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Figure 1: SEEM supports generic segmentation tasks—including semantic, instance, and panoptic
segmentation—in an open-set fashion when no prompt is provided. SEEM also enables the use of
visual, textual, and referring region prompts in flexbile combinations, making it a promptable and
interactive segmentation interface.

Abstract

In this work, we present SEEM, a promptable and interactive model for segmenting
everything everywhere all at once in an image, as shown in Fig.[I] In SEEM,
we propose a novel decoding mechanism that enables diverse prompting for all
types of segmentation tasks, aiming at a universal segmentation interface that
behaves like large language models (LLMs). More specifically, SEEM is designed
with four desiderata: 1) . We introduce a new visual prompt to unify
different spatial queries including points, boxes, scribbles and masks, which can
further generalize to a different referring image; i¢) . We learn
a joint visual-semantic space between text and visual prompts, which facilitates
the dynamic composition of two prompt types required for various segmentation
tasks; ¢77) . We further incorporate learnable memory prompts into the
decoder to retain segmentation history through mask-guided cross-attention from
decoder to image features; and iv) . We use a text encoder
to encode text queries and mask labels into the same semantic space for open-
vocabulary segmentation. We conduct a comprehensive empirical study to validate
the effectiveness of SEEM across diverse segmentation tasks. Notably, our single
SEEM model achieves competitive performance across interactive segmentation,
generic segmentation, referring segmentation, and video object segmentation on
9 datasets with minimum 1/100 supervision. Furthermore, SEEM showcases a
remarkable capacity for generalization to novel prompts or their combinations,
rendering it a readily universal image segmentation interface.

1 Introduction

Image segmentation is arguably the most important yet challenging problem in computer vision. In
the past, we have witnessed significant progress in a wide range of segmentation tasks including
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instance, semantic and panoptic segmentation [1} 2, |3, 4, |56} [7]]. Most recently, we are observing
a clear trend toward more flexible segmentation models in different aspects: 1) From closed-set to
open-vocabulary segmentation. Many recent works proposed to either leverage contrastive learning
methods or pretrained multi-modal foundation models (e.g., CLIP [8]) to make the segmentation
models more transferable to unseen concepts [9}[10}[11}12]]; 2) From generic to referring segmentation.
In addition to generic segmentation that segments an image thoroughly given a predetermined set
of concepts, language-based referring segmentation provides a user-friendly way of segmenting a
specific region referred by an arbitrary text phrase [[13} 14} [15 16} [17]; and 3) From one-shot to
interactive segmentation. In practice, segmentation models do not necessarily produce satisfactory
masks in one round. As such, people are also studying how to progressively refine the segmentation
results through intimate interactions between humans and models [18} (19} 20, 21]].

Despite the aforementioned efforts taken to design more powerful and feasible segmentation models,
we are still lacking a universal segmentation interface that is capable of accommodating various
types of human prompts and tackling different segmentation tasks as studied in individual works.
In contrast, Large Language Models (LLMs) have already emerged as such a universal interaction
interface for language tasks, from early models like GPT-3 [22] and TS5 [23]], to conversational
agent [24] augmented by advanced prompting [25| 26l 27]] and chain-of-thought [28] [29] 30]. In
this work, we strive for a universal interface for segmenting everything everywhere all at once in an
image. On this interface, we are targeted at unifying all segmentation tasks with a single model in a
promptable manner. To achieve this goal, we propose a new prompting scheme in mask decoder that
has four important properties: versatility, compositionality, interactivity, and semantic-awareness.
Specifically, we propose to encode points, masks, text, boxes, and even a referred region from another
image into prompts in the same joint visual-semantic space. As such, our model can deal with any
combination of the input prompts, leading to strong compositionality. To enable interactivity, we
further introduce memory prompts for condensing the previous segmentation information followed by
communication with other prompts. As for semantic awareness, our model can provide an open-set
semantic label to any output segmentation.

