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Abstract

Dataset Distillation aims to compress a large dataset into a significantly more2

compact, synthetic one without compromising the performance of the trained mod-3

els. To achieve this, existing methods use the agent model to extract information4

from the target dataset and embed it into the distilled dataset. Consequently, the5

quality of extracted and embedded information determines the quality of the dis-6

tilled dataset. In this work, we find that existing methods introduce misaligned7

information in both information extraction and embedding stages. To alleviate8

this, we propose Prioritize Alignment in Dataset Distillation (PAD), which aligns9

information from the following two perspectives. 1) We prune the target dataset10

according to the compressing ratio to filter the information that can be extracted11

by the agent model. 2) We use only deep layers of the agent model to perform the12

distillation to avoid excessively introducing low-level information. This simple13

strategy effectively filters out misaligned information and brings non-trivial im-14

provement for mainstream matching-based distillation algorithms. Furthermore,15

built on trajectory matching, PAD achieves remarkable improvements on vari-16

ous benchmarks, achieving state-of-the-art performance. The code and distilled17

datasets will be made public.18

1 Introduction19

Dataset Distillation (DD) [43] aims to compress a large dataset into a small synthetic dataset that20

preserves important features for models to achieve comparable performances. Ever since being21

introduced, DD has gained a lot of attention because of its wide applications in practical fields such22

as privacy preservation [5, 44], continual learning [28, 35], and neural architecture search [12, 32].23

Recently, matching-based methods [46, 42, 6] have achieved promising performance in distilling24

high-quality synthetic datasets. Generally, the process of these methods can be summarized into two25

steps: (1) Information Extraction: an agent model is used to extract important information from the26

target dataset by recording various metrics such as gradients [49], distributions [48], and training27

trajectories [1], (2) Information Embedding: the synthetic samples are optimized to incorporate the28

extracted information, which is achieved by minimizing the differences between the same metric29

calculated on the synthetic data and the one recorded in the previous step.30

In this work, we first reveal both steps will introduce misaligned information, which is redundant31

and potentially detrimental to the quality of the synthetic data. Then, by analyzing the cause of this32

misalignment, we propose alleviating this problem through the following two perspectives.33

Typically, in the Information Extraction step, most distillation methods allow the agent model to34

see all samples in the target dataset. This means information extracted by the agent model comes35

from samples with various difficulties (see Figure 1(a)). However, according to previous study36
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Figure 1: (a) Compared with using all samples without differentiation in IPCs (left), PAD meticulously
selects a subset of samples for different IPCs to align the expected difficulty of information required
(right). (b) Different layers distill different patterns (left). PAD masks out (grey box) shallow-layer
parameters during metric matching in accordance with IPCs (right).

[10], information related to easy samples is only needed when the compression ratio is high. This37

misalignment leads to the sub-optimal of the distillation performance.38

To alleviate the above issue, we first use data selection methods to measure the difficulty of each39

sample in the target dataset. Then, during the distillation, a data scheduler is employed to ensure only40

data whose difficulty is aligned with the compression ratio is available for the agent model.41

In the Information Embedding step, most distillation methods except DM [48] choose to use all42

parameters of the agent model to perform the distillation. Intuitively, this will ensure the information43

extracted by the agent model is fully utilized. However, we find shallow layer parameters of the44

model can only provide low-quality, basic signals, which are redundant for dataset distillation in45

most cases. Conversely, performing the distillation with only parameters from deep layers will yield46

high-quality synthetic samples. We attribute this contradiction to the fact that deeper layers in DNNs47

tend to learn higher-level representations of input data [27, 37].48

Based on our findings, to avoid embedding misaligned information in the Information Embedding step,49

we propose to use only parameters from deeper layers of the agent model to perform distillation, as50

illustrated in Figure 1(b). This simple change brings significant performance improvement, showing51

its effectiveness in aligning information.52

Through experiments, we validate that our two-step alignment strategy is effective for distillation53

methods based on matching gradients [49], distributions [48], and trajectories [1]. Moreover, by54

applying our alignment strategy on trajectory matching [1, 10], we propose our novel method named55

Prioritize Alignment in Dataset Distillation (PAD). After conducting comprehensive evaluation56

experiments, we show PAD achieves state-of-the-art (SOTA) performance.57

2 Misaligned Information in Dataset Distillation58

Generally, we can summarize the distillation process of matching-based methods into the following59

two steps: (1) Information Extraction: use an agent model to extract essential information from the60

target dataset, realized by recording metrics such as gradients [49], distributions [48], and training61

trajectories [1], (2) Information Embedding: the synthetic samples are optimized to incorporate the62

extracted information, realized by minimizing the differences between the same metric calculated on63

the synthetic data and the one recorded in the first step.64
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Figure 2: Distillation performance on CIFAR-10 where data points are removed with different ratios.
Removing unnecessary data points helps to improve the performance of methods based on matching
gradients, distributions, and trajectories, both in low and high IPC cases.
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Figure 3: Distillation performances on CIFAR-10 where n% (ratio) shallow layer parameters are not
utilized during distillation. Discarding shallow-layer parameters is beneficial for methods based on
matching gradients, distributions, and trajectories, both in low and high IPC cases.

