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Figure 1: Given sparse 4 exocentric videos configured 360° around daily-life skilled human activities
such as playing basketball (upper), CPR training (lower), our Exo2Ego-V can generate corresponding
egocentric videos with the same activity and environment as the exocentric videos. We encourage
readers to click and play the video clips in this figure using Adobe Acrobat.

Abstract

We introduce Exo2Ego-V, a novel exocentric-to-egocentric diffusion-based video
generation method for daily-life skilled human activities where sparse 4-view exo-
centric viewpoints are configured 360° around the scene. This task is particularly
challenging due to the significant variations between exocentric and egocentric
viewpoints and high complexity of dynamic motions and real-world daily-life
environments. To address these challenges, we first propose a new diffusion-
based multi-view exocentric encoder to extract the dense multi-scale features from
multi-view exocentric videos as the appearance conditions for egocentric video
generation. Then, we design an exocentric-to-egocentric view translation prior
to provide spatially aligned egocentric features as a concatenation guidance for
the input of egocentric video diffusion model. Finally, we introduce the temporal
attention layers into our egocentric video diffusion pipeline to improve the tem-
poral consistency cross egocentric frames. Extensive experiments demonstrate
that Exo2Ego-V significantly outperforms SOTA approaches on 5 categories from
the Ego-Exo4D dataset with an average of 35% in terms of LPIPS. Our code and
model will be made available on https://github.com/showlab/Exo2Ego-V.

1 Introduction

When people observe and learn skills such as cooking or playing basketball from an exocentric (third-
person) perspective, they can easily envision themselves executing these skills from an egocentric
(first-person) perspective [2]. This exocentric-egocentric (Exo-Ego) translation remains the foundation
of visual learning [15] for both human beings and AI robots [8, 4, 3, 37, 35], and unleashes new
opportunities for AI assistant [54, 7, 13] and augmented reality [1]. However, it remains particularly
challenging for computer vision algorithms to achieve such exocentric to egocentric video generation
for daily-life skilled human activities, primarily due to 1) significant variations between exocentric
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and egocentric viewpoints, and 2) high complexity of dynamic motions and daily-life environments,
as illustrated in Fig. 1.

Existing view translation approaches mainly focus on the task of novel view synthesis and have
made remarkable progress particularly since the introduction of Neural Radiance Fields (NeRF) [36].
While initially limited to reconstructing static 3D scenes, subsequent studies have extended NeRF
to address the challenges of dynamic view synthesis [42, 38, 39, 50, 27, 12, 30]. However, these
approaches are limited to per-scene regressive optimization and require dozens or hundreds of views
as input. As a result, they fall short in the exocentric to egocentric video generation task due to the
sparse yet highly variable viewpoints and significant occlusions.

The remarkable success of powerful image diffusion models [45] provides new opportunities for
introducing such generative models in the task of exo-ego generation. Recent attempt [33] leverages
action intention consisting of human movement and action description for Ego2Exo video generation.
However, it strictly requires the first exocentric frame a priori which largely simplifies the ego-to-
exo generation task to optical flow prediction and exocentric frame warping, highly limiting its
applications in general exo-ego generation tasks. On the other hand, Exo2Ego [34] attempts to tackle
with the exo2ego view translation by first transferring exo hand pose to ego, and then learning the
conditional distribution of the target ego image given a single exo image and the predicted ego hand
pose. Despite promising, it is limited to image-level translation and requires a carefully designed
capturing setup with the exocentric camera configured close to the hand-object region and thus is
restricted to desktop activities with simple environments.

In contrast, we contend that it is necessary for exo-ego translation algorithms to be resilient to the
complexity and diversity of daily-life scenarios such as cooking in kitchens, playing basketball in
courts, etc. The introduction of Ego-Exo4D [15] opens new opportunities and challenges for exo-ego
translation by providing a large-scale simultaneously-captured egocentric and exocentric videos of
daily-life skilled human activities. In order to capture the complete and complex human-environment
activities, they configure 4 exocentric cameras in 360° around the dynamic scene, resulting in new
challenges of significant variations between exocentric and egocentric viewpoints, as well as complex
dynamic motions and daily-life environments, as shown in Fig. 1.

To tackle with these challenges, we propose a novel exocentric-to-egocentric video diffusion pipeline
dubbed as Exo2Ego-V. We address the significant challenges of large viewpoint variations and com-
plex environments from two aspects: exo appearance conditions and ego translation prior. Firstly, we
propose a diffusion-based multi-view exocentric encoder to extract the multi-scale exocentric features
as the appearance conditions for egocentric video generation. We achieve this by concatenating ego
hidden states with exo features for self-attention computation, so that the ego hidden states can attend
to both the egocentric features as well as the multi-view exocentric features through the self-attention
mechanism. In addition, we inject the relative position information into our exocentric encoder by
adding exocentric latents with relative Exo2Ego relative camera pose embedding. Our exocentric
encoder can extract dense human activity and environment information to guide the appearance of
egocentric video generation pipeline. Secondly, we introduce an Exo2Ego view translation prior
based on PixelNeRF [60] to provide coarse yet spatially aligned egocentric features as a concatenation
guidance for the input of egocentric video diffusion model. Finally, to improve the temporal dynamic
motion consistency of egocentric video contents, we insert temporal layers into our egocentric video
diffusion pipeline to encode the temporal information across ego frames.

