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Abstract
MuZero, a model-based reinforcement learning
algorithm that uses a value equivalent dynamics
model, achieved state-of-the-art performance in
Chess, Shogi and the game of Go. In contrast to
standard forward dynamics models that predict a
full next state, value equivalent models are trained
to predict a future value, thereby emphasizing
value relevant information in the representations.
While value equivalent models have shown strong
empirical success, there is no research yet that
visualizes and investigates what types of repre-
sentations these models actually learn. Therefore,
in this paper we visualize the latent representa-
tion of MuZero agents. We find that action tra-
jectories may diverge between observation em-
beddings and internal state transition dynamics,
which could lead to instability during planning.
Based on this insight, we propose two regular-
ization techniques to stabilize MuZero’s perfor-
mance. Additionally, we provide an open-source
implementation of MuZero along with an interac-
tive visualizer of learned representations, which
may aid further investigation of value equivalent
algorithms.

1. Introduction
Model-based reinforcement learning has shown strong em-
pirical success in sequential decision making tasks, as illus-
trated by the AlphaZero (Silver et al., 2018) and MuZero
algorithms (Schrittwieser et al., 2020). Both of these ap-
proaches nest a planning loop, based on Monte Carlo Tree
Search (Kocsis & Szepesvári, 2006; Browne et al., 2012),
inside a learning loop, where we approximate global value
and policy functions. While AlphaZero used a known model
of the environment, MuZero learned the model from sam-
pled data. However, instead of a standard forward dynamics
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model, which learns to predict future states, the MuZero
dynamics model is trained to predict future values, better
known as a value equivalent model (Grimm et al., 2020).

A potential benefit of value equivalent models, compared
to standard forward models, is that they will emphasize
value and reward relevant characteristics in their represen-
tation and dynamics. This may be beneficial when the true
dynamics are complicated, but the value relevant aspects
of the dynamics are comparatively simple. As a second
benefit, we train our model for its intended use: predicting
value information during planning. Several papers have em-
pirically investigated this principle in recent years (Tamar
et al., 2016; Oh et al., 2017; Farquhar et al., 2018; Silver
et al., 2017b; Schrittwieser et al., 2020), while (Grimm et al.,
2020) provides a theoretical underpinning of this approach.

However, no literature has yet investigated what kind of
representations these approaches actually learn, i.e., how the
learned representations are organized. The goal of this paper
is therefore to investigate and visualize environment models
learned by MuZero. Most interestingly, we find that, after
training, an action trajectory that follows the forward dy-
namics model usually departs from the learned embedding
of the environment observations. In other words, MuZero
is not enforced to keep the state encoding and forward state
prediction congruent. Therefore, the second goal of this
paper is to regularize MuZero’s dynamics model to improve
its structure. We propose two regularization objectives to
add to the MuZero objective, and experimentally show that
these may indeed provide benefit.

In short, after introducing related work (Sec. 2) and nec-
essary background on the MuZero algorithm (Sec. 3), we
discuss two research questions: 1) what type of representa-
tion do value equivalent models learn (Sec. 4), and 2) can
we use regularization to better structure the value equiva-
lent latent space (Sec. 5)? We experimentally validate the
second question in Sec. 6 and 7. Moreover, apart from
answering these two question, we also open source modu-
lar MuZero code including an interactive visualizer of the
latent space based on principal component analysis (PCA),
available from www.anonymized.org. We found the
visualizer to greatly enhance our understanding of the algo-
rithm, and believe visualization will be essential for deeper
understanding of this class of algorithms.

www.anonymized.org
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2. Related Work
Value equivalent models, a term introduced by (Grimm
et al., 2020), are usually trained on end-to-end differen-
tiable computation graphs, although the principle would
be applicable to gradient-free optimization as well. Typi-
cally, the unrolled computation graph makes multiple passes
through a dynamics model, and eventually predicts a value.
Then, the dynamics model is trained through gradient de-
scent on its ability to predict the correct value. The first
value equivalent approach were Value Iteration Networks
(VIN) (Tamar et al., 2016), where a differentiable form of
value iteration was embedded to predict a value. Other vari-
ants of value equivalent approaches are Value Prediction
Networks (VPN) (Oh et al., 2017), TreeQN and ATreeC
(Farquhar et al., 2018), the Predictron (Silver et al., 2017b),
and MuZero (Schrittwieser et al., 2020). These methods
differ in the way they build their computation graph, where
VINS and TreeQN embed entire policy improvement (plan-
ning) in the graph, VPNs, the Predictron and MuZero only
perform policy evaluation. Therefore, the latter approaches
combine explicit planning for policy improvement, which in
the case of MuZero happens through MCTS. (Grimm et al.,
2020) provides a theoretical analysis of value equivalent
models, showing that two value equivalent models give the
same Bellman back-up.

