
Under review as a conference paper at ICLR 2024

PROVABLY ACCURATE ODE FORECASTING
THROUGH EXPLICIT TRAJECTORY OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This work introduces a method to enable accurate forecasting of time series gov-
erned by ordinary differential equations (ODE) through the usage of cost functions
explicitly dependent on the future trajectory rather than the past measurement times.
We prove that the space of solutions of an N -dimensional, smooth, Lipschitz ODE
on any given finite time horizon is an N -dimensional Riemannian manifold embed-
ded in the space of square integrable continuous functions. This finite dimensional
manifold structure enables the application of common statistical objectives such
as maximum likelihood (ML), maximum a posteriori (MAP), and minimum mean
squared error (MMSE) estimation directly in the space of feasible ODE solutions.
The restriction to feasible trajectories of the system limits known issues such as
oversmoothing seen in unconstrained MMSE forecasting. We demonstrate that
direct optimization of trajectories reduces error in forecasting when compared to
estimating initial conditions or minimizing empirical error. Beyond theoretical
justifications, we provide Monte Carlo simulations evaluating the performance
of the optimal solutions of six different objective functions: ML, MAP state es-
timation, MMSE state estimation, MAP trajectory estimation, MMSE trajectory
estimation over all square integrable functions, and MMSE trajectory estimation
over solutions of the differential equation.

1 INTRODUCTION

Decision making often hinges on accurate forecasts. Due to the simplicity of finite-dimensional
spaces, many problems in state estimation and forecasting are formulated in a pointwise manner
over time. Despite this computational simplification, feasible trajectories must solve consistency
constraints, and additionally pointwise estimation may be unnecessary because the states at different
points in time are often highly correlated. Furthermore, the structure of the trajectory itself often
contains meaningful information beyond that of the value at a particular time horizon. Time series
forecast consistency is often enforced after the fact, where predictions for distinct time horizons are
constructed and then projected to enforce the hierarchical constraint (Rangapuram et al., 2021; 2023).

In this work, we forecast ordinary differential equations (ODEs) over an entire chosen time horizon by
formulating the time series forecasting problem as a finite-dimensional point estimation problem on a
Riemannian manifold. We prove that the space of feasible trajectories on any finite time-interval of a
smooth Lipschitz dynamical system is itself an N -dimensional Riemannian submanifold of the space
of continuous bounded functions, where N is the dimensionality of the state. We argue that neural
ODEs (Chen et al., 2018) and related differential equation modeling methods(Dupont et al., 2019;
Greydanus et al., 2019; Massaroli et al., 2020; Finlay et al., 2020; Biloš et al., 2021; Holt et al., 2022)
fundamentally solve a problem of point estimation in the manifold largely without consideration of
the statistical distinction between parameter estimation and trajectory estimation. We then use this
observation to cast the trajectory estimation problem into a classical statistical framework, enabling
direct optimization of statistical objectives based on forecasting. Furthermore, we provide tractable
computational methods to optimize these objectives.

The rest of the manuscript is organized as follows. In Section 2, we introduce the model formulation,
assumptions, and key spaces in this work. In Section 3 we prove the existence of the finite-dimensional
Riemannian trajectory manifold. Then, in Section 4, we describe the tools required for statistical
estimation on the trajectory manifold based on noisy measurements, as well as a description of the

1

Under review as a conference paper at ICLR 2024

implications for commonly used statistical objectives. In Section 5, we provide computational tools
for optimizing these common statistical objectives directly on the manifold of valid trajectories.
Finally, in Section 6, we provide numerical simulations that demonstrate that the proposed explicit
trajectory optimization outperforms the standard data fitting objective.

1.1 RELATED WORK

Differential Equations and Deep Learning The connection between deep learning and differential
equations can be broadly partitioned into two major categories. In physics-informed machine
learning, neural networks are used to approximately solve a known differential equation subject to
noisy observations. On the other side, there has been significant interest in using neural networks to
learn a representation of the underlying differential equation.

While using neural networks as solutions to differential equations dates back to at least the 1990’s
(Lagaris et al., 1998), it has had a significant resurgence in recent years (Raissi & Karniadakis, 2018;
Raissi et al., 2019). Commonly, these techniques use some form of empirical risk minimization,
an objective which is closely related to maximum likelihood estimation in classical estimation and
represents a notion of best fit to the observed data. In these techniques, rather than use the differential
equation as a hard constraint, it is used as a regularization for regression. While this regularization
approach has a number of desirable characteristics — simple optimization and an automatic tolerance
for input perturbations to the system — it can result in less readily interpretable behavior. Despite
these limitations, the regularization suggests the ability to use the high level of structure in the space
of differential equation solutions for inference.

From a different direction, numerous techniques around continuous-time machine learning such
as Neural Ordinary Differential Equations (ODEs) have shown promise in time-series forecasting
when the dynamics are unknown (Chen et al., 2018). In such techniques, a neural network is used
to learn an approximation of the underlying differential equation. It was quickly noted that ODE
solutions have fundamental topological constraints, and so augmented Neural ODEs were proposed
(Dupont et al., 2019). Further analysis of the underlying behavior of ODE-defined models led to the
construction of different time-varying versions of the model, as well as the usage of data-dependent
vector fields (Massaroli et al., 2020). While there have been numerous application-focused papers
using neural ODEs (Chen et al., 2022), many of the additional advancements have been in methods
of training the models (Finlay et al., 2020). Alternative perspectives have been explored in searching
for solutions in the Laplace domain (Holt et al., 2022). A subtle change in approach was used in
Neural Flows, which in principle operate in the space of trajectories instead of the dynamics, but does
so through a restriction of a set of functions satisfying some necessary conditions of flows (Biloš
et al., 2021).

Time Series Forecasting Regularization As regularization is an essential part of ensuring models
are generalizable, we include a brief summary of key time series forecasting regularization methods.

Deep learning models have many universal approaches to regularization which are independent of
the context. Some common approaches include dropout (Srivastava et al., 2014), dropconnect (Wan
et al., 2013), batch normalization (Ioffe & Szegedy, 2015), complexity regularization (Barron, 1991),
L0 regularization (Louizos et al., 2018), and classical regularizers such as Tikhonov regularization
and LASSO.

Beyond general techniques, time series forecasting necessitates specialized techniques due in part
to the lack of independent samples. There exist numerous specialized regularization methods for
recurrent neural networks (Zaremba et al., 2014; Krueger & Memisevic, 2016; Wang & Niepert, 2019;
Krueger et al., 2017). Neural ODEs introduce additional complexities in the training process, and
have thus spawned a number of specific regularization techniques. These include random integration
times (Ghosh et al., 2020), penalties based on the Jacobian of the vector field and optimal transport
(Finlay et al., 2020), or even regularization based on the ODE solvers themselves (Pal et al., 2021).

Interestingly, none of these techniques so far make explicit use of the distinct structure and constraints
of forecasting problems. In autoregressive models, covariance matrix based regularization has
been proposed (Bickel & Gel, 2011). There have been some approaches to the problem using
matrix factorization for time series forecasting (Yu et al., 2016; Chen & Sun, 2022). In more
general frameworks, temporal attention based methods to guide learning for different time-horizons

2

Under review as a conference paper at ICLR 2024

can be applied (Fan et al., 2019). Dependence on different prediction horizons also serves to
implicitly regularize over the observed intervals (Challu et al., 2022). Hierarchical time series models
use predictions at different resolutions and enforce consistency through projections (Rangapuram
et al., 2021; 2023). The shadowing lemma (Pilyurin, 1999) has been used to justify estimates of
long-term invariants of systems using numerical solvers (Wang et al., 2014; Lasagna et al., 2019).
Finally, in systems governed by linear ODEs, it has been observed that the solution space forms a
finite-dimensional linear subspace, an observation which can be used to efficiently estimate best fit
trajectories and introduce regularization terms based on the Green’s functions of the system (González
et al., 2014; Mutny & Krause, 2022).