With the proposed prompting scheme, we build a segment-everything-everywhere model called
SEEM comprised of a simple Transformer encoder-decoder architecture [31} 6] with an extra text
encoder [[11,132]]. In SEEM, the decoding process emulates a generative LLM but with a multimodality-
in-multimodality-out interface. An image encoder and text encoder are used as the prompt encoder to
encode all types of queries, which are fed into the decoder. Concretely, we encode all spatial queries,
namely, points, boxes, scribbles and masks into visual prompts by pooling their corresponding visual
features from the image encoder, and use the text encoder to convert text queries into text prompts.
By training on diverse segmentation tasks, our model learns to deal with various prompts, align the
visual and text prompts, and promote their synergy via cross-attention between them. As a result, our
single model after pretraining attains competitive performance across all segmentation tasks. Since
the prompts of all 5 different types are mapped to the joint visual-semantic space, we can feasibly
combine prompts to resolve the ambiguity to obtain better segmentation results and enable zero-shot
adaptation to unseen user prompts. Furthermore, our model can immediately generalize to the case
of using an exemplar image segment as the prompt and video object segmentation in a zero-shot
fashion. In addition to its strong generalization capability, SEEM is also more efficient for interactive
segmentation compared with the counterparts like SimpleClick [32]. Since we take the prompts as
input to the decoder, when doing multi-round interactions with humans, our model only needs to
run the feature extractor once at the beginning and lightweight decoding each per round. To the
end, we build a segmentation interface with a single pre-trained model that can segment every object
with semantics (everything), cover every pixel in the image (everywhere), and support all possible
compositions of prompts (all at once). In summary, our contributions are threefold:

* We design a new prompting scheme that can encode various user intents into prompts in a joint
visual-semantic space, enabling strong flexibility for various segmentation tasks and generalization
capability to unseen prompts or their combinations.

* We build SEEM, a universal and interactive segmentation interface that integrates the newly
designed prompting mechanism into a lightweight decoder for all segmentation tasks, leading to a
model possessing properties of versatility, compositionality, interactivity, and semantic awareness.

* We conduct extensive experiments and visualizations to show that our model has strong perfor-
mance on many segmentation tasks including open-vocabulary generic segmentation, interactive
segmentation, referring segmentation, and segmentation tasks with combined prompts.
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Figure 2: Overview of SEEM- Decoder. (a) SEEM encodes image, text, and human inputs into joint
visual-semantic space as queries, features, and prompts, and then decodes queries to class and mask
embeddings. (b) With the benefit of SEEM decoder, the machine loop enables memorizing history
mask information, and the human loop provides new corrections to the next round.

2 Related Work

Interactive segmentation. Interactive segmentation is the task of segmenting objects by interactively
taking user inputs. It has been a longstanding problem and has achieved considerable progress [33} 134,
3511201 121,136]]. Generally, the interaction types can take various forms, such as clicks, boxes, polygons,
and scribbles, among which click-based interaction models are the most prevalent. Concurrent to
our work, SAM [36] proposed a promptable segmentation model trained on 11 million images and
1.1 billion masks. It takes user interactions as prompts for general segmentation. Though SAM
demonstrates strong zero-shot performance, it produces segmentations without semantic meaning. In
addition, its prompt types are limited to points, boxes, and text, whereas our model can also take in a
referred region from another image as a prompt.

Generic segmentation. Segmentation of visual concepts has been a persistent challenge in the field
of computer vision, as evidenced by its extensive literature [37, /38139, 140]. Generic segmentation
techniques encompass several subtasks, including instance segmentation, semantic segmentation, and
panoptic segmentation [4} [2, 3], each focusing on a different semantic level. For example, semantic
segmentation aims to identify and label each pixel within an image based on its corresponding
semantic class [41} 6, 42]. On the other hand, instance segmentation involves grouping pixels that
belong to the same semantic class into separate object instances [4} 43| [7]]. Recently, the Detection
Transformer (DETR)[31]], a model based on the Transformer [44] architecture, has made significant
advances in segmentation [45] |6l 7l 146l 47] tasks. However, these approaches cannot recognize
objects absent in the training set, which constrains the model to a limited vocabulary size.

Unified vision models. Unified vision models 11} 48 |49, |36l 50] have recently drawn a lot of
attention because of their advantage in generalizing to various tasks and flexibility. These models can
deal with multiple vision tasks or data distributions. Among them, some [11} 48} 49] train multiple
tasks together with only one model and thus can deal with all training tasks without finetuning on
each target task. On the other hand, SAM [36] and SegGPT [50] propose training strategies that
enable their models to handle new tasks and data distributions in a zero-shot manner. The second
approach is more favorable since there is no need to resolve conflicts among tasks during training.