We extensively evaluate our Exo2Ego-V on 5 categories of skilled human activities from the chal-
lenging Ego-Exo4D [15] dataset and H2O dataset [26]. As shown in Fig. 1, our Exo2Ego-V can
generate the corresponding egocentric videos given 4 multi-view exocentric videos, and significantly
outperforms SOTA approaches with an average of 35% in terms of LPIPS.

To summarize, the major contributions of our paper are:

• We present a novel framework of Exo2Ego-V, the first work to achieve exocentric-to-
egocentric video generation for daily-life real-world skilled human activities.

• We propose a new diffusion-based multi-view exocentric encoder and an Exo2Ego view
translation prior that can extract dense exocentric features and spatially aligned egocentric
features as conditions for our egocentric video diffusion pipeline.

• Extensive experiments show that Exo2Ego-V significantly outperforms SOTA approaches
on the challenging Ego-Exo4D [15] dataset with an average of 35% in terms of LPIPS.
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2 Related work

2.1 Egocentric-exocentric vision

Tremendous progress has been made for exocentric vision with various visual perception and genera-
tion tasks due to the large amount of dataset captured at thrid-person views [11, 23, 48]. Recently,
egocentric vision has also been scaling up particularly since the introduction of EPIC-Kitchens [9, 10]
and Ego4D [14]. Previous attempts for joint egocentric and exocentric vision explore learning the
ego-exo view-invariant features on paired small-scale dataset [2, 61] or through unpaired learning [59].
Another line of research focuses on egocentric human localization from exocentric videos [57, 52], as
well as egocentric human pose estimation from exocentric videos [51]. More recently, the introduction
of Ego-Exo4D dataset [15] opens up new opportunities for joint egocentric and exocentric vision
with large-scale synchronized multi-view ego-exo videos with multi-modality annotations.

2.2 Egocentric-exocentric cross-view translation

Ego-exo view translation. There is limited prior work on ego-exo cross-view translation. Early
attempt [28] explores the exo-to-ego image generation with a novel parallel generative adversarial
network to learn shared features of exo and ego images. STA-GAN [29] further extends P-GAN [28]
to Exo2Ego video synthesis with a spatial temporal attention fusion module. However, they are
limited to simple activities such as walking where most contents in egocentric and exocentric views
are static environments [29, 28]. More recently, IDE [33] leverages action intention consisting of
human movement and action description for ego2exo video generation. However, it requires the
first exocentric frame a priori which largely simplifies the ego-to-exo generation task to optical flow
prediction and exocentric frame warping. On the other hand, Exo2Ego [34] attempts to tackle with the
exo2ego view translation by first transferring exo hand pose to ego, and then learning the conditional
distribution of the target ego image given a single exo image and predicted ego hand pose. Despite
promising, it is limited to image-level translation and requires a carefully designed capturing setup
with the exocentric camera configured close to the hand-object region and thus is restricted to desktop
activities with simple environments.

Novel view synthesis (NVS). Ego-Exo view translation is also related to NVS, which has made
remarkable progress particularly since the introduction of NeRF [36]. While initially limited to
reconstructing static 3D scenes, NeRF has been extended to modelling dynamic scenes [42, 38,
39, 50, 27, 12], dynamic humans [41, 53, 22, 32]. However, these approaches are limited to per-
scene regressive optimization and require dozens or hundreds of views as input. On the other hand,
generalizable scene reconstruction methods [60, 56] are still limited to static scenes. As a result, they
fall short in the exocentric to egocentric video generation task due to the sparse yet highly variable
viewpoints and significant occlusions.

2.3 Video generation

Recent works have extended the power of image diffusion models to video editing [55, 43, 31] and
generation [6, 62, 63, 18, 20]. Tune-A-Video [55] inflates the image diffusion with cross-frame
attention and fine-tunes the source video, aiming to implicitly learn the source motion and transfer
it to the target video. Video Diffusion Models(VDM) [20] designs a factorized space-time UNet to
generate videos. Stable Video Diffusion [5] introduces a systematic data curation workflow, enabling
the training of a state-of-the-art text-to-video and image-to-video models. AnimateDiff [16] proposes
a plug-and-play motion module on temporal layers for personalized text-to-image animation. Other
approaches [21, 58] introduce such video generation architectures to human image animation and
achieve faithful performances. Our Exo2Ego-V is a new video diffusion pipeline for the challenging
Exo2Ego generation on daily-life skilled human activities.