MuZero uses the learned value equivalent model to ex-
plicitly plan through Monte Carlo Tree Search (Kocsis &
Szepesvári, 2006; Browne et al., 2012), and uses the output
of the search as training targets for a learned policy network.
This idea of iterated planning and learning dates back to
Dyna-2 (Silver et al., 2008), while the particularly success-
ful combination of MCTS and deep learning was introduced
in AlphaGo Zero (Silver et al., 2017a) and Expert Iteration
(ExIt) (Anthony et al., 2017). In general, planning may add
to pure (model-free) reinforcement learning: 1) improved
action selection, and 2) improved (more stable) training
targets. On the other hand, learning adds to planning the
ability to generalize information, and store global solutions
in memory. For more detailed overviews of value equivalent
models and iterated planning and learning we refer to the
model-based RL surveys by (Moerland et al., 2020; Plaat
et al., 2020).

Visualization is a common approach to better understand ma-
chine learning methods, and visualization of representations
and loss landscapes of (deep) neural networks has a long
history (Bischof et al., 1992; Yosinski et al., 2015; Karpa-
thy et al., 2015; Li et al., 2018a). For example, (Li et al.,
2018b) shows how the loss landscape of a neural network
can indicate smoothness of the optimization criterion. Visu-
alization is also important in other areas of machine learning,
for example to illustrate how kernel-methods project low di-
mensional data to a high dimensional space for classification

(Szymanski & McCane, 2011). Note that the most common
approach to visualize neural network mappings is through
non-linear dimensionality reduction techniques, such as
Stochastic Neighbour Embedding (Hinton & Roweis, 2002).
We instead focus on linear projections in low dimensional
environments, as non-linear dimensionality reduction has
the risk of altering the semantics of the MDP models.

3. The MuZero Algorithm
We briefly introduce the MuZero algorithm (Schrittwieser
et al., 2020). We assume a Markov Decision Process (MDP)
specification given by the tuple 〈S,A, T , U, γ〉, which re-
spectively represent the set of states (S), the set of actions
(A), the transition dynamics mapping state-action pairs to
new states (T : S ×A → p(S)), the reward function map-
ping state-action pairs to rewards (U : S ×A → R), and a
discount parameter (γ ∈ [0, 1]) (Sutton & Barto, 2018).
Internally, we define an abstract MDP 〈S̃,A, T̃ , R, γ〉,
where S̃ denotes an abstract state space, with correspond-
ing dynamics T̃ : S̃ × A → S̃, and reward prediction
R : S̃ × A → R. Our goal is to find a policy π : S → p(A)
that maximizes the value V (s) from the start state, where
V (s) is defined as the expected infinite-horizon cumulative
return:

V (s) = Eπ,T
[ ∞∑
t=0

γt · ut|s0 = s
]
. (1)

We define three distinct neural networks to approximate
the above MDPs (Figure 1): the state encoding/embedding
function hθ, the dynamics function gθ, and the prediction
network fθ, where θ denotes the joint set of parameters of
the networks. The encoding function hθ : S → S̃ maps a
(sequence of) real MDP observations to a latent MDP state.
The dynamics function gθ : S̃ × A → S̃ × R predicts the
next latent state and the associated reward of the transition.
In practice, we slightly abuse notation and also write gθ to
only specify the next state prediction. Finally, the prediction
network fθ : S̃ → p(A) × R predicts both the policy and
value for some abstract state s̃. We will identify the separate
predictions of fθ(s̃kt ) by pkt and V kt , respectively, where
subscripts denote the time index in the true environment,
and superscripts index the timestep in the latent environment.
Also, we write µθ = (hθ, gθ, fθ) for the joint model.

Together, these three networks can be chained to form a
larger computation graph that follows a single trace, start-
ing from state st following action sequence (at, . . . , at+n).
First, we use the embedding network to obtain the first
latent state from the sequence of observations: s̃0t =
hθ(s0, . . . , st). Then, we recursively transition forward
in the latent space following (s̃k+1

t , rk+1
t ) = gθ(s̃

k
t , at+k).

Finally, for all generated abstract states (s̃0t , . . . , s̃
n
t ) we use
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Figure 1. Illustration of MuZero’s RNN unfolding. During train-
ing, actions are given by the data.

the prediction network to obtain (pkt , V kt ) = fθ(s̃
k
t ). As

illustrated in Figure 1, the entire differentiable computation
graph implements the mapping

(s0, .., st, at, .., at+n)→ (p0
t , V

0
t , r

1
t , ..,p

n+1
t , V n+1

t , rn+1
t ).
(2)

We will later use this graph to train our networks, but first
discuss how they may be utilized to perform a search.

