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ABSTRACT

Model owners often wish to introduce new capabilities into their trained models
or remove undesired ones. Task Vectors (TVs) present a promising new approach
to editing models after training, allowing simple and controllable addition of new
capabilities to the model and the removal of undesired ones. But what happens
when the model owner wants to change multiple capabilities?
In this work, we study the interactions of task vectors in a multi-edit setting
for image classifiers and diffusion models. We start by quantifying the overall
model degradation induced by applying many specific TVs simultaneously. We
show that the overall model performance degrades rapidly as the quantity of TV
edits increases. Finally, we explore different ways to mitigate this degradation
and present an adaptive method to select the most relevant TVs to apply to a
diffusion model during inference. Our technique achieves a 94.6% ROC AUC in
identifying the correct TV, enabling the effective integration of multiple TV edits
while significantly mitigating quality degradation.

1 INTRODUCTION

As advances in machine learning increasingly rely on large foundation models trained by entities
with substantial resources, the need to adapt these models to various end-user preferences is growing
(Zhuang et al., 2020). One straightforward way to adapt a foundation model is to fine-tune it on a
relevant dataset directly. However, this approach may suffer from issues including privacy concerns
(Yu et al., 2021), stability (Wortsman et al., 2022b; Mitchell et al., 2021), and computational resources
(De Cao et al., 2021).

One popular alternative to fine-tuning are task vector edits (TV edits), which perform algebraic
operations or task arithmetic, such as addition or subtraction directly on the model weights. The task
vector (TV) is a learned set of weights representing the difference between the pre-trained model
weights θ0 and a fine-tuned model weights θft (Ilharco et al., 2022a). For example, to reduce the
likelihood of a model generating pictures in the style of Vincent Van Gogh, a model owner might
perform a TV edit, subtracting a task vector learned from Van Gogh’s images τ1 from the base model
weights to yield a sanitized model θTV :

θTV = θ0 − α1τ1 (1)

TV edits attain stability and robustness not achievable by other methods (Tsai et al., 2023; Pham
et al., 2023; 2024). In addition, TVs finetuned on a narrow task may allow for better control on
the generation of specific attributes (Gandikota et al., 2023). Even so, in the pursuit of better
target task performance on the new behavior, task vector edits can sometimes impair the quality of
unrelated generations, also known as control task performance. The trade-off between the target
task performance and control task performance has received considerable attention in prior work
on single TV applications (Gandikota et al., 2023; Pham et al., 2024). Additionally, a growing line
of research focuses on combining TVs representing broad fine-tunes of the model (also known as
model merging), which should generally improve the overall performance and not degrade it (Yadav
et al., 2024; Xu et al., 2024; Matena & Raffel, 2022). Yet, TVs aimed at a specific class or concept
generally degrade the control task performance.

In this work, we raise a new, related question; what happens when the model owner wants to change
multiple capabilities, requiring multiple TV edits togather? For example, erasing the ability to generate
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or recognize many different human identities (Zehavi & Shamir, 2023), removing copyrighted styles
(Pham et al., 2023), or precisely controlling generated attributes (Gandikota et al., 2023). We study the
interactions of task vectors in this multi-edit setting, and uncover an unusual phenomenon; multiple
TV edits interact not only with the model itself but also with one another in their effect on the control
task performance. We term this behavior multi-task interactions.

We find that pairwise-task interactions of TVs can be modeled as a combination of two contrasting
regimes: highly colinear TVs tend to have linear multi-task interactions, meaning the control task
accuracy decrease is a function of the total magnitude of the applied TVs1. Less similar TVs (which
tend to be induced by unrelated tasks Ilharco et al. (2022a)) usually have non-linear multi-task
interactions: editing with two different vectors will be less harmful to the control task than using a
single TV with the total magnitude (see Fig.1). Going beyond pairwise interactions to very large
number of simultaneously applied TVs, we find that the linear interactions dominate; accuracy
degrades linearly with the total magnitude of the vectors being subtracted. We offer a simple
theoretical explanation for this observation.

