
Model-free Safe Control
for Zero-Violation Reinforcement Learning

Weiye Zhao Tairan He Changliu Liu
Carnegie Mellon University

{weiyezha, tairanh, cliu6}@andrew.cmu.edu

Abstract: While deep reinforcement learning (DRL) has impressive performance
in a variety of continuous control tasks, one critical hurdle that limits the applica-
tion of DRL to physical world is the lack of safety guarantees. It is challenging
for DRL agents to persistently satisfy a hard state constraint (known as the safety
specification) during training. On the other hand, safe control methods with safety
guarantees have been extensively studied. However, to synthesize safe control,
these methods require explicit analytical models of the dynamic system; but these
models are usually not available in DRL. This paper presents a model-free safe
control strategy to synthesize safeguards for DRL agents, which will ensure zero
safety violation during training. In particular, we present an implicit safe set algo-
rithm, which synthesizes the safety index (also called the barrier certificate) and
the subsequent safe control law only by querying a black-box dynamic function
(e.g., a digital twin simulator). The theoretical results indicate the implicit safe
set algorithm guarantees forward invariance to the safe set. We validate the pro-
posed method on the state-of-the-art safety benchmark Safety Gym. Results show
that the proposed method achieves zero safety violation and gains 95%± 9% cu-
mulative reward compared to state-of-the-art safe DRL methods. Moreover, the
proposed method can easily scale to high-dimensional systems.

Keywords: Mobile Robots, Safe Reinforcement Learning, Safe Control

1 Introduction

Safety in terms of persistently satisfying a hard state constraint is always an important consideration
in robotics. For example, vehicles should not crash into pedestrians; robot arms should not hit
walls. More safety concerns are raised during robot learning, where the robot needs to figure out
the optimal control policy by exploring the surrounding environment. It is not enough to merely
penalize the robot for entering the unsafe states using posterior measures [1, 2]. The robot’s action
should indeed be constrained to not enter the unsafe states using prior measures.

Safe control methods that constrain the robot motion to persistently satisfy a hard safety constraint
in predictable environments have been extensively studied. The most widely used ones are energy

function-based methods. These methods [3, 4, 5, 6] first design an energy function such that the
safe states are with low energy and then synthesize control laws that are constrained to make the
system dissipate energy. Then the system will never leave the safe set (i.e., forward invariance).
These methods were first introduced for deterministic systems. They have been recently extended to
stochastic and uncertain systems [7, 8] (uncertainties in either the state measurements or the future
evolution of the ego robot or obstacles) and combined with robot learning for safety assurance [9].
However, the major limitation of these methods is that they require white-box analytical models

of the system dynamics (e.g., Kinematic Bicycle Model [10]) and/or the associated uncertainties,
which are challenging to obtain during robot learning.

This paper proposes a model-free safe control method that enables the application of energy

function-based methods to ensure robot safety in environments where no white-box analytical model
is available. The model-free safe control is able to safeguard any robot learning algorithm. The key
insight we have is that the safe control laws can be synthesized by only querying black-box non-
analytical dynamic functions. These black-box functions can be high-fidelity digital twin simulators

5th Conference on Robot Learning (CoRL 2021), London, UK.

or deep neural network models, which are usually available or can be constructed by data-driven
learning. The key questions that we want to answer are: 1) how to synthesize the energy function
(in our case called the safety index) so that there always exists a feasible control input to dissipate
energy at any state, when the dynamics are black-box; and 2) how to efficiently sample the control
space to find the best safe control (e.g., the control that dissipates energy and optimizes the reward)
with black-box dynamics. We propose a safety index design rule to address the first question, and
a sample-efficient algorithm to perform black-box constrained optimization to address the second
question. By combining these approaches with the (model-based) safe set algorithm [5], we propose
the (model-free) implicit safe set algorithm (ISSA). We then use ISSA to safeguard deep reinforce-
ment learning (DRL) agents. Extension to other energy function-based methods and robot learning
approaches is straight forward and will be explored in the future.