3 Method

3.1 Preliminaries

Latent diffusion models (LDMs). LDMs encode input images to a latent representation using a
pretrained variational auto-encoder (VAE) and operate the diffusion and denoising process following
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Figure 2: Overview of Exo2Ego-V. Given 4 exocentric videos configured 360° around daily-life
skilled human activities such as cooking (a), our multi-view exocentric encoder (b) extracts the
multi-scale exocentric features as the appearance conditions for egocentric video generation, and our
Exo2Ego view translation prior (c) predicts the egocentric features as the concatenation guidance for
the egocentric noisy latents input. With these information, our egocentric video diffusion pipeline (d)
generates the egocentric videos with the same activity and environment as the exocentric videos.

denoising diffusion probabilistic models (DDPMs) [19] (see Sec. A.6 for more details) in the reduced-
dimension latent space, and finally decode the denoised latents to the image space. Our model
is an extention of the pretrained text-to-image latent diffusion model [45] that utilizes the UNet
architecture [49] for denoising noise prediction with multiple down, middle, and up blocks. Each
block consists of a ResNet2D layer, a self-attention layer, and a cross-attention layer.

3.2 Overall framework

Task definition. Given 4 exocentric videos Vexo =
[
V1

exo, V
2
exo, V

3
exo, V

4
exo

]
configured 360°

around daily-life skilled human activities, our objective is to generate their corresponding egocentric
video Vego, as shown in Fig. 2(a). Since these daily-life activities happen naturally in real-world
scenarios such as kitchens, basketball courts, bike stores, etc, our task features the diversity of the real
world with complex activities and environments. Therefore, the sparse 4 exocentric cameras have to
be configured evenly in 360° around the dynamic scene in order to capture both the complex human
activities and real-world environments [15], resulting in significant variations between exocentric
and egocentric viewpoints. Furthermore, such real-world skilled human activities such as cooking,
repairing bike, and playing basketball are also highly challenging in terms of the complexity of
dynamic motions and real-world environments.

Overall framework. In order to tackle with the above challenges, we propose a novel exocentric-
to-egocentric video diffusion pipeline dubbed as Exo2Ego-V, as shown in Fig. 2. To address the
significant challenges of large viewpoint variations and complex environments, we propose a diffusion-
based multi-view exocentric encoder (Fig. 2(b)) to extract the multi-scale multi-view exocentric
features as the appearance conditions for egocentric video generation. In addition, we design an
exocentric-to-egocentric view translation prior (Fig. 2(c)) based on PixelNeRF [60] to provide coarse
yet spatially aligned egocentric features as a concatenation guidance for egocentric video generation.
Finally, we introduce the temporal attention layers into our egocentric video diffusion pipeline to
improve the temporal consistency cross egocentric frames (Fig. 2(d)).

3.3 Multi-view exocentric encoder

Motivation. Our task is featured with the significant variations of Exo2Ego viewpoints and complex
environments. The core to tackle with this challenge is to fully explore the multi-view exocentric
information for the purpose of guiding the egocentric video generation. A naive solution is to
utilize the CLIP [44] image encoder to extract latent features from low-resolution images. However,
such semantic-level CLIP image features fall short in extracting the dense and fine-grained detail
information from exocentric videos. Another naive solution is to train a 4D dynamic scene reconstruc-

4



tion model for each multi-view exocentric sequences, but it requires high computation and storage
resources and current methods cannot handle sparse 4 views complex dynamic scene reconstruction.

Framework. Inspired by recent reference image animation methods [58, 21] that extract dense
image features with a reference UNet to preserve reference human identity, we propose our multi-
view exocentric encoder with a different purpose of extracting the dense multi-view exocentric
intricate details as appearance conditions for egocentric video generation. Specifically, our exocentric
encoder creates a trainable copy of the base Ego UNet and inject the relative camera poses from
exocentric viewpoints to the egocentric viewpoints as additional embeddings, as shown in Fig. 2(b).
We additionally explore adding temporal layers for exocentric encoder in our ablation study.

Given Vexo ∈ RN×C×F×H×W and their relative camera poses P ∈ RN×4×4, our exocentric
encoder computes the multi-view multi-scale appearance condition features Fexo for the egocentric
video generation at denoising step t = 0:

Fexo = ϵϕexo

(
ztexo; Vexo, P, t

)
, (1)

where N = 4 is the number of exocentric views and F = 8 is the number of frames for each video.
Fexo are the normalized attention features for the downsampling, middle, and upsampling blocks of
Exo UNet. We set t = 0 to preserve the appearance details of the noise-free exocentric videos.

Then, the exocentric features Fexo are utilized as the appearance conditions for egocentric video
generation by concatenating Fexo with the corresponding egocentric UNet hidden states ztego for the
self-attention layers in every block b at each denoising step t:

Qb = WQ
b · ztego,b, Kb = WK

b ·
[
ztego,b, Fexo,b

]
, Vb = WV

b ·
[
ztego,b, Fexo,b

]
, (2)

where [·] denotes concatenation operation, and the Ego UNet self-attention is: Softmax
(

Qb·KT
b√

d

)
·Vb.

