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ABSTRACT

Enhancing the mathematical capabilities of large language models (LLMs) is cru-
cial for applications requiring precise and rigorous mathematical reasoning. Cur-
rent models, even when trained with methods like Direct Preference Optimization
(DPO), often struggle to effectively differentiate between correct and erroneous
mathematical responses, especially when errors occur in multi-step solutions. Tra-
ditional approaches focusing on token or logit-level analysis fail to capture the nu-
anced semantic differences in mathematical reasoning. To address this challenge,
we propose leveraging the rich semantic information embedded in the hidden state
space of LLMs. Our novel approach, Focused Differentiation Training (FDT),
fine-tunes the model by emphasizing the differences between the hidden states of
correct and incorrect responses, rather than their common features. Unlike other
methods that detect errors at the token or logits level and often rely on human
input or more powerful models, our approach enhances mathematical reasoning
capabilities using only the model’s inherent abilities. This methodology promotes
a more accurate alignment with mathematical correctness, thereby improving the
model’s ability to evaluate and generate precise mathematical responses. Experi-
mental results demonstrate that our algorithm substantially outperforms traditional
alignment methods in mathematical tasks, offering a robust solution for enhancing
the mathematical reasoning capabilities of language models.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) has emerged as a powerful technique for
aligning large language models (LLMs) with human preferences, significantly enhancing their us-
ability and reliability across various applications. While traditional approaches to training LLMs
often rely on vast amounts of data and heuristic methods, potentially leading to misalignment with
human values and intentions, RLHF addresses this issue by directly incorporating human feedback
into the training process, thereby ensuring that models better reflect human preferences.

Existing methods for RLHF, such as Direct Preference Optimization (DPO), have demonstrated
significant improvements in aligning LLM outputs with human preferences in general language
tasks. However, when it comes to mathematical reasoning tasks, especially those involving multi-
step problems, these methods often fall short. Traditional RLHF approaches typically focus on
general language understanding and response generation, which may not adequately capture the
specific nuances required for precise mathematical task performance. This oversight can result in
models that, although aligned with general linguistic preferences, often fail to address the structured
and logical demands unique to mathematical reasoning and problem-solving effectively.

∗Correspondence to: Guoqing Liu <guoqingliu@microsoft.com>, Haifeng Zhang
<haifeng.zhang@ia.ac.cn>.
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The primary challenge with existing RLHF techniques in mathematical contexts is their inability to
accurately identify and differentiate errors within multi-step solutions. For instance, if a response
contains a single incorrect step amidst otherwise correct reasoning, it is often labeled entirely wrong.
This labeling approach discourages models from recognizing the complexity and partial correctness
within mathematical arguments, a critical skill for advanced mathematical reasoning. Furthermore,
current methods rely heavily on token or logit-level analysis, which often proves inadequate for cap-
turing the subtle semantic differences crucial in mathematical reasoning Lai et al. (2024b). These
methods rely on the assistance from human or more advanced models, which is costly and labor-
intensive. Additionally, these approaches may not always provide consistent or reliable interpre-
tations, especially in complex multi-step mathematical problems where nuanced understanding is
essential.

To address these shortcomings, we propose leveraging the hidden states of LLMs to more effec-
tively differentiate between correct and incorrect mathematical responses. The hidden state space of
LLMs contains rich semantic information that is more concentrated and intact compared to surface-
level token representations. By focusing on this dense embedding space, we can capture and utilize
semantic divergences more effectively, allowing for a deeper analysis of mathematical reasoning
processes. Our approach is inspired by recent advancements in semantic analysis of embedding
spaces, as described by Reimers (2019). This method ensures that the model engages with under-
lying semantic structures rather than merely responding to explicit linguistic cues. Moreover, as
highlighted by Kuhn et al. (2023), representing semantic divergence in embedding space provides
a promising solution to the problem of semantic equivalence and linguistic invariances, which are
particularly relevant in mathematical contexts.

Building on these insights, we introduce a novel training algorithm called Focused Differentiation
Training (FDT). FDT operates by fine-tuning the weight updates in the model’s output layer, with
a specific emphasis on distinguishing the differences between correct and incorrect mathematical
responses rather than their common features. This approach is grounded in the observation that
the common parts of hidden states between correct and incorrect answers often represent shared
mathematical concepts or problem setups, while the differences are more likely to indicate critical
points of divergence in reasoning. By specifically targeting how the model perceives and processes
mathematical logic through hidden state analysis, FDT aims to enhance the model’s ability to dissect
and understand the underlying mathematical structure. This method can be seamlessly integrated
into existing RLHF frameworks, thereby improving the model’s performance on tasks that require
high levels of mathematical accuracy and reasoning. The key contributions of our work are as
follows:

• We introduce FDT, a novel algorithm that leverages hidden state analysis to fine-tune the
weight updates in the model’s output layer, enhancing mathematical reasoning capabilities.
This method can be plugged into existing RLHF frameworks to improve the model’s ability
to distinguish between correct and incorrect mathematical responses, particularly in multi-
step problems.