Given three individual neural networks for f , g and h as,
we then use these networks to perform a MCTS search from
state st in the abstract space. First, we embed the current
state through h. Then, we can essentially follow the PUCT
(Rosin, 2011) algorithm, a variant of MCTS that incorpo-
rates prior weights on the available actions, where the priors
originate from the policy network, pkt (first proposed by
(Silver et al., 2017a)). The state transitions and policy/value
predictions within the search are governed through g and
f , respectively. Eventually, this MCTS procedure outputs
a policy πt = π(st) and value estimate Vt = V (st) for the
root node, i.e., (πt, Vt) ∼ MCTS(s0, . . . , st|µθ). It then
selects action at ∼ πt in the real environment, transitions to
the next state, and repeats the search. We refer to appendix
B of the MuZero paper for full details on the MCTS search
(Schrittwieser et al., 2020).

We still need to discuss how to train fθ, gθ, and hθ. Through
playing episodes, MuZero collects trajectories η of state, ac-
tion, reward sequences, and the associated MCTS statistics
obtained at each state, i.e., η = (st, πt, at, rt, st+1, . . . ).
As mentioned before, given a start state and a sequence of
actions, we can unroll the differentiable graph that predicts
rewards, values and policy parameters at each predicted
state in the sequence (Eq. 2, Fig 1). Since the entire graph
is end-to-end differentiable, we may train it on a joint loss

(Schrittwieser et al., 2020):

l(θ) =

n∑
k=0

lr(ut+k, r
k
t ) + lv(zt+k, V

k
t )

+ lp(πt+k,pkt ) + λ‖θ‖22,
(3)

where lr = 0 for k = 0, λ ∈ R is a constant that gov-
erns the L2 regularization, and zt is a cumulative reward
estimate obtained from an n-step target on the real trace η,
zt =

∑n
i=0 γ

iut+i+ γnVt+n+1. For n→∞ this of course
becomes a Monte Carlo return estimate. Moreover, MuZero
uses distributional losses, inspired by (Pohlen et al., 2018),
for all three predictions (r, V , and p).

Finally, MuZero employs two forms of normalization to
stabilize learning. First, inside the MCTS selection rule, it
min-max normalizes the value estimates based on the mini-
mum and maximum estimate inside the current tree. This
allows the algorithm to adapt to arbitrary reward scaling.
Second, and more important for our paper, it also uses min-
max normalization as the output activation of hθ and gθ. In
particular, every abstract state is readjusted through

s̃scaled = (s̃−min(s̃))/(max(s̃)−min(s̃)), (4)

where the min and max are over the elements in the s̃ vector.
This brings the range of s̃ in the same range as the discrete
actions (one-hot encoded), but also introduces an interesting
restriction, especially when the latent space is small. For
example, when |s̃| = 4, then the min-max normalization
will enforce two elements within s̃ to be one of 0 or 1.
In practice, we observed that MuZero required at least a
|s̃| + 2 latent space to effectively learn a |s̃|-dimensional
problem given that the state context was non-redundant and
approximately Markov — this restriction was most stringent
for small |s̃|. Full details on the MuZero algorithm can be
found in the Appendix of (Schrittwieser et al., 2020).

4. Visualizing MuZero’s Latent Space
Value equivalent models, like MuZero, are solely trained on
a low-dimensional, scalar reward signal, as the value and
policy targets are also derived from the rewards. While the
concept of value equivalent models is convincing, it remains
unclear what types of representations these models actually
achieve, and how they shape their internal space. Therefore,
we first train MuZero agents to extract their learned em-
beddings/ representations and afterwards depict their state-
space to latent-space mapping graphically in a 3D space.
We create visualizations strictly on low-dimensional control
environments as it quickly becomes infeasible and nonsensi-
cal to map higher dimensional representations linearly back
to only 3 dimensions.
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Figure 2. Left: Relation between true state space and latent state space on MountainCar. The top-left maps the true state space, indexed
by vertical lines, into the latent space, retaining the vertical lines. The pattern indicates that the latent space gets curved, stretched and
compressed. The bottom-left shows the same mapping, but this time indexes the states by their value estimate near convergence. We
see that the latent embedding groups states that are dynamically close, which is visible in the grouping of states with similar values (in
MountainCar, states that are dynamically close also have similar value, since there is only one start region and one sparse goal). Right:
Latent embedding of a ground truth trace pushed through the encoder h (blue) and latent embedding of the same trace embedded at the
first state and subsequently propagated at latent level through g. We clearly see that, although both traces should cover the same trace and
cumulative reward, their latent trajectories diverge.