In this section, through analyses and experimental verification, we show the above two steps both65

will introduce misaligned information to the synthetic data.66

2.1 Misaligned Information Extracted by Agent Models67

In the information extraction step, an agent model is employed to extract information from the target68

dataset. Generally, most existing methods [1, 6, 49, 46] allow the agent model to see the full dataset.69

This implies that the information extracted by the agent model originates from samples with diverse70

levels of difficulty. However, the expected difficulty of distilled information varies with changes in71

IPC: smaller IPCs prefer easier information while larger IPCs should distill harder one [10].72

To verify if this misalignment will influence the quality of synthetic data, we perform the distillation73

where hard/easy samples of target dataset are removed with various ratios. As the results reported in74

Figure 2, pruning unaligned data points is beneficial for all matching-based methods. This proves the75

misalignment indeed will influence the distillation performance and can be alleviated by filtering out76

misaligned data from the target dataset.77

2.2 Misaligned Information Embedded by Metric Matching78

Most existing methods use all parameters of the agent model to compute the metric used for matching.79

Intuitively, this helps to improve the distillation performance, since in this way all information80

extracted by the agent model will be embedded into the synthetic dataset. However, since shallow81

layers in DNNs tend to learn basic distributions of data [27, 37], using parameters from these layers82

can only provide low-level signals that turned out to be redundant in most cases.83
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As can be observed in Figure 3, it is evident that across all matching-based methods, the removal84

of shallow layer parameters consistently enhances performance, regardless of the IPC setting. This85

proves employing over-shallow layer parameters to perform the distillation will introduce misaligned86

information to the synthetic data, compromising the quality of distilled data.87

3 Method88

To alleviate the information misalignment issue, based on trajectory matching (TM) [1, 10], we89

propose Prioritizing Alignment in Dataset Distillation (PAD). PAD can also be applied to methods90

based on matching gradients [49] and distributions [48], which are introduced in Appendix A.1.91

3.1 Preliminary of Trajectory Matching92

Following the two-step procedure, to extract information, TM-based methods [1, 10] first train agent93

models on the real dataset DR and record the changes of the parameters. Specifically, let {θ∗t }N0 be94

an expert trajectory, which is a parameter sequence recorded during the training of agent model. At95

each iteration of trajectory matching, θ∗t and θ∗t+M are randomly selected from expert trajectories as96

the start and target parameters.97

To embed the information into the synthetic data, TM methods minimize the distance between the98

expert trajectory and the student trajectory. Let θ̂t denote the parameters of the student agent model99

trained on synthetic dataset DS at timestep t. The student trajectory progresses by doing gradient100

descent on the cross-entropy loss l for N steps:101

θ̂t+i+1 = θ̂t+i − α∇l(θ̂t+i,DS), (1)
Finally, the synthetic data is optimized by minimizing the distance metric, which is formulated as:102

L =
||θ̂t+N − θ∗t+M ||
||θ∗t+M − θ∗t ||

, (2)

3.2 Filtering Information Extraction103

In section 2.1, we show using data selection to filter out unmatched samples could alleviate the104

misalignment caused in Information Extraction step. According to previous work [10], TM-based105

methods prefer easy information and choose to match only early trajectories when IPC is small.106

Conversely, hard information is preferred by high IPCs and they match only late trajectories. Hence,107

we should use easy samples to train early trajectories, while late trajectories should be trained with108

hard samples. To realize this efficiently, we first use the data selection method to measure the difficulty109

of samples contained in the target dataset. Then, during training expert trajectories, a scheduler is110

implemented to gradually incorporate hard samples into the training set while excluding easier ones111

from it.112

Difficulty Scoring Function Identifying the difficulty of data for DNNs to learn has been well113

studied in data selection area [29, 17, 16, 40]. For simplicity consideration, we use Error L2-Norm114

(EL2N) score [33] as the metric to evaluate the difficulty of training examples (other metrics can also115

be chosen, see Section 4.3.2). Specifically, let x and y denote a data point and its label, respectively.116

Then, the EL2N score can be calculated by:117

χt(x, y) = E||p(wt, x)− y||2, (3)
where p(wt, x) = σ(f(wt, x)) is the output of a model f at training step t transformed into a118

probability distribution. In consistent with [40], samples with higher EL2N scores are considered as119

harder samples in this paper.120

Scheduler The scheduler can be divided into the following stages. Firstly, the hardest samples are121

removed from the training set, ensuring that it exclusively comprises data meeting a predetermined122

initial ratio (IR). Then, during training expert trajectories, samples are gradually added to the training123

set in order of increasing difficulty. After incorporating all the data into the training set, the scheduler124

will begin to remove easy samples from the target dataset. Unlike the gradual progression involved in125

adding data, the action of reducing data is completed in a single operation, since now the model has126

been trained on simple samples for a sufficient time.127
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Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 500 1000 1 10 50 100 1 10 50

Ratio 0.02 0.2 1 10 20 0.2 2 10 20 0.2 2 10

Random 15.4±0.3 31.0±0.5 50.6±0.3 73.2±0.3 78.4±0.2 4.2±0.3 14.6±0.5 33.4±0.4 42.8±0.3 1.4±0.1 5.0±0.2 15.0±0.4
KIP [31] 49.9±0.2 62.7±0.3 68.6±0.2 - - 15.7±0.2 28.3±0.1 - - - - -