• We present a theoretical analysis of how FDT improves the model’s ability to distinguish
between correct and incorrect mathematical responses.

• We provide empirical evidence demonstrating the superiority of FDT over traditional
RLHF methods in mathematical reasoning tasks, showcasing significant improvements in
accuracy over a range of mathematical tasks and several models.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) has become a central approach for align-
ing large language models (LLMs) with human values by incorporating human evaluations to refine
model outputs iteratively (Christiano et al., 2017; Ouyang et al., 2022; Bai et al., 2022; Song et al.,
2023; Touvron et al., 2023). Unlike traditional reinforcement learning, which relies on predefined
rewards, RLHF uses qualitative feedback from human evaluators to guide the model toward more
human-like and ethical responses. However, its implementation poses challenges due to the vari-
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ability and subjectivity of human-generated feedback, which can introduce inconsistencies into the
reward model (Wu et al., 2023).

Due to the various limitations of RLHF, researchers have started exploring new paradigms for align-
ing large models. In particular, DPO (Rafailov et al., 2023) marks a significant advancement in
direct policy optimization, addressing the complexities of balancing model behavior through a more
refined approach to reward function optimization. Subsequently, numerous variants of DPO have
emerged. SimPO (Meng et al., 2024) observed that during DPO training, the curve representing the
change in probabilities for the model’s generated responses does not align with the implicit reward
curve. To address this, SimPO proposed directly amplifying the probability gap between the chosen
and rejected responses. KTO (Ethayarajh et al., 2024) restructured DPO’s loss function, remov-
ing the dependence on pairwise datasets during the alignment process. TDPO (Zeng et al., 2024)
re-derived the RLHF problem from a token-level perspective, achieving a better balance between
model alignment and generation diversity. ORPO (Hong et al., 2024), from a more lightweight
perspective, further eliminated the reliance on reference models during the alignment process.

2.2 MATHEMATICAL REASONING

Large language models (LLMs) have exhibited substantial mathematical reasoning abilities. How-
ever, when faced with complex mathematical problems that require fine-grained reasoning, LLMs
still struggle to perform effectively. In such cases, LLMs may even exhibit severe hallucination is-
sues. One common approach to addressing this issue is to impose stricter constraints on the model by
requiring more detailed, step-by-step reasoning, thereby enhancing the model’s Chain-of-Thought
(CoT) capabilities (Wei et al., 2022; Yao et al., 2024; Tong et al., 2024; Fu et al., 2022; Lightman
et al., 2023). While this approach has proven effective in certain tasks, it does not fundamentally im-
prove the model. Moreover, due to the inherent limitations of the model’s architecture, the potential
improvements are quite limited. When presented with questions in different formats, the model’s
responses can still display hallucinations, indicating that the root cause of the hallucination problem
has not been addressed.

Another approach focuses on significantly improving the model’s mathematical reasoning capabil-
ities through continued pre-training (CPT) or supervised fine-tuning (SFT) on large-scale, high-
quality mathematics-related datasets (Azerbayev et al., 2023; Shao et al., 2024; Lin et al., 2024;
Yang et al., 2024; Yu et al., 2023; Luo et al., 2023; Liu & Yao, 2024; Lu et al., 2024). During this
process, various data augmentation techniques, such as rephrasing, expansion, and evolution, are
widely applied to further enrich the datasets, helping the model achieve better performance during
CPT or SFT. While, these datasets are collected off-policy with respect to the model itself, which
limits their ability to correct some of the model’s intrinsic errors.

Reinforcement learning (RL) is another class of methods that can significantly enhance the logical
reasoning capabilities of LLMs (Xu et al., 2024; Ying et al., 2024; Kumar et al., 2024). By progres-
sively strengthening the model’s reasoning abilities and reducing hallucinations during inference,
RL improves the reliability of the reasoning process. Recent studies have shown that combining
reinforcement learning with mathematical reasoning tasks can effectively improve the model’s ac-
curacy, particularly for complex mathematical problems. This category of methods includes RLHF,
DPO, and DPO-like approaches. Among these, Step-DPO (Lai et al., 2024b), a DPO-like method,
stands out for its ability to significantly enhance mathematical reasoning by aligning the reason-
ing process step-by-step in long-chain reasoning tasks, thereby correcting specific errors in LLMs’
mathematical reasoning.

3 PRELIMINARIES

In language generation tasks, a language model (LM) is provided with a prompt (denoted as x) to
produce a corresponding response (denoted as y), where both x and y are represented as token se-
quences. Direct Preference Optimization (DPO) builds on the reinforcement learning (RL) objective
used in Reinforcement Learning with Human Feedback (RLHF):

max
πθ

Ex∼D,y∼πθ(·|x)
[
r(x, y)− βDKL

(
πθ(· | x)

∥∥πref(· | x)
)]
, (1)

where D stands for the human preference dataset, r(x, y) represents the reward function. The refer-
ence model, denoted as πref(·|x), typically selects the language model after supervised fine-tuning.
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πθ refers to the model undergoing RL fine-tuning. β corresponds to the coefficient applied to the
reverse KL divergence penalty.