The key contributions of this paper are summarized below:

• We propose two techniques to synthesize safe control laws without white-box models: a
safety index design rule for mobile robots in the 2D plane and a sample-efficient black-box
optimization algorithm using adaptive momemtum boundary approximation (AdamBA).

• We propose the implicit safe set algorithm using these two techniques, which guarantees
to generate safe controls for all system states without knowing the explicit system dynam-
ics. We show that ISSA can safeguard DRL agents to ensure zero safety violation during
training in Safety Gym. Our code is available on Github.1

2 Problem Formulation

Dynamics Let xt 2 X ⇢ Rnx be the robot state at time step t, where nx is the dimension of
the state space X ; ut 2 U ⇢ Rnu be the control input to the robot at time step t, where nu is the
dimension of the control space U . The system dynamics are defined as:

xt+1 = f(xt, ut), (1)

where f : X ⇥ U ! X is a function that maps the current robot state and control to the robot state
in the next time step. For simplicity, this paper considers deterministic dynamics. The proposed
method can be easily extended to stochastic case through robust safe control [11, 12], which will
be left for future work. Moreover, it is assumed that we can only access an implicit black-box
form of f , e.g., as an implicit digital twin simulator or a deep neural network model. Note that the
word implicit refers to that we evaluate f(x, u) without any explicit knowledge or analytical form
of f(x, u).

Safety Specification The safety specification requires that the system state should be constrained
in a closed subset in the state space, called the safe set XS . The safe set can be represented by the
zero-sublevel set of a continuous and piecewise smooth function �0 : Rnx ! R, i.e., XS = {x |
�0(x) 0}. XS and �0 are directly specified by users. The design of �0 is straightforward in most
scenarios. For example, for collision avoidance, �0 can be designed as the negative closest distance
between the robot and environmental obstacles.

Reward and Nominal Control A robot learning controller generates the nominal control which
is subject to modification by the safeguard. The learning controller aims to maximize rewards in
an infinite-horizon deterministic Markov decision process (MDP). An MDP is specified by a tuple
(X ,U , �, r, f), where r : X ⇥ U ! R is the reward function, 0 � < 1 is the discount factor, and
f is the deterministic system dynamics defined in (1).

Problem Building on top of the nominal learning agent, the core problem of this paper is to syn-
thesize a safeguard for the learning agent, which monitors and modifies the nominal control to ensure
forward invariance in a subset of the safe set XS . Forward invariance of a set means that the robot
state will never leave the set if it starts from the set. The reason why we need to find a subset instead
of directly enforcing forward invariance of XS is that XS may contain states that will inevitably
go to the unsafe set no matter what the control input is. These states need to be penalized when

1
https://github.com/intelligent-control-lab/ISSA_CoRL21

2

https://github.com/intelligent-control-lab/ISSA_CoRL21

we synthesize the energy function. For example, when a vehicle is moving toward an obstacle with
high speed, it would be too late to stop. Even if the vehicle is safe now (if XS only constrains the
position), it will eventually collide with the obstacle (unsafe). Then we need to assign high energy
values to these inevitably-unsafe states.

3 Related Work

Safe Reinforcement Learning Safe RL either considers soft safety constraints or hard safety
constraints. Typical safe RL methods for soft safety constraints include risk-sensitive safe RL [13],
Lagrangian methods [14] and constrained policy optimization (CPO) [15]. These methods are able
to find policies that satisfy the safety constraint in expectation, but cannot ensure all visited states
are safe. The methods that are more closely related to ours are safe RL methods with hard safety
constraints. Richard et al. [7] proposes a general safe RL framework, which combines CBF-based
controllers with RL algorithms to guarantee safety and guide the learning process by constraining
the set of explorable policies. However, the theory guarantee of CBF-based controller strongly relies
on a known control affine dynamics system, which restricts its application to general nonlinear dy-
namics systems. More related works of safe RL methods with hard safe constraints are summarized
in Appendix A.