FRePo [50] 46.8±0.7 65.5±0.4 71.7±0.2 - - 28.7±0.1 42.5±0.2 44.3±0.2 - 15.4±0.3 25.4±0.2 -
RCIG [26] 53.9±1.0 69.1±0.4 73.5±0.3 - - 39.3±0.4 44.1±0.4 46.7±0.3 - 25.6±0.3 29.4±0.2 -

DC [49] 28.3±0.5 44.9±0.5 53.9±0.5 72.1±0.4 76.6±0.3 12.8±0.3 25.2±0.3 - - - - -
DM [48] 26.0±0.8 48.9±0.6 63.0±0.4 75.1±0.3 78.8±0.1 11.4±0.3 29.7±0.3 43.6±0.4 - 3.9±0.2 12.9±0.4 24.1±0.3
DSA [47] 28.8±0.7 52.1±0.5 60.6±0.5 73.6±0.3 78.7±0.3 13.9±0.3 32.3±0.3 42.8±0.4 - - - -
TESLA [4] 48.5±0.8 66.4±0.8 72.6±0.7 - - 24.8±0.4 41.7±0.3 47.9±0.3 49.2±0.4 - - -

CAFE [42] 30.3±1.1 46.3±0.6 55.5±0.6 - - 12.9±0.3 27.8±0.3 37.9±0.3 - - - -
MTT [1] 46.2±0.8 65.4±0.7 71.6±0.2 - - 24.3±0.3 39.7±0.4 47.7±0.2 49.2±0.4 8.8±0.3 23.2±0.2 28.0±0.3
FTD [6] 46.0±0.4 65.3±0.4 73.2±0.2 - - 24.4±0.4 42.5±0.2 48.5±0.3 49.7±0.4 10.5±0.2 23.4±0.3 28.2±0.4

DATM [10] 46.9±0.5 66.8±0.2 76.1±0.3 83.5±0.2 85.5±0.4 27.9±0.2 47.2±0.4 55.0±0.2 57.5±0.2 17.1±0.3 31.1±0.3 39.7±0.3
PAD 47.2±0.6 67.4±0.3 77.0±0.5 84.6±0.3 86.7±0.2 28.4±0.5 47.8±0.2 55.9±0.3 58.5±0.3 17.7±0.2 32.3±0.4 41.6±0.4

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1: Comparison with previous dataset distillation methods (bottom: matching-based, top: others)
on CIFAR-10, CIFAR-100 and Tiny ImageNet. ConvNet is used for the distillation and evaluation.
Our method consistently outperforms prior matching-based methods.

3.3 Filtering Information Embedding128

To filter out misaligned information introduced by matching shallow-layer parameters, we propose129

to add a parameter selection module that masks out part of shallow layers for metric computation.130

Specifically, parameters of an agent network can be represented as a flattened array of length L that131

stores weights of agent models ordered from shallow to deep layers (parameters within the same132

layer are sorted in default order). The parameter selection sets a threshold ratio α such that the first133

k = L · α parameters are not used for distillation. Then the parameters used for matching can now be134

formulated as:135

θ̂t+N = {θ̂0, θ̂1, · · · , θ̂k−1︸ ︷︷ ︸
discard

, θ̂k, θ̂k+1, · · · , θ̂L︸ ︷︷ ︸
used for matching

}. (4)

In practice, the ratio α should vary with the change of IPC. For smaller IPCs, it is necessary to136

incorporate basic information thus α should be lower. Conversely, basic information is redundant in137

larger IPC cases, so α should be higher accordingly.138

4 Experiments139

4.1 Settings140

We compare PAD with several prominent dataset distillation methods, which can be divided into two141

categories: matching-based approaches including DC [49], DM [48], DSA [47], CAFE [42], MTT [1],142

FTD [6], DATM [10], TESLA [4], and kernel-based approaches including KIP [31], FRePo [50],143

RCIG [26]. The assessment is conducted on widely recognized datasets: CIFAR-10, CIFAR-100[18],144

and Tiny ImageNet [20]. We implemented our method based on DATM [10]. In both the distillation145

and evaluation phases, we apply the standard set of differentiable augmentations commonly used in146

previous studies [1, 6, 10]. By default, networks are constructed with instance normalization unless147

explicitly labeled with "-BN," indicating batch normalization (e.g., ConvNet-BN). For CIFAR-10148

and CIFAR-100, distillation is typically performed using a 3-layer ConvNet, while Tiny ImageNet149

requires a 4-layer ConvNet. Cross-architecture experiments also utilize LeNet [21], AlexNet [19],150

VGG11 [39], and ResNet18 [11]. More details can be found in the appendix.151

4.2 Main Results152

CIFAR and Tiny ImageNet We conduct comprehensive experiments to compare the performance153

of our method with previous works. As the results presented in Table 1, PAD outperforms previous154

matching-based methods on three datasets except for the case when IPC=1. When compared with155

kernel-based methods which use a larger network to perform the distillation, our technique exhibits156

superior performance in most cases, particularly when the compression ratio exceeds 1%. As can be157

observed, PAD performs relatively better when IPC is high, suggesting our filtering out misaligned158

information strategy becomes increasingly effective as IPC increases.159
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Dataset Ratio Method ConvNet ConvNet-BN ResNet18 ResNet18-BN VGG11 AlexNet LeNet MLP Avg.