To better align the model’s output with human preferences, DPO employs the Bradley-Terry model
for conducting pairwise comparisons:

PBT(y1 ≻ y2|x) =
exp(r(x, y1))

exp(r(x, y1)) + exp(r(x, y2))
. (2)

By obtaining the closed-form solution for the reward model r(x, y) and policy πθ from Eq 1 and
substituting it into the Bradley-Terry model, DPO derives the following loss function:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
, (3)

where yw and yl denote the preferred and dispreferred completion.

To maximize the logical reasoning capabilities of LLMs, Step-DPO (Lai et al., 2024b) models the
answers y to long-chain mathematical problems as a sequence of reasoning steps y = s1, s2, . . . , sn,
where si is the i-th reasoning step. At each stage, given a prompt x and the same correct reason-
ing steps s1∼k−1, Step-DPO aims to maximize the probability difference between the correct next
reasoning step swin and the incorrect next reasoning step slose:

LStep−DPO(πθ;πref)

= −E(x,s1∼k−1,swin,slose)∼D

[
log σ

(
β log

πθ(swin|x, s1∼k−1)

πref(swin|x, s1∼k−1)
− β log

πθ(slose|x, s1∼k−1)

πref(slose|x, s1∼k−1)

)]
.

(4)

Due to its unique structure, Step-DPO strictly relies on the dataset. To address this, Step-DPO
utilizes the Chain-of-Thought (CoT) (Wei et al., 2022) method to collect an additional preference
dataset1. The construction of the dataset relies on the human user or GPT-4 to identify the incorrect
reasoning steps in the dataset, which are then used to train the model. However, this method is not
always feasible, as it requires a large amount of human effort and may not always be reliable.

4 METHODOLOGY

In this section, we introduce the FDT algorithm, which fine-tunes the weight updates in the model’s
output layer to enhance mathematical reasoning capabilities. FDT aims to improve the model’s
ability to distinguish between correct and incorrect mathematical responses by focusing on the se-
mantic divergence within the dense embedding space. We provide a detailed description of the FDT
algorithm and its implementation in the context of mathematical reasoning tasks.

We first introduce and define the notation used throughout our theoretical analysis and the descrip-
tion of the DPO loss function. The input to the model is denoted by x. This prompt forms the
basis from which both correct and incorrect responses are generated, represented as yw and yl, re-
spectively. We consider the response as a sequence of tokens y1:T = [y1, y2, ..., yT ], where yk

represents the k-th token in the response y1:T . If the length of the response T ′ is shorter than T , we
assume the yT

′:T is the padding token. Additionally, we assume that y0 = []. The model’s predicted
probability of generating response y given input x is denoted by πθ(y|x) =

∏T−1
t=1 πθ(y

t+1|x, y1:t),
where θ represents the model’s parameters. The reference model’s predicted probability of gener-
ating response y given input x is denoted by πref(y|x) =

∏T−1
t=1 πref(y

t+1|x, y1:t). The logits, or
the log probabilities before normalization, are indicated by z(yk|x, y1 : k − 1), linking directly to
the model’s raw outputs before they are passed through the softmax function πθ(y

t+1|x, y1:t) =
softmax(z(yt+1|x, y1:t)). The weight matrix of the model’s output layer is denoted by W , and
the hidden state of the model at the k-th position given context [x, y1:k−1] is represented by
hL(x, y

1:k−1). The logit of the token y is defined as z(y|x, y1:k−1) = ŷ⊤WhL(x, y
1:k−1), where ŷ

1https://huggingface.co/datasets/xinlai/Math-Step-DPO-10K
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Figure 1: Illustration of the FDT algorithm. The model’s hidden states are decomposed into shared
semantic components and distinctive semantic components. FDT focuses on the distinctive semantic
components to enhance the model’s ability to distinguish between correct and incorrect mathemati-
cal responses.

is the one-hot vector corresponding to the token y. The reward function r(x, y) = β log πθ(y|x)
πref(y|x) is

used to calculate the reward signal for the model’s outputs.

The loss function of DPO is defined as follows:

LDPO(yw, yl) = log
exp(β log πθ(yw|x)

πref(yw|x) )

exp(β log πθ(yw|x)
πref(yw|x)

) + exp(β log πθ(yl|x)
πref(yl|x)

)
(5)

where yw and yl are the correct and incorrect responses, respectively, πθ(y|x) is the model’s pre-
dicted probability of generating response y given input x, and πref(y|x) is the reference model’s
predicted probability of generating response y given input x. The gradient of the DPO loss function
with respect to the logits of the model is given by:

∂LDPO(yw,yl)

∂z(y|x,y1:k−1
w )

= β exp(r(x,yl))
exp(r(x,yw))+exp(r(x,yl))

(
Iy=ykw − softmax(z(y|x, y1:k−1

w ))
)

∂LDPO(yw,yl)

∂z(y|x,y1:k−1
l )

= −β exp(r(x,yl))
exp(r(x,yw))+exp(r(x,yl))

(
Iy=ykl − softmax(z(y|x, y1:k−1

l ))
) (6)

We denote c(x, yw, y) =
∂L(yw,yl)

∂z(y|x,y1:k−1
w )

and c(x, yl, y) =
∂L(yw,yl)

∂z(y|x,y1:k−1
l )

.