1.2 CONTRIBUTIONS

• We propose a principled method for forecasting different time-horizons which extend beyond
the duration of the observed data and do not require separate multi-horizon optimization.

• We prove that the space of trajectories of an ODE ẋ = f(x) on any compact interval I ⊂ R
is a finite-dimensional Riemannian manifold embedded in the space of square integrable
functions if f is Lipschitz and continuously differentiable.

• We characterize the transformation from initial conditions and parameters to the trajec-
tory manifold given any Lipschitz and continuously differentiable ODE, thereby enabling
optimization on the manifold of feasible ODE trajectories.

• We analyze implications for standard estimation approaches such as maximum likelihood
(ML), maximum a posteriori (MAP), and minimum mean squared error (MMSE) estimation,
thus enabling the inheritance of their respective statistical guarantees to forecasting.

2 PROBLEM FORMULATION

We assume that the underlying data comes from the state space model

ẋt = f(xt,ut,θ, t) (1)
yi ∼ Pobs(xτi ,θ) (2)
u ∼ Pinput (3)

where xt ∈ X ⊂ RN is the state of the system at time t, θ ∈ Θ ⊂ RM is an unknown set of
parameters for the model, t ∈ I represents time on some finite-interval I , u ∈ U ⊂ C1(I, ∥ · ∥∞)
is a continuously differentiable external input, yi represents the observation at time τi, Pobs is the
observation distribution parameterized by the current state and system parameters, and Pinput is the
distribution of system inputs. We let x and u represent the entire trajectory and input respectively. In
general, the forecasting interval I extends significantly beyond the final measurement time τi.

The goal in this work is to enable the use of powerful statistical estimation methods such as maximum
likelihood (ML), maximum a posteriori (MAP), and minimum mean squared error (MMSE) estimators
to jointly estimate x over the entire forecasting interval I . While these estimators each come with
numerous theoretical guarantees, they require the space on which they operate to be well-behaved.
We require two assumptions to provide our guarantees of such a structure in this manuscript.

First, the assumption of Lipschitz continuity of the vector field f allows the invocation of the existence
and uniqueness theorem, while smoothness implies a smooth dependence on initial conditions and
parameters (Khalil, 2002).
Assumption 1 (Existence, Uniqueness, and Smoothness of Trajectories). The vector field f is
Lipschitz continuous with a continuously differentiable derivative in the forecasting horizon.

Second, we restrict the space of inputs, initial conditions, and parameterization to be finite dimensional.
This enables the usage of tools from differential geometry to transport quantities between manifolds.
Assumption 2 (Finite-Dimensional Spaces). The space of possible inputs, U , the state space, X , and
the parameter space, Θ, are a finite-dimensional smooth manifolds with or without boundary.

Under these assumptions, the main contribution of this work is to prove that there exists a smooth
isomorphism ψ : X × U × Θ → Cf,I , where Cf,I := {x : ẋt = f(xt,ut,θ, t)} is the space of
feasible solutions of (1).

3

Under review as a conference paper at ICLR 2024

3 TRAJECTORY MANIFOLD

The main contribution of this work is the characterization of the finite-dimensional manifold of
trajectories of the system in Equation (1), or Cf,I . In this section, we introduce a theorem which
enables the application of common point estimation techniques to the forecasting problem. In
particular, we show that Cf,I is a Riemannian manifold and that ψ represents a smooth transformation
onto Cf,I . As ψ and its directional derivatives can be readily computed numerically using ODE
solvers, this characterization is sufficient for statistical estimation on Cf,I . While the full proof is
available in Appendix B, we include an outline of the proof here.
Theorem 1 (Isomorphism Between State Space and Trajectory Space). Under Assumption 1 and As-
sumption 2, the space of trajectories Cf,I is a finite-dimensional Riemannian manifold. Furthermore,
the transformation ψ defined such that

ψ(x0,u,θ)(t) = x0 +

∫ t

0

f(xτ ,uτ ,θ, τ)dτ (4)

for all t ∈ I is a smooth isomorphism between X × U ×Θ and Cf,I .

Proof. Complete proof in Appendix B.

The proof is completed in three parts, each providing an additional level of structure to Cf,I . In each
step, we use properties of the flow of the system, or the semigroup of functions φτ : xt 7→ xt+τ

which advance time. We begin by showing that ψ is an injective function into the space of continuous
bounded functions on the interval I , or C(I, ∥ · ∥∞). We then show ψ and ψ−1 are continuous to
demonstrate the topological manifold structure. Second, we prove that Cf,I is a smooth manifold by
showing ψ and ψ−1 are continuously differentiable and full rank. Finally, by recalling that Lp spaces
on compact subsets of the real line are nested, we inherit the Riemannian metric from L2.

The main consequence of Theorem 1 is that it reduces problems in forecasting to one of propagating a
probability distribution through a smooth function. For this reason, the distinctions between the initial
conditions, parameters, and inputs are inconsequential, and so for notational clarity we consider ψ to
be only a function of the initial condition x0 for the remainder of this work.

An important note is that the Riemannian metric in Cf,I need not be induced by the standard L2

inner product. A natural extension is to select some symmetric, positive definite integral kernel
K : I × I → RN×N and define the inner product

⟨x,x′⟩K =

∫
I×I

x⊤
τ K(τ, τ ′)x′

τ ′dτdτ ′, (5)

such that ⟨x,x⟩K > 0 for any x ̸= 0. While the choice of an appropriate integral kernel K may
be an interesting independent question, an immediate application is in weighting the importance of
different time-horizons. That is, let

K(τ, τ ′) =

{
g(τ)1 τ = τ ′

0 otherwise
, (6)

for some strictly positive g > 0 where 1 ∈ RN×N is an identity matrix. We thus enable the ability to
directly optimize for different forecasting objectives in a statistically rigorous manner with no major
changes to the underlying prediction algorithm.

4 POINT ESTIMATION ON TRAJECTORY MANIFOLDS

In this section, we introduce the statistical tools associated with the trajectory manifold defined
in Section 3. In particular, we identify the required fundamental modifications to ML, MAP, and
MMSE estimation on the trajectory manifold. In doing so, we additionally specialize the formula for
pushing densities along smooth maps between Riemannian manifolds to the transformation between
the state-space and the trajectory space.

The generalization of the change of variables formula for random variables to smooth transformations
between smooth manifolds is well known. The action is known as a pullback of densities and is

4

Under review as a conference paper at ICLR 2024

identical to the standard formula, but expressed in local coordinates (Lee, 2013). That is, given
some continuous probability density p0(x0) over the initial conditions of the system, x = ψ(x0) is
distributed according to

p(x) = |detDψ|−1
p0(ψ

−1(x)), (7)
where Dψ represents the matrix of partial derivatives in local coordinates of Cf,I and X . See
Appendix C for additional details.

Local coordinates introduce an inherent difficulty in numerical computations, and so we include the
following proposition as an alternative approach to computing |detDψ|.
Proposition 1. Let {vi} form an orthonormal basis of the tangent space of X at x0, and let Dvi

|x0
ψ

be the directional derivative of ψ in the direction vi at x0, the result of which is represented in the
ambient space L2(I). Finally, define

ai,j :=
〈
Dvi

|x0
ψ, Dvj

∣∣
x0
ψ
〉
K

and Ax :=

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

 , (8)

based on the inner products of the directional derivatives with respect to the basis. Then

|detDψ| =
√

|detAx|. (9)

Proof. Proof available in Appendix D.

The complexity in this statement is in the correct interpretation of Dψ. At first glance, Dψ does not
appear to be square, and so the determinant would not be well defined. This potential concern is
unfounded though, as Dψ is defined in terms of the tangent spaces of the manifolds, and thus can be
represented as a square matrix. A detailed proof is included in Appendix D.

We now connect the geometric properties to common estimation objectives. In particular, we provide
methods for MAP estimation, ML estimation, and MMSE estimation constrained to Cf,I or on the
ambient space.