Figure 2 explores such a graphical depiction of MuZero’s
latent space near convergence (See also our supplementary
material for additional visualizations during training and
over ablations). The left part of the figure aims to relate the
ground-truth state space to the latent space. On the top left,
we visualize the ground-truth MountainCar state space (a
2D grid consisting of car position and car velocity) using
vertical bars. Directly next to it, we visualize a Principal
Component (PC) projection of the associated MuZero latent
space when moving through the embedding function, i.e.,
the subspace {s̃ : s̃ = hθ(s),∀s ∈ S} projected to its own
3-dimensional PC-space where L = |s̃| = 4. We retain the
vertical bars, which thereby illustrates the way the true state
space is curved into a high dimensional manifold. We do
see that MuZero recovers the state space to a large extent,
while it was never explicitly trained on it, although some
parts are compressed or stretched.

The bottom-left of Figure 2 provides a similar illustration of
the mapping between observed states and embedded states,
but this time with accompanying value information. The
bottom-left figure shows the learned value function of the
state-space, where the black lines illustrate some successful
final MuZero trajectories. Interestingly, when we map the
value information into the embedding, we see that MuZero
has actually strongly warped the original space. Relative to

this projection, states with low value are grouped in the left-
side of this space, while states with high value appear near
the right-side. Effectively, MuZero has created a represen-
tation space in which it groups states that are dynamically
close. For example, in the true state space (left), dark blue
(low value) and yellow (high value) states are often adjacent.
However, in the embedding (right), these states are strongly
separated, because they are dynamically distant (we cannot
directly move from blue to yellow, but need to follow the
trajectory shown in black). This shows that MuZero indeed
manages to retrieve essential parts of the dynamics, while
only being trained on a scalar reward signal.

Our last visualization of the learned model is shown in the
right panel of Figure 2. In this plot, we again visualize
a PCA of MuZero fitted on the embedding near conver-
gence. However, this time we fix a start state (s0) and
action sequence (a0, . . . , an), and visualize a successful
trace passing through both the embedding and dynamics
functions. For the embedding function, given a trace of en-
vironment data η, we plot 〈hθ(s0), hθ(s1), . . . , hθ(sn+1)〉
as the blue trajectory. In contrast, in green we em-
bed the first state and subsequently repeatedly transition
through the learned dynamics function gθ—i.e., we plot
〈hθ(s0), gθ(hθ(s0), a0), gθ(gθ(hθ(s0), a0), a1), . . . 〉. In-
terestingly, these two trajectories do not overlap. Instead,
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the latent forward dynamics seem to occupy a completely
different region of the latent space than the state encoder. We
repeatedly make this observation on different experiments
and repetitions. Although one would conceptually expect
these trajectories to overlap, there is no explicit loss term
that enforces these trajectories to stay congruent. When
the latent capacity is large enough, MuZero may fail to
identify this overlap, which hypothetically could waste gen-
eralization potential. In the next section we investigate two
possible modifications to combat this phenomena.

5. Regularizing the Latent Space
Ideally, the dynamics function should stay relatively con-
gruent to the embedding of observed environment states.
Thereby, we can maximally profit from generalization in
the latent space, and make optimal use of the available data.
However, as we observed in the previous section, there is
no explicit training objective that ensures this congruence.
We therefore propose two types of regularization, i.e., dif-
ferentiable penalty terms (added to the loss) that enforce the
latent space to be more congruent.

The first solution is to add a contrastive regularization,
which penalizes between the embedding of a state and the
forward dynamics prediction towards the same abstract state.
Given a trace η, we compute the loss

lc(θ) =

n∑
k=0

‖hθ(st+k+1)− s̃k+1
t )‖22, (5)

where s̃k+1
t = g(. . . g(g(hθ(s0), a0), a1), . . . , ak). This

loss is added to the standard MuZero loss (Eq. 3), where its
strength is governed by a scalar ω ∈ R+. To prevent trivial
solutions, we block the gradients of the above loss through
hθ for k > 0. This ensures that only the dynamics function
should move towards the embeddings (and not the other way
around), assuming that the embedding function is already
relatively well adapted. This type of contrastive loss is often
seen in supervised learning, for example in Siamese Net-
works (Chen & He, 2020; Koch et al., 2015). The process is
visually illustrated in the top graph of Figure 3.