The gradient of y-th row in the weight matrix W [y] = y⊤W is

∂LDPO(yw, yl)

∂W [y]
= c(x, yw, y)

∂z(y|x, y1:k−1
w )

∂W [y]
+ c(x, yl, y)

∂z(y|x, y1:k−1
l )

∂W [y]

= c(x, yw, y)
∂W [y]h(x, y1:k−1

w )

∂W [y]
+ c(x, yl, y)

∂W [y]h(x, y1:k−1
l )

∂W [y]

= c(x, yw, y)h(x, y
1:k−1
w )⊤ + c(x, yl, y)h(x, y

1:k−1
l )⊤

= c(x, yw, y)h(x, y
1:k−1
w )⊤ + c(x, yl, y)h(x, y

1:k−1
l )⊤,

(7)
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where h(x, y1:k−1) is the hidden state of the model at the k-th position given context [x, y1:k−1]. If
we use gradient descent to update the weight matrix W , the update of W is a covex combination of
the hidden states h(x, y1:k−1

w ) and h(x, y1:k−1
l ).

However, hidden states within the embedding space exhibit a high concentration of semantic infor-
mation. For any pair of correct and incorrect responses hL(x, y

1:k−1
w ), hL(x, yk−1

l ), these states
can be decomposed into two components: a shared semantic component hs = 1

2

(
hL(x, y

1:k−1
w ) +

hL(x, y
k−1
l )

)
and a distinctive semantic component hd = hL(x, y

1:k−1
w )− hL(x, y

k−1
l ).

The shared semantic component hs encompasses semantic features shared by both responses, such
as surface characteristics, contributing to their similarity. In contrast, the distinctive semantic com-
ponent hd contains the semantic features crucial for distinguishing between the correct and incorrect
responses. Therefore, focusing on the differential component of the hidden states can significantly
enhance the model’s performance in mathematical reasoning tasks, as it directs attention to the se-
mantic distinctions critical for accuracy Zou et al. (2023).

In order to focus on the differences between correct and incorrect responses, we hope to correct the
update of W to amplify the hidden states that contribute more to the differences. The update of W
is corrected as follows:

∆W [y] = αc(x, yw, y)(h(x, y
1:k−1
w )− h(x, y1:k−1

l )︸ ︷︷ ︸)⊤ + αc(x, yl, y)(h(x, y
1:k−1
l )− h(x, y1:k−1

w )︸ ︷︷ ︸)⊤
= α(c(x, yw, y)− c(x, yl, y))(h(x, y

1:k−1
w )− h(x, y1:k−1

l ))⊤,
(8)

where α is the learning rate.

4.1 FDT ALGORITHM

In this section, we introduce the FDT algorithm, which corrects the update of the model head weight
matrix W to amplify the hidden states that contribute more to the differences between correct and
incorrect responses according to Equation 8. The FDT algorithm is shown in the Figure 1. The
algorithm consists of 5 steps.

Extraction of Hidden States The FDT process begins by extracting the hidden states from the last
transformer layer of the language model for both the correct and incorrect responses. These states are
denoted as hL(x, y1:k−1

w ) and hL(x, y
1:k−1
l ), respectively. Concurrently, we also extract the logits

associated with both the correct and incorrect responses, collectively represented as z = WhL,
where hL = [hL(x, y

1:k−1
w )⊤, hL(x, y

1:k−1
l )⊤]⊤.

Computation of Differential Hidden State To emphasize the discrepancies between the cor-
rect and incorrect reasoning processes within the model, we compute the differential hidden state.
This is achieved by subtracting the hidden state corresponding to the incorrect response from that
of the correct response: hcL(x, y

1:k−1
w ) = h(x, y1:k−1

w ) − h(x, y1:k−1
l )sg and hcL(x, y

1:k−1
l ) =

h(x, y1:k−1
l ) − h(x, y1:k−1

w )sg , where the subscript sg denotes that the gradient is not backprop-
agated. This differential hidden state encapsulates the critical differences that the model needs to
learn in order to discern between correct and incorrect mathematical reasoning.

Recomputation of Logits Utilizing the differential hidden state hcL, we recompute the logits zd
that specifically reflect the semantic distinctions critical for accurate response generation: zd =
WhcL, where hcL = [hcL(x, y

1:k−1
w )⊤, hcL(x, y

1:k−1
l )⊤]⊤.

Correction of Logits To integrate the newly computed differential logits with the original logits
while preserving the model’s ability to perform general reasoning, we compute the corrected logits
zc. This is performed by blending the differential logits with the original logits, where the original
logits are detached from the gradient computation to make sure the weight is only updated with the
differential hidden state: zc = zd + (z− zd)sg .