4.1 ML ESTIMATION

We consider maximum likelihood estimation of the trajectory. Suppose we have some likelihood
function of our observations parameterized by the state of the system, e.g. p(yi|xτi). Then the
likelihood of the entire set of observations can be expressed in terms of the initial condition
as p(y|x) =

∏
i p(yi|φτi(x0)), and the maximum likelihood estimate of the initial condition is

argmaxx0
p(y|x0). ML estimation is known to commute with bijective transformations, and thus

x̂ML = argmax
x̂∈Cf,I

p(y|ψ−1(x̂)) = ψ

(
argmax
x̂0∈X

p(y|x̂0)

)
(10)

Invariant to ψ: It is a well-known that ML estimation commutes with bijective reparameterizations
(Trees, 2001). Thus, the ML trajectory in Cf,I is the result of applying ψ to the ML estimate state.

Invariant to K: The application of the integral kernel K can be viewed as a linear reparameterization.
Thus, the ML estimate is invariant to K.

4.2 MAP ESTIMATION

The behavior of MAP estimation is more subtle than that of ML estimation. While it only involves
the addition of a prior to the initial condition, the shift in interpretation from frequentist statistics to
Bayesian statistics requires valid probability distributions. Thus, MAP estimation loses invariance to
reparameterization and requires the application of Proposition 1. The posterior distribution of the
initial condition is p(x0|y) ∝ p(y|x0)p(x0). To complete MAP estimation on Cf,I , we complete a
pointwise multiplication of the posterior distribution of the current state with |detAx|−1, or

x̂MAP = argmax
x̂∈Cf,I

p(x̂|y) = argmax
x̂∈Cf,I

p(ψ−1(x̂)|y)p(ψ−1(x̂)) |detAx̂|−1
, (11)

5

Under review as a conference paper at ICLR 2024

where x0 = ψ−1(x) is the initial condition of the trajectory.

Dependent on ψ: MAP estimation is only invariant to linear reparameterizations (Trees, 2001). This
can be seen directly through the dependence on Ax in Equation (11).

Dependent on K: While a linear transformation to a space ordinarily results in no change to MAP
estimation, due to the geodesic curvature of the manifold, the linear transformation becomes nonlinear.
This can be seen in Equation (11), which has a non-linear dependence on x through K as part of Ax.

4.3 MMSE ESTIMATION ON THE AMBIENT SPACE

MMSE estimation is well-known to be the conditional expectation, or
x̂MMSE = argmin

x̂∈L2(I)

E
[
∥x̂− x∥2 | y

]
= E [ψ(x0) | y] , (12)

where L2(I) is the space of square integrable functions on I .

Dependent on ψ: Conditional expectation does not in general commute with ψ, and so MMSE
estimation of the state is a different problem than MMSE estimation of the trajectory.

Invariant toK: As conditional expectation commutes with linear transformations, the MMSE estimate
is invariant to the choice of K. An implication is that the MMSE trajectory estimate is optimal for
any desired weighting of time horizons by the construction of Equation (6). Additional details
are provided in Appendix E.

4.4 MMSE ESTIMATION ON THE MANIFOLD

We choose to consider the ambient distance rather than the intrinsic distance on the manifold as
the former is both more physically meaningful and computationally tractable. By the orthogonality
principle, the MSE of any other estimate x̃ is the sum of the MSE of this estimate with the squared
distance, or E

[
∥x̃− x∥2 |y

]
= E

[
∥x̃− x̂MMSE∥2 |y

]
+ E

[
∥x̂MMSE − x∥2 |y

]
. Thus, the MMSE

estimate on the manifold is the projection of the ambient MMSE estimate onto the manifold, or

x̂MMSE,Cf,I
= argmin

x̂∈Cf,I

E
[
∥x̂− x∥2 | y

]
= argmin

x̂∈Cf,I

∥x̂− x̂MMSE∥2 . (13)

Dependent on ψ: Identical to the ambient case, the MMSE estimate is dependent on ψ.

Dependent on K: K acts in a nonlinear manner on the space through the projection in Equation (13).

5 COMPUTATION OF ESTIMATES

In this section, we describe methods for computing estimates on the trajectory manifold. The core
idea is to pull the costs on the manifold into the state space along ψ.

ML Estimation ML estimation can be computed in exactly the approach proposed by neural ODEs
(Chen et al., 2018). The derivative can be computed using adjoint sensitivity analysis, then standard
first-order methods can be applied to best fit the trajectory to the observations. By letting Dφτi

denote the Jacobian of the flow, the gradient of the log-likelihood is computed in X as

∇x0
log p(y|x) =

∑
i

∇x0
log p(yi|φτi(x0)) =

∑
i

[Dφτi]∇φ(xτ)p(yi|xτ). (14)

MAP Estimation MAP estimation requires the computation of the reparameterization weighting
term which depends on the first derivative of the ODE with respect to initial conditions. Thus,
while the derivative exists in principle, it is significantly more expensive to compute numerically
through ODE solvers due to dependence on the Hessian of the ODE solution. A full description of
the computation of the pushforward weight is available in Appendix F, as well as a discussion of
numerical tolerance selection.

For this reason, we propose the usage of zero-order methods to approximate the derivative, or other
derivative-free optimization methods such as simulated annealing. Note that this limitation makes
MAP estimation significantly less practical than the other techniques as the dimensionality scales.

6

Under review as a conference paper at ICLR 2024

MMSE Estimation — Ambient Space MMSE Estimation in the ambient space can be computed
through a sampling approach. We can construct an approximation of the MMSE estimate as

x̂MMSE = E [ψ(x) | y] ≈ 1

S

S∑
i=1

ψ(X0,i), (15)

where {X0,i} are a set of i.i.d. samples from the posterior distribution of the initial condition, or
p(x0|y) ∝ p(y|x0)p(x0). Often, sampling directly from the posterior is not practical. In such a case,
observe that we can readily evaluate the posterior up to a multiplicative scalar. This is sufficient for
importance sampling and numerous Markov chain Monte Carlo (MCMC) methods.

MMSE Estimation — Trajectory Manifold MMSE estimation on the manifold can be completed
in two steps through the orthogonality principle. First, construct the ambient MMSE estimate. The
projection can be computed through gradient-based methods through a geometric pullback of the
gradient into the statespace. That is

∇x0
∥x̂− x̂MMSE∥2 = [Dψ] (x̂− x̂MMSE), (16)

where Dψ can be approximated through numerical differentiation through the ODE solver.

6 NUMERICAL EXPERIMENTS

In this section, we include numerical simulations to elucidate the differences in behavior between the
different estimation objectives discussed in this work. Throughout our simulations, we compared the
performance of the optimal solutions on six different forecasting objectives: ML estimation, MAP
estimation of the initial condition, MMSE estimation of the initial condition, MAP estimation of the
trajectory, MMSE estimation of the trajectory in the ambient space, and MMSE estimation of the
trajectory restricted to Cf,I . These objectives are equally distributed between the classical two-step
approach of estimating the system state before solving the ODE and direct optimization over the
forecasting interval in order to best illustrate the differences in behavior of the solutions.

The key operations in this work are available as a Python library which takes vector fields describing
system dynamics as arguments, while the simulation code is included to fully reproduce all figures
shown in this section.1 We implemented our techniques using Diffrax (Kidger, 2021), a library for
working with differential equations and machine learning in Jax. Further information on software
dependencies, simulation hardware, and simulation details are available in Appendix G.

We simulated the Lotka–Volterra equation,

xτ =

[
x
(1)
τ

x
(2)
τ

]
ẋτ =

[
αx

(1)
τ − βx

(1)
τ x

(2)
τ

δx
(1)
τ x

(2)
τ − γx

(2)
τ

]
, (17)

which represents a model of population dynamics between a predator and prey species known to
involve oscillations dependent on the initial conditions. This system was chosen in part due to the
rapid transitions in the time series, the positions of which are essential in predictions to limit error.
We recorded measurements every 0.3 seconds on the time interval [0, 3] of the form

yi = xτi + ηi, (18)

where τi is the time of the measurement and ηi ∼ N (0,1σ2
η) is additive i.i.d. Gaussian noise.

