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Abstract

Residual connection has been extensively studied and widely applied at the model
architecture level. However, its potential in the more challenging data-centric
approaches remains unexplored. In this work, we introduce the concept of Data
Residual Matching for the first time, leveraging data-level skip connections to
facilitate data generation and mitigate data information vanishing. This approach
maintains a balance between newly acquired knowledge through pixel space opti-
mization and existing core local information identification within raw data modal-
ities, specifically for the dataset distillation task. Furthermore, by incorporating
training-time refinements, our method significantly improves computational effi-
ciency, achieving superior performance while reducing training time and peak GPU
memory usage by 50%. Consequently, the proposed method Fast and Accurate
Data Residual Matching for Dataset Distillation (FADRM) establishes a new state-
of-the-art, demonstrating substantial improvements over existing methods across
multiple dataset benchmarks in both efficiency and effectiveness. For instance, with
ResNet-18 as the student model and a 0.8% compression ratio on ImageNet-1K, the
method achieves 48.4% test accuracy in single-model dataset distillation and 50.9%
in multi-model dataset distillation, surpassing RDED by +6.4% and outperforming
state-of-the-art multi-model approaches, EDC and CV-DD, by +2.3% and +4.9%.

1 Introduction
FADRM+ (Ours) FADRM (Ours) SRe2L++ EDC G-VBSM

IPC=50IPC=10IPC=1

Figure 1: Total training hours on a single RTX-
4090 vs. test set accuracy, comparing prior state-
of-the-art methods with our proposed framework
(+ denotes multi-model distillation).

In recent years, the computer vision and natural
language processing communities have predom-
inantly focused on model-centric research, driv-
ing an unprecedented expansion in the scale of
neural networks. Landmark developments such
as LLMs and MLLMs in ChatGPT [26, 1], Gem-
ini [36], DeepSeek [19] and other large-scale
foundation models have shown the tremendous
potential of deep learning architectures. How-
ever, as these models grow in complexity, the
dependency on high-quality, richly informative
datasets has become increasingly apparent, set-
ting the stage for a paradigm shift towards data-
centric approaches. Historically, the emphasis
on building bigger and more complex models
has often overshadowed the critical importance
of the data. While model-centric strategies have
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Figure 2: Overview of FADRM. It starts by downsampling the real data patches (both 1×1 and
2×2 [33] can be used as initialization and perform well in our experiments, meanwhile imposing
downsampling to reduce cost). These downsampled images are subsequently processed through
a series of proposed Data Residual Blocks. Each block utilizes a pretrained model to optimize
the images within a predefined optimization budget, resamples them to a target resolution, and
incorporates residual connections from the original patches via a mixing ratio α. Finally, the images
undergo an additional recovery stage, without residual connections, to produce the final distilled data.

delivered impressive results, they tend to overlook the benefits of optimizing data quality, which
is essential for achieving higher performance with lower data demands. Recent advancements in
data-centric research highlight the importance of improving information density, reducing the volume
of required data, and expediting the training process of large-scale models, thus presenting a more
holistic approach to performance enhancement.

Within this evolving landscape, dataset distillation [39], also called dataset condensation [14, 47, 43]
has emerged as a pivotal area of research. The goal of dataset distillation is to compress large-scale
datasets into smaller, highly informative subsets that retain the essential characteristics of the original
data. This approach not only accelerates the training process of complex models but also mitigates the
storage and computational challenges associated with massive datasets. Despite significant progress,
many existing state-of-the-art methods in dataset distillation still struggle with issues related to
scalability, generalization across diverse data resolutions, realism and robustness.

While residual connections have been well studied and widely implemented in the model architecture
design field, primarily to prevent gradient vanishing and ensure effective feature propagation, their
potential within data-centric paradigms remains largely unexplored. At the model level, residual
connections help maintain the flow of gradients and enable deeper network architectures. In contrast,
at the data level, similar connections can potentially prevent the loss of critical original dataset
information and improve scalability and generalization across architectures during the data distillation
process. This observation and design introduce a novel perspective on leveraging residual mechanisms
beyond traditional model optimization, especially in the challenging domain of dataset optimization.

In this work, we introduce for the first time the concept of Data Residual Matching for dataset
distillation. Our approach leverages data-level skip connections, a novel idea for data-centric task
to prevent real data information vanishing in multi-block data synthesis architecture. We call our
method Fast and Accurate Data Residual Matching (FADRM), which, as shown in Fig. 2, employs
a multi-resolution image recovery scheme that utilizes image resolution shrinkage and expansion
in a residual manner, thereby capturing fine-grained details and facilitating the recovery of both
global and local information. This balance between newly acquired knowledge through pixel space
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optimization and the preservation of existing core local information within raw data modalities marks
a significant advancement in dataset distillation. By integrating these data-level residual connections,
our approach enhances the generalization and robustness of the distilled datasets.

Exhaustive empirical evaluations of our proposed FADRM on CIFAR-100 [15], Tiny-ImageNet [16],
ImageNet-1K [8] and its subset demonstrate that it not only accelerates the dataset distillation process
by 50% but also achieves superior accuracy that beats all previous state-of-the-art methods on both
accuracy and generation speed. This approach effectively bridges the gap between model-centric
and data-centric paradigms, providing a robust solution to the challenges inherent in high-quality
data generation. Our contributions in this paper are as follows:

• We extend conventional residual connection from the model level to the data level area, and
present for the first time a simple yet effective, theoretically grounded residual connection
design for data generation to enhance data-centric task.

• We introduce a novel dataset distillation framework based on the proposed data residual
matching, incorporating multi-scale residual connections in data synthesis to improve both
efficiency and accuracy.

• Our approach achieves state-of-the-art results across multiple datasets, such as CIFAR-100,
Tiny-ImageNet and ImageNet-1K, while being more efficient and requiring less computa-
tional cost than all previous methods.

2 Related Work

Dataset Distillation aims to synthesize a compact dataset that retains the critical information of
a larger original dataset, enabling efficient training while maintaining performance comparable to
the full dataset. Overall, the matching criteria include Meta-Model Matching [39, 25, 23, 49, 9, 12],
Gradient Matching [47, 45, 18, 14, 48], Trajectory Matching [4, 7, 5, 10], Distribution Matching [46,
38, 21, 17, 27, 32, 41], and Uni-level Global Statistics Matching [43, 30, 31, 42, 6, 40]. Dataset
distillation on large-scale datasets has recently attracted significant attention from the community.
For a detailed overview, it can be referred to the newest survey works [29, 20] on this topic.

Efficient Dataset Distillation. Several methods improve the computational efficiency of dataset
distillation. TESLA [7] accelerates MTT [4] via batched gradient computation, avoiding full graph
storage and scaling to large datasets. DM [46] sidesteps bi-level optimization by directly matching
feature distributions. SRe2L [43] adopts a Uni-Level Framework that aligns synthetic data with
pretrained model statistics. G-VBSM [30] extends this by using lightweight model ensembles.
EDC [31] further boosts efficiency through real data initialization, accelerating convergence.

Residual Connection in Network Design. Residual connections have played a pivotal role in
advancing deep learning. Introduced in ResNet [11] to alleviate vanishing gradients, they enabled
deeper networks by improving gradient flow. This idea was extended in Inception-ResNet [34] through
multi-scale feature integration, and further generalized in DenseNet [13] via dense connectivity and
feature reuse. Residual designs have also been central to Transformer architectures [37].

3 Approach

Preliminaries. Let the original dataset be denoted by O = {(xi, yi)}|O|
i=1, and let the goal of dataset

distillation be to construct a compact synthetic dataset C = {(x̃j , ỹj)}|C|j=1,with |C| ≪ |O|, such that
the model fθC trained on C exhibits similar generalization behavior to the model fθO trained on O.
This objective can be formulated as minimizing the performance gap over the real data distribution:

argmin
C,|C|

sup
(x,y)∼O

|L (fθO (x), y)− L (fθC (x), y)| (1)

where the parameters θO and θC are obtained via empirical risk minimization:

θO = argmin
θ

E(x,y)∼O[L(fθ(x), y)], θC = argmin
θ

E(x̃,ỹ)∼C [L(fθ(x̃), ỹ)]. (2)

The goal is to generate C in order to maximize model performance with minimal data. Among existing
methods, a notable class directly optimizes synthetic data without access to the original dataset,
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referred to as uni-level optimization. While effective, this approach faces two key limitations: (1)
progressive information loss during optimization, termed information vanishing, and (2) substantial
computational and memory costs for large-scale synthesis, limiting real-world applicability.

Information Vanishing. In contrast to images distilled using bi-level frameworks, the information
content in images generated by uni-level methods (e.g., EDC [31]) is fundamentally upper-bounded,
as the original dataset is not utilized during synthesis (see Theorem 1). As optimization progresses,
the information density initially increases but eventually deteriorates due to the accumulation of local
feature loss. This degradation leads to information vanishing (see Fig. 3), which significantly reduces
the fidelity of the distilled images and limits their effectiveness in downstream tasks.
Theorem 1 (Proof in Appendix A.2). Let fθ denote a pretrained neural network on the original
dataset O, with fixed parameters and corresponding BatchNorm statistics BNRM and BNRV. Let x̃
be a synthetic sample obtained by minimizing a general objective L(fθ;x) that relies exclusively on
information extracted from the pretrained model fθ (e.g., its predictive output distribution or internal
feature statistics alignment), that is, x̃ = argminx L(fθ;x). Define

H(fθ) = sup
x∈supp(O)

H(fθ(x)) (3)

as the maximum per-sample Shannon entropy of the model’s output. Then, the mutual information
between the optimized distilled dataset C = {(x̃j , ỹj)}|C|j=1 and the original dataset O is bounded by

I(C;O) ≤ |C|H(fθ). (4)

The insight of this theorem is that if the pretrained model fθ is overly confident on all inputs (low
maximum entropy), then H(fθ) is small, and thus the distilled set, no matter how we optimize it,
cannot encode a large amount of information about O.
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Figure 3: The above figures illustrate the phenomenon of Information Vanishing. The Left Figure
shows the evolution of information density across optimization steps, quantified through feature-level
entropy using a pretrained ResNet-18 [11], comparing uni-level optimization (W/O ARC) with our
FADRM (W/ ARC). The gray lines highlight the information density enhancement achieved through
residual connection. The Right Figure shows the comparison of information scores (higher is better)
across different classes, measured by pixel-level entropy, among FADRM, SRe2L++, and RDED. All
experiments are conducted on a distilled ImageNet-1K dataset with IPC=10.

