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Abstract

Existence of policy-value representation asymmetry negatively affects the general-
ization capability of traditional actor-critic architectures that use a shared represen-
tation of policy and value. Fully decoupled/separated networks for policy and value
avoid overfitting by addressing this representation asymmetry. However, using two
separate networks introduces increased computational overhead. Recent work has
also shown that partial separation can achieve the same level of generalization in
most tasks while reducing this computational overhead. Thus, the questions arise:
Do we really need two separate networks? Is there any particular scenario where
only full separation works? Does increasing the degree of separation in a partially
separated network help in generalization? In this work, we attempt to analyze the
generalization performance vis-a-vis the extent of decoupling of the policy and
value networks. We compare four different degrees of network separation, namely:
fully shared, early separation, late separation, and full separation on the RL gener-
alization benchmark Procgen, a suite of 16 procedurally-generated environments.
We show that unless the environment has a distinct or explicit source of value
estimation, partial late separation can easily capture the necessary policy-value
representation asymmetry and achieve better generalization performance in unseen
scenarios, however, early separation fails to produce good results.

1 Introduction

Deep reinforcement learning algorithms are an impressive contribution of the deep learning era
as they allow agents to learn different control tasks directly from interaction with an environment.
However, a large number of training samples are necessary to optimally train the models. While
learning from limited data or tasks, deep RL algorithms suffer from poor generalization performance
when applying the learned policy to an unseen scenario. Raileanu and Fergus [2021] show that
policy-value representation asymmetry is an underlying cause for poor generalization performance in
shared actor-critic architectures. Value estimation in a particular state depends on instance-specific
features; however, learning the policy only depends on task-specific features. Raileanu et al. shows
that ignoring this asymmetry while learning a joint representation for both policy and value through
a shared network limits the agent’s capacity to learn a generalizable policy. Combining the two
representations through a shared network guides the policy to be unnecessarily biased to the value
features. Thus the learned policy overfits to the training instances and performs poorly in terms of
generalization.

Previously proposed solutions to this asymmetry use two different networks for policy and value that
capture distinct features [Cobbe et al., 2021][Raileanu and Fergus, 2021]. However, the use of two
separate network creates a significant bottleneck regarding computation time. Also, the dependency
of policy function on the value gradients requires extra precaution in designing the network. Nafi
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Figure 1: Architectures with different extent of decoupling for policy and value networks

et al. [2021] propose a workaround that acts as a compromise through partial separation of the
policy and value networks and attains competitive performance compared to the fully separated
counterpart while requiring less computational time. This architecture also eliminates the need for an
additional value (or advantage) head to propagate the value gradient to the policy parameters. All of
the abovementioned approaches were evaluated on the demanding generalization benchmark Procgen
[Cobbe et al., 2020]. Procgen offers sixteen different game environments that provide access to the
unlimited number of levels of a particular game with diverse backgrounds and game attributes such
as agent position, shape and color of the game assets, enemy spawn time etc. The game level target
remains the same throughout the levels, and the learned agent needs to perform well in the complete
distribution of levels while learning from a limited number of levels.

We observe that while all these approaches offer a solution to the specific problem they identified, no
solution is perfect for all sixteen environments considering both aspects - generalization performance
and required computation time. Full separation of policy and value introduce very high computational
overhead. In our experiments on a single GPU, for most of the environments, we observed 4 times
higher running time for the fully separated approach, IDAAC [Raileanu and Fergus, 2021], compared
to the fully shared baseline PPO [Cobbe et al., 2020] or partially separated approach APDAC [Nafi
et al., 2021]. On the other hand, the partial separation achieves competitive performance in most
environments, but fails in some cases.

Thus, the question remains open as to what approach should be used if we encounter a new envi-
ronment. Unfortunately, there still does not exist a guideline for deciding how much decoupling is
enough for policy and value networks in order to achieve a reasonable performance by looking at the
environment properties, while keeping the computational burden low. In most cases, substantial com-
promise in generalization performance is not acceptable just because of the increased computational
overhead. This also leads one to the question "Can separating the network early (having most of the
layers separated) improve the overall performance?"