Next, we identify and evaluate various natural approaches to mitigate this accumulated degradation in
model accuracy. We test the following methods: (i) merging Task Vectors with a non-linear merging
algorithm developed for model-merging (non concept-specific TVs), (ii) learning a per-TV magnitude
for a better erasure/control trade-off, (iii) training a single joint Task Vector for multiple concepts,
and (iv) using the Neural Tangent Vector TV method (Ortiz-Jimenez et al., 2024). We find that all
the above methods fall short in reducing the model degradation to acceptable levels when applying a
large number of edits.

Finally, we propose a technique to choose at inference time which TVs to use for a diffusion process.
As different TVs are tuned to edit different concepts, most generations do not require a large number
of concurrent subtractions. Motivated by this intuition, we investigate whether we can determine
which TVs to apply to a diffusion model with a given prompt only by analyzing the effect of the TV
edit on the generated image. We determine that applying a TV in the middle of the denoising process
allows us to quantify its relevance to a given prompt. We flesh this idea out into a technique that
applies TVs only when they are relevant to avoid unnecessary model deterioration.

Our Contributions.

• We conduct an initial study of how multi-task-vector interactions affect the control task
performance of a model.

• We test existing methods for mitigating the control task performance decline under multi-
task-vector edits, and find that all methods fall short at sufficient scale.

• We propose a novel inference-time solution to adaptively applying only the relevant Task
Vectors to a given prompt.

2 BACKGROUND

Merging Model Edits. There is a growing research interest in methods that take a few models,
trained or fine-tuned separately, and combine them post-training into a single model enjoying the
strengths of all the individual fine-tunes. While some approaches individually run each model
and combine the model outputs in one of several ways Dietterich (2000); Ovadia et al. (2019);
Gontijo-Lopes et al. (2021), other methods combine the model parameters themselves Chung (1954);
Wortsman et al. (2022a); Yadav et al. (2024). The Task Vector method combines model parameters
by fine-tuning a few different models from the same checkpoint and averaging the differences in
parameters accumulated in each model along the fine-tuning process. While averaging models at
parameter space may sound unintuitive, it was shown to be semantically meaningfulIlharco et al.
(2022a), and a few techniques were suggested to better optimize it Ortiz-Jimenez et al. (2024); Yadav
et al. (2024); Goddard et al. (2024). Yet, these techniques were mostly focused on the setting where
each TV was trained to add to the model a relatively broad capability (e.g., better general generation
quality or robustness). Less focused was directed to TV for specific narrow concepts, and concept
erasure.

1Note that this kind of linearity is distinct from previous work, which has focused on linearizing the task
vectors themselves Ilharco et al. (2022b;a); Ortiz-Jimenez et al. (2024)
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Diffusion Models. Diffusion models Sohl-Dickstein et al. (2015); Ho et al. (2020) are a class of
generative models that learn to sample from a distribution using a Markovian denoising process. In
the forward diffusion process, Gaussian noise is gradually added to an input image x0 for T timesteps
to yield a final noise latent xT . The model learns the reverse diffusion process, which, given a latent
xt at a timestep t, predicts the residual noise ϵt = xt − xt−1. At inference time, a random Gaussian
noise tensor xT is sampled and passed through the reverse process for T timesteps to yield the final
data x0. Latent Diffusion Models (LDMs) Rombach et al. (2022) reduce the memory footprint of
diffusion models by performing the denoising process in a latent space learned using an autoencoder.

Task Vector Edits to Diffusion Models. Among many methods suggested to address model editing
for diffusion models, we focus on Task Vectors, as they are most suited to study the interaction
between tasks. Practically, Task Vectors have been used in diffusion models to achieve better
controllability Gandikota et al. (2023) and concept erasure Pham et al. (2024); Liu et al. (2024).We
acknowledge the vast literature covering other editing method for diffusion models Orgad et al.
(2023); Bau et al. (2020); Croitoru et al. (2023); as well as on applying task vectors to edit other types
of models Hendel et al. (2023); Ramesh et al. (2024); Hojel et al. (2024). However, as our primary
focus in the paper is on conceptual questions, we adhere to Task Vector edits applied to Diffusion
Models and classifiers.

3 TASK VECTOR INTERACTIONS

Our study begins with a simple question:

How do multiple TV edits performed together affect the model performance?