A second solution can be the use of a decoding regular-
ization, which decodes latent predictions back to the true
observation. This essentially adds a (multi-step) forward
prediction loss to the MuZero model. We initialize an addi-
tional decoder network h−1θ , which maps latent states back
to the true observations: s′t+k = h−1θ (s̃kt ). Then, given a
trace of data η, we compute the loss

ld(θ) =

n∑
k=0

‖st+k+1 − h−1θ (s̃k+1
t )‖22, (6)

with s̃k+1
t defined as in the previous loss. Again, we can

use a scalar ω ∈ R+ to determine the relative contribution
of the loss when added to Eq. 3. This approach combines
the value equivalent loss model loss with a standard forward
prediction loss. The additional penalty ties the latent predic-
tions of gθ back to the ground-truth observations. Although
this mechanism is independent of the encoding h, it may
potentially help to regularize the space of gθ transitions.
Moreover, as a second benefit, this regularization may be
advantageous in initial stages of learning, as state transition
are often dense in information compared to sparse reward
signals. Thereby, it could be beneficial in early learning,
but can be overtaken by the value equivalent objective when
the model converges. The second type of regularization is
visualized in the bottom graph of Figure 3.

Figure 3. Two types of regularization of the MuZero objective.
Top: Contrastive regularization, where we penalize the discrep-
ancy between the embedding of a trace h (blue dashed line) and the
forward predictions of the same action sequence through g (green
dashed line). The contrastive loss pushes the green line towards the
blue line (shown in red). Bottom: Decoding regularization, which
adds an explicit decoding network h−1

θ , which maps predictions of
the latent model g (green dashed line) back to the observed state
space (red lines). This enforces the learned latent model to retain
some congruency with the true dynamics model.

6. Experimental Setup
We will now experimentally study our regularized versions
of MuZero compared to standard MuZero. As an additional
baseline, we also include an adaptation of AlphaZero for
single-player domains (Silver et al., 2018), i.e., a similar
agent with a perfect environment model. We provide a
complete reimplementation of MuZero based on the original
paper (Schrittwieser et al., 2020). All code is written in
Python using Tensorflow 2.0 (Abadi et al., 2015). The
code follows the AlphaZero-General framework (Nair et al.,
2017) and is available at https://anonymized.org,

https://anonymized.org
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along with all resulting data.

The intention for our experiments was not to achieve max-
imal performance of MuZero, but to visualize the learned
representations and study the effects of the different regular-
ization terms. For this reason, we focus on low-dimensional,
classic control environments, as it is hard to meaningfully
visualize high-dimensional state spaces. In particular, we
tested our work on CartPole and MountainCar, from Ope-
nAI‘s Gym (Brockman et al., 2016). To aid our analy-
sis, we developed an interactive visualization tool to for
learned MuZero models on the MountainCar environment at
https://anonymized.org. We encourage the reader
to play around with this tool as we personally found this to
provide more insight than static 2D images.

Table 1. Overview of factorial experimental design: 1) regulariza-
tion type, 2) regularization strength (ω), 3) latent roll-out depth
(K), and 4) latent dimensionality (L = |s̃|). Color annotations
correspond to the loss regularization methods depicted in Figure 3.

Hyperpar. CartPole MountainCar
Regular. {None,Contr.,Dec.} {None,Contr.,Dec.}
ω {0.01, 0.1, 1} {1}
K {1, 5, 10} {3}
L {4, 8} {4, 8}

All hyperparameters can be found in Appendix A in sup-
plemental material. For the results in this paper, we report
on a factorial experiment design shown in Table 1, where
we vary: 1) the regularization type, 2) the regularization
strength (ω), 3) the number of latent unroll steps (K), and
4) the size of the latent representation (L = |s̃|). Of course,
our main interest is in the ability of the regularizations to
influence performance. All experiments were run on the
CPU. The hyperparameter analysis experiment was run asyn-
chronously on a computing cluster using 24 threads at 2GHz.
On average it took about half a day to train an agent on any
particular environment. The complete experiments depicted
take about one week time to complete (after the separate
lengthy tuning phase of the other hyperparameters).

7. Results
Figure 4 shows results of our CartPole experiments. In both
plots we compare AlphaZero, MuZero, and our two regu-
larized MuZero extensions. On the left, we investigated the
effect of the regularization strength. AlphaZero consistently
solves this environment, while MuZero has more trouble
and solves it roughly 75% of the time. Both regularization
methods do not seem to structurally improve MuZero per-
formance on CartPole. Surprisingly, performance dips for
intermediate regularization strength (ω = 0.1). On the right
of Figure 4, we display the average training curves for each
of our four algorithms on CartPole. We see a similar pat-

tern, where the regularization losses do not seem to provide
benefit.