Computational Challenges. Although uni-level frameworks exhibit scalability to large-scale datasets,
the overall time required to generate a large distilled dataset remains prohibitively expensive. As
illustrated in Fig. 1, EDC [31] requires nearly 70 hours to generate a 50 IPC distilled dataset, which
limits its applicability in contexts involving repeated runs, large-scale data synthesis, or comprehensive
empirical analysis. This motivates the need for more computationally efficient optimization strategies.

3.1 Overview of FADRM

The proposed FADRM framework, as illustrated in Fig. 2 and detailed in Algorithm 1, addresses the
limitations of existing uni-level optimization frameworks by integrating three proposed components:
(1) MPT: a mixed-precision training scheme that accelerates optimization and reduces computation
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by casting model parameters to lower-precision formats, (2) MRO: a multi-resolution optimization
that improves computational efficiency, and (3) ARC: an adjustable embedded residual mechanism
designed to seamlessly integrate essential features from the original dataset. This framework ensures
both efficiency and generation fidelity in the optimization process.

Algorithm 1 FADRM: Residual Matching for Dataset Distillation

Require: Recover Model fθ, Total Training Iters Niter, Real Patches Ps, Merge Ratio α, Downsam-
pled Resolutions Dds, Original Resolutions Dorig, Number of ARCs k

Ensure: Distilled image x̃Niter

1: niter ← ⌊Niter/(k+1)⌋, x̃0 ← RESAMPLE(Ps, Dds)
2: for i = 1 to k do
3: for t = 1 to niter do
4: x̃(i−1)niter+t ← GRADSTEP(fθ, x̃(i−1)niter+t−1) ▷ Optimize x̃ to align the property of fθ
5: end for

6: x̃initer ←
{

RESAMPLE(x̃initer , Dorig), if Shape(x̃initer) = Dds

RESAMPLE(x̃initer , Dds), otherwise
7: x̃initer ← αx̃initer + (1−α) · RESAMPLE(Ps,Shape(x̃initer))
8: end for
9: for t = 1 to Niter − kniter do

10: x̃kniter+t ← GRADSTEP(fθ, x̃kniter+t−1)
11: end for
12: return x̃Niter

3.2 Mixed Precision Training for Data Generation

Previous uni-level frameworks typically retain a fixed training pipeline, seeking efficiency through
architectural or initialization-level changes. In contrast, we explicitly optimize the training process by
incorporating Mixed Precision Training (MPT) [24]. Specifically, we convert the model parameters θ
from FP32 to FP16 and utilize FP16 for both logits computation and cross-entropy loss evaluation.
To preserve numerical stability and ensure accurate distribution matching, we retain the computation
of the divergence to the global statistics (Appendix D), as well as the gradients of the total loss with
respect to x̃ in FP32. By integrating MPT, our framework significantly reduces both GPU memory
consumption and training time by approximately 50%, thereby significantly enhancing efficiency.

3.3 Multi-resolution Optimization

Multi-Resolution Optimization (MRO) enhances computational efficiency by optimizing images
across multiple resolutions, unlike conventional methods that operate on a fixed input size. Naturally,
low-resolution inputs can reduce computational cost for the model, they often come at the expense
of performance. To mitigate this, our method periodically increases the data resolution back at
specific stages, resulting in a mixed-resolution optimization process, as illustrated in Fig. 2 (bottom-
right). This approach is particularly beneficial for large-scale datasets (e.g., ImageNet-1K), where
direct high-resolution optimization is computationally inefficient. Notably, optimization time scales
significantly with input size for large datasets but remains stable for smaller ones (input size ≤ 64).
Thus, MRO is applied exclusively to large-scale datasets, as downscaling offers no efficiency gains
for smaller ones. Specifically, given an initialized image Ps ∈ RDorig×Dorig×C , we first downsample it
into a predefined resolution Dds utilizing bilinear interpolation (detailed in Appendix E):

x̃0 = Resample(Ps, Dds), Dds < Dorig (5)

The downscaled images x̃0 are optimized over niter = ⌊Niter/(k+1)⌋ iterations, yielding the refined
result x̃niter . Subsequently, x̃niter is upscaled to its original resolution,

x̃niter = Resample(x̃niter , Dorig) (6)

The upscaled image x̃niter is further optimized within the same budget niter to recover information lost
during the downscaling and upscaling processes. This iterative procedure (downscaling optimization
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and upscaling optimization) is repeated until the total optimization iteration Niter is exhausted. To
ensure MRO attains efficiency gains without quality loss, selecting an appropriate Dds is crucial. Too
small a Dds causes information loss, while too large yields minimal efficiency improvement. Hence,
Dds should be carefully balanced for efficiency and effectiveness.

Saved Computation by MRO. Assume the forward computation cost scales as O(D2C). The
baseline method performs all Niter steps at full resolution Dorig, yielding: Costbaseline = Niter ·
O(D2

origC). FADRM performs k alternating-resolution stages of niter = ⌊Niter/(k+1)⌋ steps, with
approximately half at downsampled resolution Dds. Let r = (Dds/Dorig)

2. The cost ratio is:

CostMRO

Costbaseline
= 1− niter

Niter
·
(⌈

k
2

⌉
(1− r)

)
(7)

Under fixed Niter and k, the cost ratio decreases linearly with 1− r. Smaller r (i.e., more aggressive
downsampling) yields greater savings, but may compromise data fidelity.

3.4 Adjustable Residual Connection
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Figure 4: Visualization of the distilled images with
varying merge ratios using FADRM.

In uni-level optimization, the absence of the
original dataset leads to information vanishing
which significantly degrades the feature repre-
sentation of the distilled dataset. To mitigate this
issue, we introduce Adjustable Residual Con-
nection (ARC), a core mechanism that mitigates
information vanishing (see Fig. 3) and improves
the robustness of the distilled data (see Theo-
rem 2 and Theorem 3). Essentially, ARC iter-
atively fuses the intermediate optimized image
x̃t ∈ RDt×Dt×C at iteration t with the resized
initialized data patches P̃t, which contain subtle
details from the original dataset. Formally, the
update rule is defined as:

x̃t = αx̃t + (1− α)Resample(Ps, Dt) (8)

where α ∈ [0, 1] is a tunable merge ratio gov-
erning the contribution of original dataset infor-
mation. A smaller α strengthens the integration of details from Ps, whereas a larger α prioritizes
the preservation of the global features in the x̃t. This trend is visualized in Fig. 4. ARC introduces a
hyperparameter k, which determines the frequency of residual injections. Given a total optimization
budget of Niter, the training process is divided into k + 1 segments, where residual connections occur
after every niter = ⌊Niter/(k + 1)⌋ iterations. The update follows:

P̃initer = Resample
(
Ps, Diniter

)
, x̃initer = αx̃initer + (1− α)P̃initer . (9)

where i ∈ {1, 2, . . . , k} denotes the index of the residual injection stage, and Diniter indicates the
spatial resolution of the intermediate image at the corresponding iteration t = initer.The final phase
involves pure optimization without further residual injections. Notably, ARC conducts per-element
weighted fusion of two image tensors with negligible overhead. With a complexity of O(HtWtC), it
scales linearly with pixel and channel counts, making it suitable for high-resolution data.
Theorem 2 (Proof in Appendix A.3.1). Let H be a class of functions h : Rd → R, and let h
be Lipschitz-continuous with constant Lh > 0, and the loss function ℓ be Lipschitz-continuous
with constant Ll > 0 and bounded within a finite range [0, B]. Consider: 1. Optimized per-
turbation added to the original data: C̃res = {x̃res

i , ỹresi }ni=1. 2. residual injected dataset
(FADRM): C̃FADRM = {x̃i, ỹi}ni=1. 3. patches selected from the original dataset: O = {xi, yi}ni=1.
4. discrepancy ∆ := 1

n

∑n
i=1 ∥x̃res

i − xi∥. Let hres ∈ H denote the hypothesis trained on
C̃res, and hFADRM ∈ H be trained on C̃FADRM. Define the corresponding empirical risks:
L̂res :=

1
n

∑n
i=1 ℓ(hres(x̃

res
i ), ỹresi ), L̂FADRM := 1

n

∑n
i=1 ℓ(hFADRM(x̃i), ỹi). Assume:

Rn(H ◦ O) < Rn(H ◦ C̃res) (10)
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Then the generalization bound of hFADRM is rigorously shown to be tighter than that of hres, i.e.,

L̂FADRM + 2B ·Rn(H ◦ C̃FADRM) < L̂res + 2B ·Rn(H ◦ C̃res). (11)

The key insight of this theorem is that when synthetic data is heavily optimized, thereby increasing the
complexity of the hypothesis space and making the model more susceptible to overfitting, combining it
with the more structured original data can yield a tighter generalization bound. We further demonstrate
the advantage of FADRM over the Uni-level framework through Theorem 3.

Theorem 3 (Proof in Appendix A.3.2). Let x̂uni denote the image generated by the uni-level frame-
work, and x̂fadrm denote the image generated by FADRM using both fθ and real image patches O.
Then the mutual information between the generated image and the original data satisfies,

I(x̂fadrm;O) > I(x̂uni;O).

This theorem shows that FADRM’s improvement primarily arises from its direct access to the original
dataset during optimization, thereby enhancing the amount of captured information.

4 Experiments

4.1 Datasets and Experimental Setup

Datasets. We conduct experiments across datasets with varying resolutions, including CIFAR-100
(32×32) [15], Tiny-ImageNet (64×64) [16], ImageNet-1K (224×224) [8], and their subsets.