We first include a set of experiments to illustrate the behaviors in the different objectives which may
lead to poor performance in forecasting tasks. The results of these simulations are shown in Figure 1
and Figure 2: The first includes example trajectories to illustrate issues of oversmoothing and phase
mismatch, while the second illustrates the objective function over the state space. Simulations using
three additional systems are available in Appendix A.1, demonstrating similar behavior to that in
Figure 1. Furthermore, simulations demonstrating the necessity of model knowledge to operate in
this data-limited regime are included in Appendix A.2

In Figure 1, the blue and orange lines represent the two different state variables. The dashed lines
represent the ground truth, while the solid lines represents the chosen estimate. Qualitatively, we

1Simulation code available at https://github.com/{author}/{repository}.

7

https://github.com/{author}/{repository}

Under review as a conference paper at ICLR 2024

0

1

2

3

ML (Invariant) MAP State MMSE State

0 3 6 9
0

1

2

3

Ambient MMSE Trajectory

0 3 6 9

MAP Trajectory

0 3 6 9

Manifold MMSE Trajectory

Time

Po
pu

la
tio

n

Figure 1: Forecasting Performance based on 6 different objective functions for the Lotka-Volterra
equations. The dashed lines indicate the true trajectory of the system, while the solid lines indicate
the estimated trajectory. Data collection stopped at the vertical red line.

observe that, despite being the best fit for the observations by construction, the ML and MAP state
estimation select trajectories which rapidly lose synchronization with the periodic trajectory. While
the MMSE state estimation does better, we see that the second peak is shifted even in this short
time horizon. Meanwhile, all three trajectory estimation techniques appear to better match the phase
of periodic structure due to the direct dependence in the cost. Finally, while the ambient MMSE
trajectory suffers from the commonly seen over-smoothing of forecasts, the manifold constraint
maintains the qualitative shape defined by the system at the cost of an increase in MSE.

0.5

1.0

1.5

2.0

Likelihood State Posterior State MSE

1 2

0.5

1.0

1.5

2.0

Pushforward Weight

1 2

Trajectory Posterior

1 2

Trajectory MSE

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

1e−14

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

0.0
0.6
1.2
1.8
2.4
3.0
3.6
4.2
4.8
5.4

3
6
9
12
15
18
21

0.00
0.24
0.48
0.72
0.96
1.20
1.44
1.68

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

1e−1

Initial Prey Population

In
iti

al
 P

re
da

to
r

Po
pu

la
tio

n

Figure 2: This figure contains examples of the forecasting objectives and pushforward weight in this
work for one realization of the Lotka-Volterra system. The red star indicates the true initial condition
to be estimated. Each panel contains one objective function, e.g., the likelihood function, the posterior
density, or the mean squared error. Notably, the Trajectory MSE plot is the only method to capture
the valley of trajectories similar to the true solution.

In Figure 2, we illustrate the objective functions defined by the observations in these simulations,
as well as the pushforward weight required to transform between the state space and the trajectory
manifold. Observe that the pushforward weight shifts peaks towards regions which are less sensitive
to the initial condition. Similarly, the trajectory MSE illustrates a valley of initializations which lead
to similar trajectories along the interval, a structure not captured by any competing technique.

8

Under review as a conference paper at ICLR 2024

1

2

Sup Norm

MMSE Trajectory, Ambient
MMSE Trajectory, Manifold
MAP Trajectory
ML/MAP Initial Condition
MMSE Initial Condition

10−2 10−1 100 101

5

10
Mean Absolute Error

10−2 10−1 100 101
0

5

10

Mean Squared Error

Noise Power

E
rr

or

1.0

1.5

2.0

Sup Norm

MMSE Trajectory, Ambient
MMSE Trajectory, Manifold
MAP Trajectory
ML/MAP Initial Condition
MMSE Initial Condition

10 20 30
0

10

20

30
Mean Absolute Error

10 20 30
0

10

20

30
Mean Squared Error

Time Horizon

E
rr

or

Figure 3: Error as a function of noise power and time horizon for forecasting the Lotke-Volterra
system. Left: Forecasting performance as a function of noise power in the observations; Right:
Forecasting performance as a function of time horizon.

6.1 QUANTITATIVE COMPARISON

In this section, we completed Monte Carlo simulations to compare the MSE, Mean Absolute Error
(MAE), and expected sup norm of the error, or E [supτ ∥x̂τ − xτ∥] in the trajectory for the proposed
objectives as a function of noise power and time horizon. In these simulations, a uniform prior over
an interval was chosen, resulting in an identical objective for ML estimation and MAP estimation of
the initial condition. Results are shown in Figure 3, where the left panel varies σ2

η with a constant 10
second time horizon, while the right panel varies the time horizon with a fixed σ2

η = 1.

The key feature in the results is that the maximum likelihood curve, which represents fitting the
observed data, always performs the worst, and that this issue becomes even more prominent in longer
time horizons and when the noise power is high. This demonstrates the requirement to critically
consider the implications of the reparameterization on the time series forecasting problem, particularly
when working with time horizons significantly longer than the observation interval.

While the unconstrained MMSE trajectory performs significantly better in MSE than all competing
methods, recall that it produces trajectories which do not resemble the original system. While
preserving the system structure, MMSE estimation constrained to Cf,I still significantly outperforms
the other competing methods, particularly in long time horizons. Furthermore, the performance of the
proposed constrained MMSE estimation is often comparable to the performance of the unconstrained
solution in MAE and expected sup norm.

7 CONCLUSION

In this work, we introduced a method for provably accurate forecasting of time series governed by
ODEs through the usage of objectives explicitly dependent on the future trajectory of the system.
By proving that the space of finite-horizon trajectories of a continuously differentiable, Lipschitz
dynamical system forms a Riemannian manifold, the problem can be described as one of point
estimation in a finite-dimensional space. This realization enabled the application of ML, MAP,
and MMSE estimation directly in the space of feasible ODE trajectories, where the objectives can
be optimized computationally by transporting them into the original state space. Each of these
estimators then inherit their respective performance guarantees from the point estimation counterparts:
something lacking from the traditional two-step approach of estimating the initial condition before
solving the system. The developments in this work will help to provide statistical guarantees on
trajectory estimation algorithms, as well as enable the development of new prediction algorithms
which include differential equation constraints.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Andrew R. Barron. Complexity regularization with application to artificial neural networks. In George
Roussas (ed.), Nonparametric Functional Estimation and Related Topics, pp. 561–576. Springer
Netherlands, Dordrecht, 1991. ISBN 978-94-011-3222-0. doi: 10.1007/978-94-011-3222-0_42.

Peter J. Bickel and Yulia R. Gel. Banded regularization of autocovariance matrices in application
to parameter estimation and forecasting of time series. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 73(5):711–728, 2011. doi: 10.1111/j.1467-9868.2011.00779.x.

Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan Gün-
nemann. Neural flows: Efficient alternative to neural odes. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Process-
ing Systems, volume 34, pp. 21325–21337. Curran Associates, Inc., 2021.

Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler, and
Artur Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting. CoRR,
abs/2201.12886, 2022.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Xing Chen, Flavio Abreu Araujo, Mathieu Riou, Jacob Torrejon, Dafiné Ravelosona, Wang Kang,
Weisheng Zhao, Julie Grollier, and Damien Querlioz. Forecasting the outcome of spintronic
experiments with neural ordinary differential equations. Nature Communications, 13(1):1016, Feb
2022. ISSN 2041-1723. doi: 10.1038/s41467-022-28571-7.

Xinyu Chen and Lijun Sun. Bayesian temporal factorization for multidimensional time series
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):4659–4673,
2022. doi: 10.1109/TPAMI.2021.3066551.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural ODEs. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Chenyou Fan, Yuze Zhang, Yi Pan, Xiaoyue Li, Chi Zhang, Rong Yuan, Di Wu, Wensheng Wang,
Jian Pei, and Heng Huang. Multi-horizon time series forecasting with temporal attention learning.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD ’19, pp. 2527–2535, New York, NY, USA, 2019. Association for Computing
Machinery. ISBN 9781450362016. doi: 10.1145/3292500.3330662.