CIFAR-10 20%

Random 78.38 80.25 84.58 87.21 80.81 80.75 61.85 50.98 75.60
Glister 62.46 70.52 81.10 74.59 78.07 70.55 56.56 40.59 66.81

Forgetting 76.27 80.06 85.67 87.18 82.04 81.35 64.59 52.21 76.17
DATM 85.50 85.23 87.22 88.13 84.65 85.14 66.70 52.40 79.37
PAD 86.90 85.67 86.95 88.09 84.34 85.83 67.28 53.62 79.84
↑ +8.52 +5.42 +2.37 +0.88 +3.53 +5.08 +5.43 +2.64 +4.24

CIFAR-100 20%

Random 42.80 46.38 47.48 55.62 42.69 38.05 25.91 20.66 39.95
Glister 35.45 37.13 42.49 46.14 43.06 28.58 23.33 17.08 34.16

Forgetting 45.52 49.99 51.44 54.65 43.28 43.47 27.22 22.90 42.30
DATM 57.50 57.75 57.98 63.34 55.10 55.69 33.57 26.39 50.92
PAD 58.50 58.66 58.15 63.17 55.02 55.93 33.87 27.12 51.30
↑ +15.70 +12.28 +10.67 +7.55 +12.33 +17.88 +7.96 +6.46 +11.35

Tiny 10%

Random 15.00 24.21 17.73 28.07 22.51 14.03 9.25 5.85 17.08
Glister 17.32 19.77 18.84 23.12 19.10 11.68 8.84 3.86 15.32

Forgetting 20.04 23.83 19.38 28.88 23.77 12.13 12.06 5.54 18.20
DATM 39.68 40.32 36.12 43.14 38.35 35.10 12.41 9.02 31.76
PAD 41.02 40.88 36.08 42.96 38.64 35.02 13.17 9.68 32.18
↑ +26.02 +16.67 +18.35 +14.89 +16.13 +20.99 +3.92 +3.83 +15.10

Table 2: Cross-architecture evaluation of distilled data on unseen networks. Results worse than
random selection are indicated with red color. ↑ denotes the performance improvement brought by
our method compared with random selection. Tiny denotes Tiny ImageNet.

Method ConvNet ResNet18 VGG AlexNet

Random 33.46 31.95 32.18 26.65
FTD 48.90 46.65 43.24 42.20

DATM 55.03 51.71 45.38 45.74
PAD 55.91 52.35 44.97 45.92

(a) Datasets distilled by PAD general-
ize well across various architectures.

FIEX FIEM Accuracy(%)

66.7
✓ 66.9

✓ 67.2
✓ ✓ 67.4

(b) Each module brings non-
trivial improvements.

IR
AEE

20 40 60

50% 66.23 66.07 65.92
75% 67.36 67.34 66.58
80% 67.26 67.08 66.47

(c) Set IR as 75% always per-
form best.

Table 3: (a) Cross-Architecture evaluation on CIFAR-100 IPC50. (b) Ablation studies on the modules
of our method on CIFAR-10 IPC10. (c) Results of different sets of data selection hyper-parameters
on CIFAR-10 IPC10.

Cross Architecture Generalization We evaluate the generalizability of our distilled data in both160

low and high IPC cases. As results reported in Table 3(a), when IPC is small, our distilled data161

outperforms the previous SOTA method DATM on ResNet and AlexNet while maintaining comparable162

accuracy on VGG. This suggests that our distilled data on high compressing ratios generalizes well163

across various unseen networks. Moreover, as reflected in Table 2, our distilled datasets on large IPCs164

also have the best performance on most evaluated architectures, showing good generalizability in the165

low compressing ratio case.166

4.3 Ablation Study167

To validate the effectiveness of each component of our method, we conducted ablation experiments168

on modules (section 4.3.1) and their hyper-parameter settings (section 4.3.2 and section 4.3.2).169

4.3.1 Modules170

Our method incorporates two separate modules to filter information extraction (FIEX) and information171

embedding (FIEM), respectively. To verify their isolated effectiveness, we conduct an ablation study172

by applying two modules individually. As depicted in Table 3(b), both FIEX and FIEM bring173

improvements, implying their efficacy. By applying these two modules, we are able to effectively174

remove unaligned information, improving the distillation performance.175

4.3.2 Hyper-parameters of Filtering Information Extraction176

Initial Ratio and Data Addition Epoch To filter the information learned by agent models, we177

initialize the training set with only easy samples, and the size is determined by a certain ratio of178

the total size. Then, we gradually add hard samples into the training set. In practice, we use two179

hyper-parameters to control the addition process: the initial ratio (IR) of training data for training180

set initialization and the end epoch of hard sample addition (AEE). These two parameters together181

control the amount of data agent models can see at each epoch and the speed of adding hard samples.182
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Method
IPC

1 10 500

Loss 45.74 66.45 83.47
Uncertainty [3] 46.22 66.99 84.22

EL2N [33] 47.23 67.38 84.63

(a) Using EL2N to measure the diffi-
culty of samples has the best perfor-
mance.