The queried egocentric noisy latents can attend to both the egocentric features as well as the multi-
view exocentric features through the self-attention mechanism, and thus translate the appearance of
complex human skill activities and environments from exocentric views to the egocentric view.

Camera pose. In order to inject the relative position information into our Exo2Ego generation
pipeline, inspired by MVDream [47], we embed the relative Exo2Ego camera poses with a 2-layer
MLP and add the embedding with the denoising timestep embedding for our multi-view exocentric
encoder. Since we set t = 0 for our Exo UNet, the relative camera pose embeddings are the main
embedding to inject the relative position information into the exocentric feature extraction.

3.4 Exocentric-to-egocentric view translation prior

Motivation. Although our multi-view exocentric encoder can extract dense and intricate appearance
details, it entirely relies on the self-attention mechanism to explore the correspondences from the
egocentric contents to the exocentric features, which are still challenging for our scenarios with large
viewpoints variations. To tackle with this, we design an Exo2Ego view translation prior based on
PixelNeRF [60] to generate a coarse yet spatially aligned egocentric latent feature as the concatenation
guidance for our egocentric video generation pipeline.

Framework. Given multi-view exocentric videos Vexo, exo camera poses Pexo, egocentric videos
Vego, and ego camera poses Pego, we learn an Exo2Ego view translation prior Ψ by training a
generalizable PixelNeRF [60] for all timesteps. For each synchronized timestep of the 4 exocentric
videos and 1 egocentric video, at each iteration we extract 4 exo frames and 1 ego frame and randomly
sample rays from these 5 images for optimization. Inspired by ReconFusion [56], we utilize a light
PixelNeRF with 6-layer MLPs for higher efficiency. Please see Sec. A.1 for more details.

As shown in Fig. 2(c), with this Exo2Ego translation prior, we can render both the egocentric features
Fego and egocentric pixels Iego given the multi-view exocentric videos, exo camera poses, and
queried ego camera pose:

Ψ(Vexo, Pexo, Pego) 7−→ (Fego, Iego) , (3)

Inspired by ReconFusion [56], we design our translation prior to render egocentric features Fego at
the egocentric viewpoint with the same spatial resolution as the egocentric latents, so that Fego is
spatially aligned with the noisy egocentric latents. Therefore, we concatenate ztego with Fego along
channel dimension as the input to the egocentric video diffusion model to predict the noise ϵego at
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each denoising timestep t. In addition, we extract the CLIP image feature of the rendered ego images
Iego as the cross-attention information for our egocentric video diffusion pipeline:

ϵego = ϵϕego

([
ztego, Fego

]
; Fexo, Iego, t

)
. (4)

3.5 Temporal dynamic motion layer

To improve the temporal dynamic motion consistency of egocentric and exocentric video contents,
we follow common practice [18, 20] to insert temporal attention layers within the 2D UNet blocks, as
shown in Fig. 2(d). Specifically, we insert the temporal layers on the egocentric video generation
pipeline and we additionally ablate on inserting the temporal layers on the exocentric encoder. As
such, the input egocentric latents ztego ∈ RN×C×F×H×W are first reshaped to R(NF )×H×W×C for
computing the spatial attentions with egocentric and exocentric features in spatial layers, and then
reshaped to R(NHW )×F×C to compute the temporal cross-frame information in temporal layers.

3.6 Optimization

We optimize our Exo2Ego-V in a 2-stage training strategy. In the first stage, we remove the temporal
layers and optimize the Exo2Ego spatial appearance translation modules, including the multi-view
exocentric encoder, Exo2Ego view translation prior, as well as the Ego UNet. In the second stage, we
only optimize the Ego temporal layers for temporal consistency and freeze other modules.

Exo2Ego spatial appearance translation. We first pre-train our Exo2Ego view translation prior with
the pixel-level reconstruction loss LREC. Then, we alternately finetune the Exo2Ego view translation
prior with the reconstruction loss LREC, and multi-view exocentric encoder and the Ego UNet with
the noise prediction loss LS.

LREC = ∥Rrender −Rgt∥22 , LS = Ezt
ego,Vexo,Pexo,t,ϵ

[
ω (t) ∥ϵ− ϵego∥22

]
, (5)

where Rrender is the rendered ray pixels sampled randomly from exocentric and egocentric frames,
Rgt is the corresponding ground-truth pixels. ϵ is the ego noise sampled from N (0, 1). w(t) is a
weighting function that depends on the noise level t.

Temporal motion finetuning. In the second stage, we freeze the translation prior and Exo and Ego
UNets, and finetune the pretrained temporal layers from AnimateDiff [16] on our egocentric and
exocentric videos with F frames in temporal dimension.