Our practical motivation for studying multi-task interaction is applying multiple Task Vectors to
a single model simultaneously. Yet, there is also a deeper scientific motivation for exploring this
question. Ideally, Task Vectors aim to represent a single edit direction (e.g., happy vs. sad) of the
model while mostly keeping other edit directions unaffected (e.g., outdoor vs. indoor) (Ilharco et al.
(2022a)). Examining the interaction of multiple task vector edits allows us to better inspect the extent
to which TV are non-interfering, and study the interference caused by the combination of different
tasks.

3.1 PAIRWISE TASK INTERACTIONS

The simplest kind of multi-task interaction is a pairwise interaction; two task vectors τ1, τ2 are
applied to one model θ0 with strengths (amplitudes) α1, α2, generating a model θTV :

θTV = θ0 + α1 · τ1 + α2 · τ2 (2)

We follow previous works by evaluating a pre-trained CLIP-based classifier model as θ0, our base
model; and extend it to examining the unet of a Stable diffusion model in App.C. We explore a large
variety of classification tasks for the CLIP-based model, and different artistic styles and objects for
the stable diffusion model. Finally, we plot the control task performance (classification or generation
of unrelated concepts) as a function of the edit strengths of the two vectors, τ1, τ2 (the magnitudes
are noted as α1, α2 serve as the axes of the control task performance heatmap). While varying the
control task reveals diverse interaction patterns, the pair-wise interaction effects on standard tasks
mostly fall into two categories, see Fig. 1 (see Appendix for implementation details and more results).
We note these categories as Linear interactions and non-linear interactions.

Linear interactions. In this type of TV interaction the degradation effect of using one amplitude,
α1, for one TV, and a second amplitude, α2, for another, is similar to the effect of using the sum of
amplitudes (α1 + α2) with one of them (see upper panel of Fig. 1). One simple such case is the
interaction between a TV and itself (τ1 = τ2). In this case, Eq. 2 trivially becomes:

θTV = θ0 + (α1 + α2) · τ1 (3)

Therefore, the performance degradtion trivially becomes a function of (α1 + α2). This kind of
interaction is also expected in highly correlated tasks that move the similar weights in the same
direction.

3
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Figure 1: Illustration of model performance influenced by task vector editing for two scenarios
(Top panels) Linear interaction (Bottom panels) Non-linear interaction. (Left panels) visualize
the total magnitude of two task vectors, τ1 and τ2, with different angles between them. (Middle
panels) schematically illustrate equi-performance lines in the space of amplitudes of the applies TVs
(α1, α2) of possible TV interactions, highlighting the performance in different regions. (Right panels)
feature heatmaps displaying the empirical control task performance; namely, ImageNet classification
accuracy, when the CLIP backbone was edited with TV associated with different tasks noted as the
axes titles. High performance corresponds to yellow areas, moderate performance to green, and poor
performance to dark blue. More similar plots can be found in App.8

Non-linear interactions. non-linear interactions are interactions where the combined effect of a
few TVs on the control accuracy is smaller than that expected according to the individual effects
of each TV. In the non-linear interactions regime, the amount of model degradation is a non-linear
function f(α1, α2) of the edit strengths. Intuitively, conceptually unrelated TVs will have a small
shared components, and will be mostly orthogonal to one another . Therefore, we can expect the joint
vector magnitude to be effectively smaller than the magnitude addition; as the sum of non-co-linear
vectors (Fig.1, leftmost figure).

Using this intuition, we suggest a simple toy model to explain a variety of interactions. For this
model, we consider each TV as composed of two components: (i) a joint component µ, related to the
semantically shared properties of the tasks used to train the two TVs (e.g., the MNIST Deng (2012)
and SVHN Netzer et al. (2011) classification are likely to share such a component as both tasks
require reasoning about digits, see App.Fig.8). (ii) An uncorrelated component, related to parameter
changes idiosyncratic to fine-tuning procedure (e.g., different low level color features which are
unrelated even between Mnist and SVHN). Therefore, we model these components as coming from a
random distribution with a covariance matrix N (0,Σ). Taken together, we model our TVs as follows:

τ1, τ2 ∼ N (µ,Σ) (4)

In that setting, a combined TV can be represented as its own Gaussian drawn from the following
distribution:

α1τ1 + α2τ2 ∼ N ((α1 + α2)µ, (α
2
1 + α2

2)Σ) (5)

