reduces to four bit-wise operations on 128
bits length variables, which can be efficiently im-
plemented on both GPU and CPU.

5) Outlier activation In this paper, we trick the
last channel-wise group as outlier, and use INT8
to quantize rather then the two bits following the
work (Yuan et al., 2023; Zhao et al., 2024). It is
hardware-friendly and can efficiency implemented
via reordering the channels. Different from other
methods, which usually use 256 channel for for
outliers, we only use minimal 1 group, which only
contain 128 channels for the outliers. This min-
imizes the outlier overhead to approximately 3%
of the total channels in INTS8 and representing all
other normal channels in INT1. Experiments for set
more outlier groups are done in Appendix, which
can further improve the performance at the expense
of costing extra bits.

3.2 Weight binarization and parameterization
by Fine-Grained Group Hessian-Aware
Quantization

In this subsection, we propose an EM-based
method to determine the binarized values of the
weight matrices and the associated parameters for
dequantization.

The weight matrix is quantized according to (2),
where g; (i) represents the binarized weight,
and o, (s denote the scaling and shifting
parameters, respectively, used for dequantization.
Furthermore, we also require a bit map matrix of
identical dimension to the weight matrix, which
serves to determine the fine-group affiliation of
each corresponding element.

We start from minimizing the L2 norm of the
weight matrix W, utilizing an approximate Hes-
sian weight as proposed in (Hassibi and Stork,

1992; Frantar and Alistarh, 2022)

1 2
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where the Hessian matrix H = X X7 is deter-
mined using a validation dataset, encapsulates in-
formation about the activation values during the
computation of linear layers and gradient informa-
tion during back propagation.

In our binarized parameterization (2), each chan-
nel (indexed by 7) and each channel-wise group (in-
dexed by ¢) are parameterized independently. With-
out loss of generality, we only focus on a single
channel-wise group, which has B weight elements
w;, 7 € 0,1,..., B — 1. The binary representation
of W with a binary element-wise group can at most
have four different float-point values. Therefore,
the quantization problem boils down to a 1-D clus-
tering problem to determine 4 clusters, centered
atw(0,0), w(0,1), w(1,0), w(1,1). Formally, for
each group, we solve the following minimization
problem

B-1

> (witi(si, ;) /diag(H),;

i=0

©)
where s, q represents the fine-group affiliation and
the binary weight value respectively. Knowing the
four values of w, one can recover the scaling and
shifting parameters o ¢ ; and 3; ¢ ; by the method
of undetermined coefficients formalized as a set of
4-D linear equations.

In practice, we spare the last channel-group for
outlier activation using more bits, in which the
corresponding weights are also quantized to the
same type INT8. We implement a revised EM
algorithm, as shown in Algorithm 1, to solve the
above optimization problem with the last channel
group as INT8 quantization.

min
5,q€{0,1}B weR?

3.3 Remarks on quantization strategies

We provide additional discussion on the quanti-
zation strategies employed in our approach, com-
paring them to existing methods such as the RTN
quantization, vector quantization for weight quan-
tization, and a recent work on binarized residual
decomposition for activation quantization.

RTN quantization v.s. fine-group binary
weight In our method, we utilize 1 bit to store
binary weights and an additional 1 bit to represent
element-wise group affiliation, effectively using



Algorithm 1 Main Framework of our method

Require:
W € RCoutxCin weight matrix
X € RT*Cn_calibration data
B, block size
K, outliers keep in INT8
iters, EM steps
Ensure:
B, weights after dequantization
D, fine-grained group information
W = reorder(W, diag(XX1))

l:

2. H=2XX" > Hessian matrix

3: H® = Cholesky((H + A\I)~1)

4: B =0¢;, xCou:

5: fori=0,B,2B,...,.Cys — K — Bdo

6: W’=W._.p

7. H? =diag(Hi;, p .i1 B)

8:  C = init_centers(W? H?)

9: for j =1 toiters do

10: D = get_groups(W?, H?,C) > E-step

11: I = get_clusters(W?, H?,C, D) >
M-step

12: C = update_centers(W?, H? I,D) >
M-step

13:  end for
14:  B.;;+p = binary(W?,C,I,D)
1. E= OB

H°P
16:  W.iipc,u-k = W.itrBCop-k — E -
Hzczi+B,i+B:
17: end for
18: B. c,.,— k: = quant_int8(W. ¢, k)
19: Return B, D

2 bits of information. It enables each weight ele-
ment to take on four distinct values. In contrast
to the RTN quantization method widely used in
other post-training quantization (PTQ) methods,
where dequantized values are equally spaced, our
model allows the four values to be chosen arbitrar-
ily, which is optimized by the proposed EM-based
algorithm.