3 Method

3.1 Model Design

SEEM employs a generic encoder-decoder architecture but also employs a sophisticated interaction
scheme between queries and prompts, as shown in Fig. [2|(a). Given an input image I € RH>*Wx3
an image encoder is first used to extract image features Z. Then, SEEM-Decoder predicts the masks
M and semantic concepts C based on the query outputs O}* (mask embeddings) and Oj, (class
embeddings), which interact with text, visual, and memory prompts (P;, P, P,,):

)

(0O}, 0f) = Decoder(Qy,; (P, P, P,,)|Z) (1)
M = MaskPredictor(O7") )
C = ConceptClassifier(Oj) 3)



‘ Generic Seg | | Referring Seg | ‘ Interactive Seg ‘ I:l No
Learnable Queries Object Queries Text Queries Visual Queries Interaction
Duplicatior ! l:l True_
l:”:ll:l—»l:“:‘l:‘ I:‘ I:l I:‘ I:‘ Interaction
|:| Tentative
. Interaction
Text Prompt Visual Prompt Memory Prompt Tentative
I:”:‘l:‘ l:”:‘l:‘ l:”:‘l:‘ Attention
(a) Queries and Prompt Interaction (b) Self-Attention Mask

Figure 3: Queries and prompt interaction during training and evaluation. (a) Learnable queries are
duplicated as object, grounding, and visual queries with the same set of weights for each task. (b)
Attention mask between any two kinds of tokens (denoted as gpm in Algorithm.[T)). Tentative means
the interaction is not trained but able to do inference without any modification.

where Q, is the learnable queries, and P,, P,,, P, represent the text prompts, visual prompts,
and memory prompts, respectively. During training, Qy, is duplicated for generic, referring, and
interactive segmentation, as shown in Fig.[3] The corresponding prompts interact with their queries
through self-attention. The learnable queries can freely interact with all prompts at inference time,
thereby enabling zero-shot composition. Our design is inspired by the successful practice in X-
Decoder [11]]. However, we highlight the differences in Eq. (I)), marked in red, which allow for a
universal model for image segmentation with the following properties:

. In SEEM, we introduce visual prompts P, to handle all non-textual inputs, such as points,
boxes, scribbles, and a referred region from another image. These non-textual queries are beneficial
to disambiguate the user’s intent when textual prompts alone fail to identify the correct segment. For
interactive segmentation, previous works either convert spatial queries to masks and feed them into
the image backbone [20] or use different prompt encoders for each input type (points, boxes) [36].
The first approach can be too heavy in applications because each interaction requires the image to
go through the feature extractor. The second approach is hard to generalize to unseen prompts. To
address these limitations, we propose a visual sampler (Fig.[2](a)) to convert all kinds of non-textual
queries to visual prompts that lie in the same visual embedding space:

P, = VisualSampler(s, Z) )

where Z is the feature maps extracted from either the target image (i.e., Z = Z) or a referred image,
and s € {points, box, scribbles, polygons} are the sampling locations specified by the user. We first
pool the corresponding region from the image feature through point sampling [6]. For all visual
prompts, we interpolate at most 512 point feature vectors uniformly from the region specified by the
prompt. A notable merit of our proposed method is that the visual prompts are naturally well-aligned
with the textual prompts, as our model continuously learns a common visual-semantic space through
panoptic and referring segmentation.

. In practice, a user may cast their intent using different or combined prompt types.
Hence, a compositional approach to prompting is essential for real-world applications. However,
we confront two issues during model training. First, the training data usually only covers a single
type of interaction (e.g., none, textual, visual). Second, although we use visual prompts to unify all
non-textual prompts and align them with textual prompts, their embedding spaces remain inherently
different. To mitigate this problem, we propose to match prompts of different types with different
outputs. Considering that visual prompts P, come from image features while textual prompts P,
come from the text encoder, we select matched output indices for visual and textual prompts by
matching them with the mask embeddings O} or class embeddings Of,, respectively:

ID, + Match(O}" - P, 4+ IoU,,4sk) 5)

ID; < Match(Oj, - Py 4+ IoU,,05k) 6)
where IoU,,, s is the IoU between ground-truth and predicted masks. The proposed separate
matching method outperforms approaches that only match with either O}* or Of for all prompts.

After training, our model becomes familiar with all prompt types and supports a variety of composi-
tions, such as no prompts, one prompt type, or both visual and textual prompts using the same model
and weights. In particular, the visual and textual prompts can be simply concatenated and fed to
SEEM-Decoder; even though it was never trained in this way.

. Interactive segmentation usually cannot be completed in one shot and requires multiple
interaction rounds for refinement, similar to conversational agents like ChatGPT. In SEEM, we
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Algorithm 1: Pseudo code for SEEM.