We consider two similar TVs as having a high common mean µ and a small variance Σ compared
to this mean (µ >>

√
|Σ|∞). Therefore, the term (α1 + α2)µ dominates over the covariance term,

making this a mostly additive interaction. However, a small semantic similarity corresponds to the
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Figure 2: The control task deteriorates linearly with increasing the amount of subtracted TVs.
(Left) Illustration of many TV addition when they share a common average component, projected to
two dimenstions. (Middle, Right) Control task accuracy (50-classes CIFAR classification) of a CLIP
backbone as function of the number of TV edits applied with a fixed magnitude each. When editing
an increasing number of TVs, the control task performance linearly degrades up to a significant
amount of vectors. We examine two different scaline coefficients (αC) depicted in the title of each
figure.

covariance dominating the joint component of the vectors (
√

|Σ|∞ >> µ). In this case, the standard
deviation term dominates, and its scale

√
α2
1 + α2

2, grows sub-linearly. We show in Fig. 8 (panel D)
an empirical interaction of random TVs (averaged over a few seeds to reduce random noise).

One way to quantify this relationship is by examining the actual angle ϕ between the given vectors
(App.Fig. 8). However, vectors in very high dimensions tend to be nearly orthogonal, and the
connection between image semantics and model weights is implicit. Therefore, a finer way to study
the similarity between given TV pairs is to look at the number of model layers with an internal angle
above a fixed threshold ϕi > ϕt. Setting ϕt = 75◦, we find that the intuitively correlated tasks
have fewer layers whose angle is above ϕ, while the less related task pairs have many such layers.
Comparisons of the angles using this model can be found in the App.Fig.8.

3.2 SCALING EFFECTS UNDER MULTIPLE TASK INTERACTIONS

Having gained insight into pairwise Task Vector interactions, we turn to study model degradation
when editing with a large number of TVs at once:

θTV = θ0 +

N∑
i=1

αi · τi (6)

As plotting the model performance as a function of {αi} no longer fits on a 2D heatmap, we turn to
another evaluation method. We use a constant magnitude αc and add many Task Vectors with the
same magnitude. We treat here erasing single CIFAR-100 classes as our target task, and classification
accuracy on the last 50 CIFAR-100 classes as our control task. Using this setup leaves us with 50
task vectors to study, one for each of the first 50 classes. The results can are shown in Fig. 2.

We can see that up to a significant number of vectors (15 TVs), the accuracy degradation is linear as
a function of the number of subtracted TVs. The degradation cannot, of course, remain linear for
an arbitrarily high number of subtractions as the accuracy is bounded from below by zero. Yet, the
close linear fit provides a strong indication that the linear interaction pattern is dominant over the
non-linear interaction pattern. Our simple mathematical model suggests a simple explanation for the
phenomenon.

Assuming even a small shared average component µ between any given pair of vectors, we may
describe the TVs as drawn from a distribution denoted as follows:

τi ∼ N (µ,Σ) (7)
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Summing many TVs, all with magnitude αc we have:

N∑
i=1

αc · τi ∼ N (αc · µ ·N,α2
c ·Σ ·N) (8)

In the case of many such TVs, the mean term µ grows linearly while the standard deviation grows as
square root

√
N . Therefore, for large values of N the mean dominates over the standard deviation,

and the linear interaction pattern is dominant.

4 MITIGATING CONTROL TASK PERFORMANCE DEGRADATION VIA
MULTI-TASK ARITHMETIC

In the last section, we saw that the control task performance impacts accumulate linearly at scale,
making it difficult to apply multiple TV edits. In this section, we investigate whether this degradation
can be mitigated. We survey four solutions using either existing methods or simple modifications
to the TV techniques, and conclude that none of them work well enough to allow the practical
application of TV-based concept erasure at scale.