Vector quantization v.s. fine-group binary
weight The optimization process for dequantiza-
tion parameters in our approach is similar to that
employed in vector-quantization-based methods
(Frantar et al., 2022; van Baalen et al., 2024), where
2" floating-point values are stored as representa-
tive values for n-bit quantization. In these ap-
proaches, dequantization must be performed before
computing the vector inner product. In contrast, our

method further parameterizes the representatives
using binary weights and fine-grained group bits,
along with floating-point scaling and shift param-
eters. This enables us to compute the vector inner
product using pure Boolean operations as shown in
(7), resulting in a significant boost in computational
speed.

Binarized residual decomposition and 1 x 4
bit representation of activation The work (Zeng
et al., 2024) explored the approach of transforming
arbitrary integer weight and activation WxAa into
xa x W1AL1 to achieve computational acceleration.
It make use of bit operation to computation inner-
loop vector product, but the original work can not
get good below W4A4. On the other hand, the ex-
pansion of high bits weight and activation usually
result heavy over head, as the number of chan-
nel vectors (relates to memory bandwidth) roughly
from (x + a) bits to (xa) bits. In this work, we
manage to reduce W (1 + 1)A(1 x 4), together
with bitmap operation on the fine-grain group, the
over-head cost is marginal.

4 Experiments

Setup. We implemented our method on the Py-
Torch (Paszke et al., 2019) framework, where all
linear layer weights in the original model are quan-
tized to 1+1 bit, and input activations of all linear
layers are quantized to 1x4 bits. For weights, we
adopt per-channel asymmetric quantization with
a clipping ratio set to 1.0 across all experiments,
utilizing the GPTQ quantization framework to com-
pensate for quantization errors. For activations, we
employ per-token asymmetric quantization with a
clipping ratio of 1.0. To optimize performance, we
use RTN for dynamic quantization of the activa-
tion matrix. For KV caches, we uniformly apply
4 bits quantization to store and load. The quanti-
zation group size is 128, and the number of outlier
channels is 128 (approximately 3% of all channels).
We use 128 random samples from the WikiText2
(Merity et al., 2016) training set as the calibration
dataset, with a sequence length of 2048. The exper-
iments related to the 7B model were conducted on
a single NVIDIA GeForce RTX 3090 GPU, while
the experiments involving the 13B model and ac-
celeration efficiency were carried out on a single
NVIDIA GeForce RTX A6000 GPU. All experi-
ments were conducted more than three times, and
the average values were recorded.

Models and Datasets. We apply our method



Table 1: Perplexity(].) and Zero-shot QA accuracy(?) results under the W4A4 and W2A4 settings on LLAMAI1-7B
and LLAMAZ2-7B. "FP16" denotes the performance of the original model represented in FLOAT 16 format, with the
best quantization performance highlighted in bold. The experimental results on the 13B model are presented in

Table 3, Table 4, and Table 5.

Model Bits Method  Wiki.,  PTB| C4]  PIQAT ARC-ET  ARC-Ct  BoolQT  Hella.t  Wino.t  Avg.t
FP16 - 5.68 27.34 7.08 77137 5248 4138 73.06 73.00 67.01 64.05

Wana QuaRot 6.41 4973 343 7481 50.13 3874 70.98 68.80 61.56 61.01

LLAMAL Atom 630 30.28 7.98 7535 51.60 36.69 70.86 67.27 64.33 62.21
B WA QuaRot 1439 22295 27.10 5952 37.88 26.62 62.20 4156 54.62 47.07
Atom 16.65 29878  33.87 57.24 3523 26.11 53.98 36.77 50.51 4331