Chris Finlay, Joern-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ODE: the world of Jacobian and kinetic regularization. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 3154–3164. PMLR, 13–18 Jul 2020.

Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri. Steer : Simple
temporal regularization for neural ode. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 14831–14843.
Curran Associates, Inc., 2020.

Javier González, Ivan Vujačić, and Ernst Wit. Reproducing kernel hilbert space based estimation of
systems of ordinary differential equations. Pattern Recognition Letters, 45:26–32, 2014. ISSN
0167-8655. doi: 10.1016/j.patrec.2014.02.019.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

10

Under review as a conference paper at ICLR 2024

Samuel I Holt, Zhaozhi Qian, and Mihaela van der Schaar. Neural laplace: Learning diverse classes
of differential equations in the Laplace domain. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
8811–8832. PMLR, 17–23 Jul 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis Bach and David Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning
Research, pp. 448–456, Lille, France, 07–09 Jul 2015. PMLR.

Ilse C. F. Ipsen and Rizwana Rehman. Perturbation bounds for determinants and characteristic
polynomials. SIAM Journal on Matrix Analysis and Applications, 30(2):762–776, 2008. doi:
10.1137/070704770.

Charles R. Johnson. A gersgorin-type lower bound for the smallest singular value. Linear Algebra
and its Applications, 112:1–7, 1989. ISSN 0024-3795. doi: 10.1016/0024-3795(89)90583-1.

Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, 2002.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

David Krueger and Roland Memisevic. Regularizing RNNs by stabilizing activations. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016.

David Krueger, Tegan Maharaj, Janos Kramar, Mohammad Pezeshki, Nicolas Ballas, Nan Rosemary
Ke, Anirudh Goyal, Yoshua Bengio, Aaron Courville, and Christopher Pal. Zoneout: Regularizing
RNNs by randomly preserving hidden activations. In International Conference on Learning
Representations, 2017.

I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 1998. doi: 10.
1109/72.712178.

Davide Lasagna, Ati Sharma, and Johan Meyers. Periodic shadowing sensitivity analysis of chaotic
systems. Journal of Computational Physics, 391:119–141, 2019. ISSN 0021-9991. doi: 10.1016/j.
jcp.2019.04.021.

J. M. Lee. Introduction to Smooth Manifolds. Springer Science + Business Media, New York, NY,
2013.

Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks through l0
regularization. In International Conference on Learning Representations, 2018.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural ODEs. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances
in Neural Information Processing Systems, volume 33, pp. 3952–3963. Curran Associates, Inc.,
2020.

Mojmir Mutny and Andreas Krause. Experimental design for linear functionals in reproducing
kernel hilbert spaces. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 20175–20188. Curran
Associates, Inc., 2022.

Avik Pal, Yingbo Ma, Viral Shah, and Christopher V Rackauckas. Opening the blackbox: Accelerating
neural differential equations by regularizing internal solver heuristics. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pp. 8325–8335. PMLR, 18–24 Jul 2021.

Sergiei Yu. Pilyurin. Shadowing in Dynamical Systems. Springer Berlin, Heidelberg, 1999.

11

Under review as a conference paper at ICLR 2024

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.10.045.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018. ISSN
0021-9991. doi: 10.1016/j.jcp.2017.11.039.

Syama Sundar Rangapuram, Lucien D Werner, Konstantinos Benidis, Pedro Mercado, Jan Gasthaus,
and Tim Januschowski. End-to-end learning of coherent probabilistic forecasts for hierarchical time
series. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp. 8832–8843.
PMLR, 18–24 Jul 2021.

Syama Sundar Rangapuram, Shubham Kapoor, Rajbir Singh Nirwan, Pedro Mercado, Tim
Januschowski, Yuyang Wang, and Michael Bohlke-Schneider. Coherent probabilistic forecasting
of temporal hierarchies. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.),
Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume
206 of Proceedings of Machine Learning Research, pp. 9362–9376. PMLR, 25–27 Apr 2023.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(56):1929–1958, 2014.

Harry L. Van Trees. Classical detection and estimation theory. In Detection, Estimation, and
Modulation Theory, Part I: Detection, Estimation, and Linear Modulation Theory, chapter 2, pp.
19–165. John Wiley & Sons, Ltd, 2001. ISBN 9780471221081. doi: 10.1002/0471221082.ch2.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of neural
networks using dropconnect. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of
the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine
Learning Research, pp. 1058–1066, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Cheng Wang and Mathias Niepert. State-regularized recurrent neural networks. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6596–6606.
PMLR, 09–15 Jun 2019.

Qiqi Wang, Rui Hu, and Patrick Blonigan. Least squares shadowing sensitivity analysis of chaotic
limit cycle oscillations. Journal of Computational Physics, 267:210–224, 2014. ISSN 0021-9991.
doi: 10.1016/j.jcp.2014.03.002.

Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for high-
dimensional time series prediction. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.,
2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
CoRR, abs/1409.2329, 2014.

12

Under review as a conference paper at ICLR 2024

Supplemental Material

A ADDITIONAL SIMULATIONS

In this section, we include additional simulations in support of this work. In particular, we show
simulations for additional systems and comparisons with algorithms which lack the known differential
equation structure.

A.1 ADDITIONAL SIMULATIONS — MMSE

In this section, we include qualitative simulations for three additional dynamical systems: the Van
der Pol Oscillator, the Lorenz system, and the Lorenz 96 system. While the Van der Pol Oscillator
is a common example of a system exhibiting a limit cycle, the Lorenz and Lorenz 96 systems are
examples of chaotic systems. For each of these systems, we plot the true trajectory, the MMSE
ambient trajectory, the solution of the when initialized with the MMSE initial conditions, and the
proposed manifold-constrained MMSE trajectory. The results of the simulations are shown in Figure
4, where each panel represents a different state variable.

Van der Pol OscillatorA

0 2 4 6 8
Time

4

2

0

2

4

St
at

e

0 2 4 6 8
Time

4

2

0

2

4

St
at

e

Truth MMSE Initial MMSE Proposed

Lorenz SystemB

0 2 4 6 8
Time

20

10

0

10

20

St
at

e

0 2 4 6 8
Time

20

10

0

10

20

St
at

e

0 2 4 6 8
Time

0

10

20

30

40

50

St
at

e

Truth
MMSE
Initial MMSE
Proposed

0 2 4 6 8 10
Time

10

0

10

St
at

e

0 2 4 6 8 10
Time

10

0

10

St
at

e

0 2 4 6 8 10
Time

10

0

10

St
at

e

0 2 4 6 8 10
Time

10

0

10
St

at
e

0 2 4 6 8 10
Time

10

0

10

St
at

e

0 2 4 6 8 10
Time

0

100

200

Sq
ua

re
d

Er
ro

r

Truth MMSE Initial MMSE Proposed

C Lorenz 96

Figure 4: Qualitative evaluation of MMSE forecasting on the trajectory manifold on the Van der Pol
Oscillator (A), Lorenz system (B), and the Lorenz 96 system (C) relative to unconstrained MMSE
forecasting and MMSE estimation of the initial condition. Similar to Lotka-Volterra simulations in
the original manuscript, the unconstrained MMSE forecast suffers from oversmoothing, while the
proposed constrained MMSE forecast better preserves the structure. The bottom-right plot of Panel
D shows that the proposed method maintains a more consistent level of error over long time horizons
than estimation of the initial condition.

The key features to observe are the same as in Figure 1. The MMSE estimate suffers from over-
smoothing: This is most clearly visible in Panel B, where the predicted trajectory is nearly constant
for two state variables after 5 seconds. Furthermore, we observe that while the initial condition
MMSE estimate generally performs well, it suffers from momentary spikes in error which become
more prevalent in distant time horizons.