Safe Control Representative energy function-based methods for safe control include potential field
methods [3], control barrier functions (CBF) [4], safe set algorithms (SSA) [5], sliding mode algo-
rithms [6], and a wide variety of bio-inspired algorithms [16]. The first step to synthesize a safe
controller is to compute a desired energy function offline such that 1) the low energy states are safe
and 2) there always exists a feasible control input to dissipate the energy. SSA has introduced a rule-
based approach to synthesize the energy function as a continuous, piece-wise smooth scalar function
on the system state space � : Rnx ! R. And the energy function �(x) is called a safety index in
this approach. The general form of the safety index was proposed as � = �⇤

0 + k1�̇0 + · · ·+ kn�
(n)
0

where 1) the roots of 1 + k1s + . . . + knsn = 0 are all negative real (to ensure zero-overshooting
of the original safety constraints); 2) the relative degree from �(n)

0 to u is one (to avoid singularity);
and 3) �⇤

0 defines the same set as �0 (to nonlinear shape the gradient of � at the boundary of the safe
set). It is shown in [5] that if the control input is unbounded (U = Rnu), then there always exist a
control input that satisfies the constraint �̇ 0 when � = 0; and if the control input always satisfies
that constraint, then the set {x | �(x) 0} \ {x | �0(x) 0} is forward invariant. In practice,
the actual control signal is computed through a quadratic projection of the nominal control ur to the
control constraint

u =argmin
u2U

ku� urk2 s.t. �̇ �⌘(�), (2)

where �̇ �⌘(�) is a general form of the constraint; ⌘ : R ! R is a non decreasing function
that ⌘(0) � 0. For example, in CBF, ⌘(�) is designed to be �� for some positive scalar �. In
SSA, ⌘(�) is designed to be a positive constant when � � 0 and �1 when � < 0. Note there
are two major differences between this paper and the existing results. First, this paper considers
constrained control space, which then require careful selection of the parameters in � to make sure
the control constraint US(x) := {u 2 U | �̇ �⌘(�)} is nonempty for states that � � 0. Secondly
and most importantly, this paper considers general black-box dynamics, while the existing work
considers analytical control-affine dynamics. For analytical control-affine dynamic models, US(x)
is essentially a half-space and the projection (2) can be efficiently computed by calling a quadratic
programming solver. However, for black-box dynamics, this constraint is challenging to quantify.

4 Method

This section introduces the implicit safe set algorithm (ISSA), which is able to leverage energy

function-based methods (SSA in particular) with black-box dynamics, and be used to safeguard any
nominal policy. ISSA contains two parts: 1) a safety index synthesis rule to make sure US(x) is
nonempty for all x, and 2) a sample-efficient black-box optimization method to solve the projection
of the nominal control to US(x). With these two components, the overall pipeline of the implicit
safe set algorithm is summarized as follows:

3

• Offline: Design the safety index �(x) according to the safety index design rule.
• Online: Project nominal control into US(x) during online robot maneuvers.

For simplicity, we consider discrete-time control only since real-world robot control systems are
always implemented in discrete-time. Thus, we consider the discrete-time set of safe control
UD
S (x) := {u 2 U | �(f(x, u)) max{�(x)� ⌘, 0}} in the following discussion.

4.1 Synthesize Safety Index

!

"

#

$

%

Obstacle

Robot

Figure 1: Notations.

In this paper, the safety constraint that we are specifically interested in is
collision avoidance for mobile robots in 2D planes. We treat the robot and
the obstacles as point-mass circles with bounded collision radius. The
safety specification is define as �0 = maxi �0i, and �0i = dmin � di
where di denotes the distance between the center points of the robot and
the i-th obstacle (static or non-static). It is assumed that the dynamics
f(x, u) is a bounded Lipschitz function. Denote a and w as the rela-
tive acceleration and relative angular velocity of the robot in the obstacle
frame, respectively, as shown in fig. 1. The safety index for collision avoidance in 2D will be syn-
thesized without referring to the specific dynamic model, but under the following assumptions.
Assumption 1 (2D Collision Avoidance). 1) The state space is bounded, and the relative accel-

eration and angular velocity are bounded and both can achieve zeros, i.e., w 2 [wmin, wmax] for

wmin 0 wmax and a 2 [amin, amax] for amin 0 amax; 2) For all possible values of a
and w, there always exists a control u to realize such a and w; 3) The discrete-time system time step

dt ! 0. 4) At any given time, there can at most be one obstacle becoming safety critical, such that

�� ⌘ � 0 (Sparse Obstacle Environment).