IPC
Ratio

100% 75% 50% 25%

1 47.2 46.56 45.98 41.32
10 67.2 67.34 66.86 65.15

500 83.71 83.82 84.23 84.64

(b) As IPC increases, removing
more shallow-layer parameters
becomes more effective.

Strategy
IPC

10 50

Baseline 67.2 76.5
Loss 67.3 77.0

Depth 67.7 77.3

(c) Using layer depth to select
parameters outperforms using
matching loss.

Table 4: (a) Ablation of different difficulty scoring functions on CIFAR-10. (b) Results of masking
out different ratios of shallow-layer parameters across various IPCs on CIFAR-10. (c) Ablation on
the strategy used for parameter selection on CIFAR-10

(a) with 100% parameters (b) with 75% parameters (c) with 50% parameters

Figure 4: Synthetic images of CIFAR-10 IPC50 obtained by PAD with different ratios of parameter
selection. Smoother image features indicate that by removing some shallow-layer parameters during
matching, PAD successfully filters out coarse-grained low-level information.

In Table 3(c), we show the distillation results where different hyper-parameters are utilized. In183

general, a larger initial ratio and faster speed of addition bring better performances. Although the184

distillation benefited more from learning simpler information when IPC is small [10], our findings185

indicate that excessively removing difficult samples (e.g., more than a quarter) early in the training186

phase can adversely affect the distilled data. This negative impact is likely due to the excessive187

removal leading to distorted feature distributions within each category. On the other hand, reasonably188

improving the speed of adding hard samples allows the agent model to achieve a more balanced189

learning of information of varying difficulty across different stages.190

Other Difficulty Scoring Functions Identifying the difficulty of data points is the key to filtering191

out misaligned information in the extraction step. Here, we compare the effect of using other192

difficulty-scoring functions to evaluate the difficulty of data. (1) prediction loss of a pre-trained193

ResNet. (2) uncertainty score [3]. (3) EL2N [33]. As can be observed in Table 4(a), EL2N performs194

the best across various IPCs; thus, we use it to measure how hard each data point is as default in our195

method. Note that this can also be replaced with a more advanced data selection algorithm.196

4.3.3 Ratios of Parameter Selection197

It is important to find a good balance between the percentage of shallow-layer parameters removed198

from matching and the loss of information. In Table 4(b), we show results obtained on different199

IPCs by discarding various ratios of shallow-layer parameters. The impact of removing varying200

proportions of shallow parameters on the distilled data and its relationship with changes in IPC201

is consistent with prior conclusions. For small IPCs, distilled data requires more low-level basic202

information. Thus, removing too many shallow-layer parameters causes a negative effect on the203

classification performance. By contrast, high-level semantic information is more important when204

it comes to large IPCs. With increasing ratios of shallow-layer parameters being discarded, we can205

ensure that low-level information is effectively filtered out from the distilled data.206

5 Discussion207

5.1 Distilled Images with Filtering Information Embedding208

To see the concrete patterns brought by removing shallow-layer parameters to perform the trajectory209

matching, we present distilled images obtained by discarding various ratios of shallow-layer parame-210

ters in Figure 4. As can be observed in Figure 4(a), without removing any shallow-layer parameters211
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Figure 5: Losses of different layers of ConvNet after matching trajectories for 0, 1000, and 5000
iterations. We notice a similar phenomenon on both small (IPC1 and IPC10) and large IPCs (IPC500):
losses of shallow-layer parameters fluctuate along the matching process, while losses of deep-layer
parameters show a clear trend of decreasing.

(a) Match shallow layers only (b) Original (c) Match deep layers only

Figure 6: Synthetic images visualization with parameter selection. Matching parameters in shallow
layers produces an abundance of low-level texture features, whereas patterns generated by matching
deep-layer parameters embody richer high-level semantic information.

to filter misaligned information, synthetic images are interspersed with substantial noises. These212

noises often take the form of coarse and generic information, such as the overall color distribution213

and edges in the image, which provides minimal utility for precise classification.214

By contrast, images distilled by our enhanced methodology (see Figure 4(b) and Figure 4(c)), which215

includes meticulous masking out shallow-layer parameters during trajectory matching according to the216

compressing ratio, contain more fine-grained and smoother features. These images also encapsulate217

a broader range of semantic information, which is crucial for helping the model make accurate218

classifications. Moreover, we observe a clear trend: as the amount of the removed shallow-layer219

parameters increases, the distilled images exhibit clearer and smoother features.220

5.2 Rationale for Parameter Selection221

In this section, we analyze from the perspective of trajectory matching why shallow-layer parameters222

should be masked out. In Figure 5, we present the changes in trajectory matching loss across different223

layers as the distillation progresses. Compared to the deep-layer parameters of the agent model,224

a substantial number of shallow-layer parameters exhibit low loss values that fluctuate during the225

matching process (see Figure 5). By contrast, the loss values of the deep layers are much higher but226

consistently decrease as distillation continues. This suggests that matching shallow layers primarily227

conveys low-level information that is readily captured by the synthetic data and quickly saturated.228

Consequently, the excessive addition of such low-level information produces noise, reducing the229

quality of distilled datasets.230

For a concrete visualization, we provide distilled images resulting from using only shallow-layer231

parameters or only deep-layer parameters to match trajectories in Figure 6. The coarse image features232

depicted in Figure 6(a) further substantiate our analysis.233
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5.3 Parameter Selection Strategy234