In this work, we investigate the effect of different degrees of decoupling on the agent’s performance.
Our analysis primarily leverages existing literature, and at the same time devises new purposeful
insights. We evaluate four architectures with different degrees of separation: fully shared (no
separation), early separation, late separation, and full separation. We attempt to delve into the learned
representation for policy and value networks in all these settings to identify whether and how the
separation helps. We conclude that full separation is a must when there is a clear distinction between
the source of value and policy features. Otherwise, partial late separation suffices and possibly is the
best option. However, too early separation may decrease the performance

2 Related Work

A lot of emphasis in deep reinforcement learning has lately been placed on an agent’s ability to learn
policies that are robust and generalizable Farebrother et al. [2018], Packer et al. [2018], Cobbe et al.
[2019a] which has led to an emphasis on developing intelligent agents that avoid overfitting and can
generalize well to unseen data Rajeswaran et al. [2017], Justesen et al. [2018], Grigsby and Qi [2020],
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Lyle et al. [2022]. Some of the methods that have been proposed include regularization techniques
like dropout Igl et al. [2019], batch normalization Cobbe et al. [2019a], Hu et al. [2021], network
randomization Lee et al. [2019] and data augmentation Cobbe et al. [2019b], Wang et al. [2020],
Raileanu et al. [2020], Yarats et al. [2020], Zhang and Guo [2021]. A feature-swapping regularization
technique to avoid observational overfitting is proposed in Bertoin and Rachelson [2022] whereas
Igl et al. [2020], Lyle et al. [2022] use policy distillation to improve generalization. Zhang et al.
[2020], Agarwal et al. [2021a] use bisimulation metrics to study similarity between states to learn
task-relevant representations. Some studies suggest a link between interference and generalization
in temporal difference learning and show that TD methods lead to under-generalizing parameters
Bengio et al. [2020]. Mazoure et al. [2020] propose to predict the future states by maximizing the
mutual information between its internal representation of successive time steps. Jia et al. [2022]
introduce generalist-specialist training framework, while Paischer et al. [2022] propose the use
of language models with history compression which enables memory to store abstractions of the
observations to allow for generalization. One recent work identifies the value network as being much
more prone to overfitting and propose a Delayed-Critic Policy Gradient (DCPG) method which trains
the value function less frequently and with more training data compared to the policy Moon et al.
[2022]. Nafi et al. [2022] propose hyperbolically discounted advantage-based policy learning for
better generalization.

Another aspect of research focuses on the network architecture, such as the work of Raileanu and
Fergus [2021] that uses decoupled policy and value networks to improve generalization and show
that sharing policy and value functions leads to overfitting. In this context, while PPO Schulman
et al. [2017] uses a fully shared actor-critic architecture, Nafi et al. [2021] propose the use of partially
decoupled actor and critic networks that reduce the overall parameter count while performing
comparably to the fully decoupled architecture. Cobbe et al. [2021] introduce a phase-wise training
using two different networks and optimize the value function through an auxiliary phase. Several
other works use decoupled architecture, however, the main objective of such works is to improve
sample efficiency Andrychowicz et al. [2021] Yarats et al. [2021]. Recently, Ni et al. [2022] presents
that recurrent neural network can be used with a decoupled architecture to perform better in POMDP
settings which include generalization. However, there is hardly any work that attempts to measure
the variation in performance due to different degrees of decoupling.

3 Methodology

To analyze the sensitivity to decoupling of policy and value, we create four different scenarios (1)
there is no separation of the policy and value network other than the final policy and value heads
(fully connected layers) at the end, (2) the network is separated early in the layers (3) the network is
separated in the more downstream layers (4) solely two separate networks. Figure 1 presents the four
architectures. We use the large IMPALA-CNN architecture [Espeholt et al., 2018] as the base network,
as used by previous state-of-the-art works [Cobbe et al., 2021] [Raileanu and Fergus, 2021]. The
Procgen benchmark [Cobbe et al., 2020] also used the same version of IMPALA-CNN architecture
to present their results. This deeper IMPALA CNN architecture has three blocks, each having a
configuration of Convolution Layer - Pooling Layer - Residual Block - Residual Block, where each
residual block has two convolution layers. The whole architecture includes 15 convolutional layers
in total [Espeholt et al., 2018]. In the rest of this section, we describe the details of these four
architectures and their implementation using the IMPALA-CNN backbone. We also describe their
loss functions and the optimization process.