LT = Ezt,F
ego ,VF

exo,P
F
exo,t,ϵ

F ,

[
ωF (t)

∥∥ϵF − ϵFego
∥∥2
2

]
. (6)

4 Experiments

4.1 Dataset

We evaluate our method on 5 categories of Ego-Exo4D dataset [15] featuring both exocentric and
egocentric human activities: Cooking, Covid Test, Basketball, CPR, and Bike. Each category contains
synchronized captured exo and ego videos of different participants performing these activities at
different locations around the world. Specifically, Cooking captures people preparing various dishes
in kitchens. Basketball captures participants playing basketball in courts. Covid Test captures
individuals conducting covid tests for themselves in various scenes. CPR captures scenes where
participants perform cardiopulmonary resuscitation on a CPR model. Bike captures scenes of
participants repairing bikes in bike stores. We set the the number of temporal frames to 8 and spatial
resolution to 480× 270 and 256× 256 for exocentric and egocentric videos, respectively. For each
video from the above categories, we extract frames at 7.5 fps and split them into multiple action
clips according to the action annotations and turning timesteps where the participant’s head pose
turns more than 45° within 1 second. We retain the videos that contain both ego and exo intrinsic
and extrinsic parameters. Finally, we processed 489 videos from Cooking category, 909 videos from
Basketball category, 127 videos from Covid Test category, 66 videos from CPR category, and 359
videos from Bike category. The videos lengths vary between 3 ∼ 15 minutes for different categories.
We also evaluate our method on the H2O dataset [26], which provides synchronized multi-view
Exo-Ego images for desktop activities.
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We train our Exo2Ego-V (see Sec. A.2 for training details) and baselines for each category and utilize
the following 3 test evaluation: (1) Unseen action: We split each video into multiple clips based on
the action annotations, so that each clip features a different action. We use 80% of action clips as our
train set and the remaining 20% unseen action clips as test set. (2) Unseen take: Each take refers to a
complete human activity video. Each participant conduct 2 ∼ 4 takes for an activity. We randomly
select one take as our test set and use the remaining takes for training. (3) Unseen scenes: Each
category is captured in multiple different scenes around the world. We randomly select one entire
scene with multiple takes out of a category as our test set and use the remaining scenes for training.

4.2 Comparisons with SOTA approaches
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Figure 3: Qualitative comparisons of our method against SOTA approaches on unseen actions.

Baselines. We compare our Exo2Ego-V with three baselines. (1) Stable Video Diffusion (SVD) [5], a
recent state-of-the-art image-to-video diffusion model. (2) Stable Diffusion (SD) [46], a powerful
text-to-image diffusion model. (3) PixelNeRF [60], a general 3D scene reconstruction model. We
adapt SVD and SD for our Exo2Ego generation task by inputting 4 exo views as their conditions
and train the models to generate ego views. Specifically, we first use a VAE model to obtain the
latent contents of each exo view and concatenate ego noisy latent with these 4 exo latents along the
channel dimension as input. Then, we use the CLIP model to obtain the exo image CLIP features as
the cross-attention information for SVD and SD. We train these three baselines for each categories.

Table 2: Quantitative compar-
ison of our method against
SVD on H2O dataset.

PSNR↑ SSIM↑ LPIPS ↓
SVD [5] 16.530 0.468 0.271
Ours 18.600 0.581 0.189

Quantitative results. We report PSNR, SSIM, and LPIPS with
AlexNet [25] that measure the differences between generated ego
frames and groundtruth on Tab. 1. Our Exo2Ego-V achieves the best
performance for both unseen actions and unseen takes in terms of
all metrics. It is noted PixelNeRF [60] achieves good PSNR scores
since PSNR favors blurry images [38] as shown in Fig. 3 and 4.
Most importantly, our Exo2Ego-V significantly outperforms SOTA
approaches on all categories with an average of 35% in terms of
LPIPS, which clearly demonstrates the superiority of our Exo2Ego-
V. We additionally evaluate our Exo2Ego-V and best-performing baseline SVD [5] on the H2O
dataset [26] in Tab. 2. Our model still achieves the best performance, which demonstrate the
generalizability of our method on different datasets.
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Figure 4: Qualitative comparisons of our method against SOTA approaches on unseen takes.

Table 1: Averaged quantitative evaluation on different categories. We color code each cell as best .