Baseline Methods. To evaluate the effectiveness of our proposed framework, we conduct a compre-
hensive comparison against three state-of-the-art dataset distillation baselines. The first baseline is
RDED [33], which selects cropped patches directly from the original dataset and is therefore catego-
rized as involving full participation of the original data. The second method, EDC [31], retains a high
degree of original data participation by optimizing selected patches with an extremely small learning
rate, producing synthetic images that are close to the original samples. The third method, CV-DD [6],
aligns global BatchNorm statistics with sufficient optimization by updating initialization, resulting in
minimal original data involvement despite initialization from real patches. These baselines exhibit
varying degrees of original data involvement, providing a solid basis for evaluating FADRM.

4.2 Main Results

Results Analysis. As shown in Table 2, our framework consistently achieves state-of-the-art perfor-
mance across various settings. For instance, on ImageNet-1K with IPC=10 and ResNet-101 as the
student model, the ensemble-enhanced variant FADRM+ attains an accuracy of 58.1%, outperform-
ing EDC and CV-DD by a substantial margin of +6.4%. Notably, RDED underperforms FADRM,
underscoring the limitations of relying solely on the original dataset without further optimization.
Furthermore, CV-DD is inferior to FADRM+, highlighting the drawbacks of largely excluding origi-
nal data during synthesis. Lastly, the consistent outperformance of FADRM+ over EDC validates the
efficacy of our framework in harnessing original data via data-level residual connections.

Iterations w/ ARC (%) w/o ARC (%)
500 40.0 39.7

1000 45.2 44.8
1500 47.2 46.5
2000 47.7 46.1
2500 48.0 46.5
3000 48.0 45.4
3500 48.2 44.5
4000 48.4 43.1

Table 1: Generalization accuracy (%)
across varying optimization steps.

Information Vanishing. To quantify the issue of informa-
tion vanishing, we report the generalization accuracy of
models trained on distilled images generated by FADRM
(w/ and w/o ARC) across different optimization steps. As
shown in Table 1, prolonged optimization without ARC
leads to accuracy degradation, indicating information loss.
In contrast, applying ARC stabilizes the optimization pro-
cess and maintains steady performance gains, highlighting
its effectiveness in mitigating information vanishing and
retaining essential representational cues.

Efficiency Comparison. Table 3 (Left) highlights the
superior efficiency of our framework compared to existing Uni-level frameworks. Bi-level frameworks
are excluded from this comparison due to their inherent limitations in scalability for large-scale
datasets. Specifically, FADRM+ achieves a reduction of 3.9 seconds per image in optimization time
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ResNet-18 ResNet-50 ResNet-101
Dataset IPC (Ratio) RDED EDC CV-DD FADRM FADRM+ RDED EDC CV-DD FADRM FADRM+ RDED EDC CV-DD FADRM FADRM+

CIFAR-100

1 (0.2%) 17.1 39.7 28.3 31.8 40.6 10.9 36.1 28.7 27.3 37.4 11.2 32.3 29.0 29.2 40.1
10 (2.0%) 56.9 63.7 62.7 67.4 67.9 41.6 62.1 61.5 66.5 67.4 54.1 61.7 63.8 68.3 68.9
50 (10.0%) 66.8 68.6 67.1 71.0 71.3 64.0 69.4 68.2 71.5 72.1 67.9 68.5 67.6 71.9 72.1

Whole Dataset 78.9 79.9 79.5

Tiny-ImageNet

1 (0.2%) 11.8 39.2 30.6 28.6 40.4 8.2 35.9 25.1 28.4 39.4 9.6 40.6 28.0 27.9 41.9
10 (2.0%) 41.9 51.2 47.8 48.9 52.8 38.4 50.2 43.8 47.3 53.7 22.9 51.6 47.4 47.8 53.6
50 (10.0%) 58.2 57.2 54.1 56.4 58.7 45.6 58.8 54.7 57.0 60.3 41.2 58.6 54.1 57.2 60.8

Whole Dataset 68.9 71.5 70.6

ImageNette

1 (0.1%) 35.8 - 36.2 36.2 39.2 27.0 - 27.6 31.1 31.9 25.1 - 25.3 26.3 29.3
10 (1.0%) 61.4 - 64.1 64.8 69.0 55.0 - 61.4 64.1 68.1 54.0 - 61.0 61.9 63.7
50 (5.2%) 80.4 - 81.6 83.6 84.6 81.8 - 82.0 84.1 85.4 75.0 - 80.0 80.3 82.3

Whole Dataset 93.8 89.8 89.3

ImageWoof

1 (0.1%) 20.8 - 21.4 21.0 22.8 17.8 - 19.1 19.5 19.9 19.6 - 19.9 20.0 21.8
10 (1.1%) 38.5 - 49.3 44.5 57.3 35.2 - 47.8 44.9 54.1 31.3 - 42.6 40.4 51.4
50 (5.3%) 68.5 - 71.9 72.3 72.6 67.0 - 71.2 71.0 71.7 59.1 - 69.9 70.3 70.6

Whole Dataset 88.2 77.8 82.7

ImageNet-1K

1 (0.1%) 6.6 12.8 9.2 9.0 14.7 8.0 13.3 10.0 12.2 16.2 5.9 12.2 7.0 6.8 14.1
10 (0.8%) 42.0 48.6 46.0 48.4 50.9 49.7 54.1 51.3 54.5 57.5 48.3 51.7 51.7 54.8 58.1
50 (3.9%) 56.5 58.0 59.5 60.1 61.2 62.0 64.3 63.9 65.4 66.9 61.2 64.9 62.7 66.0 67.0

Whole Dataset 72.3 78.6 79.8

Table 2: Post-evaluation performance comparison with SOTA baseline methods. All experiments
follow the training settings established in EDC [31]: 300 epochs for Tiny-ImageNet (IPC=10, 50),
ImageNet-1K, and its subsets, and 1,000 epochs for CIFAR-100, Tiny-ImageNet (IPC=1). For fair
comparison with single-model distillation (RDED) and ensemble-based methods (CV-DD, EDC), we
evaluate both the single-model version (FADRM only utilized ResNet-18 [11] for distillation) and the
ensemble-enhanced version (FADRM+). This evaluation strategy ensures equitable benchmarking
while maintaining methodological consistency across all experiments.

Method Time Cost (s) Peak Memory (GB)

SRe2L++ [6] 2.52 5.3

FADRM 0.47 2.9

G-VBSM [30] 17.28 21.4

CV-DD [6] 8.20 23.4

EDC [31] 4.99 17.9

FADRM+ 1.09 11.0

Model #Params RDED EDC CV-DD FADRM+

ResNet-18 [11] 11.7M 42.0 48.6 46.0 50.9
ResNet-50 [11] 25.6M 49.7 54.1 51.3 57.5
ResNet-101 [11] 44.5M 48.3 51.7 51.7 58.1
EfficientNet-B0 [35] 39.6M 42.8 51.1 43.2 51.9
MobileNetV2 [28] 3.4M 34.4 45.0 39.0 45.5
ShuffleNetV2-0.5x [44] 1.4M 19.6 29.8 27.4 30.2
Swin-Tiny [22] 28.0M 29.2 38.3 – 39.1
Wide ResNet-50-2 [11] 68.9M 50.0 – 53.9 59.1
DenseNet121 [13] 8.0M 49.4 – 50.9 55.4
DenseNet169 [13] 14.2M 50.9 – 53.6 58.5
DenseNet201 [13] 20.0M 49.0 – 54.8 59.7

Table 3: Left: Efficiency comparison between various optimization-based methods and our approach
when distilling ImageNet-1K. The time cost is measured in seconds, representing the duration
required to generate a single image on a single RTX 4090 GPU. Right: Top-1 accuracy (%) on
ImageNet-1K for cross-architecture generalization with IPC=10.

compared to EDC [31], culminating in a total computational saving of 54 hours when applied to the
50 IPC ImageNet-1K dataset. Similarly, FADRM demonstrates a 28.5 hours reduction in training
time relative to SRe2L++ for the same task. Additionally, our framework significantly reduces
peak memory usage compared to other frameworks, enabling efficient dataset distillation even in
resource-constrained scenarios. These results underscore the scalability and computational efficiency
of our approach, which not only accelerates large-scale dataset distillation but also substantially
lowers associated computational costs.

4.3 Ablation Study

IPC=10 IPC=50
FADRM FADRM+ FADRM FADRM+

1 × 1 48.4 50.9 60.1 61.2
2 × 2 47.7 50.0 59.8 60.1

Table 4: Comparison of student model
(ResNet-18) generalization performance
when trained on distilled datasets generated
using 1 × 1 and 2 × 2 patch configurations
during initialization and residual injection.

Impact of Patch Numbers for Initialization and
Residuals. To assess the effect of different patch
configurations during both the initialization and resid-
ual injection stages, we conduct an ablation study,
as shown in Table 4. The results suggest that both
1× 1 and 2× 2 patch settings are effective for gener-
ating distilled data. However, the 1× 1 configuration
consistently delivers the better overall performance,
making it the preferred choice in practice.

Impact of Mixed Precision Training (MPT). Our ablation study in Table 5 shows that MPT
preserves distilled dataset quality while significantly reducing peak memory usage and improving
optimization efficiency, making it an effective strategy for accelerating distillation.
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FADRM FADRM+ SRe2L++ G-VBSM
W/ MPT W/O MPT W/ MPT W/O MPT W/ MPT W/O MPT W/ MPT W/O MPT

ResNet-18 (Student) 47.7 % 47.8 % 50.0 % 49.6 % 43.1 % 43.1 % 30.5 % 30.7 %
Efficiency 0.26 ms 0.63 ms 0.58 ms 0.96 ms 0.26 ms 0.63 ms 2.65 ms 4.32 ms
Peak GPU Memory 2.9 GB 5.3 GB 11.0 GB 23.0 GB 2.9 GB 5.3 GB 11.8 GB 21.4 GB

Table 5: Comparison of model generalization performance, optimization efficiency (milliseconds per
image per iteration, measured under 100 batch size and 224 as input size), and peak GPU memory
usage with and without mixed precision training under ImageNet-1K IPC=10.