Compute Loss Fuction We first compute the log probability of the correct response and the
incorrect response: log π(y|x, y1:k−1

w ) = zc(y|x, y1:k−1
w ) − log

∑
y′ exp(zc(y

′|x, y1:k−1
w )) and
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Algorithm 1 Focused Differentiation Training (FDT)

Input: Query x, reference sequence yw, label sequence yl, learning rate α, number of iterations
K
for n = 1 to N do

Compute the last layer hidden states of the model hL(x, y1:k−1
w ) and hL(x, y

1:k−1
l ) for k =

1, 2, . . . ,K
Compute the logits zl and zw given context [x, y1:k−1

l ] and [x, y1:k−1
w ], zl = WhL(x, y

1:k−1
l )

and zw = WhL(x, y
1:k−1
w )

Compute the differential last layer hidden state

hcL(x, y
1:k−1
l ) = hL(x, y

1:k−1
l )− hL(x, y

1:k−1
w )

and
hcL(x, y

1:k−1
w ) = hL(x, y

1:k−1
w )− hL(x, y

1:k−1
l )

Compute the differential logits zdl = WhcL(x, y
1:k−1
l ) and zdw = WhcL(x, y

1:k−1
w )

Compute the corrected logits zcw = zdw + (zw − zdw)sg and zcl = zdl + (zl − zdl )sg
Compute the log probabilities of the tokens ykw and ykl given context [x, y1:k−1

w ] and [x, y1:k−1
l ],

log πθ(y
k
w|x, y1:k−1

w ) = log softmax(zcw(y
k
w|x, y1:k−1

w ))

and
log πθ(y

k
l |x, y1:k−1

l ) = log softmax(zcl (y
k
l |x, y1:k−1

l ))

.
Compute the loss

L(yw, yl) = log
exp(β log πθ(yw|x)

πref(yw|x) )

exp(β log πθ(yw|x)
πref(yw|x)

) + exp(β log πθ(yl|x)
πref(yl|x)

)

.
Update the model weight using the gradients.

end for

log π(y|x, y1:k−1
l ) = zc(y|x, y1:k−1

l ) − log
∑
y′ exp(zc(y

′|x, y1:k−1
l )). Then, we compute the loss

function. As the FDT is a plug-in algorithm, the loss function can be any loss function with pair-wise
samples as input. The the parameters of the model are updated by the gradient of the loss function.

This operation ensures that the corrections made by FDT are grounded in the model’s initial predic-
tions, thereby facilitating a refined adjustment that enhances the model’s accuracy in distinguishing
correct from incorrect responses without losing the contextual grounding provided by the original
logits.

The FDT algorithm is shown in Algorithm 1. We can prove that the FDT algorithm can be used
to correct the update of the model head weight matrix W by the differences between correct and
incorrect responses.

Theorem 1. The FDT algorithm can be used to correct the update of the model head weight matrix
W as illustrated in Equation 8.

Given that the shared semantic component of the hidden states does not contribute to the correctness
of the response, we anticipate that its influence on the logits will be minimal following the update
of the model’s output layer weight matrix W .

The Theorem 2 shows that FDT can effectively control the influence of the shared semantic compo-
nent of the hidden states of the model on the logits after the update of the model head weight matrix
W . Prior to detailing this theorem, we shall first define the concepts of the η-subexponential dis-
tribution and the η-subexponential vector, which are instrumental in understanding the underlying
mechanisms of our approach.
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A random variable X is defined as η-subexponential (η-subE) for η ∈ (0, 2) if its η-norm, ∥X∥ψη
,

determined by ∥X∥ψη
= inf{t > 0 : E exp((|X|/t)η) ≤ 2}, is finite. We define a vector Y as an

η-subE vector with mean µ, covariance Σ, and a norm upper bound K, if the transformed vector
Σ−1/2(Y − µ) has components that are η-subE with unit variance and are bounded by K. Fur-
thermore, we denote DY ∼ Eη(µ,Σ,K) to indicate that DY comprises independent and identically
distributed (i.i.d.) samples drawn from an η-subE distribution for vectors characterized by mean µ,
covariance Σ, and norm bound K.

The hidden states from correct responses are modeled as D+ ∼ Eη(µ+,Σ+,K), and the non-
preferred hidden states from incorrect responses as D− ∼ Eη(µ−,Σ−,K). This modeling is rea-
sonable as the α-subexponential distribution is a general distribution includes any sub-Gaussian dis-
tribution as well as any sub-exponential distribution such as normal or χ2 distributions and allows
for heavier tails. This modeling is also adopted in the previous work Im & Li (2024).
Theorem 2. Assume that ∥µ+∥2 − ∥µ−∥2 ≤ δ, and the hidden states are bounded ∥µ+∥2 ≤ M

and ∥µ−∥2 ≤ M . ∥Σ+ +Σ−∥ < cv
√
d. The update of the model head weight matrix ∆W satisfies

∆W [y](h(y|x, y1:k−1
w ) + h(y|x, y1:k−1

l )) ≤ 4αδ, (9)

with probability at least 1− 2 exp

(
− δη

2(η+1)Mηcv
√
d

)
− 2 exp

(
− Mη

2cv
√
d

)
.