These assumptions are easy to met in practice. The bounds in the first assumption will be directly
used to synthesize �. The second assumption enables us to turn the question on whether these exists
a feasible control in UD

S to the question on whether there exists a and w to decrease �. The third
assumption ensures that the discrete time approximation error is small. The last assumption enables
safety index design rule applicable with multiple moving obstacles. Following the rules in [5], we
parameterize the safety index as � = maxi �i, and �i = � + dnmin � dni � kḋi, where all �i

share the same set of tunable parameters �, n, k, ⌘ 2 R+. Our goal is to choose these parameters
such that UD

S (x) is always nonempty. Under the above assumptions, the safety index design rule is
constructed below.

Safety Index Design Rule: By setting ⌘ = 0, the parameters k, n, and � should be chosen such that

n(� + dnmin + kvmax)
n�1
n

k
 �amin

vmax
, (3)

where vmax is the maximum relative velocity that the robot can achieve in the obstacle frame.

4.2 Sample-Efficient Black-Box Constrained Optimization

The nominal control ur
t needs to be projected to UD

S (x) by solving the following optimization:

min
ut2U

kut � ur
tk2

s.t. �(f(xt, ut)) max{�(xt)� ⌘, 0}
(4)

Since the objective of (4) is convex, its optimal solution will always lie on the boundary of UD
S (x)

if ur /2 UD
S (x). Therefore, it is desired to have an efficient algorithm to find the safe controls on

the boundary of UD
S (x). To efficiently perform this black-box optimization, we propose a sample-

efficient boundary approximation algorithm called Adaptive Momentum Boundary Approximation
Algorithm (AdamBA), which is summarized in Algorithm 1 of Appendix B. We illustrate the main
boundary approximation procedures of AdamBA in Figure 2, where AdamBA is supposed to find the
boundary points of UD

S (x) (green area) with respect to the reference control ur /2 UD
S (x) (red star).

The core idea of the AdamBA follows the adaptive line search [17], where three main procedures are
included. I. AdamBA first initialize several unit gradient vectors (green vectors) to be the sampling

4

Safe Control Set
Control Space

�D
S (x)

ur

�

Unit Gradient Vector

(a) Initialize gradient vectors

Safe Control Set
Control Space

�D
S (x)

ur

�
(b) Exponential outreach.

Safe Control Set
Control Space

�D
S (x)

ur

�
(c) Exponential decay.

u1

u2
u3Safe Control Set

Control Space

�D
S (x)

ur

�
(d) Boundary points found.

Figure 2: Illustration of the procedure of the AdamBA algorithm.

directions as shown in Figure 2a. II. AdamBA enters the exponential outreach phase by exponential
increasing the gradient vector length until they reach UD

S (x) as shown in Figure 2b. Note that we
discard those gradient vectors that go out of control space (red vectors). III. Next, AdamBA enters
exponential decay phase by iteratively applying binary search to find boundary points as shown in
Figure 2c. Finally, a set of boundary points will be returned after AdamBA converges as shown in
Figure 2d. Note that AdamBA and the line search methods are fundamentally similar to each other,
while the purpose of AdamBA is to find the boundary of safe/unsafe action, while the line search
methods are to find the minimum of a function. It can be shown that the boundary approximation
error can be upper bounded, where the bound depends on the resolution of the sampling directions.

4.3 Implicit Safe Set Algorithm

Leveraging AdamBA and the safety index design rule, we construct the implicit safe set algorithm
(ISSA). The proposed ISSA is summarized in Algorithm 2 of Appendix B. ISSA contains an offline
stage and an online stage. In the offline stage, we synthesize the safety index according to the design
rule (3). There are two major phases in the online stage for solving (4). In online-phase 1, we directly
use AdamBA to find the safe controls on the boundary of UD

S (x), and choose the control with
minimum deviation from the reference control as the final output. In the case that no safe control
is returned in online-phase 1 due to sparse sampling, online-phase 2 is activated. We uniformly
sample the control space and deploy AdamBA again on these samples to find the safe control on
the boundary of UD

S (x). It can be shown that the ISSA algorithm is guaranteed to find a feasible
solution of (4) and that solution ensures forward invariance to the set S := XS \ {x | �(x) 0}.