Configuration Accuracy (%) Time Cost (s)

FADRM (W/O ARC + W/O MRO) 46.4 0.52
FADRM (W/O ARC + W/ MRO) 46.2 0.47

FADRM (W/ ARC (α = 0.9) + W/ MRO) 45.7 0.47
FADRM (W/ ARC (α = 0.8) + W/ MRO) 46.4 0.47
FADRM (W/ ARC (α = 0.7) + W/ MRO) 47.6 0.47
FADRM (W/ ARC (α = 0.6) + W/ MRO) 47.3 0.47
FADRM (W/ ARC (α = 0.5) + W/ MRO) 47.7 0.47
FADRM (W/ ARC (α = 0.4) + W/ MRO) 47.4 0.47

Configuration Accuracy (%) Time Cost (s)

FADRM+ (W/O ARC + W/O MRO) 48.7 1.16
FADRM+ (W/O ARC + W/ MRO) 48.2 1.09

FADRM+ (W/ ARC (α = 0.9) + W/ MRO) 48.5 1.09
FADRM+ (W/ ARC (α = 0.8) + W/ MRO) 48.0 1.09
FADRM+ (W/ ARC (α = 0.7) + W/ MRO) 48.9 1.09
FADRM+ (W/ ARC (α = 0.6) + W/ MRO) 49.3 1.09
FADRM+ (W/ ARC (α = 0.5) + W/ MRO) 50.0 1.09
FADRM+ (W/ ARC (α = 0.4) + W/ MRO) 49.5 1.09

Table 6: Performance comparison of ResNet-18 as the student model trained with distilled ImageNet-
1K (IPC=10) datasets generated with different merge ratios (α), fixed Dds=200 and k=3. The efficiency
is measured in seconds per image generation. Left presents the ablation results for single-model
distillation, while Right shows the corresponding results for multi-model distillation.

k 1 2 3 4 5 6

ImageNet-1K 47.1 47.6 47.8 47.6 47.4 47.3
CIFAR-100 59.2 60.9 61.5 60.5 59.4 57.9

Dds 160 180 200 224

Post Eval (%) 47.2 47.5 47.7 47.7
Time Cost (s) 0.42 0.44 0.47 0.52

Table 7: Left presents the ablation results for k (frequency of residual connections) using FADRM
with Dds=200, α=0.5, while Right shows the ablation results for Dds on ImageNet-1K IPC=10.
Efficiency is measured as the total time required to optimize a single image under a fixed budget of
2,000 optimization iterations using FADRM with α=0.5, k=3.
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Figure 5: Visualization of dataset distilled by
FADRM and SRe2L++ on Tiny-ImageNet (top
two rows) and ImageNet-1K (bottom two rows).

Impact of Components in FADRM. To assess
the contribution of each component (MRO and
ARC), we conduct a comprehensive ablation
study. As shown in Table 6, incorporating MRO
initially leads to a performance drop relative to
the baseline (w/o ARC and MRO). This degra-
dation primarily stems from the loss of critical
details during resampling. However, integrating
ARC and reducing the merge ratio α, thereby pri-
oritizing original patches during merging, sub-
stantially enhances performance relative to the
baseline, which remains susceptible to informa-
tion vanishing. The optimal performance is ob-
served at a merge ratio of 0.5 for both settings,
suggesting that an equal fusion of original and
intermediate optimized patches yields the most
favorable results. Crucially, the findings clearly
show that ARC effectively mitigates information
vanishing and robustly recovers missing details
during resampling, enabling a computationally
efficient yet highly effective framework.

Impact of varying k. To examine the effect of k on distilled dataset quality, we perform an ablation
study shown in Table 7 (Left). The results indicate that k = 3 achieves the best performance.
Accuracy improves as k increases from 1 to 3 but drops beyond this point, suggesting that excessive
residual connections introduce redundant information and hinder the learning of coherent structures.

Impact of Downsampled Input Size in MRO. To determine the optimal downsampled input size
(Dds) for MRO, we conduct an ablation study, as presented in Table 7 (Right). Our results demonstrate
that Dds=200 achieves the most optimal performance. Notably, using other sizes leads to a degradation
in the quality of the distilled dataset compared to optimizing with the original input size of 224.
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Figure 6: Five-step and Ten-step class-incremental learning on Tiny-ImageNet with IPC=50.

4.4 Further Analysis

Cross-Architecture Generalization. A fundamental criterion for evaluating the quality of distilled
data is its ability to generalize across diverse network architectures, which significantly enhances its
practical utility in real-world applications. As illustrated in Table 3 (Right), FADRM+ consistently
outperforms all existing state-of-the-art methods across models of varying sizes and complexities,
demonstrating superior generalization capabilities and robustness in diverse scenarios.

Models R̂n(H ◦ O) R̂n(H ◦ C̃res)
ResNet-18 4.89 ± 0.05 4.94 ± 0.04

MobileNet-V2 4.76 ± 0.01 4.78 ± 0.01
ShuffleNet-V2 4.72 ± 0.02 4.75 ± 0.01

Table 8: Empirical Rademacher Com-
plexity of optimized vs. original patches
across different architectures.

Empirical Rademacher Complexity. A key assumption
(Assumption 10) of our framework is that the empirical
Rademacher complexity of the optimized patches exceeds
that of the original ones. To verify this, we conduct a
detailed empirical analysis. As shown in Table 8, the em-
pirical Rademacher complexity of the optimized patches
consistently surpasses that of the originals, thereby sup-
porting our theoretical claim and performance gains.

4.5 Distilled Image Visualization

Fig. 5 compares distilled data from FADRM and SRe2L++ [6], both using ResNet-18 with identical
initial patch images, differing only in FADRM’s incorporation of residual connections. As shown,
FADRM more faithfully and effectively preserves the critical features of the original patches and
consistently and visibly retains significantly more details than SRe2L++. This highlights the advantage
of residual connections in enhancing information density and improving the quality of distilled data.

4.6 Application: Continual Learning

Leveraging continual learning to verify the effectiveness of distilled dataset generalization has been
widely used in prior work [43, 30, 46]. Following these protocols and utilizing the class-incremental
learning framework as in DM [46], we conduct an evaluation on Tiny-ImageNet IPC=50 using a
5-step and 10-step incremental setting, as shown in Fig. 6. The results clearly indicate that FADRM
consistently surpasses RDED in various settings, demonstrating its effectiveness.

5 Conclusion

We proposed FADRM, a novel framework for dataset distillation designed to generate high-quality dis-
tilled datasets with significantly reduced computational overhead. Our work identifies and addresses
the critical challenge of vanishing information, a fundamental limitation in Uni-Level Framework
that heavily undermines the information density of distilled datasets. To address this, we introduce
data-level residual connections, a novel mechanism that balances the operations of preserving critical
original features and integrating new information, enriching the distilled dataset with both original and
new condensed features and increasing its overall information density. Furthermore, by integrating
parameter mixed precision training and input multi-resolution optimization, our framework achieves
significant reductions in both Peak GPU memory consumption and training time. Extensive exper-
iments demonstrate that FADRM outperforms existing state-of-the-art methods in both efficiency
and accuracy across multiple benchmark datasets. For future work, we aim to extend the idea of
data-level residual connections to broader modalities and applications of dataset distillation tasks.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately reflect the paper’s
contributions and scope. Specifically, the abstract summarizes our proposed method, key
findings, and empirical improvements over prior work. The main contributions are explicitly
listed in Sec. 1, and Sec. 4 provides experimental validation supporting these contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we do talk about limitations of this work, see Sec. F for more details.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: For each theoretical result, we provide the full set of assumptions and complete,
correct proofs. All theorems, formulas, and proofs are numbered and cross-referenced.
Assumptions are clearly stated within each theorem statement. Proofs are presented in
Appendix A. We also properly reference all lemmas or theorems used in our analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all necessary information to enable reproduction of our main
experimental results. This includes comprehensive descriptions of the model architecture,
optimization settings, hyperparameters, training and evaluation protocols, and dataset speci-
fications. Reproducibility-relevant details are presented in Sec. 4 and Appendices G and G.2,
ensuring that the key claims and conclusions can be independently verified, even in the
absence of released code. We also plan to release the code and pretrained models upon
publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We intend to release the full codebase and data preparation scripts once
the double blind review is finished. In the Appendices G and G.2, we include detailed
instructions for reproducing our main experimental results. These materials are designed to
ensure faithful reproduction of both our proposed method and all baseline comparisons.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
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versions (if applicable).
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the results, including optimizer types, learning rates, batch sizes, and other hyperparameters.
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• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Answer: [Yes]
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A Theoretical Derivation

A.1 Preliminary

Lemma 1 (Data Processing Inequality [3]). Let X → Y → Z form a Markov chain. Then the mutual
information between X and Z is upper bounded by that between X and Y :

I(X;Z) ≤ I(X;Y ). (12)

In particular, no post-processing of Y can increase the information that Y contains about X .