The proof of Theorem 2 is deferred to the appendix A.2. We also show that the FDT algorithm can
emphasize the distinctive features of correct responses over incorrect ones.

Corollary 1. Assume that ∥Σ+ +Σ−∥ < cv
√
d. The update of the model head weight matrix ∆W

satisfies

∆W [y](h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )) ≥ 1

2
α∥µ+ − µ−∥, (10)

with probability at least 1− 2 exp

(
− ∥µ+−µ−∥η

2η+1cv
√
d

)
.

The proof of Corollary 1 is deferred to the appendix A.3.
Remark 1. Theorem 2 and Corrolary 1 show that the shared semantic component of the hidden
states of the model has a limited influence on the logits after the update of the model head weight
matrix W . This limited influence is crucial in ensuring that the adjustments made to the weight
matrix W effectively mitigate the potential overgeneralization brought about by the shared semantic
component, while focusing on the distinctive features of responses.

We also provide an empirical evidence to support these theoretical results. Figure 2 shows reward
margins between the DPO and FDT algorithms in the Figure 2. The reward margin is defined as
β log πθ(yw|x)

πref(yw|x) −β log πθ(yl|x)
πref(yl|x) . Figure 2 shows that FDT leads to a larger margin between the logits

of the correct response and the incorrect response. The results demonstrate that the FDT algorithm
effectively enhances the model’s ability to differentiate between correct and incorrect responses,
thereby improving the model’s performance in mathematical reasoning tasks.

5 EXPERIMENTS

5.1 DATASETS

In our supervised fine-tuning phase, we utilize the NuminaMath-Co portion of the metamath-qwen2-
math dataset. During the DPO/Step-DPO stages, we incorporate datasets from Step-DPO which con-
sist of 10,000 pairwise preference data points. For assessing performance, we employ the widely
recognized datasets: MATH Hendrycks et al. (2021), GSM8K Cobbe et al. (2021), and MMLU-
redux Gema et al. (2024), using accuracy as our primary metric for evaluation. The MATH dataset
includes 5000 mathematical problems across five levels of difficulty and seven categories, such as
algebra, counting and probability, geometry, intermediate algebra, number theory, prealgebra, and
precalculus. The GSM8K dataset comprises 1319 mathematical problems, each accompanied by
step-by-step solutions and verified answers, typically presenting less complexity than those found in

8
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the MATH dataset. We also use the MMLU-redux dataset, which contains 3000 questions across a
diverse range of subjects to assesses both the breadth and depth of language understanding capabil-
ities of the model.

5.2 BASELINES

We compare our proposed method with the following baselines: DPO Rafailov et al. (2023) and
Step-DPO Lai et al. (2024a). We evaluate the performance of our method against these baselines on
several models, including Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct.

5.3 IMPLEMENTATION DETAILS

For the Llama-3.2-3B-Instruct and Qwen2.5-3B-Instruct models, we initially conduct supervised
fine-tuning using the NuminaMath-Co dataset. This stage employs the AdamW optimizer paired
with a linear decay learning rate scheduler. We establish a warmup ratio of 0.03, a global batch size
of 256, and set the learning rate at 5× 10−6.

Subsequent to fine-tuning, we implement the Direct Preference Optimization (DPO) and Step-DPO
processes. Both the DPO and Step-DPO baselines are configured with a learning rate of 5 × 10−6

and a training duration of 8 epochs. For our proposed method under these stages, the learning rate
is slightly increased to 7 × 10−6, while maintaining the same duration and batch size. All models
during these stages utilize the AdamW optimizer, with a cosine learning rate schedule and warmup
ratio of 0.1. The hyperparameter β is set to 0.4 for DPO and Step-DPO processes without FDT, and
0.5 for DPO and Step-DPO processes with FDT.

5.4 RESULTS

The performance results of our FDT method compared to the established baselines on the GSM8K,
MATH, and MMLU datasets are summarized in Table 1. Across these diverse datasets, FDT not only
meets but often exceeds the performance metrics of the baseline models. This consistent outperfor-
mance across all models and datasets underscores the efficacy of FDT in enhancing mathematical
reasoning capabilities of language models. Specifically, the FDT method has marked a significant
improvement in the performance of the Qwen2.5-3B-Instruct model. On the GSM8K dataset, it
achieved an accuracy of 79.7%, surpassing the baseline by 2.4 percentage points. Similarly, on
the MATH dataset, FDT recorded a substantial increase in accuracy, reaching 61.5%, which repre-
sents an enhancement of 4.3 percentage points over the baseline. On the MMLU-redux dataset, the
method managed to achieve a notable accuracy of 63.6% with an improvement of 1.0 percentage
point. In applying our method to Llama-3.2-3B-Instruct, we also observed performance enhance-
ments, which corroborates the robustness and generalizability of our approach. The improvement in
the MMLU-redux dataset shows that model can benefit from the FDT method in a broader range of
tasks beyond mathematical reasoning.