W(I+DAI6 BiLLM 35.04 2127 39.59 61.20 36.00 25.70 62.70 36.80 51.10 4558

W(+DA4 BiLLM 18304 17152 20736 50.05 2538 2654 49.63 26.05 49.49 37.86

W(I+DA(Ix4)  Ours 8.58 76.09 1227 68.88 45.03 30.89 69.63 55.41 59.35 54.87

FP16 - 547 2251 6.97 76.93 5358 4053 71.07 72.96 67.17 63.71

Wana QuaRot 6.32 7121 3.67 7432 51.60 3823 68.41 69.24 61.56 60.89

LLAMAS Atom 6.18 27.94 8.05 75.24 52.74 37.12 71.16 67.89 63.93 62.58
B WA QuaRot 4998 57122 80.14 54.41 2845 2321 57.89 2857 4815 2011
Atom 19.49 50882  39.85 56.69 3232 2321 58.53 35.74 49.49 42,66

W(I+DAI6 BiLLM 3248 387738 40.52 60.60 36.20 24.40 61.80 34.80 5240 45.03

W(+DA4 BiLLM 16128 17152 15168 5022 26.30 27.90 4523 26.10 49,88 37.61

W(+DA(Ix4)  Ours 8.89 69.46 1274 68.72 46.13 3055 66.12 55.76 58.01 54.22

to the open-source LLAMA1 (7B, 13B) (Touvron
et al., 2023a), LLAMA?2 (7B, 13B) (Touvron et al.,
2023b), and Vicuna (7B, 13B) (Chiang et al., 2023)
models and evaluate their performance on language
generation and commonsense QA tasks. The pri-
mary metric for language generation tasks is per-
plexity, assessed on datasets including WikiText2,
PTB (Marcus et al., 1994), and C4 (Raffel et al.,
2020). For commonsense QA tasks, the main met-
ric is zero-shot accuracy, evaluated on datasets
such as PIQA (Bisk et al., 2020), ARC (Clark
etal., 2018), BoolQ (Clark et al., 2019), HellaSwag
(Zellers et al., 2019), and WinoGrande (Sakaguchi
et al., 2021). Except for the C4 dataset, where we
randomly select 256 samples of length 2048 from
the test set for evaluation, we utilize the entire test
set portion of these datasets for our testing.
Baseline. We compare our approach with state-
of-the-art (SOTA) PTQ methods for weights and
activations. Since few existing methods explore the
W2A4 quantization setting, we implement W2A4
quantization for all compared methods to ensure
fairness before evaluation. Our main baselines in-
clude Atom (Zhao et al., 2024), QuaRot (Ashkboos
et al., 2024), and BiLLM (Huang et al., 2024a).
Atom and QuaRot are SOTA methods under the
W4A4 quantization setting, while BiLLM is the
SOTA for the W(1+1)A16 quantization setting.

4.1 Main Results

Language Generation Tasks. We assess the per-
plexity of our method on language generation tasks
and conduct a fair comparison with existing SOTA
methods. As shown in Table 1 and Table 3, Atom

and QuaRot, as SOTA methods under the W4A4
setting, experience significant performance drops
under the W2A4 setting. In contrast, our method
significantly outperforms these methods on all
datasets under the W(1+1)A(1x4) setting which
is equivalent to W2A4, and our method’s perplex-
ity evan approaches that of the FP16 model. It is
noteworthy that BiLLM also utilizes an additional 1
bit to store extra fine-grained grouping information,
thus we consider it as a W(1+1)A16 approach. As
a similar method that employs fine-grained group-
ing like our method, its performance under the
W(1+1)A16 configuration is significantly outper-
formed by our method with the W(1+1)A(1x4)
setting. Furthermore, when its activation values
are quantized to 4 bits, the performance of BiLLM
rapidly deteriorates.

Zero-Shot Tasks. We also evaluate our method
on six important zero-shot tasks. Table 1 and Ta-
ble 3 presents the comparison results between our
method and the baselines. our method significantly
outperforms existing methods under the W2A4
quantization setting and demonstrates stable ac-
curacy, approaching the performance of the FP16
model.