13

Under review as a conference paper at ICLR 2024

A.2 IMPORTANCE OF MODEL KNOWLEDGE

In this section, we include a comparison of the manifold-constrained MMSE forecast with Gaussian
process regression (GP) and a vector autoregressive models (VAR) to demonstrate the necessity of
the known model structure in this data-limited regime. Each model was given 5 samples spaced by
0.6 seconds under additive Gaussian noise. GP used the exp-sine-squared kernel with a white noise
kernel to account for measurement noise. The exp-sine-squared kernel was chosen to enable GP to
capture the known periodic behavior of the Lotka-Volterra system. We use two versions of GP, one
without a known period for the trajectory and one with a known period. The results of the simulations
can be seen in Figure 5.

Figure 5: A qualitative comparison of MMSE forecasting in the trajectory manifold, Gaussian process
regression (GP) with the exp-sine-squared kernel, and a vector autoregressive process (VAR) using
1 and 2 time lags. Without the added knowledge of the differential equation structure, both GP
and VAR fail to extrapolate well. When explicitly given the periodicity, GP still fails to capture the
structure of the signal.

In the simulations, we see that the methods without the periodic structure explicitly encoded in the
model assumptions are unable to extrapolate correctly based on the limited data. Additionally, the
GP method with a known period still fails to capture the general structure of the signal, unlike the
proposed manifold-constrained MMSE method. Finally, it is worth noting that the proposed method
lacks the apriori knowledge of the period of the signal that was provided to GP. Despite this, the
differential equation structure is sufficient to well-approximate it.

14

Under review as a conference paper at ICLR 2024

B PROOF OF THEOREM 1

In this section, we present the full proof of Theorem 1, as well as the intermediate results. We make
our notation more concise by observing that u and θ can be folded into the x0 for the following
reason.

First, note that we can incorporate the input space into the parameter space by considering an
augmented parameter space Θ′ = Θ × U to be the product manifold of the two spaces. By
Assumption 2, the augmented parameter space is still finite-dimensional. Finally, observe that θ can
be incorporated into x under the dynamics θ̇ = 0. Thus, without loss of generality, we will consider
the dynamical system ẋ = f(x, t) for the remainder of the argument.

We begin by showing that ψ is an injective function into the desired space.
Lemma 1. Let f be Lipschitz in both x and t, then ψ is an injective function into the space of
continuous bounded functions, or C(I, ∥ · ∥∞).

Proof. For all x0 ∈ X , ψ(x0) is a continuous function on a compact interval ψ(x0) ∈ C(I).
Continuous functions on compact intervals are bounded, or ∥ψ(x0)∥∞ < ∞. Thus ψ(x0) ∈
C(I, ∥ · ∥∞).

Assume there exists x0, x̃0 ∈ X such that x0 ̸= x̃0 and ψ(x0) = ψ(x̃0). But, by the existence and
uniqueness theorem (Khalil, 2002), ψ(x0)(τ) ̸= ψ(x̃0)(τ) for all τ . Thus ψ(x0) ̸= ψ(x̃0) on the
entire interval, and we have a contradiction.

We next show that ψ is a homeomorphism by directly showing continuity of both the original function
and the inverse. We do so by considering the flow φ : x0 × t 7→ xt, which is well-known to be
continuously differentiable under Assumption 1.
Lemma 2. ψ is continuous with a continuous inverse on its image.

Proof. Continuity of ψ:
By continuity of φ, there exists δ(τ, ϵ) such that ∥x0−x̃0∥ < δ(τ, ϵ) =⇒ |φ(x0, τ)−φ(x̃0, τ)| < ϵ.

On compact subsets of metric spaces, continuity of a function is equivalent to uniform continuity, and
thus the time dependence can be removed. That is

∥x0 − x̃0∥ < δ(ϵ) =⇒ ∀τ, ∥φ(x0, τ)− φ(x̃0, τ)∥ < ϵ (19)

Choose x0, x̃0 ∈ X such that
∥x0 − x̃0∥ < δ(ϵ). (20)

We bound the distance between the image of the two points after ψ by first expanding the sup norm
in terms of the flow, i.e.

∥ψ(x0)− ψ(x̃0)∥∞ = sup
τ∈I

∥φ(x0, τ)− φ(x̃0, τ)∥ (21)

Finally, note that the bound in Equation (19) applies to Equation (21) and thus

∥x0 − x̃0∥ < δ(ϵ) =⇒ ∥ψ(x0)− ψ(x̃0)∥∞ ≤ ϵ (22)

Continuity of ψ−1:
Choose x, x̃ ∈ Cf,I such that

∥x− x̃∥∞ < δ. (23)
Expand the sup norm in terms of points of the function, i.e.

∥x− x̃∥∞ = sup
τ

∥xτ − x̃τ∥ < δ. (24)

Finally, note that ψ−1(x) = x0 and that, by definition of the supremum,

∥x0 − x̃0∥ ≤ sup
τ

∥xτ − x̃τ∥ < δ. (25)

Thus ∥x− x̃∥∞ < δ(ϵ) =⇒ ∥ψ−1(x)− ψ−1(x̃)∥ < ϵ, where δ(ϵ) = ϵ.

15

Under review as a conference paper at ICLR 2024

Corollary 1. Let f be Lipschitz and let X be a topological manifold. Then Cf,I is a topological
manifold.

Proof. By Lemma 2, ψ is a homeomorphism onto its image. Thus, it is an embedding.

We now proceed to introduce the smooth structure of Cf,I .
Lemma 3. Let f be continuously differentiable, then ψ is continuously differentiable.

Proof. The key realization in this proof is that by Corollary 1, ψ is a function between finite-
dimensional spaces. Thus, we can prove differentiability based on partial derivatives rather than use
an infinite-dimensional framework.

First, note that the flow φ(x0, τ) is continuously differentiable with respect to x0 for each τ . We
show that these partial derivatives pointwise in time define a partial derivative over all time.

Let v(x0)
τ = dφ(x0+γh,τ)

dγ be the directional derivative for time τ , and consider v(x0) to be the
time-dependent function defined by the concatenation of the directional derivatives. Then∥∥∥∥ψ(x0 + γh)− ψ(x0)

γ
− v(x0)

∥∥∥∥
∞

= sup
τ

∥∥∥∥φ(x0 + γh, τ)− φ(x0, τ)

γ
− v(x0)

τ

∥∥∥∥ . (26)

By the mean value theorem, there exists 0 < γ′τ < γ

φ(x0 + γh, τ)− φ(x0, τ)

γ
= v

(x0+γ′
τh)

τ . (27)

By continuity of the derivative of φ, there exists δ(ϵ, τ) such that

γ′τ < δ(ϵ, τ) =⇒ ∥v(x0+γ′h)
τ − v(x0)

τ ∥ < ϵ. (28)

Recall γ′τ < γ, and thus

γ < δ(ϵ, τ) =⇒ ∥v(x0+γ′h)
τ − v(x0)

τ ∥ < ϵ. (29)

Finally, observe that compactness in time strengthens continuity to uniform continuity, and thus

γ < δ(ϵ) =⇒ sup
τ

∥v(x0+γ′h)
τ − v(x0)

τ ∥ < ϵ. (30)

Thus, Equation (26) is upper bounded by ϵ, and ψ is differentiable. The derivative inherits continuity
from the pointwise derivative similarly.

Lemma 4. Let f be continuously differentiable. Then ψ−1 is continuously differentiable.

Proof. ψ−1 can be represented by the linear functional h(f) = ⟨δ0, f⟩, where δ0 is the Dirac delta
function. Thus, as the extension of ψ−1 to the ambient space is linear, the extension is differentiable.
The derivative of ψ−1 is then the projection of the extension onto the tangent space.

Lemma 5. Assume that f is Lipschitz and continuously differentiable. Then ψ is a diffeomorphism
onto its image.