Theorem 4 (Temperature-scaled KL divergence is bounded and Lipschitz-continuous). Fix integers
k ≥ 2 and a constant C > 0. For any temperature T > 0 let

z = (z1, . . . , zk) ∈ [−C,C]k, q
(T )
i =

exp
(
zi/T

)
k∑

j=1

exp
(
zj/T

) (i = 1, . . . , k). (13)

Let p = (p1, . . . , pk) ∈ ∆k be an arbitrary target probability vector (e.g. it may come from another
soft-max with its own temperature). Define the loss

ℓ
(
p, q(T )(z)

)
:= KL

(
p ∥ q(T )(z)

)
=

k∑
i=1

pi log
pi

q
(T )
i

. (14)

Then the following hold:

1. (Bounded range) For every admissible pair (p, z),

0 ≤ ℓ
(
p, q(T )(z)

)
≤ B, B := log k +

2C

T
. (15)

2. (ℓ∞-Lipschitz continuity in logits) The map z 7→ ℓ
(
p, q(T )(z)

)
is L-Lipschitz w.r.t. the ℓ∞

norm with L = 1
T . Consequently, it is

√
k/T -Lipschitz w.r.t. the Euclidean norm.

proof of Theorem 4. (i) Boundedness. Write

KL
(
p ∥ q(T )

)
=

k∑
i=1

pi log pi −
k∑

i=1

pi log q
(T )
i . (16)

Since x 7→ x log x is non-positive on [0, 1], the first term is at most 0, so

KL
(
p ∥ q(T )

)
≤ −

k∑
i=1

pi log q
(T )
i . (17)

For the soft-max, log q(T )
i = zi/T − logZ, where Z :=

∑k
j=1 exp(zj/T ). Hence

−
k∑

i=1

pi log q
(T )
i = − 1

T

k∑
i=1

pizi + logZ. (18)

Because each zi ∈ [−C,C] and
∑

i pi = 1,

− 1

T

∑
i

pizi ≤
C

T
. (19)

Moreover, zi ≤ C implies Z ≤ k exp(C/T ) and thus logZ ≤ log k + C
T . Combining the two parts

yields the desired upper bound log k + 2C/T . Non-negativity of KL divergence gives the lower
bound 0.
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(ii) Lipschitz continuity. Differentiate ℓ w.r.t. zi:

∂ziℓ
(
p, q(T )(z)

)
= −pi − q

(T )
i

T
. (20)

Because |pi − q
(T )
i | ≤ 1, we have |∂ziℓ| ≤ 1/T for every coordinate. Thus ∥∇zℓ∥∞ ≤ 1/T , and by

the mean-value theorem,∣∣ℓ(p, q(T )(z))− ℓ(p, q(T )(z′))
∣∣ ≤ 1

T
∥z − z′∥∞, ∀z, z′ ∈ [−C,C]k, (21)

so L = 1/T in the ℓ∞ norm. Since ∥v∥2 ≤
√
k∥v∥∞, the Euclidean Lipschitz constant is at most√

k/T .

Lemma 2 (Generalization Bound via Rademacher Complexity [2]). LetH be a class of functions
mapping X → [0, B], and let S = {x1, . . . , xn} be an i.i.d. sample from distribution D. Then, for
any δ > 0, with probability at least 1− δ, the following inequality holds for all h ∈ H:

Ex∼D[h(x)] ≤
1

n

n∑
i=1

h(xi) + 2Rn(H) +B

√
log(1/δ)

2n
(22)

Lemma 3 (Empirical Risk Proximity). Let x̃i := αx̃res
i + (1 − α)xi with α ∈ (0, 1), and let the

corresponding datasets be C̃res := {(x̃res
i , yi)}ni=1, C̃FADRM := {(x̃i, yi)}ni=1. Then for any model

h ∈ H, the empirical risk difference is bounded by a negligible value:∣∣∣L̂res(h)− L̂FADRM(h)
∣∣∣ ≤ LℓLh(1− α) ·∆1, where ∆1 :=

1

n

n∑
i=1

∥x̃res
i − xi∥. (23)

Proof of Lemma 3. We begin by computing the pointwise difference in the loss:

|ℓ(h(x̃res
i ), yi)− ℓ(h(x̃i), yi)| . (24)

Since ℓ is Lℓ-Lipschitz in the model output, and h is Lh-Lipschitz in the input, we have:

|ℓ(h(x̃res
i ), yi)− ℓ(h(x̃i), yi)| ≤ Lℓ · |h(x̃res

i )− h(x̃i)| ≤ LℓLh · ∥x̃res
i − x̃i∥. (25)

Note that:
x̃i = αx̃res

i + (1− α)xi ⇒ x̃res
i − x̃i = (1− α)(x̃res

i − xi), (26)

so:
∥x̃res

i − x̃i∥ = (1− α)∥x̃res
i − xi∥. (27)

Therefore,
|ℓ(h(x̃res

i ), yi)− ℓ(h(x̃i), yi)| ≤ LℓLh(1− α)∥x̃res
i − xi∥. (28)

Averaging over n samples:∣∣∣L̂res(h)− L̂FADRM(h)
∣∣∣ ≤ 1

n

n∑
i=1

LℓLh(1− α)∥x̃res
i − xi∥ = LℓLh(1− α) ·∆1. (29)

Corollary 1 (Lipschitz Convex Combination Bound). Let h : Rd → R be an L-Lipschitz function.
For any x, y ∈ Rd and α ∈ (0, 1), define z = αx+ (1− α)y. Then:

|h(z)− (αh(x) + (1− α)h(y))| ≤ Lα(1− α)∥x− y∥ (30)

In particular, this implies:

h(z) ≤ αh(x) + (1− α)h(y) + Lα(1− α)∥x− y∥ (31)

h(z) ≥ αh(x) + (1− α)h(y)− Lα(1− α)∥x− y∥ (32)
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A.2 Bounded Information in BN-Aligned Synthetic Data

Proof of Theorem 1. Let O denote the original dataset. From it, a pretrained model fθ is derived,
which includes BatchNorm statistics {µl, σ

2
l }. Each synthetic image x̃j in the distilled dataset C is

generated by minimizing an objective function depending only on fθ and a fixed label ỹj .

We assume that each x̃j is generated independently given fθ, and that fθ is a deterministic function
of O. Then, for each sample (x̃j , ỹj), we have the Markov chain:

O → fθ → x̃j , (33)

By applying Lemma 1, we get:

I(x̃j ;O) ≤ I(fθ;O) = H(fθ), (34)

Now, by the chain rule of mutual information:

I(C;O) = I({x̃j , ỹj}|C|j=1;O) ≤
|C|∑
j=1

I(x̃j ;O) ≤ |C| ·H(fθ), (35)

where we used the fact that ỹj is fixed and independent ofO and the independence assumption across
samples. Thus, the total information that the synthetic dataset C can retain about the original dataset
O is bounded by the product of its size and the entropy of the model fθ.

A.3 ARC improves the robustness of the distilled images

We evaluate the performance gain of FADRM over the uni-level framework from two complementary
perspectives: (1) Generalization Bound Analysis, and (2) Data Processing Inequality.

A.3.1 Generalization Bound Analysis.

We first analyze the advantage of FADRM through the lens of generalization bounds. The central
insight of this analysis is that when the synthetic data is optimized, exhibiting low cross-entropy
loss and strong feature alignment, it becomes overly easy for the model to fit. Such data provides
limited regularization, making the student model susceptible to overfitting and resulting in degraded
generalization to unseen samples. In contrast, when synthetic data is combined with real data under
the FADRM framework, the real data introduces natural variability and subtle distributional nuances
that act as an implicit regularizer. This hybrid training scheme mitigates overfitting by constraining
the hypothesis space, thereby improving the model’s generalization performance.

Analysis of Assumption 10. To facilitate subsequent theoretical analysis, we first provide a prelimi-
nary interpretation of Assumption 10. We begin with a mild and empirically supported assumption
that the Rademacher complexity of the optimized patches exceeds that of the original ones, i.e.,

Rn(H ◦ C̃res) > Rn(H ◦ O), (36)

where O denotes the original data patch and C̃res represents its optimized counterpart. Building upon
this preliminary inequality, we introduce small constants to achieve a more general analytical form,
taking into account the bounded smoothness and Lipschitz continuity of ℓ and h. In practice, these
constants remain small due to the use of high-temperature KL loss and strong regularization (e.g.,
CutMix). Accordingly, the assumption can be equivalently expressed as

Rn(H ◦ C̃res)−Rn(H ◦ O) >
(
LhLℓ

2B
+

Lh

2

)
·∆, (37)

where Lℓ and Lh denote the Lipschitz constants of the loss and hypothesis functions, respectively.
Since both Lh and Lℓ are small in typical settings, the coefficient

(
LhLℓ

2B + Lh

2

)
becomes negligible,

allowing us to simplify subsequent theoretical derivations.

Proof of Theorem 2. Let x̃res
i be a perturbation generated via distribution (running statistics) match-

ing and prediction (cross entropy) matching, and let xi be a real image from the original dataset.

Define the residual-injected sample x̃i as:

x̃i := αx̃res
i + (1− α)xi, α ∈ (0, 1) (38)

Define the datasets:
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• C̃res = {x̃res
i , ỹresi }ni=1: perturbation generated via distribution (running statistics) matching

and prediction (cross entropy) matching,

• O = {xi, yi}ni=1: selected patches from the original dataset,

• C̃FADRM = {x̃i, ỹi}ni=1: residual-injected dataset.

We begin by bounding the Rademacher complexity of the residual-injected dataset C̃FADRM =
{x̃i}ni=1, where x̃i = αx̃res

i + (1− α)xi, using Lemma 2 and Corollary 1.

From the definition:

Rn(H ◦ C̃FADRM) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(x̃i)

]
(39)

By Corollary 1, we have for each term:

h(x̃i) ≤ αh(x̃res
i ) + (1− α)h(xi) + εi, where |εi| ≤ Lh · α(1− α)∥x̃res

i − xi∥ (40)

Therefore:
n∑

i=1

σih(x̃i) ≤
n∑

i=1

σi (αh(x̃
res
i ) + (1− α)h(xi)) +

n∑
i=1

|σiεi| (41)

Using |σi| = 1, we get:
n∑

i=1

|σiεi| ≤ Lhα(1− α)

n∑
i=1

∥x̃res
i − xi∥ = n · Lhα(1− α) ·∆ (42)

Divide by n, take supremum and expectation:

Rn(H ◦ C̃FADRM) ≤ α ·Rn(H ◦ C̃res) + (1− α) ·Rn(H ◦ O) + Lhα(1− α) ·∆ (43)

Rearrange the Inequality:

Rn(H◦C̃FADRM)−Rn(H◦C̃res) ≤ (1−α)
[
Rn(H ◦ O)−Rn(H ◦ C̃res)

]
+Lhα(1−α)·∆ (44)

Multiply 2B on both sides and add a negligible positive value ϵ to the LHS:

2B ·
[
Rn(H ◦ C̃FADRM)−Rn(H ◦ C̃res)

]
< 2B(1− α) ·

[
Rn(H ◦ O)−Rn(H ◦ C̃res)

]
+ 2BLhα(1− α) ·∆+ ϵ

(45)