4.2 Performance Analysis

Speedup. To evaluate the inference acceleration
provided by our method, we adopt the kernel im-
plementation from ABQ-LLM (Zeng et al., 2024),
which supports decomposing arbitrary-dimensional
WxAx operations into multiple W1A1 computa-
tions and leverages the acceleration effect of INT1
multiplication for significant speedup in matrix
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Figure 3: A comparison of the time cost between the
W(1+1)A(1x4) kernel and the INT4, INT8 kernels of
CUTLASS for matrix multiplication on the A6000.
More results are presented in Figure 4.

multiplication. We test the speedup of our method
under the W(1+1)A(1x4) setting on an A6000 com-
pared to different bit-width settings supported by
CUTLASS, such as W8AS8 and W4A4. Because
the weights actually involved in the computations
in our method are 1 bit, with an additional 1 bit
solely used for storing fine-grained grouping infor-
mation, we consider our method as a quantization
method that can be viewed as a decomposition from
W2A4 downwards in terms of computational accel-
eration comparison. As shown in Figure 3, in terms
of single-layer matrix computations, our method
exhibits a more substantial speedup in comparison
to other bit-width settings, surpassing the kernel ac-
celeration of CUTLASS by a factor of 3 in matrix
computations. This demonstrates that the approach
of using INT1 for acceleration in our method can
fully leverage the speedup benefits of low-bit com-
putations. Moreover, since both the weights and
activations in our method are quantized to very low
bit-widths, the additional computational overhead
introduced by the decomposition does not signif-
icantly impact the gains achieved through INT1
computation.

4.3 Ablation Studies

To evaluate the effectiveness of different quanti-
zation modules in our method, we compared the
accuracy gains or losses among various quantiza-
tion techniques employed within our method. The
results presented in Table 2 demonstrate that outlier
handling, Minimum distance quantization, and fine-
grained grouping, as the basic processing schemes

Table 2: Ablation experiments on the effects of different
quantized components used in our method, with all ex-
perimental results based on LLAMA1-7B and a group
size of 128.

Quantization Method Wiki. |
LLAMA-7B FP16 5.68
W1A4 GPTQ (Group size 128) 216713
+ Keep 128 outlier channels in INT8 6749

+ Minimum distance quantization 126.89
+ Fine-grained group, W(1+1) 8.69

+ Hessian-weighted distance metric 8.65

+ Binarized Residual Decomposition, A(1x4)  8.58

in our method. Each step significantly enhances
the performance of the quantized model, effectively
mitigating the performance collapse issue observed
in the W1A4 quantized model. The introduction
of the Hessian-weighted distance metric and bi-
narized residual decomposition further boosts the
quantized model’s performance. Although numeri-
cally, the improvements in perplexity brought about
by these two methods are not substantial, this is
because the previous enhancements have already
pushed the performance metrics close to those of
the original model, leaving limited room for further
improvement. Theoretically, the Hessian-weighted
distance metric reveals a measure of weight impor-
tance, while the binarized residual decomposition
elucidates the direction of performance enhance-
ment after binarization decomposition.

5 Limitations

Although our our method can achieve fully bina-
rized computation to reduce computational over-
head during inference, a trade-off must be made re-
garding the accuracy of the quantized model. Con-
sequently, we need to utilize additional bits to store
the information of the quantized matrices, with
the actual storage bits for weights and activations
equivalent to 2 bits and 4 bits, respectively. This
implies that our model has not been compressed to
the theoretical extreme of a boolean model, leav-
ing room for further improvement. Meanwhile,
although the performance of our our method across
various evaluation tasks is close to that of the pre-
quantized model, it is not truly lossless quantiza-
tion. This loss indicates that the quantized model
has not fully restored the representational capacity
of the original model. In the future, we consider em-
ploying methods that integrate quantization-aware



training to further enhance the efficiency and per-
formance of our method.
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A Additional Experimental Results

Time required for quantization. Our method
quantizes the weight matrices within all linear lay-
ers of the full-precision model. The quantization
process for the 7B model can be completed in ap-
proximately 20 minutes, while the 13B model re-
quires only about 30 minutes.

Results on 13B models. As shown in Table 4
and Table 5, we evaluated the performance of our
method and other quantization methods on lan-
guage generation tasks and zero-shot QA task ac-
curacy using LLAMA1-13B and LLAMA2-13B
models. Our findings indicate that, in general, the
model performance adheres to the principle that
increasing the number of model parameters leads
to improved model performance. Furthermore, our
method achieved state-of-the-art results across all
evaluated metrics.

Results of different outlier channel number set-
tings. In Table 6, we compare the relationship
between different numbers of outlier channels and
the quantization performance of our method. Since
the group size is set to 128, we also use 128 as
the unit here. The results demonstrate that preserv-
ing a small number of outliers with high precision
can ensure overall quantization performance. Fur-
thermore, when the number of outlier channels is
increased, the model performance exhibits a nearly
linear upward trend, with only a modest overall im-
provement. Therefore, we adopt 128 outlier chan-
nels as our baseline setting.