# Inputs: Image (img) [B,3,H,W]; Pos_Mask (pm), Neg_Mask (nm) [B,1,H,W]; Text (txt) [abc...];

# Variables: Learnable Queries(Qp); Attention Masks between @ and P (gpm)
# Functions: Img_Encoder (), Text_Encoder (),Visual_Sampler (), feature_attn(),prompt_attn(),output();
def init ( ):
Qo,Qt, Qv = Qp.copy();# Initialize object, text and visual queries.
Fy,,P; = Img_Encoder (img), Text_Encoder (txt);# F, and P, denote image feature, text
prompt .
P, = Visual_Sampler (F,, pm, nm);# Sample visual prompt from image feature, pos/neg
mask.

def SEEM Decoder (Fy, Qo, Qt, Qu, Pu, Pt, Pm) :

Qo,Qt, Qv = feature_attn(Fy,Qo,Qt,Qv); # Cross attend queries with image features.
Qo,Qt,Qy = prompt_attn(gpem, Qo, Qt, Qu, Py, Pt, Py);# Self attend queries and prompts.
O,y Oc, Py, = output (Fy, Qo, Qt,Qy); # Compute mask and class outputs.

def forward (img, pm, nm, txt) :

Fu,Qo,Qt,Qu, Py, Py = init(); P, = None;# Initialize variables.
for: in range (max_iter):

| Om,Oc, Py, = SEEM Decoder (Fy, Qo, Qt,Qu, Py, Pr, Pm)

propose a new type of prompt called memory prompts P, and use them to convey the knowledge of
the masks from the previous iteration to the current one. Unlike previous works that use a network to
encode the previous mask [20} 136], we introduce no extra module but simply a few memory prompts.
These memory prompts encode the history information by using a mask-guided cross-attention
layer [6]]:

P! = MaskedCrossAtt(P! ', M, |Z) (7
where M, is the previous mask, and Z is the image feature map. In this way, cross-attention only
takes effect inside the regions specified by the previous mask. The updated memory prompts P!
then interact with the other prompts via self-attention to convey the historical information for the
current round.

. Different from previous class-agnostic interactive segmentation works such as
Simple Click [20] and the concurrent work SAM [36]], our model produces semantic labels to masks
for all kinds of prompt combinations in a zero-shot manner, since our visual prompt features are
aligned with textual features in a joint visual-semantic space. As shown in Fig.[3] semantic labels are
directly computed using Of, (output of visual queries) and the text embedding. Although we do not
train with any semantic labels for interactive segmentation, the calculated logits are well-aligned,
benefiting from the joint visual-semantic space.

3.2 Model Pipeline and Loss Functions

We summarize the training and evaluation pipeline of the proposed method with Pytorch-style pseudo-
code in Algorithm[I] SEEM is trained with a linear combination of losses for panoptic segmentation,
referring segmentation, and interactive segmentation:

L :a£07CE7pano + ﬁmeCEfpano + 'VicmeICEfpano + achCEfref + bcmeCEfref
+CLm DICE_ret + @Lc_CE_iseg + Lm_BCE_iseg + ¢Lm_DICE iseg

Where a = 2,8 =v=5,a =0.2,b = ¢ = 2, CE, BCE, and DICE denotes cross-entropy, binary
cross entropy and dice loss, respectively.

®)

4 [Experiments

Datasets and Settings. SEEM is trained on three tasks: panoptic segmentation, referring seg-
mentation, and interactive segmentation. Panoptic and interactive segmentation are trained on
COCO02017 [51]] with panoptic segmentation annotations. Following [11]], we exclude the validation
set of Ref-COCOg [52], resulting in 107K segmentation images in total. For referring segmentation,
we use a combination of Ref-COCO, Ref-COCOg, and Ref-COCO+ for COCO image annota-
tions. We evaluate generic segmentation (instance/panoptic/semantic), referring segmentation, and
interactive segmentation.

Implementation Details and Evaluation Metrics. Our model framework follows X-Decoder [[11]]
except the decoder. That is, we have a vision backbone, a language backbone, an encoder, and



Table 1: One model for segmentation on a wide range of segmentation tasks. SEEM is the first model
to simultaneously support generic segmentation, referring segmentation, and interactive segmentation,
as well as prompt compositionality. (#Concurrent work. - indicates the model does not have capability
for the task, * indicates do not have reported number.)