Table 1: The performance of the models on the GSM8K, MATH, and MMLU-redux datasets.

model GSM8K MATH MMLU-redux
Llama-3.2-3B-Instruct+SFT 43.1 33.3 0.47
Llama-3.2-3B-Instruct+DPO 46.6 32.9 1.12
Llama-3.2-3B-Instruct+DPO+FDT 47.5 33.2 7.48
Llama-3.2-3B-Instruct+Step-DPO 46.9 33.2 1.04
Llama-3.2-3B-Instruct+Step-DPO+FDT 46.9 34.0 0.76
Qwen2.5-3B-Instruct+SFT 77.3 56.9 60.5
Qwen2.5-3B-Instruct+DPO 77.5 47.2 62.6
Qwen2.5-3B-Instruct+DPO+FDT 77.6 61.5 63.6
Qwen2.5-3B-Instruct+Step-DPO 77.3 55.4 62.1
Qwen2.5-3B-Instruct+Step-DPO+FDT 79.7 58.6 62.2
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6 CONCLUSION

We introduced FDT, a training methodology that improves LLMs’ mathematical reasoning by lever-
aging their hidden states to distinguish correct from incorrect solutions. Unlike approaches requir-
ing external validation, FDT enhances performance autonomously. Testing on GSM8K, MATH, and
MMLU-redux datasets showed improved accuracy and reasoning depth, with particular strength in
providing feedback on partial solutions. FDT also integrates effectively with existing RLHF frame-
works.
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A PROOF

A.1 PROOF OF THEOREM 1

Proof. We denote the hidden states of the model as h(x, y1:k−1) and log π(y|x) = z(x, y) −
log

∑
y′ exp(z(x, y

′)). The loss function of FDT is

L(yw, yl) = log
exp(β log πθ(yw|x)

πref(yw|x) )

exp(β log πθ(yw|x)
πref(yw|x)

) + exp(β log πθ(yl|x)
πref(yl|x)

)
(11)

The gradient of the loss function of FDT can be derived by the chain rule as

∂

∂z(y|x, y1:k−1
w )

L(yw, yl) =
∂L(yw, yl)
∂r(x, yw)

∂r(x, yw)

∂z(y|x, y1:k−1
w )

=
∂L(yw, yl)
∂r(x, yw)

∂r(x, yw)

∂zcw(y|x, y1:k−1
w )

∂zcw(y|x, y1:k−1
w )

∂z(y|x, y1:k−1
w )

= c(x, yw, y)
∂zcw(y|x, y1:k−1

w )

∂z(y|x, y1:k−1
w )

= c(x, yw, y)

(12)

Similarly, we can derive the gradient of the loss function of FDT with respect to z(y|x, y1:k−1
l ) as

∂

∂z(y|x, y1:k−1
l )

L(yw, yl) = c(x, yl, y) (13)

12



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The gradient of the loss function of FDT with respect to the weight matrix W is

∆W [y] = α
∂

∂W [y]
L(yw, yl) = α

∂L(yw, yl)
∂zcw(y|x, y1:k−1

w )
(h(x, y1:k−1

w )− h(x, y1:k−1
l ))⊤

+ α
∂L(yw, yl)

∂zcl (y|x, y
1:k−1
l )

(h(x, y1:k−1
l )− h(x, y1:k−1

w ))⊤

= αc(x, yw, y)(h(x, y
1:k−1
w )− h(x, y1:k−1

l ))⊤

+ αc(x, yl, y)(h(x, y
1:k−1
l )− h(x, y1:k−1

w ))⊤

= α(c(x, yw, y)− c(x, yl, y))(h(x, y
1:k−1
w )− h(x, y1:k−1

l ))⊤,

(14)

which is consistent with Equation 8.

A.2 PROOF OF THEOREM 2

Proof. We assume that the hidden states of correct response and incorrect response is similar,
∥µ+∥2 − ∥µ−∥2 ≤ δ2, and the hidden states are bounded ∥µ+∥2 ≤ M and ∥µ−∥2 ≤ M .
∥Σ+ +Σ−∥ < cv

√
d.

∆W [y] = α
1

n

n∑
i=1

[(c(xi, ywi, y)− c(xi, yli, y))(h(x, y
1:k−1
wi )− h(x, y1:k−1

li ))]⊤, (15)

where n is the number of samples.

(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )

)⊤(
h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )

)
=
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−)

+
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )

)⊤
(µ+ + µ−)

=
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−)

+
(
(µ+ − µ−)

⊤(µ+ + µ−) +
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )− µ+ − µ−)

)⊤
(µ+ + µ−)

=
(
µ+ − µ−

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−)

+
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )− µ+ + µ−

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−)

+
(
(µ+ − µ−)

⊤(µ+ + µ−) +
(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )− µ+ − µ−)

)⊤
(µ+ + µ−)

(16)

The difference hidden state between the hidden states of the model from correct and incorrect
response is an η-subexponential vector, which is drawn from the η-subexponential distribution
Eη(µ+ −µ−,Σ+ +Σ−,K) and the common hidden state is also an η-subexponential vector, which
is drawn from the η-subexponential distribution Eη(µ+ + µ−,Σ+ +Σ−,K).