Non-Linear TV Combination. The standard way to combine TVs is using simple algebric vector
addition in the weight space. It might be the case, though, that other notions of combination such as
non-linear TV combinations may better preserve the control task accuracy. In fact, such methods
have already been proposed for model merging, where edits aim to represent global improvement
rather than changes to a specific concept or class. In the model merging case, we aim to reap the
benefits of all the fine-tuned instances together Wortsman et al. (2022a). Yet, we can also evaluate
these techniques for narrow tasks vectors such as ones finetuned on a single class. We therefore
evaluate 4 alternatives for parameter-wise TV combination: (i) Linear - regular linear addition of
the model weights (Baseline). (ii) Sparse - we sparsify the TVs such that each vector contains only
the weights of the top p percentiles of TV parameters, sorted by magnitude, then add the sparse
TVs linearly as in the standard method. The precentile p is varied to inspect different points on the
control-target tradeoff. (iii) Median - Similar to Linear but taking the median rather than the sum of
each of the parameters. A global magnitude factor can be used to better explore the trade-off between
the control task performance and the target task performance. (iv) Tie merging Yadav et al. (2024) -
A leading method for combining positive TV edits. We find that all TV combination methods give a
similar control-target trade-off (Fig. 3, App.D for implementation details).

Figure 3: Four TV combination methods give
a similar control-target tradeoff. We wish to
get better control accuracy for a given target task
(Here, concept erasure. Lower is better.) perfor-
mance trade-off. Yet, different TV combinations
methods performance are giving a similar control-
target trade-off curve.

Figure 4: Per-TV edit strengths give a similar
control-target tradeoff. We plot the control task
accuracy and target task (Here, concept erasure.
Lower is better.) performance tradeoff, once with
equal magnitude for each TV (Blue) and once
when randomizing a different magnitude for each
TV (Red).
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Learnable Task Vector weights. Applying all Task Vectors with the same magnitude is usually
enough to ensure the edit is applied for all concepts, assuming the magnitude is large enough. Yet,
since the different TV edits may affect one another, the trade-off between the control task performance
Accctrl and the target task performance Acctarget could potentially benefit from better optimization of
the TV weights. We wish to find optimal weights, and formulate the problem as follows:

argmax
α

Accctrl(θTV ;α) + λ∥Acctarget(θTV ;α)∥22 (9)

Here Acctarget(θTV ;α) is the concept erasure performance (minus accuracy) on all of the target tasks,
and Accctrl(θTV ;α) is the accuracy of the backbone classifier on 50 unrelated classes. The parameter
λ ∈ R controls the relative importance of the control task performance, allowing us to inspect the
control-target trade-off. Using this loss function we aim to find a per task vector (αi) vector that can
minimize the erased accuracies while preserving control accuracy as much as possible.

As optimizing this function with stochastic gradient descent did not provide significant improvement,
we chose to illustrate the control-target trade-off for many random magnitudes (αi). As can be seen
in Fig. 4, per TV magnitudes may provide only a slightly better tradeoff. We conclude that learned
magnitudes cannot sufficiently address the problem of degradation when applying many narrow TVs.
Implementation details can be found in the App.D.

Task Arithmetic in the Tangent Space Ortiz-Jimenez et al. (2024). A recent work suggests that
TV arithmetic works partly because of weight disentanglement. Namely, they claim that different TV
mainly change different parameters in the model. The authors propose a method to encourage weight
disentanglement through learning TVs in the Neural Tangent Space Ortiz-Jimenez et al. (2024);
Jacot et al. (2018). We investigate using this method as another option to mitigate the degradation of
the control task performance. In Fig. 7 we plot the control task performance and the erasure task
performance for different numbers of combined TVs. We find that the Tangent Space TV method
does not mitigate the linear degradation in the control performece.

Joint TV Training. A possible simple modification to the TV setting is to train a single TV aimed
at jointly performing multiple target tasks together, instead of training N vectors individually and
combining them later. While this technique may convey some desired properties of the TV technique,
like the the option to control and reverse the edit amplitude; it does not allow other benefits like
combining TV from different sources. To evaluate this technique potential to better preserve a control
tasks performance, we train a TV on many tasks together, and compare the control-target performance
trade-off it provides to that of the TV baseline techniques. We can see in Fig. 6 (Co-Training)
that unlike the previous solutions explored in this section, this technique does provide a somewhat
better trade-off, and we recommend it as a practical solution for somewhat mitigating control task
degradation when possible. Yet, this solution is still not enough to allow the application of TV-based
erasure for large values of N .