In the previous section, we observed a positive correlation between the depth of the model layers235

and the magnitude of their trajectory-matching losses. Notably, the loss in the first layer of the236

ConvNet was higher compared to other shallow layers. Consequently, we further compared different237

parameter alignment strategies, specifically by sorting the parameters based on their matching losses238

and excluding a certain proportion of parameters with lower losses. Higher loss values indicate239

greater discrepancies in parameter weights; thus, continuing to match these parameters can inject240

more information into the synthetic data. As shown in Table 4(c), sorting by loss results in an241

improvement compared with no parameter alignment, but filtering based on parameter depth proves242

to be more effective.243

6 Related Work244

Introduced by [43], dataset distillation aims to synthesize a compact set of data that allows models to245

achieve similar test performances compared with the original dataset. Since then, a number of studies246

have explored various approaches. These methods can be divided into three types: kernel-based,247

matching-based, and using generative models [45].248

Kernel-based methods are able to achieve closed-form solutions for the inner optimization [31] via249

kernel ridge regression with NTK [22]. FRePo [50] distills a compact dataset through neural feature250

regression and reduces the training cost.251

Matching-based methods first use agent models to extract information from the target dataset252

by recording a specific metric [7, 23, 38, 24]. Representative works that design different metrics253

include DC [49] that matches gradients, DM [48] that matches distributions, and MTT [1] that254

matches training trajectories. Then, the distilled dataset is optimized by minimizing the matched255

distance between the metric computed on synthetic data and the record one from the previous step.256

Following this workflow, many works have been proposed to improve the efficacy of the distilled257

dataset. For example, CAFE [42] preserves the real feature distribution and the discriminative power258

of the synthetic data and achieves prominent generalization ability across various architectures.259

DREAM [25] employs K-Means to select representative samples for distillation and improves the260

distillation efficiency. DATM [10] proposes to match early trajectories for small IPCs and late261

trajectories for large IPCs, achieving SOTA performances on several benchmarks. Moreover, new262

metrics such as spatial attention maps [36, 15] have also been introduced and achieved promising263

performance in distilling large-scale datasets.264

Generative models such as GANs [8, 13, 14, 41] and diffusion models [34, 30, 9] can also be used to265

distill high quality datasets. DiM [41] uses deep generative models to store information of the target266

dataset. GLaD [2] transfers synthetic data optimization from the pixel space to the latent space by267

employing deep generative priors. It enhances the generalizability of previous distillation methods.268

7 Conclusion269

In this work, we find a limitation of existing Dataset Distillation methods in that they will introduce270

misaligned information to the distilled datasets. To alleviate this, we propose PAD, which incorporates271

two modules to filter out misaligned information. For information extraction, PAD prunes the target272

dataset based on sample difficulty for different IPCs so that only information with aligned difficulty273

is extracted by the agent model. For information embedding, PAD discards part of shallow-layer274

parameters to avoid injecting low-level basic information into the synthetic data. PAD achieves275

SOTA performance on various benchmarks. Moreover, we show PAD can also be applied to methods276

based on matching gradients and distribution, bringing remarkable improvements across various IPC277

settings.278

Limitations Our alignment strategy could also be applied to methods based on matching gradients279

and distributions (see Appendix A.1). However, due to the limitation of computing resources,280

for methods based on matching distributions and gradients, we have only validated our method’s281

effectiveness on DM [48] and DC [49] (see Table 5 and Table 6).282
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IPC Ratio Baseline10% 15% 20% 25%

1 17.03 16.34 18.27 18.91 16.32
500 65.21 65.34 66.47 66.31 65.27

(a) Removing various ratios of hard/easy sam-
ples improves DC on small/large IPCs.

IPC Ratio Baseline10% 15% 20% 25%

1 26.66 27.24 27.97 27.48 25.41
500 70.74 70.89 70.37 69.80 70.32

(b) Removing various ratios of hard/easy sam-
ples improves DM on small/large IPCs.

Table 5: Results of filtering information extraction by removing hard/easy samples in DC(a) and
DM(b) on CIFAR-10.

IPC Ratio Baseline25% 50% 75%

10 29.23 28.67 27.36 28.88
500 65.88 65.97 66.24 65.39

(a) Matching gradients from deep-layer parameters
leads to improvements.

IPC Ratio Baseline25% 50% 75%

10 29.23 28.67 27.36 28.88
500 67.48 67.76 68.14 67.39

(b) Matching distributions from deep-layer param-
eters leads to improvements.

Table 6: Results of filtering information embedding by masking out shallow-layer parameters for
metric computation in DC(a) and DM(b) on CIFAR-10.