3.1 Fully Shared

By fully shared or no separation, we denote the traditional architecture that shares the network for
the actor (policy) and the critic (value). Specifically, we share the IMPALA-CNN base network
(including all convolution layers) between policy and value, however, we only separate the final
fully connected layers that represents the policy and value heads (see figure 1). This is similar to
existing Proximal Policy Optimization (PPO) [Schulman et al., 2017] implementations e.g. [Cobbe
et al., 2020] [Raileanu and Fergus, 2021]. Given the network parameter θ, we optimize the standard
objective function used in policy gradient approaches:

JNS(θ) = Jπ(θ)− αvLV (θ) + αsSπ(θ) (1)
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where Jπ(θ) is the policy gradient objective, LV (θ) is the value loss, Sπ(θ, ϕπ) is the entropy bonus
for exploration, and αv and αs are the corresponding coefficients. PPO builds upon the Trust Region
Policy Optimization (TRPO) Schulman et al. [2015] method, which maximizes a surrogate objective
function defined as:

Jπ(θ) = Êt

[
rt(θ)Ât

]
(2)

where rt(θ) =
π(θ)(at|st)

π(θ)old
(at|st) is the probability ratio between the new policy and the old policy, and Ât

refers to the advantage estimate at timestep t. To avoid excessively large policy updates, PPO clips
the value of rt(θ) between the intervals of [1− ϵ, 1 + ϵ] and takes the minimum between the original
value of rt(θ) and the clipped one. Thus, the final clipped surrogate objective function is as follows:

Jπ(θ) = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
(3)

For the fully shared architecture, we optimize the same clipped surrogate objective as shown in
Equation 1.

3.2 Early Separation

To implement early separation, we share the first block of the IMPALA-CNN architecture and separate
the next two for policy and value. Thus, only 5 convolutional layers are shared. Consider that the
part of the network shared between policy and value is parameterized by θ, the separated policy
subnetwork is parameterized by ϕπ, and the separated value subnetwork is parameterized by ϕv.
Then, we optimize the objective jointly for all parameters, similar to the PPO loss (eq 1):

JES(θ, ϕπ, ϕv) = Jπ(θ, ϕπ)− αvLV (θ, ϕv) + αsSπ(θ, ϕπ) (4)
where Jπ(θ, ϕπ) is the policy gradient objective, LV (θ, ϕv) is the value loss and Sπ(θ, ϕπ) is the
entropy bonus.

3.3 Late Separation

In this variant, we share the first two blocks of the IMPALA-CNN architecture and use separate third
block for each of the policy and value network components. As a result, the first 10 convolutional
layers are shared while there are two different sets of 5 convolutional layers for each of the policy and
value subnetworks. If the shared network part is parameterized by θ, the separated policy network
and value network are parameterized by ϕπ and ϕv respectively, we optimize the objective jointly,
similar to the PPO loss (eq 1):

JLS(θ, ϕπ, ϕv) = Jπ(θ, ϕπ)− αvLV (θ, ϕv) + αsSπ(θ, ϕπ) (5)
where Jπ(θ, ϕπ) is the policy gradient objective, LV (θ, ϕv) is the value loss and Sπ(θ, ϕπ) is the
entropy bonus. This is similar to the partial separation proposed in [Nafi et al., 2021]. The difference
between early separation and late separation is that the number of shared parameters represented by θ
is higher in late separation.

3.4 Full Separation

As the name suggests, we use two fully separate network for policy and value. This is similar to the one
proposed in [Raileanu and Fergus, 2021] that fully disentangle the policy and value representations.
We also keep the extra advantage head in the policy network as without any sort of value or advantage
gradient, the policy network remains isolated, resulting in the policy optimization process failing
completely [Cobbe et al., 2021]. Since there are two different networks, the optimization takes place
in two phases with the policy network optimized at first, followed by the value network. The policy
network parameterized by θπ is optimized for:

JFS(θπ) = Jπ(θπ)− αALAπ
(θπ) + αsSπ(θπ) (6)

Here LAπ
(θπ) is the advantage loss coming from the additional advantage head used to support the

policy network [Raileanu and Fergus, 2021]. On the other hand, the value network, parameterized by
ϕv , optimizes the value loss defined as follows:

Lv(θv) = Êt[(Vθv (St)− V̂t
targ

)2]

Where V̂t
targ

is the target value function.
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Figure 2: PPO normalized score for all four variants: fully shared, early separation, late separation,
and full separation across all the 16 environments in Procgen benchmark

Figure 3: Min-Max normalized score for all four variants: fully shared, early separation, late
separation, and full separation across all the 16 environments in Procgen benchmark

4 Results and Discussions

We conduct our experiments against all the 16 game environments available in the Procgen benchmark
[Cobbe et al., 2020].1 The highly diverse environments provide us the opportunity to analyze and
draw conclusions regarding when to use a certain network architecture. We use the same protocol
for training and testing as introduced in Cobbe et al. [2020]. We employ the easy distribution mode
and train all the agents on only 200 levels of the games while testing on the full distribution of levels.
The term full distribution refers to the configuration that each episode in the testing phase can be any
level selected from a infinite set of procedurally generated levels. Thus the learned policy needs to
perform better in the unseen scenarios, not encountered during training.