UNSEEN ACTION
COOKING BASKETBALL COVID TEST CPR BIKE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [60] 17.278 0.412 0.640 18.054 0.512 0.599 19.707 0.548 0.543 18.444 0.561 0.558 16.070 0.351 0.679
SD [46] 12.167 0.313 0.583 12.480 0.400 0.605 14.200 0.413 0.538 16.543 0.573 0.454 12.510 0.289 0.577
SVD [5] 14.318 0.407 0.519 15.529 0.491 0.533 16.584 0.507 0.477 17.807 0.630 0.397 14.541 0.364 0.516
Ours 17.367 0.493 0.408 20.062 0.624 0.249 21.462 0.668 0.235 18.533 0.647 0.305 16.310 0.413 0.486

UNSEEN TAKE
COOKING BASKETBALL COVID TEST CPR BIKE

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [60] 17.177 0.426 0.644 18.744 0.549 0.600 20.402 0.561 0.531 16.674 0.634 0.476 16.129 0.393 0.663
SD [46] 12.542 0.324 0.582 13.048 0.433 0.612 14.654 0.416 0.541 18.143 0.667 0.356 12.510 0.314 0.581
SVD [5] 14.554 0.416 0.532 16.563 0.546 0.555 16.875 0.500 0.490 18.302 0.680 0.353 14.492 0.383 0.527
Ours 17.712 0.504 0.456 21.417 0.646 0.300 21.590 0.667 0.245 18.473 0.711 0.219 16.343 0.441 0.489

Qualitative results. Fig. 3 and 4 visualizes the qualitative comparison of Exo2Ego-V over SOTA
approaches on unseen actions and unseen takes, respectively, where Exo2Ego-V achieves substantially
better egocentric videos quality than other approaches for all categories (see Sec. A.3 for more results).
SVD [5] and SD [46] encounter significant difficulties by conditioning on the highly semantic exo
images features to generate egocentric videos. In addition, SD [46] falls short in temporal consistency
due to its 2D image-level generation. PixelNeRF [60] renders very blurry results due to the significant
difficulty of sparse yet highly variable viewpoints and large occlusions. In addition, Fig. 6 visualizes
the comparison of our method against SVD [5] on the H2O dataset [26]. Our method achieves the
best performance and generates photorealistic hand-object interactions. Please see supplementary
video for more results on video comparisons, which demonstrates the superiority of our Exo2Ego-V
on both much higher spatial appearance quality and temporal consistency compared to other methods.

Table 3: Averaged quantitative evaluation on different categories against baselines for unseen scenes.

UNSEEN SCENE
COOKING BASKETBALL COVID TEST CPR

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
PixelNeRF [60] 13.393 0.355 0.700 16.091 0.418 0.676 14.885 0.438 0.697 14.349 0.348 0.745
SD [46] 10.617 0.268 0.587 11.686 0.334 0.640 13.072 0.409 0.624 14.937 0.428 0.586
SVD [5] 11.960 0.321 0.553 14.468 0.385 0.586 14.392 0.484 0.627 14.934 0.447 0.580
Ours 13.926 0.389 0.602 16.201 0.462 0.560 14.127 0.387 0.604 15.387 0.553 0.654
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Figure 5: Qualitative comparisons of our method
against SOTA approaches on unseen scenes.

Comparisons on unseen scenes. We con-
duct additional experiments on unseen scenes
of our Exo2Ego-V and baselines, and report
PSNR, SSIM, and LPIPS with AlexNet [25]
that measure the differences between generated
ego frames and groundtruth on Tab. 3. We
do not conduct experiments on Bike category
since it is only captured on 4 different scenes,
which are too few to generalize to new scenes.
Fig. 5 visualizes the qualitative comparison of
our Exo2Ego-V over SOTA approaches on un-
seen scenes. Our Exo2Ego-V achieves the best
performance on most metrics in Tab. 3 and
substantially better egocentric videos quality
than other approaches as shown in Fig. 5. Pix-
elNeRF [60] still renders very blurry results
but gets good PSNR values since PSNR favors
blurry images [38]. We also find that it is very
challenging for all methods to evaluate on the
unseen scenes due to the significant variance of
new environments compared to the training set,
and the lack of large-scale scene diversity from
the training data.
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Figure 6: Qualitative comparisons of our method against SOTA approaches on H2O dataset.
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Figure 7: Qualitative ablation results of our method for cooking category on unseen actions.
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Figure 8: More ablation results of our method for cooking category on unseen actions.

4.3 Ablation study

We conduct ablation studies on the cooking category from Ego-Exo4D dataset [15]. We ablate on the
proposed multi-view exocentric encoder, Exo2Ego view translation prior, and the temporal layers of
multi-view exocentric encoder. As shown in Tab. 4, our full model achieves the best performance in
terms of PSNR and SSIM. In addition, we provide the qualitative results of our ablations in Fig. 7 ,
which further demonstrates the effectiveness of our designs. Removing exocentric encoder results
in inferior performance than full model, which clearly proves its capability in extracting dense and
multi-scale exo features for ego video generation. Although removing exo2ego prior achieves the best
LPIPS, it results in a cleaner but inaccurate egocentric video due to the lack of egocentric guidance,
which improves the LPIPS but gets a lower PSNR. As shown in Fig. 7, removing exo2ego prior
results in the missing of right arm. In addition, we ablate on adding temporal layers for our multi-view
exocentric encoder and evaluate the temporal consistency by computing the CLIP image embeddings
on our generated ego clips and report the average cosine similarity between all pairs of clip frames.
Adding the exo temporal layers achieves a higher averaged temporal score of 0.924 compared to
0.918 of full model for unseen actions, demonstrating higher temporal consistency but at the expense
of inferior image-level quality in Tab. 4. Thus, we disgard the exo temporal layer in final model.