Generic S i Referring i Interactive Segmentation
Method Segmentation Data Type CoCo RefCOCOg PascalVOC

PQ mAP mloU | cloU mloU AP50 | 5-NoC85 10-NoC85 20-NoC85 5-NoC90 10-NoC90 20-NoC90
Mask2Former (T) [6) TOCO (0.12M) 532 433 632 - - - - - - - - -
Mask2Former (B) [6 COCO (0.12M) 56.4 463 67.1 - - - -
Mask2Former (L) 6 COCO (0.12M) 578 486 674 - - - -
Pano/SegFormer (B) [43] COCO (0.12M) Segmentation | 55.4 % * - - - - - - -
LAVT (B) [33. Ref-COCO (0.03M) - - - 61.2 * * - - - -
PolyFormer (B) [17 Ref-COCO+VG+... (0.16M) - - - 69.3 * * - - - -
PolyFormer (L) [17 Ref-COCO+VG+... (0.16M) - - - 71.1 * * - - - - - -
RITM (<T) (18 COCO+LVIS (0.12M) - B - B B z 719 ® = 257
PseudoClick (<T) [54. COCO (0.12M) - * * 1.94 * * 225
FocalClick (T) |21 COCO (0.12M) * * 2.97 * * 3.52
FocalClick (B) [21 COCO (0.12M) Interactive - * * 2.46 * * 2.88
SimpleClick (B) [20: COCO+LVIS (0.12M) - 1.75 1.93 2.06 1.94 2.19 238
SimpleClick (L) [20. COCO+LVIS (0.12M) - 1.52 1.64 1.72 1.67 1.84 1.96
UVIM (L) [53 COCO (0.12M) 458 * * -
Pix2Seq v2 (B) [56 COCO (0.12M) - 382 - - -
X-Decoder (T) [L1 COCO (0.12M) 52,6 413 62.4 59.8 * *
X-Decoder (B) [11 COCO (0.12M) 562 458 660 | 645 % *
X-Decoder (L) (L1 COCO (0.12M) 569 46.7 67.5 64.6 * *
UNINEXT (T) [48 Image+Video (3M) - 449 - 70.0 * *
UNINEXT (L) [48 Image+Video (3M) - 49.6 - 734 * *
Painter (L) [37 COCO+ADE+NYUV2 (0.16M)  Generalist 43.4 * * - -
#SegGPT (L) [50° COCO+ADE+NYUV2 (0.16M) 34.4 * * - - - - - - -
#SAM (B) (36 SAM (11M) - - - - - - 247 2.65 3.28 223 313 4.12
#SAM (L) |36 SAM (11M) - - - - - - 1.85 2.15 2.60 2,01 2.46 3.12
SEEM (T) COCO+LVIS (0.12M) 50.8 397 62.2 60.9  65.7 74.8 127772 2.30 BB 1.97 283 4.41
SEEM (B) COCO+LVIS (0.12M) 56.1 464 66.3 65.0 69.6 78.2 1.56 2.04 2.93 1.77 247 3.79
SEEM (L) COCO+LVIS (0.12M) 575 417 67.6 65.6 703 78.9 1.51 1.95 2.77 1.71 2.36 3.61
SEEM (T) COCO+LVIS (0.12M) - - - 704 717 82.1 1.72 2.28 332 1.97 2.82 4.37
SEEM (B) COCO+LVIS (0.12M) Composition - - - 762 778 87.8 1.56 2.03 2.91 1.77 2.46 3.76
SEEM (L) COCO+LVIS (0.12M) - - - 75.1 769 86.8 157 1.97 2.81 1.72 2.38 3.64

Table 2: One model for all kinds of mask interactions. SEEM has strong generalization capability on
different input mask types.

COCO Open Image ADE

Method Point  Stroke Scribble Polygon  Box Point  Stroke Scribble Polygon BoX | Point Stroke Scribble Polygon BoX