5 ADAPTIVE TASK VECTOR SELECTION

In the previous section, we found that existing solutions cannot sufficiently preserve control task
performance under multiple task edits. In this section we present a possible solution. Since combining
a large number of TVs significantly degrades the control task performance, we aim to decide during
inference time which TV should be applied for a given sample. Our main idea is that for a given
prompt, different TVs will differently affect the denoising process; and that this difference can be
tracked during inference time.

Adaptive test-time selection of Task Vector. Our technique relies on a simple assumption: a Task
Vector that is irrelevant to a given generation would tend to produce a smaller semantic difference in
the output image compared to relevant one TV. Identifying irrelevant Task Vectors would enable us
not to apply them to a given generation, and would prevent the degradation they cause the control task
accuracy. Therefore, we first apply each Task Vector edit on its own to find which TVs are relevant.

Namely, we first generate an image using the original model Gθ0 and the text prompt p:

X0 = Gθ0(p) (10)

7
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Algorithm 1 Adaptive Task Vector Edits for Diffusion Models

Input: Prompt p, set of Task Vectors {τi}Ni=1, original diffusion model Gθ0 (with parameters
θ0), similarity threshold sT , denoising switching time step tswitch, TV magnitude α
Output: Generated image with selective TV application

1: Generate baseline image: X0 = Gθ0(p)
2: for each Task Vector τi do
3: Initialize generation: Xt = Gθ0(p, t) ▷ Generate up to time step tswitch w. original model
4: Continue generation from t with the edited model: Xi = Gθ0+ατi(Xt)
5: Compute similarity: si = sim(X0, Xi) ▷ Using CLIP embeddings
6: end for
7: Initialize combined TV: τcomb = 0
8: for each similarity score si do
9: if si > sT then

10: τcomb = τcomb + ατi ▷ Add relevant TVs
11: end if
12: end for
13: Xfinal = Gθ0+τcomb

(Xt)
14: return Xfinal

Figure 5: Mid-process Selective TV allows to select only the TV edits that are relevant to the
prompt at hand. (Top row) The full diffusion process with the original unedited model. (Middle
row) The diffusion process, when editing the model at time t = 30 with a relevant TV edit (subtracting
"Van Gogh"). The final generation has low similarity to the image generated by the original model.
(Bottom row) The diffusion process, when editing the model at time t = 30 with a less relevant TV
edit (subtracting "Killian Eng"). Accordingly, the final generation has a higher similarity to the image
generated by the original model.
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Table 1: ROC AUC values for detecting relevant TV for image generation with different prompts. In
each prompt, the different examined artistic styles are inserted into the place denoted by #. Additional
results can be found in the Appendix.

Prompt # A # painting of a cat A biblical scene by # #-themed still life

ROC AUC 0.946 0.861 0.911 0.908

Next, we generate N images, using the N given TVs. We start with the original model, and switch to
the edited model at time t of the de-noising process:

{Xi} = Gθi(t)(p), θi(t) =

{
θ0, if t < tswitch

θ0 + α · τi, if t ≥ tswitch
(11)

Finally, we examine the semantic similarity of each of the generated images {Xi} with the baseline
image X0. We evaluate the similarity using cosine similarity of CLIP embeddings, noted by sim:

si = sim(X0, Xi) (12)
As relevant TVs are expected to change the output more significantly, we expect the similarity score
si to be smaller for the TVs that edit concepts relevant to the generation.

Time-selective Task Vectors edits. While we expect irrelevant TVs will only have a small effect on
the generated image, applying such TVs before the first diffusion denoising step may still change the
output image significantly. This happens because the generation does not depend only on the model
but also on the initial noise. Any small intervention at an early timestep changes the initial patterns
formed from that noise, and therefore is somewhat similar to re-seeding the noise pattern. One may
apply the TV edits only at the end of the denoising process, but then it may not have a significant
enough impact on the output image since all of the high-level image features are already formed.
Therefore, we apply each TV edit in the middle of the denoising process at some time tswitch. See
Fig. 5 for illustration and the Tab.2 for empirical ablation.