A Appendix407

A.1 Filtering Misaligned Information in DC and DM408

Although PAD is implemented based on trajectory matching methods, we also test our proposed409

data alignment and parameter alignment on gradient matching and distribution matching. The410

performances of enhanced DC and DM with each of the two modules are reported in Table 5 and411

Tabl 6, respectively. We provide details of how we integrate these two modules into gradient matching412

and distribution matching in the following sections.413

Gradient Matching We use the official implementation1 of DC [49]. In the Information Extraction414

step, DC uses an agent model to calculate the gradients after being trained on the target dataset. We415

employ filter misaligned information in this step as follows: When IPC is small, a certain ratio of416

hard samples is removed from the target dataset so that the recorded gradients only contain simple417

information. Conversely, when IPC becomes large, we remove easy samples instead.418

In the Information Embedding step, DC optimizes the synthetic data by back-propagating on the419

gradient matching loss. The loss is computed by summing the differences in gradients between420

each pair of model parameters. Thus, we apply parameter selection by discarding a certain ratio of421

parameters in the shallow layers.422

Distribution Matching We use the official implementation of DM [48], which can be accessed423

via the same link as DC. In the Information Extraction step, DM uses an agent model to generate424

embeddings of input images from the target dataset. Similarly, filtering information extraction is425

applied by removing hard samples for small IPCs and easy samples for large IPCs.426

In the Information Embedding step, since DM only uses the output of the last layer to match427

distributions, we modify the implementation of the network such that outputs of each layer in the428

model are returned by the forward function. Then, we perform parameter selection following the429

same practice as before.430

A.2 Experiment Settings431

We use DATM [10] as the backbone TM algorithm and our proposed PAD is built upon. Thus, our432

configurations for distillation, evaluation, and network are consistent with DATM.433

1https://github.com/VICO-UoE/DatasetCondensation.git
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Distillation. We conduct the distillation process for 10,000 iterations to ensure full convergence of434

the optimization. By default, ZCA whitening is applied in all the experiments.435

Evaluation. We train a randomly initialized network on the distilled dataset and evaluate its per-436

formance on the entire validation set of the original dataset. Following DATM [10], the evaluation437

networks are trained for 1000 epochs to ensure full optimization convergence. For fairness, the438

experimental results of previous distillation methods in both low and high IPC settings are sourced439

from [10].440

Network. We employ a range of networks to assess the generalizability of our distilled datasets.441

For scaling ResNet, LeNet, and AlexNet to Tiny-ImageNet, we modify the stride of their initial442

convolutional layer from 1 to 2. In the case of VGG, we adjust the stride of its final max pooling443

layer from 1 to 2. The MLP used in our evaluations features a single hidden layer with 128 units.444

Hyper-parameters. Hyper-parameters of our experiments on CIFAR-10, CIFAR-100, and Tiny-445

ImageNet are reported in Table 7. Hyper-parameters can be divided into three parts including data446

alignment (DA), parameter alignment (PA) and trajectory matching (TM). Soft labels are applied in447

all experiments , we set its momentum to 0.9.448

Compute resources. Our experiments are run on 4 NVIDIA A100 GPUs, each with 80 GB of449

memory. The amount of GPU memory needed is mainly determined by the batch size of synthetic450

data and the number of steps that the agment model is trained on synthetic data. To reduce the GPU451

usage when IPC is large, one can apply TESLA [4] or simply reducing the synthetic steps N or the452

synthetic batch size. However, the decrement of hyper-parameters shown in Table 7 could result in453

performance degradation.454

Dataset IPC
DA PA TM

IR AEE α N M T− T T+ Interval
Synthetic

Batch Size
Learning Rate

(Label)
Learning Rate

(Pixels)

CIFAR-10

1

0.75 20

0% 80 2 0 4 4 - 10 5 100
10 25% 80 2 0 10 20 100 100 2 100
50 25% 80 2 0 20 40 100 500 2 1000
500 50% 80 2 40 60 60 - 1000 10 50

1000 75% 80 2 40 60 60 - 1000 10 50

CIFAR-100

1

0.75 40

0% 40 3 0 10 20 100 100 10 1000
10 25% 80 2 0 20 40 100 1000 10 1000
50 50% 80 2 40 60 80 100 1000 10 1000
100 50% 80 2 40 80 80 - 1000 10 50

TI
1

0.75 40
0% 60 2 0 15 30 400 200 10 10000

10 25% 60 2 0 20 40 100 250 10 100
50 50% 80 2 20 40 60 100 250 10 100

Table 7: Hyper-parameters for different benchmarks.
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Figure 7: Distilled images of CIFAR-10 IPC10
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Figure 8: Distilled images of CIFAR-10 IPC10
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Figure 9: Distilled images of CIFAR-10 IPC10
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NeurIPS Paper Checklist455

1. Claims456

Question: Do the main claims made in the abstract and introduction accurately reflect the457

paper’s contributions and scope?458

Answer: [Yes]459

Justification: Our main claim does accurately reflect the paper’s contributions and scope.460

Guidelines:461

• The answer NA means that the abstract and introduction do not include the claims462

made in the paper.463

• The abstract and/or introduction should clearly state the claims made, including the464

contributions made in the paper and important assumptions and limitations. A No or465

NA answer to this question will not be perceived well by the reviewers.466

• The claims made should match theoretical and experimental results, and reflect how467

much the results can be expected to generalize to other settings.468

• It is fine to include aspirational goals as motivation as long as it is clear that these goals469

are not attained by the paper.470

2. Limitations471

Question: Does the paper discuss the limitations of the work performed by the authors?472