1-IoU  1-IoU 1-IoU 1-IoU  1-IoU | 1-IoU 1-lIoU 1-IoU 1-IoU  1-IoU | 1-IoU  1-lIoU 1-IoU 1-IoU 1-IoU
SimpleClick (B) | 49.0 331 65.1 48.6 425 48.6 295 542 49.5 42.7 47.0 19.0 521 48.3 372
SimpleClick (L) 389 339 68.8 39.2 34.7 375 29.1 59.8 352 31.2 36.8 16.4 56.4 41.7 29.5
SAM (B) 58.6 22.8 342 44.5 50.7 62.3 28.4 39.2 45.8 53.6 51.0 21.9 31.1 31.0 58.8
SAM (L) 64.7 44.4 57.1 60.7 50.9 65.3 459 55.7 57.8 524 574 45.8 53.1 45.8 58.7
SEEM (T) 789 81.0 81.2 722 73.7 67.1 69.4 69.5 63.1 60.9 65.4 67.3 67.3 59.0 534
SEEM (B) 81.7 82.8 83.5 76.0 Sy 67.6 69.0 68.7 64.2 60.3 66.4 68.6 67.7 60.5 53.6
SEEM (L) 83.4 84.6 84.1 76.5 76.9 66.8 67.8 67.6 62.4 60.1 65.5 66.6 66.3 58.1 54.1

SEEM-Decoder. For the vision backbone, we use FocalT [58], DaViT-d3 (B), and DaViT-d5 (L) [59].
For the language encoder, we adopt a UniCL or Florence text encoder [60,|61]. For all segmentation
tasks, we use standard evaluation metrics: PQ (Panoptic Quality) for panoptic segmentation, AP
(Average Precision) for instance segmentation, and mIoU (mean Intersection over Union) for semantic
segmentation. For interactive segmentation, we follow previous works [20, [62] to simulate user
clicks by comparing the predicted segmentation with the ground-truth one in an automatic way. After
one click on the image to generate the predicted mask, the next click is placed at the center of the
area with the largest segmentation error. We use the Number of Clicks (NoC) metric to evaluate
interactive segmentation performance, which measures the number of clicks needed to achieve
a certain Intersection over Union (IoU), i.e., 85% and 90%, denoted as NoC@85 and NoC@90,
respectively. We also vary the number of maximum clicks indicated by K-NoC@90 (K=5, 10, 20),
and evaluate the mean IoU on the single click denoted as 1-IoU to study the performance on different
constraints. More qualitative evaluation with stroke, scribble, polygon, and box as prompts are
illustrated in the supplementary material.

4.1 Main Results

Generic segmentation With one suite of parameters pre-trained on all the segmentation tasks, we
are able to evaluate its performance on generic segmentation datasets. As shown in Table [T} SEEM
maintains competitive panoptic, instance, and semantic segmentation performance against strong
baselines. Compared with generalist models such as UViM [55], Pix2Seqv2 [56] and especially the
recent model Painter [S7] and SegGPT [50]], our approach significantly outperforms those methods
on generic segmentation with a margin around 10 points on panoptic segmentation metrics.

Referring segmentation As shown in Table |1, compared with other referring segmentation and
generalist models, SEEM achieves competitive performance. Notably, by adding a visual composi-
tional prompt, referring segmentation performance is improved with a large margin by 10.5 cloU,



Table 3: Zero-shot video object segmentation. Without training with video or pairwise image data,
our approach is able to do video object segmentation in a zero-shot manner. (#Concurrent work.)

. ; . Zero-  Single DAVIS17 DAVISI16-Interactive YouTube-VOS 2018
Method Segmentation Data Type Refer-Type Shot Image | JF 3 F IF 7 F G Ts Fs Tu Fu
With Video Data
AGSS [63 VOS+DAVIS (0.1M) Mask x x 674 649 69.9 71 713 655 752 73.1
AGAME [64 (Synth)VOS+DAVIS (0.11M) Mask X X 700 672 727 - - - 66.0 669 61.2
SWEM |65 Image+VOS+DAVIS (0.25M) Mask X X 843 812 874 828 824 869 77.1 850
XMem 66 Image+VOS+DAVIS (0.25M) Video Mask x x 86.1 851 89.8 803 892
SiamMask (67 COCO+VOS (0.21M) Box x x 543 585 698 717 678 602 582 451 477
MiVOS L9 BL30K+VOS+DAVIS (4.88M) Mask; X X 845 81.7 874 826 81.1 856 777 86.2
ReferFormer-B [@8] RefCOCO(+/g)+VOS+DAVIS (0.13M) Text X X 61.1 58.1 64.1
TAM-L [69 XMem+SAM (11.2M) Multiple Points X X 88.4 875 89.4
UNINEXT-T @8 Image+Video (3M) General Ma X X 45 713 6 0 768 810 708 794
UNINEXT-L {48 Image+Video (3M) eneralist Mask X X | 772 732 812 - - - 781 791 835 710 789
UNINEXT-L |48’ Image+Video (3M) Text X X 66.7 623 71.1
Without Video Data
Painter-L [57 COCO+ADE+NYUV2 (0.16M) Mask v X 346 285 408 - - - 241 276 358 143 187
#SegGPT-L |50 COCO+ADE+VOCH+-... (0.25M) Mask v X 756 725 8.6 - - - 747 751 802 674 759
#PerSAM-L (70 SAM+DAVIS (11M) Generalist Mask X v 60.3 56.6 63.9 - - - * * * * *
SEEM-T s v v 604 57.6 63.3 514 556 441 592 469
SEEM-B COCO+LVIS (0.12M) Mask/ 4 v 62.8 595 66.2 538 600 445 635 472
SEEM-L v v 589 550 62.8 500 572 382 613 433