Although the ISSA algorithm builds upon the safe set algorithm [5], the proposed safety index
synthesis and AdamBA algorithm can be applied to other energy function-based methods to generate
safe controls with or without an explicit analytical dynamics model.

5 Theoretical Results

We first present two propositions for the feasibility of the safety index synthesis rule and of Al-
gorithm 2. The proofs for Proposition 1 and Proposition 2 are summarized in Appendix C and
Appendix D, respectively. Then, we present the main theorem stating that the implicit safe set
algorithm ensures forward invariance. The proof of Theorem 1 is summarized in Appendix E.
Proposition 1 (Nonempty set of safe control). If the dynamic system satisfies the assumptions in

Assumption 1, then the safety index design rule in Section 4.1 ensures that the robot system in 2D

plane has nonempty set of safe control at any state, i.e., UD
S (x) 6= ;, 8x.

Proposition 2 (Feasibility of Algorithm 2). If the set of safe control is non-empty, Algorithm 2 can

always find a local optimal solution of (4) with finite number of iterations.

Theorem 1 (Forward Invariance). If the control system satisfies the assumptions in Assumption 1

and the safety index design follows the rule described in Section 4.1, the implicit safe set algorithm

guarantees the forward invariance to the set S ✓ XS .

6 Experimental Results

In our experiments, we aim to answer the following questions:

Q1: How does ISSA compare with other state-of-the-art methods for safe RL? Can ISSA
achieve zero-violation of the safety constraint?

5

(a) Point robot: a simple
2D robot that can turn and
move.

(b) Goal: navigating the
robot inside the green goal
area.

(c) Push: pushing the yel-
low box inside the green
goal area.

(d) Hazards: non-physical
dangerous areas.

(e) Pillars: fixed dangerous
obstacles

Figure 3: The environmental settings for benchmark problems in Safety Gym.

Q2: How does the design of the safety index affect the set of safe control?
Q3: How do the hyper-parameters of ISSA and the dimensionality of the system impact its

performance?

To demonstrate the effectiveness of the proposed implicit safe set algorithms, we conduct evalu-
ation experiments on the safe reinforcement learning benchmark environment Safety Gym [14].
Our experiments adopt the Point robot (U ✓ R2) as shown in Figure 3a and the Doggo robot
(U ✓ R12) as shown in Figure 1. We design 8 experimental environments with different task
types, constraint types, constraint numbers and constraint sizes. We name these environments
as {Task}-{Constraint Type}{Constraint Number}-{Constraint Size}. Note
that Constraint Size equals dmin in the safety index design. Two tasks are considered:

• Goal: The robot must navigate to a goal as shown in Figure 3b.
• Push: The robot must push a box to a goal as shown in Figure 3c.

And two different types of constraints are considered:

• Hazard: Dangerous (but admissible) areas as shown in Figure 3d. Hazards are circles on
the ground. The agent is penalized for entering them.

• Pillar: Fixed obstacles as shown in Figure 3e. The agent is penalized for hitting them.

Figure 4: The PPO-ISSA structure.

The methods in the comparison group include: uncon-
strained RL algorithm PPO [18] and constrained safe
RL algorithms PPO-Lagrangian, CPO [15] and PPO-SL
(PPO-Safety Layer) [19]. We select PPO as our baseline
method since it is state-of-the-art and already has safety-
constrained derivatives that can be tested off-the-shelf.
We set the limit of cost to 0 for both PPO-Lagrangian and
CPO since we aim to avoid any violation of the constraints. To make sure ISSA can complete tasks
while guaranteeing safety, we use a PPO agent as the nominal policy and ISSA as a safety layer
to solve (4), we call this structure as PPO-ISSA, and it is illustrated in Figure 4. Such safety layer
structure has also been used in PPO-SL [19] which leverages offline dataset to learn a linear safety-
signal model and then construct a safety layer via analytical optimization. For all experiments, we
use neural network policies with separate feedforward MLP policy and value networks of size (256,
256) with tanh activations. More details are provided in Appendix F.1.