As validated in Theorem 4, when T > 0, KL-divergence becomes a bounded B-range loss, which we
then apply Lemma 2 to formulate generalization error:

Lgen(h) ≤ L̂(h) + 2B ·Rn(H ◦ S) (46)

Apply to both models:

Lgen(hres) ≤ L̂res + 2B ·Rn(H ◦ C̃res) (47)

Lgen(hFADRM) ≤ L̂FADRM + 2B ·Rn(H ◦ C̃FADRM) (48)

Recall the lower bound for the difference of two ERMs established in Lemma 3, we then have:

L̂res(h)− L̂FADRM(h) ≥ −LℓLh(1− α) ·∆, where ∆ :=
1

n

n∑
i=1

∥x̃res
i − xi∥. (49)

Given the Equation (37), we can then derive:

−LℓLh(1−α) ·∆ > 2B

{
(1−α)

[
Rn(H ◦ O)−Rn(H ◦ C̃res)

]
+L+hα(1−α) ·∆

}
+ ϵ (50)
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where the RHS in Equation (50) is the upper bound for the difference in Rademacher Complexity, we
then derive the following inequality:

L̂res − L̂FADRM > 2B ·
[
Rn(H ◦ C̃FADRM)−Rn(H ◦ C̃res)

]
(51)

which shows:

L̂res + 2B ·Rn(H ◦ C̃res) > L̂FADRM + 2B ·Rn(H ◦ C̃FADRM) (52)

Analysis of Merge Ratio α. We further conduct a formal analysis to determine the optimal merge
ratio α. As demonstrated in the following analysis, the optimal configuration is achieved when
α approaches 0.5, yielding a balanced contribution between the two distillation components and
promoting both stable convergence and improved generalization. To theoretically substantiate this
choice, we examine the influence of α on the generalization bound of FADRM, defined as follows:

D(α) = L̂FADRM + 2B ·Rn(H ◦ C̃FADRM), (53)

where L̂FADRM denotes the empirical loss, and Rn(·) is the empirical Rademacher complexity.

Assuming the loss function is λ-strongly convex and denoting ∆ := 1
n

∑
i ∥x̃res

i − xi∥, we obtain:

L̂FADRM ≤ αL̂res + (1− α)L̂O −
λ

2
α(1− α)∆, (54)

where L̂res and L̂O are the empirical losses of the residual and original components, respectively.

Following the derivation in Equation 43, the empirical Rademacher complexity can be bounded as:

Rn(H ◦ C̃FADRM) ≤ αRn(H ◦ C̃res) + (1− α)Rn(H ◦ O) + Lh · α(1− α)∆, (55)

where Lh is the Lipschitz constant of the hypothesis class H. Substituting both inequalities, we
obtain an upper bound on D(α):

D(α) ≤ Xα+ Y (1− α) + Z(α− 1)α, (56)

where the coefficients are defined as:

X := L̂res + 2B ·Rn(H ◦ C̃res),

Y := L̂O + 2B ·Rn(H ◦ O),

Z :=
λ

2
∆− 2BLh∆.

Minimizing the quadratic bound D(α) with respect to α yields:

α⋆ =
1

2
+

Y −X

2Z
. (57)

In practice, FADRM employs a temperature-scaled KL divergence, under which the strong convexity
constant satisfies

λ ≈ 1 + (C − 1) exp

(
− d

T

)
, (58)

where C is the number of classes, d the embedding dimensionality, and T the temperature parameter.
As T increases, λ grows approximately linearly with C, and the bias term Y−X

2Z becomes negligible
compared to the dominant λ term. Therefore, the optimal merge ratio α⋆ approaches 0.5, implying
that equal weighting between the residual (synthetic) and original (real) components achieves near-
optimal generalization. This theoretical conclusion aligns with our empirical findings in Table 6,
where α = 0.5 consistently yields strong performance across datasets.
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A.3.2 Data Processing Inequality Analysis

We further show that FADRM will improve the bound established in Theorem 1.

Proof of Theorem 3. We analyze the effect of FADRM, particularly the Ajustable Residual Connec-
tion (ARC) component, in mitigating the limitations of the uni-level framework.

In FADRM, the generated image x̂ is produced using both the learned model fθ and real image
patches from O, by iteratively fusing these patches into the intermediate optimized image. This
process introduces a new dependency structure:

O → x̂← fθ. (59)

As a result, the conditional independence assumption

x̂ ⊥⊥ O | fθ (60)

no longer holds. Consequently, the Markov chain underlying the standard Data Processing Inequality
(DPI) for the uni-level framework is violated.

By the chain rule of mutual information, we have:

I(x̂;O) = I(fθ; x̂) + I(x̂;O | fθ). (61)

In the uni-level framework, the generation process depends solely on fθ, implying

I(x̂;O | fθ) = 0. (62)

However, in the FADRM setting, real image patches directly influence the generation of x̂, leading to
a strictly positive conditional mutual information term:

I(x̂;O | fθ) > 0. (63)

Therefore,
I(x̂fadrm;O) = I(fθ; x̂) + I(x̂;O | fθ) > I(fθ; x̂) = I(x̂uni;O), (64)

which proves the theorem.

This result demonstrates that FADRM fundamentally breaks the conditional independence constraint
inherent in the uni-level framework, allowing additional information from the original dataset O to
flow into the generated samples. Consequently, FADRM captures richer and more diverse information,
leading to superior knowledge distillation performance.

B Empirical Rademacher Complexity Estimation

Formulation. Given a fixed dataset O = {xi}ni=1 and a hypothesis classH = {hθ : X → R}, the
empirical Rademacher complexity quantifies the expressive capacity ofH on O:

Rn(H ◦ O) = Eσ

[
sup
h∈H

1

n

n∑
i=1

σih(xi)

]
, σi

i.i.d.∼ Unif{−1,+1}. (65)

Here, σ = (σ1, . . . , σn) is a vector of independent Rademacher random variables representing a
random ±1 labeling of the data. From a data-centric perspective, for a fixed hypothesis class H,
Rn(H ◦ O) measures how easily the data O admits spurious alignment with random ±1 labels; a
larger value indicates that the same model family can fit these data more readily, implying higher
overfitting propensity and weaker implicit regularization of the dataset.

Functional interpretation. For a fixed random draw σ, define the functional

ϕ(σ) = sup
h∈H

1

n

n∑
i=1

σih(xi), (66)

which captures the maximum correlation between the random sign pattern σ and the predictions
h(xi) over all admissible h ∈ H. In other words, ϕ(σ) represents the single-trial response ofH to a
random noise labeling of O. A function class with high capacity will yield a larger ϕ(σ) since it can
align more closely with arbitrary noise patterns.
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Monte Carlo approximation. Because the expectation in Eq. (66) is intractable, we estimate it via
M i.i.d. Monte Carlo samples {σ(m)}Mm=1:

R̂n

(M)
(H◦O) =

1

M

M∑
m=1

ϕ(σ(m)), ϕ(σ(m)) = sup
h∈H

1

n

n∑
i=1

σ
(m)
i h(xi). (67)

Each ϕ(σ(m)) can be viewed as one stochastic probe of the capacity ofH, and their empirical average
approximates the true expectation Eσ[ϕ(σ)].

Optimization-based inner supremum. The inner supremum suph∈H in Eq. (66) is approximated
via empirical optimization. Given a parameterized model hθ(x) = B tanh(gθ(x)) bounded to
[−B,B], we maximize Φ(θ;σ) = 1

n

∑
i σihθ(xi) by minimizing its negation:

L(θ;σ) = − 1

n

n∑
i=1

σihθ(xi). (68)

We train θ for E epochs using SGD or Adam and record the best achieved value

ϕ̂⋆(σ) = max
1≤e≤E

1

n

n∑
i=1

σi hθ(e)(xi) ≈ sup
θ

1

n

n∑
i=1

σihθ(xi). (69)

Since the optimization may not reach the global maximum, ϕ̂⋆(σ) serves as a lower bound on the
true supremum, and the final R̂n estimate is thus a conservative (under-)approximation of the true
complexity.

Empirical estimation for optimized and original patches. For the optimized image patches C̃res,
we compute an analogous quantity:

R̂n(H ◦ C̃res) =
1

M

M∑
m=1

max
1≤e≤E

1

n

n∑
i=1

σ
(m)
i hθ(e)(x̃res

i ), (70)

and compare it to that computed on the original patches O. Under the theoretical assumption in
Eq. 10, if the residual optimization step enriches the feature expressivity of the synthetic data, we
expect the following relationship to hold:

R̂n(H ◦ C̃res) > R̂n(H ◦ O). (71)

Statistical reporting. Let vm = ϕ̂⋆(σ(m)) denote the best objective obtained for each Rademacher
draw. We report the sample mean and standard error (SE) across M trials:

Rn =
1

M

M∑
m=1

vm, SE =

√
1

M−1

∑M
m=1(vm − v)2
√
M − 1

. (72)

This Monte Carlo–based estimator provides a reproducible and statistically sound measure of em-
pirical Rn, thereby linking theoretical generalization guarantees with observed improvements in
data-level residual optimization.

C Additional Experiments

C.1 Adaptive Multi-Resolution Optimization

To avoid manually selecting the downsampled dimension Dds, we apply an adaptive multi-resolution
strategy that automatically adjusts the effective image resolution according to the smoothness of
the input. The underlying idea is that smoother images can tolerate stronger downsampling without
significant loss of fidelity, whereas images with rich textures require higher resolutions.

We estimate image smoothness using the total variation (TV) of a batch x ∈ RB×C×H×W :

TV(x) =
1

B

B∑
i=1

(∥xi[:, 1 :, :]− xi[:, : −1, :]∥1 + ∥xi[:, :, 1 :]− xi[:, :, : −1]∥1) . (73)
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Based on the TV value, we compute an adaptive shrink ratio:

ShrinkRatio = min

(
0.8,

0.5

max(TV, 10−4)

)
, (74)

and the corresponding downsampled dimension:

Dds = max (⌊D · ShrinkRatio⌋, 128) . (75)

This adaptive adjustment enables automatic control of the resolution level during training without
manual tuning. As shown in Table 9, the adaptive strategy achieves comparable performance to
manually selected resolutions.