Table 4: Ablation study on interaction strategy. “#Iter” denotes the maximum training iteration
on interactive segmentation in a single forward. “Negative” means adding negative tokens during
interactive segmentation. “Scratch” means the model trains from scratch.

. . COCO Referring Segmentation Pascal VOC DAVIS17
Ablation  Fix #lter Pos Neg | po | ap” iU cloU nglloUg AP@50 NoC50 NoC90 JF  J F
Baseline Y 0 v X |507 395 608 579 633 716 174 543 596 558 635
- LVIS V2 / / |510 398 622 586 639 726 157 491 595 559 63.1
¥Negative v 0 / 7/ | 509 398 614 588 640 726 .81 541 60.1 563 639
+Scratch X 3/ / |502 395 607 514 592  67.0 145 441 606 577 634

v 1 v/ / [507 397 605 583 634 713 176 5.14 592 554 630
T lter vV 2 / / |505 395 610 580 632 716 178 520 596 562 63.0
vV 3 / / |504 395 610 580 630 715 155 467 599 564 635
V5 / / |506 394 609 584 634 716 154 459 597 563 63.1

6.0 mloU, and 9.3 AP50 points for the tiny model. And this gap is retained for the base and large
model. Specifically, this number is computed by class embeddings Of (Output-Q-Textual). The
margin is even larger when computed with mask embeddings O} (Output-Q-Visual) as shown in
Table 5] Further, we benchmark the vanilla composition (Ensemble) that directly combines visual
and text mask output probabilities as shown in Table [5| row 2.

Interactive segmentation As shown in Table[I} our approach achieves comparable performance with
the specialized models, e.g. RITM, SimpleClick, and better performance than SAM [36]] (B) which is
trained with x100 more segmentation data than ours. Notably, unlike existing interactive models,
SEEM is the first interface that supports not only classical segmentation tasks but also a wide range of
user input types, including text, points, scribbles, boxes, and images, providing strong compositional
capabilities as shown in Table 23]

Table 5: The term ‘Text/Visual Prompt’ refers to the modality of information utilized in the study.
‘Output Query’ is indicative of the type of query employed to predict the output. ‘Composition
Approach’ specifies the method through which text and visual information are integrated.

Text Visual  Output Composition Focal-Tiny Davit-Base Davit-Large
Prompt Prompt  Query Approach cloU mloU AP@50 cloU mloU AP@50 cloU mloU AP@50
Y N Text N/A 584 634 71.6 63.0 682 76.7 624  67.6 753
Y Y All Ensemble 63.0  60.0 66.9 69.3  606.6 74.3 689 655 721
Y Y Text Self-Attn 66.5  69.6 78.8 75.0 769 86.3 732 765 85.9
N Y Visual N/A 70.7 718 81.3 754 718 87.4 752 782 87.7
Y Y Visual Self-Attn 71.5 728 82.2 759 783 87.7 749 784 87.7

User input type of interactive segmentation In Table 2] we compare 1-IoU of SEEM with other
strong baselines SimpleClick and SAM with 5 common types of prompts on three datasets. 1-IoU
indicates the mean IoU of all images with a single click. The prompt types include point, stroke,
scribble, and box. The results show that our SEEM achieves the best performance in the extremely
limited number of clicks over all three datasets.

Video object segmentation Without any modification, our model is able to do (interactive) video
object segmentation in a zero-shot manner through the visual prompt (by replacing the current image
visuals prompt with the visual prompts from another image). As shown in Table [3] without any
observation of DAVIS/VOS dataset [[71, [72], our approach is able to achieve close performance
in a zero-shot manner with a fully supervised method on DAVIS17 dataset [/2]. Meanwhile, our
model is able to do interactive video object segmentation on DAVIS16-Interactive [[72] and achieves
comparable performance with the supervised baselines with one single click of the first frame.