Therefore, we have

P (∥h(y|x, y1:k−1
w ) + h(y|x, y1:k−1

l )− µ+ − µ−∥ ≥ t)

=P (|(h(y|x, y1:k−1
w ) + h(y|x, y1:k−1

l )− µ+ − µ−)
⊤a| ≥ t)

≤2 exp

(
− tη

2a⊤(Σ+ +Σ−)a

)
≤2 exp

(
− tη

2cv
√
d

)
,

for any unit vector a. If we select a = µ++µ−
∥µ++µ−∥ ,

P ((µ+ + µ−)
⊤(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−) ≥ 2Mt) ≤ 2 exp

(
− tη

2cv
√
d

)
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With probability p1 = 1− 2 exp

(
− δη

2(η+1)Mηcv
√
d

)
, we have

(µ+ + µ−)
⊤(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−) ≤ δ.

Similarly, we have(
µ+ − µ−

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−) ≤ δ

with probability at least p1.

(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )− µ+ + µ−

)⊤
(h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )− µ+ − µ−)

≤∥h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )− µ+ + µ−∥∥h(y|x, y1:k−1
w ) + h(y|x, y1:k−1

l )− µ+ − µ−∥

≤∥h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )− µ+ + µ−∥
δ

M
≤ M

δ

M
= δ

with probability p2 = p1

(
1− 2 exp

(
− Mη

2cv
√
d

))
≥ 1− 2 exp

(
− δη

2(η+1)Mηcv
√
d

)
− 2 exp

(
−

Mη

2cv
√
d

)
.

With probability at least 1− 2 exp

(
− δη

2(η+1)Mηcv
√
d

)
− 2 exp

(
− Mη

2cv
√
d

)
,

(
h(y|x, y1:k−1

w )− h(y|x, y1:k−1
l )

)⊤(
h(y|x, y1:k−1

w ) + h(y|x, y1:k−1
l )

)
≤ 4δ.

Therefore, we have ∆W [y](h(y|x, y1:k−1
w ) + h(y|x, y1:k−1

l )) ≤ 5αδ(c(x, yw, y)− c(x, yl, y)) with
probability at least

1− 2 exp

(
− δη

2(η+1)Mηcv
√
d

)
− 2 exp

(
− Mη

2cv
√
d

)
.

A.3 PROOF OF CORROLARY 1

Proof. With probability at least 1− 2 exp

(
− ∥µ+−µ−∥η

2η+1cv
√
d

)
,

∥∥h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )− µ+ + µ−
∥∥ ≤ 1

2
∥µ+ − µ−∥

From triangle inequality, we have∥∥h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )
∥∥ ≥ 1

2
∥µ+ − µ−∥

holds with probability at least 1− 2 exp

(
− ∥µ+−µ−∥η

2cv
√
d

)
. Therefore, we have

W [y](h(y|x, y1:k−1
w )− h(y|x, y1:k−1

l )) ≥ 1

2
α∥µ+ − µ−∥,

with probability at least 1− 2 exp

(
− ∥µ+−µ−∥η

2η+1cv
√
d

)
.
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Figure 2: The reward margin between the DPO and FDT algorithms. We conduct this experiment
based on Qwen2.5-3B-Instruct model and the Math-Step-DPO-10K dataset under the same setting.

B REWARD MARGIN BETWEEN THE DPO AND FDT ALGORITHMS

C RELATIVE DIFFERENCE OF HIDDEN STATE

To investigate the relationship between chosen and rejected samples in the hidden state space, we
analyzed the relative differences in their hidden state norms. Specifically, for each paired samples,
we calculated the relative difference as the absolute difference between their hidden state norms
divided by their average norms. Figure 3 illustrates the distribution of these relative differences
across all sample pairs for two different models: Qwen2.5-3B-Instruct and Mistral-7B-Instruct-v0.3.
The histograms reveal that the relative differences are predominantly concentrated around zero for
both models. Qwen2.5-3B-Instruct exhibits a mean of 0.0321 and a median of 0.0220, while Mistral-
7B-Instruct-v0.3 shows even smaller differences with a mean of 0.0100 and a median of 0.0081.
These consistently small differences suggest that the samples maintain similar representation norms
in the models’ hidden state spaces, regardless of their chosen or rejected labels.

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

(a) Distribution of relative differences in hidden state norms of Qwen2.5-3B-Instruct between chosen and re-
jected samples.

(b) Distribution of relative differences in hidden state norms of Mistral-7B-Instruct-v0.3 between chosen and
rejected samples.

Figure 3: Distribution of relative differences in hidden state norms between chosen and rejected
samples. The histogram shows that most differences are concentrated around zero, with a mean
(red dashed line) and a median(green dashed line), indicating that paired samples maintain similar
hidden state norms despite their different preference labels.
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(a) The norm of chosen responses’ hidden states.

(b) The norm of rejected responses’ hidden states.

Figure 4: Comparison for hidden states of Qwen2.5-3B-Instruct.
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(a) The norm of chosen responses’ hidden states.

(b) The norm of rejected responses’ hidden states.

Figure 5: Comparison for hidden states of Mistral-7B-Instruct-v0.3.
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