4.1 Generalization Across All Environments

To analyze the overall performance, we first report the results combined across all 16 environments.
The general evaluation criteria in reinforcement learning is the average test scores (returns) achieved
on evaluation episodes while training the model on 25M timesteps. To address statistical uncertainty,
we consider more critical metrics such as Interquartile Mean (IQM) and optimality gap (OG), in
addition to mean and median scores across all runs, as introduced by Agarwal et al. [2021b]. Further,
we present performance profiles that takes into account the variability in performance across tasks
and runs. A detailed description of these metrics is available in the supplementary materials.

Figure 2 shows the PPO-normalized scores across all the 16 environments. As described previously
in Section 3.1, fully shared approach refers to the PPO algorithm. Thus, figure 2 can be considered
as a performance representation of other network architectures relative to the fully shared version
wherein the score of the fully shared version is 1 in the scale. It is evident from figure 2 that late
separation outperforms all other approaches in terms of the IQM value across all environments while
sharing a significant portion of the network. While the median value of late separation is also higher
than any other approaches, the mean value is slightly less compared to the full separation but still
better than early separation. Further, the optimality gap of late separation is the lowest among all
other approaches.

Figure 3 shows the min-max normalized score across all the 16 environments. Min-max normalized
scores can be viewed as the performance compared to the minimum and maximum scores achievable
in an environment, values of which are provided in Cobbe et al. [2020]. We observe that the mean
score of late separation performs best, however, the IQM value is slightly less than full separation.
Both the median and optimality gap are better in case of late separation.

From the presented results, we observe that early separation while having a large portion of the
network separated for the policy and value still performs worse than the late separation. However, a

1https://github.com/nasiknafi/sensitivity-to-decoupling
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Figure 4: Test performance for fully shared, early separated, lately separated, and fully separated
architecture across all 16 environments from the Procgen benchmark. Mean and standard deviation
are calculated over 5 trials, each with a different seed.

Table 1: Comparison of computational time and required convolutional layers

Methods No of Conv. Layer GPU Hours
fully shared 15 3-4

late separation 20 3-5
early separation 25 3-5
full separation 30 5-10

naive assumption could lead one to believe that early separation architecture would work best as this
should capture the policy-value representation asymmetry better through its larger separated part. We
hypothesize that this deviation is due to the combined adversarial effect of the higher isolation of
the policy network and the lack of separate policy and value optimization. The rationale behind this
argument refers to the addition of advantage head (or value head) to the policy network and separate
optimization of the policy and value networks to alleviate performance degradation that occurs with
naive separation Raileanu and Fergus [2021] Cobbe et al. [2021].

4.2 Performance on Individual Environments

In addition to the overall performance, we look at the empirical results for all individual environments
to evaluate how different degrees of separation affects them. Figure 4 presents results across the
entire Procgen benchmark. The solid line refers to the running mean of rewards while the shaded
regions refer to the variance across trials. We observe that, in all the environments except Plunder,
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Figure 5: Interquartile Mean (IQM) for PPO (Fully Shared) normalized test rewards for all the 16
environment. Mean and standard deviation are calculated over 5 trials, each with a different seed.

late separation achieves competitive scores, even better in some cases, against the model that uses
full separation architecture. early separation performs competitively with late separation in a few
environments, however this performance is not consistent. The fully shared architecture one only
performs competitively in the caveflyer and miner environments.

Figure 5 presents the PPO-normalized IQM values for each of the environments to assess the
performance difference in a statistically significant way. We observe similar behavior as in figure 4.
The drastic failure of the fully shared or any of the partially separated variants in plunder environment
is also visible from the IQM plots. Comparison of other metrics such as Mean, Median and Optimality
Gap for each environment is available in the supplementary materials. Table 1 shows a comparison of
the time complexity for all the four variants used in our experiments. As partially separated models
requires significantly less time than the fully separated approach and late separation can achieve
competitive performance in most cases, we recommended to use late separation in general and
specially when computational complexity is crucial.