Proof. Follows directly from Lemma 3 and Lemma 4. The full-rank requirement is satisfied due to
the inclusion of x0 in ψ(x0) itself. Thus, initial condition perturbations necessarily result in distinct
derivatives.

Theorem 1 (Isomorphism Between State Space and Trajectory Space). Under Assumption 1 and As-
sumption 2, the space of trajectories Cf,I is a finite-dimensional Riemannian manifold. Furthermore,
the transformation ψ defined such that

ψ(x0,u,θ)(t) = x0 +

∫ t

0

f(xτ ,uτ ,θ, τ)dτ (4)

for all t ∈ I is a smooth isomorphism between X × U ×Θ and Cf,I .

Proof. First, note that ψ(X) is a topological manifold by Corollary 1. By Lemma 5, X and ψ(X)
are diffeomorphic. Thus, as X is a smooth manifold, so is ψ(X).

16

Under review as a conference paper at ICLR 2024

C PROBABILITY ON RIEMANNIAN MANIFOLDS

We include here a brief overview of the key definitions in probability on Riemannian manifolds. First,
recall the definition of a probability space as the triplet of (Ω,F , P), where Ω is the underlying space,
F is a σ-algebra on Ω, and P is a probability measure on F satisfying non-negativity, countable
additivity, and P (Ω) = 1. In this section, we will consider the more restrictive case where P can be
represented by a probability density function, e.g. P (B) =

∫
B
p(x)dx.

A related, but distinct notion is a density on a manifold. The following description integration of
densities on smooth manifolds is adapted from the textbook Introduction to Smooth Manifolds (Lee,
2013).

A density on a manifold is (loosely) a function mapping collections of vector fields into real-valued
functions satisfying the following pullback property:

Let F : M → N be a smooth function between two manifolds and let µ be a density on N . Then
F ∗µ is a density on M given by

(F ∗µ)p(v1, . . .vN) = µF (p)(dFp(v1), . . . , dFp(vN)), (31)

where {vi}Ni=1 is a collection of vectors in the tangent space of N at p, and dFp is the differential of
F at p. In local coordinates, this becomes

F ∗(u|dw1 ∧ · · · ∧ dwN |) = (u ◦ F)|detDF ||dv1 ∧ . . . ∧ dvN |, (32)

where u is a continuous function, {wi} and {vi} represent local coordinates, and ∧ represents the
wedge product.

Integration is commonly extended to manifolds based on the usage of charts between the manifold
and Euclidean space. That is, let M be a smooth manifold, and let U ⊆ M be a subset such that it is
entirely covered by the domain of the chart ϕ : U → RN , then∫

U

µ =

∫
ϕ(U)

(
ϕ−1

)∗
µ, (33)

where
(
ϕ−1

)∗
is the pullback along ϕ and µ is a density on the manifold. The invariance in Equation

(33) is in fact a special case of a more general property. That is∫
M
µ =

∫
N
F ∗µ. (34)

Finally, observe that by combining Equation (34) and Equation (32), and taking p(x) to be a density
on a manifold, we arrive at the standard probability density reparameterization but in local coordinates,
as shown in Equation (7).

D PROOF OF PROPOSITION 1

Proposition 1. Let {vi} form an orthonormal basis of the tangent space of X at x0, and let Dvi
|x0
ψ

be the directional derivative of ψ in the direction vi at x0, the result of which is represented in the
ambient space L2(I). Finally, define

ai,j :=
〈
Dvi |x0

ψ, Dvj

∣∣
x0
ψ
〉
K

and Ax :=

a1,1 a1,2 · · · a1,N
a2,1 a2,2 · · · a2,N

...
...

. . .
...

aN,1 aN,2 · · · aN,N

 , (8)

based on the inner products of the directional derivatives with respect to the basis. Then

|detDψ| =
√

|detAx|. (9)

This proof comes from considering a unitary transformation from the ambient parameterization of
the tangent space of the manifold onto RN . It explicitly constructs a square matrix representation of
Dψ, before noting that the unitary transformation vanishes in the matrix product.

17

Under review as a conference paper at ICLR 2024

Proof. Let U be a unitary transformation from the basis of the tangent space of Cf,I at ψ(x0) in the
ambient space L2(I) onto the tangent space of X . U can be explicity represented as

Ux =

N∑
i=1

w′
i⟨wi,x⟩, (35)

where {wi}Ni=1 form an orthonormal basis of the tangent space in ambient coordinates and {w′
i}Ni=1

form an orthonormal basis of the tangent space of X . The adjoint of U can be represented as

U∗x′ =

N∑
i=1

wi⟨w′
i,x

′⟩, (36)

and U∗U is clearly an identity. Finally, consider Dψ as a linear operator from X onto L2(I), and the
action can be expressed through an orthogonal decomposition as

(Dψ) (h0) =

N∑
i=1

(Dvi |x0ψ) ⟨vi,h0⟩. (37)

Then, by linearity, UDψ represents the Jacobian of the transformation from initial conditions to a
Euclidean representation of the tangent space of the manifold of trajectories at ψ(x0) and can be
readily represented as a square matrix. By multiplicity of determinants,

det{UDψ} = det{U} det{Dψ} = det{Dψ}. (38)

Then, through standard properties of determinants, we can expand the original determinant through
algebraic manipulations of |det{Dψ}|2 to include U , or

|det {Dψ}|2 = |det {UDψ}|2 =
∣∣det{(UDψ)∗ UDψ}∣∣ . (39)

We can now arrive at the final statement by expanding the expression.

(UDψ) (h0) =

N∑
i=1

w′
i⟨wi,

N∑
j=1

(
Dvj |x0ψ

)
⟨vj ,h0⟩⟩ (40)

=

N∑
i=1

w′
i

N∑
j=1

⟨wi, Dvj |x0ψ⟩⟨vj ,h0⟩ (41)

Then by interpreting Equation (41) as a matrix, the adjoint can be recognized as

(UDψ)
∗
(h′

0) =

N∑
j=1

vj

N∑
i=1

⟨wi, Dvj |x0ψ⟩⟨w′
i,h

′
0⟩. (42)

Thus,

(UDψ)
∗
(UDψ) (h0) =

N∑
j=1

vj

N∑
i=1

⟨wi, Dvj
|x0
ψ⟩

N∑
j′=1

⟨wi, Dvj′ |x0
ψ⟩⟨vj′ ,h0⟩ (43)

=

N∑
j=1

vj

N∑
j′=1

⟨vj′ ,h0⟩
N∑
i=1

⟨wi, Dvj |x0ψ⟩⟨wi, Dvj′ |x0ψ⟩ (44)

=

N∑
j=1

vj

N∑
j′=1

⟨vj′ ,h0⟩⟨Dvj
|x0
ψ,Dvj′ |x0

ψ⟩ (45)

or
(UDψ)

∗
(UDψ) = Ax. (46)

Thus, by Equation (39),
|detDψ| =

√
|detAx|. (47)

18

Under review as a conference paper at ICLR 2024

E INVARIANCE TO K IN SECTION 4.3

In this section, we provide supplemental notes on the invariance of MMSE estimation in the ambient
space to the choice of positive-definite integral kernel K. First, expand the norm as an L2 inner
product, or ∥x∥K = ⟨Kx,x⟩2. By the positive definite assumption, let K = B∗B, where B is
the square root operator. Thus ∥x∥K = ∥Bx∥2. Let x′ = Bx, then by optimality of conditional
expectation,

x̂′
MMSE = E [x′ |y] = E [Bx |y] = BE [x |y] = Bx̂MMSE. (48)

Thus, argminx̂ E [∥x̂− x∥K |y] = argminx̂ E [∥x̂− x∥2 |y]. As K can be selected to apply
weighted penalties dependent on the time horizon, the MMSE estimate in the ambient space is
optimal for all such weightings.

F COMPUTATION OF EQUATION (7)

In this section, we describe the computations required for the application of Proposition 1.

A key observation is that each ai,j in Proposition 1 is readily computable through classical sensitivity
analysis tools. Furthermore, the rich history of scientific computing enables guarantees on the
accuracy of the computation of each ai,j , which can then be related to the accuracy of

√
|detDA|.