Answer: [Yes]473

Justification: We discuss limitations at the end of the paper.474

Guidelines:475

• The answer NA means that the paper has no limitation while the answer No means that476

the paper has limitations, but those are not discussed in the paper.477

• The authors are encouraged to create a separate "Limitations" section in their paper.478

• The paper should point out any strong assumptions and how robust the results are to479

violations of these assumptions (e.g., independence assumptions, noiseless settings,480

model well-specification, asymptotic approximations only holding locally). The authors481

should reflect on how these assumptions might be violated in practice and what the482

implications would be.483

• The authors should reflect on the scope of the claims made, e.g., if the approach was484

only tested on a few datasets or with a few runs. In general, empirical results often485

depend on implicit assumptions, which should be articulated.486

• The authors should reflect on the factors that influence the performance of the approach.487

For example, a facial recognition algorithm may perform poorly when image resolution488

is low or images are taken in low lighting. Or a speech-to-text system might not be489

used reliably to provide closed captions for online lectures because it fails to handle490

technical jargon.491

• The authors should discuss the computational efficiency of the proposed algorithms492

and how they scale with dataset size.493

• If applicable, the authors should discuss possible limitations of their approach to494

address problems of privacy and fairness.495

• While the authors might fear that complete honesty about limitations might be used by496

reviewers as grounds for rejection, a worse outcome might be that reviewers discover497

limitations that aren’t acknowledged in the paper. The authors should use their best498

judgment and recognize that individual actions in favor of transparency play an impor-499

tant role in developing norms that preserve the integrity of the community. Reviewers500

will be specifically instructed to not penalize honesty concerning limitations.501

3. Theory Assumptions and Proofs502

Question: For each theoretical result, does the paper provide the full set of assumptions and503

a complete (and correct) proof?504

Answer: [NA]505
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Justification: We didn’t present any theoretical results in this paper.506

Guidelines:507

• The answer NA means that the paper does not include theoretical results.508

• All the theorems, formulas, and proofs in the paper should be numbered and cross-509

referenced.510

• All assumptions should be clearly stated or referenced in the statement of any theorems.511

• The proofs can either appear in the main paper or the supplemental material, but if512

they appear in the supplemental material, the authors are encouraged to provide a short513

proof sketch to provide intuition.514

• Inversely, any informal proof provided in the core of the paper should be complemented515

by formal proofs provided in appendix or supplemental material.516

• Theorems and Lemmas that the proof relies upon should be properly referenced.517

4. Experimental Result Reproducibility518

Question: Does the paper fully disclose all the information needed to reproduce the main ex-519

perimental results of the paper to the extent that it affects the main claims and/or conclusions520

of the paper (regardless of whether the code and data are provided or not)?521

Answer: [Yes]522

Justification: All hyper-parameters and computing resources needed for experiments are523

listed in the Appendix.524

Guidelines:525

• The answer NA means that the paper does not include experiments.526

• If the paper includes experiments, a No answer to this question will not be perceived527

well by the reviewers: Making the paper reproducible is important, regardless of528

whether the code and data are provided or not.529

• If the contribution is a dataset and/or model, the authors should describe the steps taken530

to make their results reproducible or verifiable.531

• Depending on the contribution, reproducibility can be accomplished in various ways.532

For example, if the contribution is a novel architecture, describing the architecture fully533

might suffice, or if the contribution is a specific model and empirical evaluation, it may534

be necessary to either make it possible for others to replicate the model with the same535

dataset, or provide access to the model. In general. releasing code and data is often536

one good way to accomplish this, but reproducibility can also be provided via detailed537

instructions for how to replicate the results, access to a hosted model (e.g., in the case538

of a large language model), releasing of a model checkpoint, or other means that are539

appropriate to the research performed.540

• While NeurIPS does not require releasing code, the conference does require all submis-541

sions to provide some reasonable avenue for reproducibility, which may depend on the542

nature of the contribution. For example543

(a) If the contribution is primarily a new algorithm, the paper should make it clear how544

to reproduce that algorithm.545

(b) If the contribution is primarily a new model architecture, the paper should describe546

the architecture clearly and fully.547

(c) If the contribution is a new model (e.g., a large language model), then there should548

either be a way to access this model for reproducing the results or a way to reproduce549

the model (e.g., with an open-source dataset or instructions for how to construct550

the dataset).551

(d) We recognize that reproducibility may be tricky in some cases, in which case552

authors are welcome to describe the particular way they provide for reproducibility.553

In the case of closed-source models, it may be that access to the model is limited in554

some way (e.g., to registered users), but it should be possible for other researchers555

to have some path to reproducing or verifying the results.556

5. Open access to data and code557

Question: Does the paper provide open access to the data and code, with sufficient instruc-558

tions to faithfully reproduce the main experimental results, as described in supplemental559

material?560
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Answer: [Yes]561

Justification: Our code will be made public.562

Guidelines:563

• The answer NA means that paper does not include experiments requiring code.564

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/565

public/guides/CodeSubmissionPolicy) for more details.566

• While we encourage the release of code and data, we understand that this might not be567

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not568

including code, unless this is central to the contribution (e.g., for a new open-source569

benchmark).570

• The instructions should contain the exact command and environment needed to run to571

reproduce the results. See the NeurIPS code and data submission guidelines (https:572

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.573

• The authors should provide instructions on data access and preparation, including how574
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