Table 3: Perplexity(]) and Zero-shot QA accuracy(T) results under the W4A4 and W2A4 settings on Vicuna family.
"FP16" denotes the performance of the original model represented in FLOAT16 format, with the best quantization

performance highlighted in bold.

Model Bits Method Wiki.| PTB| C4. PIQAT ARC-E1 ARC-CT BoolQ71 Hella.t Wino. 1 Avg. T
FP16 - 6.78 26.78 8.55 77.80 56.06 39.93 75.69 71.06 67.80 64.72

WaA4 QuaRot 7.80 52.44 10.87 73.67 53.20 37.71 7245 67.66 60.93 62.12

Vicuna Atom 7.22 31.75 9.36 75.14 55.60 37.63 77.25 67.08 64.40 64.42
-v1.5-7B W2A4 QuaRot 39.51 226.50 65.17 55.66 33.38 22.75 62.08 31.71 50.51 44.03
Atom 15.96 107.68 25.13 56.64 31.90 29.61 64.07 46.30 55.33 47.31

W(+1)A(1x4) Ours 9.51 45.61 13.35 69.97 50.00 33.45 71.96 57.81 59.43 57.10

FP16 5.95 25.15 778 78.40 56.44 44.80 76.51 74.63 69.06 66.64

WaA4 QuaRot 6.81 54.16 9.64 74.81 51.43 40.53 70.73 70.96 62.12 62.51

Vicuna Atom 6.32 27.64 8.25 76.44 54.67 43.34 74.83 72.07 66.46 65.37
-v1.5-13B W2A4 QuaRot 18.32 273.86 37.86 56.69 36.49 26.11 62.42 38.40 53.59 45.54
Atom 19.84 174.63 36.39 54.95 34.13 25.68 61.74 37.55 52.17 44.37

W(+1)A(1x4) Ours 791 49.71 11.45 71.44 52.36 38.65 68.93 62.34 62.35 59.35

Table 4: Perplexity(]) results under the W4A4 and W2A4 settings on LLAMA1-13B and LLAMA2-13B. "FP16" de-
notes the performance of the original model represented in FLOAT'16 format, with the best quantization performance

highlighted in bold.
. Perplexity | . Perplexity |
Model Bits Method Wiki. PTB 3 Model Bits Method Wiki. PTB 4
FP16 - 5.09 19.23 6.61 FP16 - 4.88 28.87 6.47
WaA4 QuaRot 5.71 36.10 7.57 WaA4 QuaRot 5.59 64.27 7.84
LLAMA1 Atom 5.47 22.16 7.04 LLAMA2 Atom 5.26 32.46 6.95
-13B QuaRot 11.14 156.30 20.80 -13B QuaRot 17.49  386.40 38.88
W2A4 Atom 11.69 115.62 19.55 W2A4 Atom 11.24 152.68 18.15
W(1+1)A(1x4)  Ours 7.19 37.20 10.18 W(1+1)A(1x4)  Ours 717 56.91 10.44

Table 5: Zero-shot QA accuracy(1) results under the W4A4 and W2A4 settings on LLAMA1-13B and LLAMA2-
13B. "FP16" denotes the performance of the original model represented in FLOAT16 format, with the best

quantization performance highlighted in bold.

Model Bits Method

Zero-shot Accuracyt

PIQA ARC-E ARC-C BoolQ HellaSwag  WinoGrande Avg.

FP16 - 79.05 59.89 44.71 68.47 76.23 70.24 66.43

WAA4 QuaRot 76.61 55.30 41.64 67.09 73.02 65.59 64.24

LLAMAI-13B Atom 77.64 58.38 41.81 68.50 73.75 65.98 64.64
WAL QuaRot 64.42 41.50 28.75 63.36 48.49 56.67 50.53

Atom 59.68 36.62 29.01 58.56 44.84 52.01 46.79

W(+1)A(1x4)  Ours 72.09 48.57 34.13 62.54 62.63 64.88 57.47

FP16 - 79.00 57.95 44.28 69.02 76.58 69.69 66.09

WAA4 QuaRot 76.93 52.10 40.70 68.10 72.70 62.51 62.99

LLAMA2-13B Atom 77.37 56.73 42.32 67.62 74.07 68.27 65.46
W2A4 QuaRot 59.09 34.60 24.23 62.11 35.03 51.38 44.41