Dataset Manually Selected Adaptive
ImageNet-1K 47.7% 47.5%

Table 9: Comparison between manually selected and adaptive multi-resolution optimization.

This adaptive method effectively removes the need for manual hyperparameter search while maintain-
ing model performance.

C.2 Distillation Performance vs. Model Confidence

As shown in Theorem 1, FADRM, similar to other uni-level distillation methods, is most effective
when the pretrained model is not overly confident, i.e., when its output distribution exhibits higher
entropy. In this regime, the mutual information upper bound becomes looser, allowing the distilled
data to better capture information from the original dataset.

To empirically verify this relationship, we vary the number of training epochs used to obtain the
teacher model, which directly affects its output confidence. As the teacher becomes more confi-
dent (lower cross-entropy), the effectiveness of FADRM decreases, consistent with the theoretical
prediction. The results are summarized in Table 10.

Squeezed Epochs Cross-Entropy FADRM Accuracy (%)
50 0.0338 61.5
100 0.0054 59.6
150 0.0031 58.7
200 0.0028 58.3

Table 10: Relationship between teacher confidence (measured by cross-entropy) and FADRM
performance. Lower cross-entropy indicates higher confidence.

These results align with the theoretical insight that moderate uncertainty in the teacher model facili-
tates more informative knowledge transfer, while overly confident teachers limit the representational
diversity distilled into the student.

C.3 More Experimental Results of ARC on Small Datasets

To further evaluate the performance of ARC on small-scale datasets, we conduct experiments on
CIFAR-100. As shown in Table 11, the results indicate that α = 0.5 yields the best performance,
consistent with our observation on the large-scale dataset (ImageNet-1K).

α 0.9 0.8 0.7 0.6 0.5 0.4 0.3

FADRM Accuracy (%) 58.0 58.9 58.7 59.6 61.5 59.2 58.6

Table 11: Performance of ARC on CIFAR-100 across different values of α. The optimal setting
α = 0.5 is consistent with the observation on ImageNet-1K.
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C.4 Stability of ARC

To verify that ARC maintains semantic consistency rather than introducing disruptive information,
we conduct two complementary analyses. First, we compute the cosine similarity between features
before and after ARC injection across stages. Second, we assess the accuracy of the distilled images
before and after applying ARC using a pretrained model as a verifier. As shown in the Table 12, the
feature-level cosine similarity remains high (≥ 0.88) across all stages, indicating strong semantic
preservation. Although verifier accuracy shows a slight decline (from 100% to 97%) at the initial
injection stage, it quickly recovers in subsequent stages, suggesting that ARC adds semantically
aligned residual content rather than harmful noise. Overall, these results confirm that incorporating
ARC is stable and does not negatively impact the optimization process.

Stages Feature Cosine Similarity Before ARC Accuracy (%) After ARC Accuracy (%)

Residual Injection Stage #1 0.89 100 97
Residual Injection Stage #2 0.88 100 100
Residual Injection Stage #3 0.88 100 100

Table 12: Feature stability and accuracy before and after ARC injection across different residual
stages on CIFAR-100.

C.5 Contribution of Individual Components on Efficiency Gains

To clarify the individual contributions of Mixed Precision Training (MPT) and Multi-Resolution
Optimization (MRO) to computational efficiency, we conducted an ablation study as shown in the
table below, the experiment is conducted on ImageNet-1K, where efficiency is measured based on the
time needed for generating a single distilled image. As shown in Table 13, MRO is primarily intended
to reduce the overall wall-clock time required to optimize a single image by iteratively performing
training on downsampled versions. Since the process still involves full-resolution updates, the peak
GPU usage remains unchanged. In contrast, MPT is designed to reduce both computation time and
peak memory consumption by leveraging lower-precision operations throughout.

While MPT accounts for the majority of the efficiency improvement, MRO provides complementary
gains. For instance, when comparing the configurations with and without MRO under MPT, we
observe a reduction of 0.05 seconds per image. Although this difference may appear marginal at the
individual level, it becomes meaningful when scaled. For example, generating a 50 IPC ImageNet-1K
dataset (i.e., 50,000 images) results in,

50, 000× 0.05seconds = 2, 500seconds ≈ 42minutes, (76)
In summary, MPT is the primary contributor to efficiency, and MRO further improves performance
by iteratively optimizing the images at a smaller resolution.

Settings Time Cost (s / img) Minimum GPU Usage (GB) Peak GPU Usage (GB)

w/o MPT, w/o MRO 1.26 5.3 5.3
w/o MPT, w/ MRO 0.84 4.0 5.3
w/ MPT, w/o MRO 0.52 2.9 2.9
w/ MPT, w/ MRO 0.47 2.5 2.9

Table 13: Efficiency ablation on ImageNet-1K. Decomposition of the contributions from Mixed
Precision Training (MPT) and Multi-Resolution Optimization (MRO). We report wall-clock time per
distilled image (s/img) and GPU memory usage. MPT chiefly reduces both time and peak memory,
while MRO provides additional wall-clock savings with unchanged peak memory.

D Optimization Details

Formally, the optimization process adheres to the principle of aligning the synthesized data with both
the predictive behavior and the statistical distribution captured by a pretrained model fθ. Specifically,
given a synthesized image x̃t at iteration t, the optimization objective is defined as:

argmin
x̃t

L(fθ(x̃t), ỹ) +Dglobal(x̃t), (77)
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where l(fθ(x̃t), ỹ) enforces consistency with the target predictions, while Dglobal(x̃t) ensures align-
ment with the statistical distribution. Importantly, the parameters of fθ remain fixed throughout the
optimization, and only x̃t is updated.

The prediction alignment term is formulated as the cross-entropy loss computed over the synthesized
batch:

L(fθ(x̃t), ỹ) = −
1

N

N∑
n=1

C∑
i=1

ỹn,i log fθ(x̃t)n,i, (78)

where N denotes the batch size, and C represents the total number of classes. The alignment to the
distribution in pretrained model is calculated as follows:

Dglobal(x̃t) =
∑
l

∥µl(x̃t)− E[µl|O]∥2

+
∑
l

∥∥σ2
l (x̃t)− E[σ2

l |O]
∥∥
2

=
∑
l

∥∥µl(x̃t)−BNRM
l

∥∥
2

+
∑
l

∥∥σ2
l (x̃t)−BNRV

l

∥∥
2
,

where O denotes the original dataset, and l indexes the layers of the model. The terms BNRM
l

and BNRV
l correspond to the running mean and running variance of the Batch Normalization (BN)

statistics at layer l. By minimizingDglobal(x̃t), the synthesized data is encouraged to exhibit statistical
characteristics consistent with the original dataset, thereby preserving global information.

E Resampling via Bilinear Interpolation

Given an original image I : Z2 → RC defined on discrete pixel coordinates, the continuous extension
Ĩ : R2 → RC at non-integer location (i′, j′) ∈ R2 is computed via bilinear interpolation as follows:

Ĩ(i′, j′) =

1∑
m=0

1∑
n=0

wm,n · I(i+m, j + n), (79)

where i = ⌊i′⌋, j = ⌊j′⌋, α = i′ − i ∈ [0, 1), β = j′ − j ∈ [0, 1), and the interpolation weights are
defined by:

wm,n = (1−m+ (−1)mα)(1− n+ (−1)nβ). (80)

Explicitly, Equation (79) expands to:

Ĩ(i′, j′) = (1− α)(1− β) · I(i, j) + α(1− β) · I(i+ 1, j)

+ (1− α)β · I(i, j + 1) + αβ · I(i+ 1, j + 1),
(81)

This interpolation scheme can be viewed as a separable approximation to the continuous image
function, with weights derived from tensor-product linear basis functions over the unit square. It
preserves differentiability with respect to the fractional coordinates (i′, j′), making it particularly
amenable to gradient-based optimization frameworks.

F Limitations

While FADRM offers substantial improvements in computational efficiency and performance for
dataset distillation, it also introduces several limitations. First, the method relies on the assumption
that residual signals between synthetic and real data capture critical learning dynamics, which may
not generalize across domains with highly abstract or non-visual modalities such as natural language
or time-series data. Second, the use of distilled datasets can inadvertently reinforce biases present
in the original data if not carefully audited, potentially leading to fairness concerns in downstream
applications. From a broader societal perspective, while FADRM reduces the computation and
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resource demands of training large models, thereby contributing positively to sustainability, it may
also facilitate the deployment of powerful models in low-resource or surveillance scenarios without
adequate ethical oversight. Thus, responsible deployment and continued research into bias mitigation
and cross-domain generalization are essential to ensure the safe and equitable application of FADRM.

G Experimental Setup

G.1 Experiment Pipeline

Our experiments start by generating synthetic images from pretrained teacher models using the
proposed distillation framework. The resulting images form the distilled dataset, which is subse-
quently used to train a student model from scratch under the training configurations detailed in
Appendix G.2. To evaluate the effectiveness of the distilled datasets, we adopt a standard image
classification task. Each distilled dataset is used to train a student model from scratch, and the
resulting model is evaluated on the original test set of the corresponding dataset (e.g., CIFAR-100,
Tiny-ImageNet, ImageNet-1K). The evaluation metric is top-1 classification accuracy, computed
using the final checkpoint after full training. This protocol ensures that the measured performance
differences stem from the representational fidelity and diversity of the distilled data rather than
differences in optimization configurations or model initialization.

G.2 Hyper-parameters Setting

Our method strictly follows the training configuration established in EDC to ensure a fair and
consistent comparison across all evaluated approaches. Additionally, we re-run RDED and CV-DD
under the same configuration and report the highest performance obtained between their original
setup and the EDC configuration. This methodology guarantees a rigorous and equitable evaluation
by accounting for potential variations in training dynamics across different settings.

Full Dataset Training. To establish an upper bound on performance across different backbone
architectures (representing the results achieved when training models on the full original dataset)
we adopt the hyperparameters specified in Table 14. These hyperparameters are carefully chosen to
ensure full model convergence while effectively mitigating the risk of overfitting, thereby providing a
reliable reference for evaluating the performance of distilled datasets.