The general approach is to numerically evaluate the sensitivity at a set of grid points in time, {τi},
then use these grid points to numerically approximate the integral. This approach is described in
Algorithm 1. Tolerances and step sizes for the numerical ODE solver can be chosen to guarantee
some error bound on the determinant, the design of which is described in Appendix F.1, below.
Finally, it is additionally worth noting that |detDψ| can be precomputed for a given system, enabling
computational efficiency when the data is actually acquired if the ODE is known ahead of time.

Algorithm 1: Compute |detDψ| for a given ODE ẋ = f(x) and compact domain Ω ⊂ X
Input: f : X → X , Interval I = [0, T], Initial Condition x0, solver_tolerance, step_size
Result: A value s such that |s− |detDψ|| < tolerance set by solver_tolerance and step_size
for i = 1 . . . N do

Ui,: = automatic_differentiation(odesolve(f , x0, step_size, solver_tolerance))
end
Construct A through trapezoidal integration over U inner products;
return

√
|detA|

F.1 TOLERANCE SELECTION FOR ALGORITHM 1

In this section, we describe the key terms for selecting the tolerance and step sizes in Algorithm 1. To
do so, we chain together bounds on the sensitivity. Because existing methods allow the selection of
tolerances for numerical integration, we begin by relating error in detA to that of its elements ai,j .

There exist numerous results on this question, but we select the following pair of bounds on the
perturbation of the determinant from (Ipsen & Rehman, 2008)

|det(A+ E)− det(A)| ≤ N∥E∥2 max {∥A∥2, ∥A+ E∥2}N−1 (Absolute) (49)

|det(A+ E)− det(A)|
|det(A)|

≤
(
κ
∥E∥2
∥A∥2

+ 1

)N

− 1, (Relative) (50)

where κ is the condition number of A. Thus, we can turn a constraint in the determinant into a
constraint on the induced 2-norm of the error matrix.

We can then use standard norm equivalences to note that

∥E∥2 ≤ N∥E∥max, (51)

where E ∈ RN×N and ∥ · ∥max denotes the maximum value in the matrix.

19

Under review as a conference paper at ICLR 2024

As each element of E, or ei,j , represents the error in the computation of ai,j , we now consider the
error in the computation of the integral. If we denote the true directional derivatives to be functions
ui : I → X , then

ai,j =

∫
I

⟨ui(t), uj(t)⟩dt. (52)

We approximate each ai,j integral as a summation using trapezoidal rule and thus

|ẽi,j | ≤
T 3

12n2
max
τ∈I

{
∂2

∂t2
⟨ui(t), uj(t)⟩

∣∣∣∣
t=τ

}
, (53)

where ẽi,j is the error under exact computation of the derivative and n is the number of steps. Finally,
note that we do not have samples of the exact derivative, but instead values perturbed by at most
tolode, or the tolerance of the numerical computation of the derivative. Thus, we must additionally
include the square of this error, or

|ei,j | ≤
T 3

12n2
max
τ∈I

{
∂2

∂t2
⟨ui(t), uj(t)⟩

∣∣∣∣
t=τ

}
+ tol2odeT (54)

Assembling the inequalities, the relative tolerance is upper bounded as

|det(A+ E)− det(A)|
|det(A)|

≤
(
κ
∥E∥2
∥A∥2

+ 1

)N

− 1 (55)

≤
(
N∥A−1∥2∥E∥max + 1

)N − 1 (56)

≤
(
N∥A−1∥2

(
T 3

12n2
max
τ∈I

{
∂2

∂t2
⟨ui(t), uj(t)⟩

∣∣∣∣
t=τ

}
+ T tol2ode

)
+ 1

)N

− 1. (57)

Finally, to choose the grid resolution and ODE solver tolerance, we require bounds on ∥A−1∥2 and
maxτ∈I

{
∂2

∂t2 ⟨ui(t), uj(t)⟩
∣∣∣
t=τ

}
.

For ∥A−1∥, we can use a Gersgorin-type lower bound on A such as (Johnson, 1989) to see

∥A−1∥2 ≤

min
i

|ai,i| −
∑
j ̸=i

|ai,j |

−1

. (58)

Finally, the absolute tolerance can be similarly bounded as

|det(A+ E)− det(A)| ≤ N∥E∥2 max {∥A∥2, ∥A+ E∥2}N−1 (59)

≤ N∥E∥max (∥A∥2 + ∥E∥max)
N−1

, (60)

where ∥E∥max is dependent on the inverse square of the step size and the square of the ODE solver
tolerance.

From these results, we can see a key property. First, the relative tolerance is bounded by a polynomial
in n−1 and tolode. If n−1 = tolode, then the convergence becomes quadratic in the tolerance level.
Thus, this property gives guidance on the trade-off between computation time and accuracy to push
densities onto Cf,I .

20

Under review as a conference paper at ICLR 2024

G SIMULATION DETAILS

All simulations were completed using a regularly sampled grid in order to increase the throughput
for the Monte Carlo simulations through precomputed transformations. The simulations can be
precomputed due to the linearity of the transformations in the space of probability densities. Thus,
a grid-based approach allows the reduction of the inference steps to an elementwise multiplication
of tensors and a selection of the maximum or minimum value. While this approach is slower when
computing a single estimate due to the initial overhead, it significantly accelerates the process for
low-dimensional problems in successive applications.

While the full simulation code is available in the git repository with the library, Table 1 contains the
key parameters in the simulations. As the error is dominated by that of the statistical inference, fast,
but low accuracy, solvers were used for the ODE.

Table 1: Simulation Details
Feasible Initial Conditions [0.2, 2.2]× [0.2, 2.2]

Grid Resolution 0.05

Monte Carlo Samples 10, 000

Lotke-Volterra Parameters α = 1; β = 2; δ = 4; γ = 2

ODE Solver Algorithm Heun’s Method

ODE Solver Tolerance rtol: 10−2; atol: 10−2

ODE Saved Timestep Step Size 0.1

G.1 LIBRARY DEPENDENCIES

The library developed for this work requires the dependencies listed in Table 2.

Documentation was generated using Sphinx, which uses the BSD license.

Testing is done through Pytest 7.3.1, which uses the MIT license.

Table 2: Library Dependencies
Dependency Version License

Python ≥ 3.9 PSF

Jax ≥ 0.4.3 Apache-2.0

Diffrax ≥ 0.3.0 Apache-2.0

Jaxtyping ≥ 2.0.0 MIT

G.2 PLOTTING AND SIMULATION DEPENDENCIES

Additional library versions at time of simulation are shown in Table 3.

Table 3: Further Simulation Dependencies
Dependency Version License

Matplotlib 3.7.1 BSD-compatible

Numpy 1.24.2 BSD

TQDM 4.65.0 Mix of MIT and MPL

21

Under review as a conference paper at ICLR 2024

G.3 SIMULATION HARDWARE

Simulations were run on a shared server without job scheduling.

The server hardware is available in Table 4.

Table 4: Server Hardware
Category Component

CPU AMD Ryzen Threadripper 3960X

GPU NVidia TITAN Xp

RAM 64 GB, 2666 MHz

22

	Introduction
	Related Work
	Contributions

	Problem Formulation
	Trajectory Manifold
	Point Estimation on Trajectory Manifolds
	ML Estimation
	MAP Estimation
	MMSE Estimation on the Ambient Space
	MMSE Estimation on the Manifold

	Computation of Estimates
	Numerical Experiments
	Quantitative Comparison

	Conclusion
	Additional Simulations
	Additional Simulations — MMSE
	Importance of Model Knowledge

	Proof of Theorem 1
	Probability on Riemannian Manifolds
	Proof of Proposition 1
	Invariance to K in Section 4.3
	Computation of Equation (7)
	Tolerance Selection for Algorithm 1

	Simulation Details
	Library Dependencies
	Plotting and Simulation Dependencies
	Simulation Hardware