Since CartPole is a dense reward environment, in which
MuZero quickly obtains gradients to structure the latent
space, we also investigate our reguralization methods on
MountainCar. Figure 5 (left) shows the training progression
for AlphaZero, MuZero and the two regularization meth-
ods. Again, AlphaZero outperforms all other agents. How-
ever, this time, both our regularization methods outperform
MuZero in learning speed, where especially the contrastive
regularization leads to faster learning. All methods do reach
the same optimal performance.

We further quantify the strength of the learned internal
model by ’blindfolding’ the agent (Freeman et al., 2019).
A blindfolded agent only gets to see the true state of the
environment ever x number of steps, where we call x the
‘observation sparsity’. The right graph of Figure 5 displays
the average reward obtained by all MuZero models when
varying the observation sparsity (horizontal axis). All agents
consistently keep solving the problem up to an observation
sparsity of depth 10, which shows that their models do not
compound errors too fast. Then, performance starts to dete-
riorate, although only the contrastively regularized, L = 4
MuZero variant keeps solving the problem, even up to 200
steps without a ground truth observation. In general, the
blindfolded agents show that the model stays consistent over
long planning horizons (even when trained on shorter roll-
out depths), and that especially contrastive regularization
further increases this ability. Please refer to the Appendix
for additional visualization of the latent space in Mountain-
Car experiments.

8. Discussion
We studied the latent space of the MuZero algorithm, a
successful combination of value equivalent models and iter-
ated planning and learning. In particular, we visualized the
latent space, showing how the true state space is partially
recovered and warped into a dynamically relevant space.
Moreover, we identified a frequent mismatch between the
latent trajectories and the embeddings of the ground truth
observations. To alleviate this issue, we introduced two
forms of regularization, which did not improve performance
in CartPole, but did improve performance on MountainCar.
Finally, we also found that these models can accurately pre-
dict correct actions over long planning horizons, up to 200
steps in some cases, while being trained on relatively short
trajectories.

We hypothesize that the benefit of regularization is most
prominent on sparse reward tasks like MountainCar. In Cart-
Pole, where we quickly observe rewards, the representation
space of MuZero will quickly receive relevant gradients

https://anonymized.org
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Figure 4. Performance of AlphaZero, MuZero and two regularized MuZero versions on CartPole. Results are averaged over all hyper-
parameters K and L (Table 1). Left: Success percentage as a function of the regularization strength. ‘Success’ requires the maximum
reward of 500 consistently over n = 10 test episodes. The error bars indicate a one standard error confidence interval of the mean success
ratio. Right: Learning curves for AlphaZero, MuZero and two regularized MuZero versions. These curves are averaged over all values of
K and L in Table 1, which acts as a sensitivity analysis.

MountainCar: Training Mean Trial Rewards "Blindfolded" Trial Rewards (solid L = 8; dashed L = 4)

Figure 5. Performance of AlphaZero, MuZero and two regularized MuZero versions on MountainCar. Left: Reward progression during
training. Results averaged over 10 repetitions. Right: Performance of blindfolded agents, where the agent only get to see the true
environment observation every ’observation sparsity’ number of steps. Solid curves for L=8, dashed curves for L=4. Results for a single
repetition.

to structure itself. However, when reward information is
sparse, we may benefit from additional regularization of the
latent space, which might squeeze additional information
out of the available data. Especially the contrastive regular-
ization seems to show this effect, and could be a promising
direction for future research.

A critique on our work could involve the dimensionality of
the experiments. Deep reinforcement learning has started
to focus more and more on high-dimensional problems. We
opted for small scale experiments for two reasons. First of
all, low-dimensional problems allow for better interpretation.
We can only visualize a latent space in three dimensions,
and it would not be feasible to map an Atari game represen-
tation back to 3D. Moreover, the general emphasis in RL
has shifted towards to the challenge of dimensionality, while

problems can be challenging in more ways than dimension-
ality only. A good illustration of the latter point is that such
a high-impact algorithm as MuZero actually suffers to con-
sistently solve CartPole and MountainCar. This recognition
of the value of low dimensional experiments also starts to
resurface in the RL community (Osband et al., 2019).

Furthermore, AlphaZero and MuZero are incredibly compu-
tationally expensive to run. While standard RL algorithms
are already expensive to run, these iterated search and learn-
ing paradigms only exacerbate this limitation. When we use
a small-scale MCTS of n = 11 at every timestep, it already
takes at least 11 times as long to complete the same number
of episodes as model-free RL. Compared to model-free RL,
these iterated search and learning paradigms seem to benefit
in long run performance, but they are computationally heavy
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to train.