Table 4: Ablation results of our method.
COOKING

UNSEEN ACTION UNSEEN TAKE
PSNR↑ SSIM↑ LPIPS ↓ PSNR↑ SSIM↑ LPIPS ↓

w/ Exo temporal layer 16.762 0.473 0.507 16.784 0.489 0.584
w/o Exocentric encoder 16.777 0.455 0.441 16.734 0.450 0.499
w/o Exo2ego prior 17.268 0.493 0.364 17.668 0.502 0.401
w/ 3 Views 17.230 0.486 0.383 17.400 0.489 0.428
w/ 2 Views 16.930 0.474 0.399 17.020 0.479 0.445
w/ 1 Views 17.020 0.478 0.395 17.200 0.476 0.439
w/ Exo CLIP 16.540 0.456 0.425 16.410 0.445 0.480
w/ Temporal-spatial 17.000 0.484 0.402 17.290 0.490 0.443
Ours (full) 17.367 0.493 0.408 17.712 0.504 0.456

We ablate on the number of exo views and
replacing our exocentric feature encoder with
CLIP features in Tab. 4 and Fig. 8. Our model
with 4 exo views achieves the best performance,
and our method achieves much better perfor-
mance compared to the one using CLIP fea-
tures. We also ablate on first performing tem-
poral attention and then spatial attention for our
model. The spatial-temporal model is slightly
better than the temporal-spatial model in terms
of PSNR and SSIM, and slightly worse for LPIPS. We follow the spatial-temporal attentions [16, 5].

5 Conclusion

We introduced a novel framework of Exo2Ego-V, the first work to achieve Exo2Ego video generation
for daily-life real-world skilled human activities. To tackle the challenges, we first proposed the new
diffusion-based multi-view exocentric encoder to extract the dense multi-scale exocentric features as
the appearance conditions. Then, we introduced an Exo2Ego view translation prior to provide coarse
yet spatially aligned egocentric features as a concatenation guidance. Finally, we inserted temporal
layers into Ego Unet for improved temporal consistency across ego frames. Exo2Ego-V produced
significant improvements on challenging Ego-Exo4D dataset [15] over SOTA approaches.

Limitations and future work. Exo2Ego-V focuses on Exo2Ego video generation on several
categories of skilled human activities. It remains challenging but is worthwhile researching on more
general activities. Exploring Gaussian Splatting as translation prior is also a promising direction.
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A Supplemental material

A.1 Implementation details
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Figure 9: Network details for our Exo2Ego trans-
lation prior.

Exo2Ego translation prior details. Inspired
by ReconFusion [56], our Exo2Ego translation
prior Ψ is based on a light PixelNeRF with 6-
layer MLPs (Fig. 9) for higher efficiency to-
gether with a ResNet34 [17] pretrained on the
ImageNet dataset to extract exo image features.
For each synchronized timestep of the 4 exocen-
tric videos and 1 egocentric video, we extract
4 exo frames and 1 ego frame and randomly
sample 128 pixel rays from these 5 images and
sample 3D points x for each iteration. Then, we
add positional embedding to these points γ (x)
and query their latent features f (x) by project-
ing them on the latent images. Then we con-
catenate them with viewing direction as input
to our translation prior as in Fig. 9. We conduct
volumetric rendering at the third layer for the
latent features, and then input the latent features
to the last 3 layers for final pixel color and latent
features.

For egocentric video generation, we only sample rays from 32× 32 ego frames so that the rendered
ego features are spatially aligned with the noisy ego latent. Therefore, we concatenate the rendered
ego features with the noisy ego latent as the input to our egocentric video diffusion pipeline.

Egocentric camera unprojection. The ego camera from Ego-Exo4D dataset [15] utilizes the
FisheyeRadTanThinPrism (Fisheye624) model, which accounts for thin-prism distortion. This model
includes four additional coefficients: s0, s1, s2, s3. The projection function is:

u = fx ∗ (ur + tx(ur,vr) + tpx(ur,vr)) + cx,

v = fy ∗ (vr + tx(ur,vr) + tpx(ur,vr)) + cy,

tpx(ur,vr) = s0r(θ)
2 + s1r(θ)

4,

tpy(ur,vr) = s2r(θ)
2 + s3r(θ)

4,

r(θ) =
√
(u− cx)2/f2x + (v − cy)2/f2y ,

ϕ = arctan((u− cx)/fx, (v − cy)/fy)

(7)

u,v are the camera pixel coordinates and ϕ, θ are the world point. fx, fy are the focal lengths. Its
parametrization contains 4 additional coefficients: s0, s1, s2, s3. Firstly we use the Newton method
to calculate the ur, vr and then we calculate ϕ, θ using the above unprojection method. Finally, we
sample 3D points along the calculated directions ϕ, θ.