Figure 4: Click/scribble-based segmentation. SEEM supports arbitrary formats of clicks or scribbles
by users. Moreover, it simultaneously gives the semantic label for the segmented mask, which is not
possible in SAM [36].

Figure 5: Text to mask or text referring segmentation. The referred text is shown on the masks. SEEM
adapts to various types of input images in the domain of cartoons, movies, and games.

4.2 Ablation Study

We conduct an ablation study on all the training segmentation tasks and zero-shot video object
segmentation, dissecting each component of our model. The results are presented in Table ]

LVIS mask annotation will improve interactive segmentation results. We replace the COCO mask with
an overlap IoU larger than 0.7 with LVIS mask during training. This will improve the performance
on interactive segmentation with 0.3 and 0.2 point gain on NoC0.9 and NoC0.85.

Training from scratch only hurts referring segmentation performance. We compare the SEEM model
trained with X-Decoder pre-trained checkpoint or the checkpoint initialized with UniCL or Florence
vision and language backbone (+Scratch). It indicates that training from scratch will slightly improve
the performance on interactive segmentation but hurt the referring segmentation performance.

Increase interactive training iterations does help. As shown in Table [} increasing the training
iteration (the first N-1 iteration is without gradient) from 1 to 5 will gradually improve the interactive
segmentation performance from 5.41 to 4.59 on NoC0.9. As the computation cost increases with
more clicks, we use iteration 3 for the main paper results.

4.3 Qualitative Results

We further qualitatively evaluate SEEM. Based on the proposed prompting scheme and decoder
design, with the same suite of parameters, SEEM supports a wide range of visual input types.

Visual prompt interactive segmentation. In Fig.[4] we show the visualization of using SEEM to
segment objects in an interactive way. The user can segment objects of interest by simply clicking
or drawing a scribble. Taking these prompts, SEEM can simultaneously produce both masks and
semantic labels for the objects. Note that our model is open-vocabulary, which empowers it to label
unseen categories when given the candidate vocabulary (i.e., cheetah and butterfly in Fig. ). When
no vocabulary is given, SEEM can segment in a class-agnostic manner.

Text referring segmentation. We show the text referring to segmentation visualization results in
Fig.[5] The results demonstrate that our model is semantic-aware of open-vocabulary concepts and
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Figure 6: Zero-shot visual referring segmentation with SEEM. Given a referring image with simple
spatial hints, SEEM can segment the regions which are semantically similar in different target images.

Figure 7: Zero-shot video object segmentation using the first frame plus one stroke. From top
to bottom, the videos are “parkour" and “horsejump-low” from DAVIS [73]], and video 101 from
YouCook? [74]. SEEM precisely segments referred objects even with significant appearance changes
caused by blurring or intensive deformations.

attributes to understand language. In addition, SEEM is able to generalize to unseen scenarios like
cartoons, movies, and games.

Visual referring segmentation. In Fig[6] we show SEEM’s segmentation results when prompted with
referring regions from another image. By simply drawing a click or scribble on one referring image,
SEEM can take it as input and segment objects with similar semantics on other images. Notably,
this referring segmentation has a powerful generalization capability to images of other domains.
For example, by referring to the elephant in the forest, another object of the same category can be
segmented well under drastically different scenes like cartoons, plush toys, and grassland.

Video object segmentation. In Fig. (7| we further show SEEM’s referring segmentation ability on the
video object segmentation task in a zero-shot manner. By referring to the objects in the first frame
with scribbles, SEEM can precisely segment the corresponding objects in the following frames, even
when the following objects change in appearance by blurring or intensive deformations.

5 Conclusion

We presented SEEM, which can segment everything (all semantics) everywhere (all pixels) all at
once (all possible prompt compositions). Apart from performing generic open-vocabulary segmenta-
tion, SEEM can interactively take different types of visual prompts from the user, including click,
box, polygon, scribble, text, and referring region from another image. These visual prompts are
mapped into a joint visual-semantic space with a prompt encoder, which makes our model versatile
to various prompts and can flexibly compose different prompts. Extensive experiments indicate that
our model yields competitive performance on several open-vocabulary and interactive segmentation
benchmarks. Further studies revealed the robust generalization ability of our model in accurately
segmenting images based on diverse user intents. We hope our work will serve as a stepping stone
toward a universal and interactive interface for image segmentation and beyond.
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