6.1 Evaluating PPO-ISSA and Comparison Analysis

Figure 5: Cost changes over 100
time steps of PPO and PPO-ISSA
starting from the same unsafe
state over 20 trails.

To compare the reward and safety performance of PPO-ISSA to
the baseline methods in different tasks, constraint types, and con-
straint sizes, we design 4 test suites with 4 constraints which are
summarized in Figure 6. The comparison results reported in Fig-
ure 6 demonstrate that PPO-ISSA is able to achieve zero average
episode cost and zero cost rate across all experiments while slightly
sacrificing the reward performance. The baseline soft safe RL meth-
ods (PPO-Lagrangian and CPO) fail to achieve zero-violation safety
even when the cost limit is set to be 0. PPO-Lagrangian and CPO

6

(a) Goal-Hazard4-0.05 (b) Goal-Hazard4-0.15 (c) Goal-Pillar4-0.15 (d) Push-Hazard4-0.15

Figure 6: Average episodic return, episodic cost and overall cost rate of constraints of PPO-ISSA and baseline
methods on 4-constraint environments over five seeds.

fail since both methods rely on trial-and-error to enforce constraints while ISSA is able to guar-
antee forward invariance by Theorem 1. We also observe that PPO-SL fails to lower the vio-
lation during training, due to the fact that the linear approximation of cost function c(xt+1) ⇡
c(xt) + g(xt, w)Tu [19] becomes inaccurate when the dynamics are highly nonlinear like the ones
we used in MuJoCo [20]. More importantly, PPO-SL cannot guarantee that these always exist a
feasible safe control to lower the cost, since they directly use the user defined cost function which
cannot always ensure feasibility. More detailed metrics for comparison and experimental results on
test suites with 1 constraint are summarized in Appendix F.1.4.

Figure 7: Average return
of PPO-ISSA with different
safety index design on Goal-
Hazard4-0.15.

We further compare the cost evolution of PPO and PPO-ISSA agents
when starting from the same unsafe state (i.e., cost > 0). The com-
parison results are shown in Figure 5, which shows that PPO-ISSA can
converge to XS within 100 time steps across all experiments while cost
evolution of PPO agents fluctuates wildly without preference to con-
verge to safe set.

6.2 Feasibility of Safety Index Synthesis

To demonstrate how the set of safe control is impacted by different
safety index definition, we randomly pick an unsafe state x⇤ such that
�(x⇤) > 0, and visualize the corresponding set of safe control UD

S under different safety index def-
initions, which are shown in Figure 8. Red area means �� > 0 (i.e. unsafe control) and blue area
means �� < 0 (i.e. safe control). Figure 8a shows the set of safe control of distance safety index
�d = � + dmin � d, which is the default cost definition of Safety Gym. The heatmap is all red in
Figure 8a, which means that the set of safe control under the default �d is empty. Figure 8b shows
the set of safe control of the synthesized safety index � = � + d2min � d2 � kḋ with different value
of k. With the synthesized safety index, Figure 8b demonstrates that the size of the set of safe con-
trol grows as k increases, which aligns with the safety index synthesis rule discussed in Section 4.1
as larger k is easier to satisfy (3). To demonstrate the reward performance of PPO-ISSA under
different safety index designs, we select Goal-Hazard4-0.15 test suite. Figure 7 demonstrates the
average return of PPO-ISSA under different value of k, which shows that the reward performance
of PPO-ISSA deteriorates as k value increases (since larger k makes the control more conservative).
Note that the set of safe control increases as the k value increases, thus the optimal k should be the
smallest k that makes the set of safe control nonempty for all states. Our safety index synthesis rule
in (3) provides the condition to pick the optimal k.

7

(a) Distance Safety Index

K=0.25 K=0.75 K=2.00 K=5.00

(b) Synthesized Safety Index

Figure 8: Heat maps of the difference of safety index �� = �(f(x, u))� �(x). The x-axis u1 represents the
control space of moving actuator, and the y-axis u2 represents the control space of turning actuator.