We observed that AlphaZero and, especially, MuZero are
rather unstable to train. Their performance strongly depends
on a variety of hyperparameters and network initialization,
and we observe strong variation in the performance over
different runs. A direction for future work is to further sta-
bilize these algorithms. Our work on novel regularizations
for value equivalent models like MuZero is a first step in
this direction. Future work could investigate how to further
stabilize MuZero through different regularizations, or fur-
ther combinations with standard forward prediction or types
of auxiliary losses (Jaderberg et al., 2016). Although value
equivalency is a strong incentive for the final representation
of the model, we may aid the model during learning with
additional losses and regularizations, especially in sparse
reward tasks.

9. Conclusion
The first part of this paper visualized the learned latent rep-
resentations and model of MuZero, which we consider the
main contribution of the paper. Our two most important
observations are: 1) the learned latent space warps the origi-
nal space into a ’dynamically close’ space, in which states
that are easy to reach from eachother are nearby, and 2) the
embedding of an action trajectory through the latent dynam-
ics often departs from the embedding of the ground-truth
states, which suggest the latent space does not optimally
generalize information. To alleviate the last problem, the
second part of the paper investigated two new forms of
regularization of value equivalent models: 1) a contrastive
regularization, and 2) a decoder regularization. Experiments
indicate that these approaches may aid MuZero in sparse
reward tasks, and that these models in general manage to
plan over long horizons (much longer than they were trained
on). Our visualizations of the latent space show that the con-
trastive regularization term can force the dynamics function
to predict values closer to the embedding, this in turn can
help interpreting the look-ahead search of MuZero. All
code and data to reproduce experiments is open-sourced at
www.anonymized.com, including an interactive visual-
izer to further explore the MuZero latent space. We also
hope our work further stimulates new emphasis on visualiza-
tion of RL experiments, which may provide more intuitive
insights into deep reinforcement learning.
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Kocsis, L. and Szepesvári, C. Bandit based monte-carlo
planning. In European conference on machine learning,
pp. 282–293. Springer, 2006.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T.
Visualizing the loss landscape of neural nets. In Advances
in neural information processing systems, pp. 6389–6399,
2018a.

Li, H., Xu, Z., Taylor, G., Studer, C., and Goldstein, T. Vi-
sualizing the loss landscape of neural nets. In Bengio, S.,
Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi,
N., and Garnett, R. (eds.), Advances in Neural Infor-
mation Processing Systems 31, pp. 6389–6399. Curran
Associates, Inc., 2018b.

Moerland, T. M., Broekens, J., and Jonker, C. M. Model-
based reinforcement learning: A survey. arXiv preprint
arXiv:2006.16712, 2020.

Nair, S., Thakoor, S., and Jhunjhunwala, M. suragnair/alpha-
zero-general, 2017. URL https://github.com/
suragnair/alpha-zero-general. original-
date: 2017-12-01.

Oh, J., Singh, S., and Lee, H. Value prediction net-
work. 2017. URL http://arxiv.org/abs/1707.
03497.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener,
E., Saraiva, A., McKinney, K., Lattimore, T., Szepesvari,
C., Singh, S., et al. Behaviour suite for reinforcement
learning. In International Conference on Learning Rep-
resentations, 2019.

Plaat, A., Kosters, W., and Preuss, M. Model-based deep
reinforcement learning for high-dimensional problems, a
survey. arXiv preprint arXiv:2008.05598, 2020.

Pohlen, T., Piot, B., Hester, T., Azar, M. G., Horgan, D.,
Budden, D., Barth-Maron, G., van Hasselt, H., Quan,
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A. Hyperparameters and Neural
Architectures

Our neural network architectures for MuZero were partially
inspired by the ones proposed by (van Seijen et al., 2020).
We kept every constituent network within the larger MuZero
model equivalent, that is: hθ, gθ, fθ, and optionally h−1θ had
the same internal architecture being a two-layered feed for-
ward network with 32 hidden nodes using the Exponential
Linear Unit activation function. The embedding function
hθ received only current observations, so no trajectories.
Actions for the dynamics functions were one-hot-encoded
and concatenated to the current latent state before being
passed to gθ; computed latent-states were also minmax-
normalized within the neural architecture. The action policy,
value function, and reward prediction were represented as
distributions and trained using a cross-entropy loss, as was
also done in the original paper (Schrittwieser et al., 2020).
The AlphaZero neural network was simply fθ that received
state observations—i.e., when omitting hθ and gθ. All other
unmentioned hyperparameters are shown in Table 2.