Hyperparameters for Training the Original Dataset

Optimizer SGD
Learning Rate 0.1
Weight Decay 1e-4
Momentum 0.9
Batch Size 128
Loss Function Cross-Entropy
Epochs 300
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 14: Hyperparameters for Training the Original Dataset.

In summary, the synthesis of distilled data follows consistent hyperparameter configurations, as
outlined in Table 15. Variations in hyperparameters are introduced exclusively during two phases:
(1) the model Pre-training phase. and (2) the post-evaluation phase. These adjustments are carefully
tailored based on the scale of the models and the specific characteristics of the datasets used. During
the post-evaluation phase, we have four hyperparameter combinations, as detailed in Table 16. Among
these parameters, η plays a critical role in controlling the decay rate of the learning rate, as defined by
the cosine learning rate schedule in Equation 82. Specifically, a larger value of η results in a slower
decay rate, thereby preserving a higher learning rate for a longer duration during training.

Learning Rate = 0.5×
(
1 + cos

(
π

step
epochs× η

))
(82)
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Hyperparameter Value

Optimizer Adam
Learning rate 0.25
Beta (0.5, 0.9)
Epsilon 1× 10−8

Batch Size 100 or 10 (if C < 100)
Iterations (Niter) 2,000
Merge Ratio (α) 0.5
Number of ARC (k) 3
Downsampled Size (Dds) 200 (ImageNet-1K and Its subsets),

Original Input Size (CIFAR-100,
Tiny-ImageNet)

FADRM Recover Model ResNet18
FADRM+ Recover Model ResNet18 DenseNet121 Shuf-

fleNetV2 MobileNetV2
Scheduler Cosine Annealing
Augmentation RandomResizedCrop, Horizontal

Flip

Table 15: Hyperparameters for generating the distilled datasets.

Setting Learning Rate η

S1 0.001 1
S2 0.001 2
S3 0.0005 1
S4 0.0005 2

Table 16: Hyperparameter settings with learning rate and η.

G.2.1 CIFAR-100

This subsection outlines the hyperparameter configurations employed in the CIFAR-100 experiments,
providing the necessary details to ensure reproducibility in future research.

Pre-training phase. Table 17 provides a comprehensive summary of the hyperparameters employed
for training the models on the original CIFAR-100 dataset for generating the distilled dataset.

Hyperparameters for Model Pre-training
Optimizer SGD

Learning Rate 0.1
Weight Decay 1e-4

Momentum 0.9
Batch Size 128

Epoch 50
Scheduler Cosine Annealing

Augmentation RandomCrop, Horizontal Flip
Loss Function Cross-Entropy

Table 17: Hyperparameters for CIFAR-100 Pre-trained Models.

Evaluation Phase. Table 18 outlines the hyperparameter configurations employed for the post-
evaluation phase on the Distilled CIFAR-100 dataset.

G.2.2 Tiny-ImageNet

This part describes the hyperparameter settings used in the Tiny-ImageNet experiments, offering
comprehensive details to facilitate reproducibility for future studies.
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Hyperparameters for Post-Eval on R18, R50 and R101
Optimizer AdamW
S1 IPC1 (R50), IPC50 (R18,R50)
S2 IPC10 (R18, R50)
S3 IPC1 (R101), IPC10 (R101),

IPC50 (R101)
S4 IPC1 (R18)
Soft Label Generation BSSL
Loss Function KL-Divergence
Batch Size 16
Epochs 1000
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 18: Hyperparameters for post-evaluation task on ResNet18, ResNet50 and ResNet101 for
CIFAR-100.

Pre-training phase. Table 19 presents a detailed overview of the hyperparameters used for model
training on the original Tiny-ImageNet dataset.

Hyperparameters for Model Pre-training
Optimizer SGD

Learning Rate 0.1
Weight Decay 1e-4

Momentum 0.9
Batch Size 64

Epoch 150
Scheduler Cosine Annealing

Augmentation RandomCrop, Horizontal Flip
Loss Function Cross-Entropy

Table 19: Hyperparameters for Tiny-ImageNet Pre-trained Models.

Hyperparameters for Post-Eval on R18, R50 and R101

Optimizer AdamW
S1 IPC50 (R18)
S2 IPC1 (R18) IPC10 (R18)
S3 IPC50 (R50, R101)
S4 IPC1 (R50, R101) IPC10 (R50,

R101)
Soft Label Generation BSSL
Loss Function KL-Divergence
Batch Size 16
Epochs 300 (IPC10, IPC50), 1000

(IPC1)
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 20: Hyperparameters for post-evaluation task on ResNet18, ResNet50 and ResNet101 for
Tiny-ImageNet.
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Evaluation Phase. Table 20 details the hyperparameter settings used during the post-evaluation
phase on the Distilled Tiny-ImageNet dataset.

G.2.3 ImageNette

This subsection describes the hyperparameter settings utilized in the ImageNette experiments, offering
detailed information to facilitate reproducibility for subsequent studies.

Pre-training phase. Table 21 summarizes the hyperparameters used for training models on the
original ImageNette dataset to generate the distilled dataset, ensuring clarity and reproducibility.

Hyperparameters for Model Pre-training
Optimizer SGD

Learning Rate 0.01
Weight Decay 1e-4

Momentum 0.9
Batch Size 128

Epoch 300
Scheduler Cosine Annealing

Augmentation RandomReizeCrop, Horizontal Flip
Loss Function Cross-Entropy

Table 21: Hyperparameters for ImageNette Pre-trained Models.

Evaluation Phase. Table 22 details the hyperparameter settings applied during the post-evaluation
phase on the Distilled ImageNette dataset.

Hyperparameters for Post-Eval on R18, R50 and R101
Optimizer AdamW
S2 IPC50 (R101)
S3 IPC10 (R18, R50) IPC50(R50)
S4 IPC1(R18, R50, R101) IPC10

(R101) IPC50 (R18)
Soft Label Generation BSSL
Loss Function KL-Divergence
Batch Size 16
Epochs 300
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 22: Hyperparameters for post-evaluation task on ResNet18, ResNet50 and ResNet101 for
ImageNette.

G.2.4 ImageWoof

This section describes the hyperparameter settings used in the ImageWoof experiments, offering
detailed information to facilitate reproducibility for future studies.

Pre-training phase. Table 23 presents a detailed overview of the hyperparameters utilized for training
models on the original ImageWoof dataset to produce the distilled dataset.

Evaluation Phase. Table 24 presents the hyperparameter settings utilized during the post-evaluation
stage on the distilled ImageWoof dataset, detailing the configurations applied for performance
assessment.

G.2.5 ImageNet-1K

This subsection outlines the hyperparameter configurations employed in the ImageNet-1K experi-
ments, providing the necessary details to ensure reproducibility in future research.
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Hyperparameters for Model Pre-training
Optimizer SGD

Learning Rate 0.1
Weight Decay 1e-4

Momentum 0.9
Batch Size 128

Epoch 50
Scheduler Cosine Annealing

Augmentation RandomResizedCrop, Horizontal Flip
Loss Function Cross-Entropy

Table 23: Hyperparameters for ImageWoof Pre-trained Models.

Hyperparameters for Post-Eval on R18, R50 and R101
Optimizer AdamW
S1 IPC1 (R101)
S2 IPC50 (R18)
S3 IPC10 (R18, R50) IPC50 (R50,

R101)
S4 IPC1 (R18, R50) IPC10 (R101)
Soft Label Generation BSSL
Loss Function KL-Divergence
Batch Size 16
Epochs 300
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 24: Hyperparameters for post-evaluation task on ResNet18, ResNet50 and ResNet101 for
ImageWoof.

Pre-training phase. For ImageNet-1K, we employed the official PyTorch pretrained models, which
have been extensively trained on the full ImageNet-1K dataset.

Hyperparameters for Post-Eval on R18, R50 and R101

Optimizer AdamW
S1 IPC50 (R18, R50)
S2 IPC1 (R18) IPC10 (R18, R50,

R101)
S3 IPC50 (R101)
S4 IPC1 (R50, R101)
Soft Label Generation BSSL
Loss Function KL-Divergence
Batch Size 16
Epochs 300
Augmentation RandomResizedCrop,

Horizontal Flip, CutMix

Table 25: Hyperparameters for post-evaluation task on ResNet18, ResNet50 and ResNet101 for
ImageNet-1K.

Evaluation Phase. Table 25 provides a detailed overview of the hyperparameter settings used during
the post-evaluation phase on the distilled ImageNet-1K dataset.
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H Additional Distilled Data Visualization

Additional visualizations of the distilled data generated by FADRM are provided in Fig. 7 (CIFAR-
100), Fig. 9 (Tiny-ImageNet), Fig. 11 (ImageNette), Fig. 13 (ImageWoof), and Fig. 15 (ImageNet-1K).
Furthermore, enhanced versions - FADRM+ are presented in Fig. 8 (CIFAR-100), Fig. 10 (Tiny-
ImageNet), Fig. 12 (ImageNette), Fig. 14 (ImageWoof), and Fig. 16 (ImageNet-1K).

Figure 7: Visualization of synthetic data on CIFAR-100 generated by FADRM.
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Figure 8: Visualization of synthetic data on CIFAR-100 generated by FADRM+.
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Figure 9: Visualization of synthetic data on Tiny-ImageNet generated by FADRM.
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Figure 10: Visualization of synthetic data on Tiny-ImageNet generated by FADRM+.
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Figure 11: Visualization of synthetic data on ImageNette generated by FADRM.
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Figure 12: Visualization of synthetic data on ImageNette generated by FADRM+.
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Figure 13: Visualization of synthetic data on ImageWoof generated by FADRM.
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Figure 14: Visualization of synthetic data on ImageWoof generated by FADRM+.
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Figure 15: Visualization of synthetic data on ImageNet-1K generated by FADRM.
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Figure 16: Visualization of synthetic data on ImageNet-1K generated by FADRM+.
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