Number of vectors Simulation Time Tsim Overall ISSA Time Tall Return J̄r
n = 3 0.297 0.301 0.738
n = 5 0.504 0.511 0.826
n = 10 0.987 1.000 1.000

Table 1: Normalized computation time and return under different number of vectors in ISSA. These results are
average on 100 ISSA runs over five random seeds on Goal-Hazard4-0.15.

6.3 Sensitivity Analysis and Scalability Analysis

To demonstrate the scalability and the performance of PPO-ISSA when ISSA chooses different
parameters, we conduct additional tests using the test suite Goal-Hazard4-0.15. Among all input pa-
rameters of ISSA, the gradient vector number n is critical to impact the quality of the solution of (4).
Note in the limit when n ! 1, ISSA is able to traverse all boundary points of the set of safe control,
hence able to find the global optima of (4). We pick three different n values: 3, 5, 10; and report the
average episode reward of PPO-ISSA, and the computation time of ISSA when solving (4), which
includes the normalized average ISSA computation time and the normalized average simulation
time for each run. The results are summarized in Table 1, which demonstrates that the reward per-
formance of PPO-ISSA would improve as n gets bigger since we get better optima of Equation (4).
In practice, we find that the reward performance will stop improving when n is big enough (n > 10).

(a) Average reward (b) Average cost

Figure 9: Average episodic return and episodic
cost of PPO-ISSA and baseline methods on Goal-
hazard1-0.15 environment of a doggo robot over
five seeds.

The computation time scales linearly with respect to
n while the majority (98%) of computation cost is
used for environment simulation, which can be im-
proved in the future by replacing the simulator with
a more computationally efficient surrogate model.
We also evaluate the scalability of ISSA in a 12-
dimensional control system, showing ISSA is able
to achieve zero-violation and best performance with
acceptable computation cost in Figure 9. Besides,
ISSA can be largely accelerated using parallel com-
putation. The detailed discussion can be found in
Appendix G.

7 Conclusion and Future Work

Safety guarantee is critical for robotic applications in real world, such that robots can persistently
satisfy safety constraints. This paper presents a model-free safe control strategy to synthesize safe-
guards for DRL agents, which will ensure zero safety violation during training. In particular, we
present an implicit safe set algorithm as a safeguard, which synthesizes the safety index (also called
the barrier certificate) and the subsequent safe control law only by querying a black-box dynamics
function (e.g., a digital twin simulator). The theoretical results indicate that the synthesized safety
index guarantees nonempty set of safe control for all system states, and ISSA guarantees forward

invariance to the safe set. We further validate the proposed safeguard with DRL on state-of-the-art
safety benchmark Safety Gym. Our proposed method achieves zero safety violation and 95%± 9%
reward performance compared to state-of-the-art safe DRL methods.

There are two major directions for future work. Firstly, we will further generalize the safety index
synthesis rule to cover a wider range of applications other than collision avoidance in 2D. Secondly,
we will further speed up the implicit model evaluation step by replacing the physical engine based
simulator with a learned surrogate model while taking the learned dynamics error into account.

8

Acknowledgments

This work is supported by Amazon Research Award.

References
[1] M. Papini, M. Pirotta, and M. Restelli. Smoothing policies and safe policy gradients. CoRR,

abs/1905.03231, 2019.

[2] M. Pirotta, M. Restelli, A. Pecorino, and D. Calandriello. Safe policy iteration. In International
Conference on Machine Learning, pages 307–315. PMLR, 2013.

[3] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Autonomous
robot vehicles, pages 396–404. Springer, 1986.

[4] A. D. Ames, J. W. Grizzle, and P. Tabuada. Control barrier function based quadratic programs
with application to adaptive cruise control. In 53rd IEEE Conference on Decision and Control,
pages 6271–6278. IEEE, 2014.

[5] C. Liu and M. Tomizuka. Control in a safe set: Addressing safety in human-robot interactions.
In ASME 2014 Dynamic Systems and Control Conference. American Society of Mechanical
Engineers Digital Collection, 2014.