B. Additional Visualization of Latent Space
Figure 6 illustrates a typical training progression for MuZero
on the MountainCar environment (hyperparameters can
be found in the appendix), similarly to Figure 2 we used
L = |s̃| = 4. The shapes shown in the top row portray the
progression of the embedding {s̃ : s̃ = hθ(s),∀s ∈ S},
shown in a 3D space obtained through PCA. Upon initial-
ization, the latent space is almost degenerate, and all latent
traces occupy the same part of the latent space. The action
selection strategy of MuZero is near uniform in this situa-
tion. Gradually during training, the agent starts to expand
and eventually occupies the full latent space. In the top-
right plot, we see that the latent spaces aggregate states with
similar values. On the bottom, we display violin plots of
the latent state distribution during training, in the true four
dimensional latent space. We find that these distributions
appear overinflated around 0 and 1, on all dimensions. Ar-
guably, this is an artifact of the min-max normalization of
the latent space (as discussed in Section 3), which always
forces one element to be 0, and one element to be 1. We
do see that MuZero spreads its assignment of min and max
over all dimensions. Note that, although MuZero can theo-
retically still predict any point in the latent space [0, 1]4, the
normalization effectively reduces the degrees of freedom
within the latent space.

Figure 7 provides additional illustration of the learned latent
spaces for MuZero and our two regularized MuZero variants
on MountainCar. The figure has a 3x2 design, where the
rows depict different algorithms, and the columns different
sizes of the latent space. The left of each cell contains a
3-dimensional PCA projection of the learned latent space.

We again observe that the value equivalent objective nicely
unfolds a latent space, in which states that are dynamically
close in the true environment are also close in the latent
space.

More interestingly, the right of each cell displays the two
ways to embed a trajectory: 1) by passing each observed true
state through hθ (blue), or 2) by simulating forward through
the latent dynamics gθ (green). We again observe that these
trajectories strongly depart for the original MuZero algo-
rithm. In contrast, the two regularization methods force
both trajectories to stay closer to eachother. Especially the
contrastive loss manages to keep both trajectories close to
consistent, which may help to obtain better generalization,
and could explain the faster learning observed in Figure 5.
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30 Iterations 40 Iterations 50 Iterations 200 Iterations

Figure 6. Development of the MuZero latent space over training. The progression on the top shows the 3D latent space, obtained by
performing a principal component analysis on the agents true four-dimensional latent space. The color map indicates the learned value
for each latent state. The bottom progression shows violin plots for the original 4D space, indicating which parts of the latent space are
actually occupied during training.
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Table 2. Overview of all constant hyperparameters used in our experiments for both AlphaZero and MuZero, see Table 1 for the
non-constant hyperparameters.

Hyperparameter Value (CP/ MC) Description

Self-Play Iterations 80/ 1000 Number of data-gathering/ backpropagation loops to per-
form.

Episodes 20 Number of trajectories to generate within the environment
for each Self-Play loop.

Epochs 40 Number of backprop steps to perform for each Self-Play
loop.

Episode Length 500/ 200 Maximum number of steps per episode before termination.

α 0.25 Dirichlet alpha used for adding noise to the MCTS root
prior.

pexplore 0.25 Exploration fraction for the MCTS root prior.

c1 1.25 Exploration factor in MCTS’s UCB formula.

c2 19652 Exploration factor in MCTS’s UCB formula.

τ 1 MCTS visitation count temperature.

N 11 Number of MCTS simulations to perform at each search.

Prioritization False Whether to use prioritized sampling for extracting training
targets from the replay buffer.

Replay-Buffer
window

10 Number of self-play loops from which data is retained,
self-play iterations outside this window are discarded

TD-steps 10/ 50 Number of steps until bootstrapping when computing dis-
counted returns.

γ 0.997 Discount factor for computing n-step/ TD-step returns.

Optimizer Adam Gradient optimizer for updating neural network weights.

η 2 · 10−2 Adam Learning Rate

Batch Size 128 Number of target samples to use for performing one back-
propagation step.

λ 10−4 L2-Regularization term for penalizing magnitude of the
weights.

S 15/ 20 Number of distribution support points for representing the
value and reward functions.
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Figure 7. Rows: Different algorithms (MuZero, MuZero Decoder and MuZero Contrastive). Columns: Different latent sizes (L = 4,
L = 8). For each combination we show two graphs: 1) (left) a 3-dimensional PCA projection of the learned embeddings in MountainCar
and 2) (right) uniquely sampled trajectories embedded through hθ (blue) or simulated forward through the latent dynamics gθ (green).
We see that both trajectories depart for standard MuZero, but especially contrastive regularization manages to keep these trajectories
congruent.