We now examine the issue of complete failure of all architectures except full separation in the Plunder
environment. Our investigation reveals that unlike other environments, Plunder includes an on-screen
timer that slowly counts down (see the top green bars in the left figures in Figure 6). When the
timer runs out, the episode ends at that instant. Thus this on-screen timer acts as a life bar for the
agents. The policy needs to learn to avoid hitting friendly ships and destroying the enemy pirate
ships by firing cannonballs. A target in the bottom left corner of the screen shows the color of
the targeted enemy ships. However, the life bar is an important source of value estimation of the
state. Figure 6 presents examples of the learned policy and value representation highlighted through
Grad-CAM Selvaraju et al. [2017] for both late separation and full separation. It is evident that
the value representation in the fully separated one pays attention at the top-left corner where the
life bar ends while the value network in case of late (partial) separation fails to do so. On the other
hand, the policy representations for fully separate network keeps track of the end of the life bar
while also paying attention to the enemy ships. However, the policy representations in case of late
(partial) separation focuses at the complete life bar. We hypothesize that this happens due to the
overarching effect of the value function. The policy network puts significant importance on the value
source and fails to distinguish between the policy and value representation. Thus, we conclude that
when explicit source of value estimation is present in the input observation, any one should consider
learning representation for policy and value through two fully separate network irrespective of the
computational time overhead to gain generalization improvements.
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Figure 6: Learned representation of the policy and value using lately separated and fully separated
architectures for the Plunder environment. The red marked regions correspond to the higher value
of gradients while blue regions correspond to the lower value of gradients. The learned policy
representation using lately (partially) separated approach get biased with the value function and
primarily looks at the whole life bar as opposed to the end mark focused by the policy representation
learned by the fully separated approach.

5 Conclusion

In this work, we attempt to infer meaningful insights from the existing works through carefully
designed ablation studies regarding partial and full decoupling of policy and value networks for
generalization in reinforcement learning. We present comparative analysis of the models that use
different level of decoupling/separation for the policy and value function in procedurally generated
environments. Our work clearly identifies when to leverage two fully separate networks even though it
might entail increased computational complexity. Our contribution thus focuses on and recommends
practical criteria that will help deep reinforcement learning practitioners in deciding the type of
network and extent of decoupling to deploy when encountering a new environment to achieve better
generalization.
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A Implementation and Hyperparameters

For PPO Schulman et al. [2017] as a representative algorithm for fully shared networks, we use
implementation released by [Kostrikov, 2018]. For fully separated networks, we use the code released
[Raileanu, 2021] as part of the IDAAC paper [Raileanu and Fergus, 2021]. For early and late
separation networks, we use APDAC [Nafi et al., 2021] and modify the code released with the paper
[Nafi, 2021]. Each environment for a particular algorithm was run using five different seed values.
The software used included Python (3.7.x) and PyTorch (1.7.1), with CUDA (10.2). Our computing
infrastructure involved using a High Performance Cluster with GPUs including Nvidia RTX 2080s.
Each experiment was run using one GPU, and took between 3 hours to 10 hours, depending on the
degree of network separation (see Table 1 of main paper). We provide the hyperparameters for our
algorithms in Table 2, as well as the configurations that were used in our environments (Table 3) for
reproducibility. These values are used in all our experiments unless specified otherwise.

Table 2: Hyperparameters used for all policy gradient methods
hyperparameters values

timesteps per rollout 256
epochs per rollout 3

minibatches per epoch 8
entropy bonus 0.01

clip range 0.2
reward normalization yes

learning rate 5e-4
environments per worker 64

total timesteps 25 million
Optimizer Adam

GAE lambda λ 0.95

Table 3: Procgen environment configurations
configuration values

distribution mode Easy
num (train) 200
start level 0

paint vel info False
center agent True

use sequential levels False
use generated assets False

use backgrounds True
restrict themes False

use monochrome assets False
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B Train performance

Figure 7 shows the train performance of the four network separation methods on all Procgen environ-
ments.

Figure 7: Train performance of the four architecture: fully shared, early separation, late separation,
and full separation for all the 16 environment of Procgen benchmark. Mean and standard deviation
are calculated over 5 trials, each with a different seed.
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