[6] L. Gracia, F. Garelli, and A. Sala. Reactive sliding-mode algorithm for collision avoidance in
robotic systems. IEEE Transactions on Control Systems Technology, 21(6):2391–2399, 2013.

[7] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick. End-to-end safe reinforcement learning
through barrier functions for safety-critical continuous control tasks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 3387–3395, 2019.

[8] A. J. Taylor and A. D. Ames. Adaptive safety with control barrier functions. In 2020 American
Control Conference (ACC), pages 1399–1405. IEEE, 2020.

[9] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J. Tomlin.
A general safety framework for learning-based control in uncertain robotic systems. IEEE
Transactions on Automatic Control, 64(7):2737–2752, 2018.

[10] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and dynamic vehicle models
for autonomous driving control design. In 2015 IEEE Intelligent Vehicles Symposium (IV),
pages 1094–1099. IEEE, 2015.

[11] C. Liu and M. Tomizuka. Safe exploration: Addressing various uncertainty levels in human
robot interactions. In 2015 American Control Conference (ACC), pages 465–470. IEEE, 2015.

[12] C. Noren, W. Zhao, and C. Liu. Safe adaptation with multiplicative uncertainties using robust
safe set algorithm. In Modeling, Estimation and Control Conference, 2021.

[13] J. Garcıa and F. Fernández. A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research, 16(1):1437–1480, 2015.

[14] A. Ray, J. Achiam, and D. Amodei. Benchmarking safe exploration in deep reinforcement
learning. CoRR, abs/1910.01708, 2019.

[15] J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained policy optimization. In International
Conference on Machine Learning, pages 22–31. PMLR, 2017.

[16] J. Zhang, M. Kang, X. Li, and G.-y. Liu. Bio-inspired genetic algorithms with formalized
crossover operators for robotic applications. Frontiers in neurorobotics, 11:56, 2017.

[17] L. Armijo. Minimization of functions having lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 16(1):1–3, 1966.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

9

[19] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru, and Y. Tassa. Safe exploration in
continuous action spaces. CoRR, abs/1801.08757, 2018.

[20] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–
5033. IEEE, 2012.

[21] J. Ferlez, M. Elnaggar, Y. Shoukry, and C. Fleming. Shieldnn: A provably safe nn filter for
unsafe nn controllers. CoRR, abs/2006.09564, 2020.

[22] T.-H. Pham, G. De Magistris, and R. Tachibana. Optlayer-practical constrained optimization
for deep reinforcement learning in the real world. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 6236–6243. IEEE, 2018.

[23] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause. Safe model-based reinforcement
learning with stability guarantees. Advances in Neural Information Processing Systems, 30,
2017.

[24] J. Grover, C. Liu, and K. Sycara. Feasible region-based identification using duality (extended
version). CoRR, abs/2011.04904, 2020.

[25] J. S. Grover, C. Liu, and K. Sycara. Parameter identification for multirobot systems using
optimization based controllers (extended version). CoRR, abs/2009.13817, 2020.

[26] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh. Lyapunov-based
safe policy optimization for continuous control. ICML 2019 Workshop RL4RealLife.

10

	Introduction
	Problem Formulation
	Related Work
	Method
	Synthesize Safety Index
	Sample-Efficient Black-Box Constrained Optimization
	Implicit Safe Set Algorithm

	Theoretical Results
	Experimental Results
	Evaluating PPO-ISSA and Comparison Analysis
	Feasibility of Safety Index Synthesis
	Sensitivity Analysis and Scalability Analysis

	Conclusion and Future Work
	Review of Safe RL with Hard Safety Constraints
	Algorithms
	Proof of prop:1
	Preliminary Results
	Proof of prop:1

	Proof of prop:2
	Preliminary Results.
	Proof of prop:2

	Proof of thoem:main
	Proof the thoem:main

	Expeiment Details
	Safety Gym Experiment Details
	Environment Settings
	Policy Settings
	Safety Index Settings
	Metrics Comparison

	Scalability Analysis
	ISSA in higher dimensional constrol systems
	AdamBA in higher dimensional space