Atom 61.15 40.36 29.52 61.56 45.62 51.22 48.24

W(I1+1)A(1x4)  Ours 71.98 49.92 36.26 65.90 60.52 61.80 57.73

Comparison of different kernels. In Figure 4, we
comprehensively evaluate the performance of the
W(1+1)A(1x4) kernel and the INTS8, INT4 kernels
from CUTLASS, based on the matrix multiplica-
tion sizes that may occur in the LLAMA model.
Since our method incorporates a small amount of
INTS8 mixed-precision quantization, for the han-
dling of outliers, we separately measure the com-
putational efficiency of outliers and normal values.
Subsequently, we derive the overall computational
efficiency by considering the proportion of these
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two components.

Model Size. We present in Table 7 the theoretical
compression effectiveness of our method on mod-
els of various sizes within the LLAMA family. In
our calculation of the model size, we have included
both the quantization parameters and the additional
storage incurred by fine-grained grouping, which
results in our findings being slightly larger than
those reported in BiLLM (Huang et al., 2024a).
The binarization of weights significantly reduces
the storage size of quantized LLMs and the GPU



Table 6: The impact of different outlier channel number settings of the quantized model on the perplexity (J.) and the
zero-shot QA accuracy(T). "FP16" denotes the performance of the original model represented in FLOAT16 format.

Model Ch. ‘ Wiki.| PTB| C4) PIQAT  ARC-E1t  ARC-CT  BoolQT  Hella.t  Wino.T  Avg.T
FP16 5.68 27.34 7.08 77.37 52.48 41.38 73.06 72.99 67.01 64.05
0 471.19 102528  228.17 53.59 28.75 24.57 50.73 28.13 50.51 39.38
128 8.58 76.09 12.27 68.88 45.03 30.89 69.63 55.41 59.35 54.87
LLél\BjIAl 256 8.20 65.97 11.70 69.75 4533 32.42 65.87 56.31 57.85 54.59
512 7.80 57.44 10.90 71.27 47.94 34.22 65.57 58.46 59.19 56.11
768 7.52 52.06 10.44 71.38 47.31 34.04 66.12 60.09 61.17 56.69
1024 7.26 50.42 9.95 72.14 47.01 34.39 69.30 61.16 61.01 57.50
FP16 5.47 22.51 6.97 76.93 53.58 40.53 71.07 72.96 67.17 63.71
LLAMA2 128 8.89 69.46 12.74 68.72 46.13 30.55 66.12 55.76 58.01 54.22
-7B 256 8.52 61.01 12.16 69.97 47.64 31.57 68.50 56.22 59.19 55.51
512 8.00 56.77 11.43 69.80 46.97 31.66 67.83 57.55 60.77 55.76
FP16 6.78 26.78 8.55 77.80 56.06 39.93 75.69 71.06 67.80 64.72
Vicuna 128 9.51 45.61 13.35 69.97 50.00 33.45 71.96 57.81 59.43 57.10
-v1.5-7B 256 9.28 44.01 12.94 70.35 51.05 34.04 72.97 58.42 61.40 58.04
512 8.88 41.49 12.42 71.87 50.76 34.22 73.79 58.80 64.09 58.92

Weight Matrix: 4096x4096 Weight Matrix: 4096x11008 Weight Matrix: 11008x4096
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—e— W44 cutlass line
—e— W8A8 cutlass line
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Activation Matrix Activation Matrix Activation Matrix

Figure 4: A comparison of the computational efficiency between the W(1+1)A(1x4) kernel and the INT4, INT8
kernels of CUTLASS for matrix multiplication with varying input lengths is conducted on the A6000.

memory and bandwidth requirements during infer-
ence. Across LLAMA models of different sizes,
our method achieves a compression ratio of over
5x.

Table 7: Model size comparison of LLAMA family.

Models FP16 Ours

LLAMA-7B 13.5GB 2.69GB
LLAMA-13B  24.2GB 4.82GB
LLAMA-30B 60.5GB  12.05GB
LLAMA-65B 121.0GB 24.11GB

B Ai Assistants in Research or Writing

We use a local LLama3.3 model to polish the draft
for checking grammar and improving expression.
Research ideas, experiment design and discussion
contents are all original by the authors.
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