A.2 Training details

We optimize our Exo2Ego-V using Adam optimizer [24]. We set the learning rate of the multi-view
exocentric encoder and the egocentric diffusion model as 0.00001, and we set the learning rate of
view translation prior as 0.0001. We first train the translation prior with 500K iterations on a single
A100 GPU for 36 hours, and then optimize our Exo2Ego spatial appearance translation with 500K
iterations on 8 A100 GPUs for 48 hours, and finally finetune our temporal motion module with 100K
iterations on 8 A100 GPUs for 40 hours, all using the PyTorch [40] deep learning framework.
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Figure 10: More qualitative comparisons of our method against SOTA approaches on unseen actions.

A.3 Additional qualitative results

We provide more qualitative comparisons of Exo2Ego-V over SOTA approaches on unseen actions in
Fig. 10. Our method achieves the best performance across all approaches.

A.4 Feature Visualization COVID TEST CPR

Exo2Ego Prior
Rendered Features

Exo2Ego Prior
Rendered Pixels

Figure 11: Exo2Ego prior feature visualization.

In Fig. 11, we present our ego feature visual-
ization results using the Exo2Ego prior. The
visualization results clearly represent the con-
tents of the ego views. This indicates that our
Exo2Ego prior can effectively extract and trans-
mit the important information from ego views
to the multi-view exocentric encoder.

A.5 Reasoning Efficiency

We provide the inference time comparison as shown in Tab. 5, where the inference time of our method
to generate an 8-frame egocentric video is 9.06 second, which is comparable with other baselines.
We believe it is feasible to use our model in offline applications to generate egocentric videos from
the exocentric videos, such as capturing exocentric cooking videos and generating corresponding
egocentric videos offline for cooking skills learning. Improving the inference speed towards real-time
is very promising and we leave it as future works.

Table 5: Inference time of our method in comparison with baselines.

Ours SVD [5] SD [46] PixelNeRF [60]
Inference time (second) 9.06 4.26 6.91 5.65

A.6 Preliminary on denoising diffusion probabilistic models (DDPMs)

DDPMs [19] are generative frameworks designed to synthesize data by reproducing a consistent
forward Markov chain x1, . . . , xT . The process begins from a random noise distribution and progres-
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sively denoise the noisy contents to the clean data. Considering a data distribution as x0 ∼ q(x0), the
Markov transition q(xt|xt−1) is conceptualized as a Gaussian distribution by a variance βt ∈ (0, 1):

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), t = 1, . . . , T. (8)

Under the Bayes and Markov principles, the conditional probabilities can be derived as:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), t = 1, . . . , T,

(9)
where αt = 1 − βt, ᾱt =

∏t
s=1 αs, β̃t = 1−ᾱt−1

1−ᾱt
βt, µ̃t(xt, x0) =

√
ᾱtβt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt.

DDPMs utilize a reverse approach to synthesize the chain x1, . . . , xT :

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), t = T, . . . , 1. (10)

The model parameters θ are optimized to ensure the synthesized reverse sequence aligns with the
forward sequence.

A.7 Broader impacts

Our work can generate egocentric videos from exocentric videos. Since the scale of egocentric dataset
is still much less than the exocentric dataset, our method has the potential to improve the egocentric
vision such as egocentric perception by generating more egocentric data from the exocentric data.
Our Exo2Ego-V also support applications on AI assistant and augmented reality by generating
egocentric videos from exocentric videos. We believe our method will not bring negative societal
impacts.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contribution of our paper is clearly described in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not contain any theoretical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide dataset details in Sec. 4.1 and implementation details in Sec. A.1.
We use publicly released Ego-Exo4D dataset for experiments, and our code and model will
be made public if this paper gets accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly released Ego-Exo4D dataset for experiments, and our code
and model will be made public if this paper gets accepted. We also provide dataset details in
Sec. 4.1 and implementation details in Sec. A.1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide detailed experimental setting in Sec. 4.1, implementation details in
Sec. A.1, and training details in Sec. A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We omitted error bars from our analysis due to the excessive computational
expense involved in enumerating all experimented categories in the dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss computer resource information in Sec. A.2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct experiments with publicly released dataset Ego-Exo4D that
preserve anonymity of participants. Our research conforms with the NeurIPS Code of Ethics
in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss potential societal impacts in Sec. A.7
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not have such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited papers and sources for existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide asset documentation alongside our code and model when we
release them.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects. We only
use publicly released Ego-Exo4D dataset for experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects. We
only use publicly released Ego-Exo4D dataset that already handled IRB approvals for
experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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