Evaluation. We begin by demonstrating that our method can identify the relevant TV among a
selection of prompts. We inspect 6 artistic styles—(1) Ajin: Demi-Human, (2) Kelly McKernan, (3)
Kilian Eng, (4) Thomas Kinkade, (5) Tyler Edlin, and (6) Van Gogh — and train a TV for each of them.
We generate an image with prompts related to each artistic style and evaluate our method’s ability to
identify the relevant TV associated with this style (Tab. 1). As users may tune the control-erasure
trade-off by changing the threshold for the inclusion of a given TV, we evaluate our TV selection
method independently from this threshold by using the ROC-AUC metric. Our evaluation shows a
significant ability to identify relevant TV with some prompts and is only somewhat indicative when
using other prompts. Yet, even an imperfect ROC AUC score allows us a to discriminate between
completely irrelevant TVs and TVs that might be relevant, significantly reducing the number of
irrelevant TVs we would need for a given generation.

To illustrate the potential of our technique for achieving a better control-target trade-off we plot in
Fig.6 the trade-off between the generation accuracy on the target concept (the target task is erasure,
so lower is better) and the control accuracy of generating unrelated concepts which we aim to erase.
Both accuracies are measured using the CLIP similarity between the text prompt and the generated
image. We compare our method in Fig.6 to two baselines: (i) simple TV addition (ii) Co-training a
joint TV Training (as described in Sec.4). We can see that while co-training mitigates only a bit the
adversarial effect of TV subtraction, our method preserves the control accuracy much better. The
implementation details for this experiment can be found in App.D.

Ablation study:

Edit Time in the denoising process: As mentioned earlier, during TV selection, we suggest starting
the generation with the original model Gθ0 and moving to the edited model Gθ0+α·τi in the middle
of the diffusion denoising process at time tswitch. We ablate different choices of tswitch in Tab. 2
and find that an intermediate timestep intervention is indeed beneficial.

TV Edit Strength: A second factor that might affect our ability to identify the relevant TVs is the
magnitude α with which we inspect the different TVs. We ablate this choice in Tab. 3.
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Table 2: ROC AUC values for detecting relevant TV for image generation with intervention times-
tamps (out of 50 denoising steps)

tswitch 0 10 20 30 40 50

ROC AUC 0.889 0.922 0.946 0.874 0.829 0.500

Table 3: ROC AUC values for detecting relevant TV for image generation with TV scaling values.

α 0.5 1.0 2.0 3.0 4.0 5.0

ROC AUC 0.732 0.904 0.946 0.889 0.661 0.548

6 DISCUSSION AND LIMITATIONS

Figure 6: Our method of inference-time selection
of TV allows us to reduce the accuracy of the
concept we wish to erase (Target Accuracy, lower
is better) while maintaining the generation qual-
ity of other concepts (Control Accuracy, higher
is better). We plot the Target Accuracy and Con-
trol Accuracy trade-off for our method, simple TV
arithmetic, and joint training of different tasks.

Relation to input and output filtering meth-
ods. Robust edits to generative models is
likely to combine many components, with TV
edits being just one of them just one of them.
One of the advantages of TV edits is their infer-
ence time controllability Gandikota et al. (2023).
Additionally, as Task Vectors are defined based
on a target task; and therefore may be more ro-
bust than classifiers Pham et al. (2024). Yet,
additional techniques to selectively applit edits
may also help in reducing the degradation effect
Task Vectors have on the control accuracy.

Runtime Considerations for Adaptive Task
Vector Subtraction. The method presented in
Sec.5 might exhibit a somewhat slower runtime
with respect to the usual diffusion process. Dif-
fusion models tend to be large and may take a
long time to load and unload from GPUs. That
is, even though we do not run the entire diffusion
process for every generator, the GPU memory
considerations may induce a runtime bottleneck
for the presented algorithm. Therefore, deploy-
ing this algorithm at scale may be more efficient: when many queries are being executed in parallel.
In this case,the TVs can be tested in large batches, spreading out the GPU bottleneck across many
machines.

Extension to Other Models and Edit technique. Extension of our study to other generative
models, such as LLMs is an exciting future direction . In addition, other inference time edit methods
in text-to-image model are likely to have multi-task interactions as well, are may suffer from similar
issues applying many edits at the same time.

7 CONCLUSION

We started this study by exploring the effects of multiple task vector interactions on a model’s
control task performance. Motivated by this, we turned to investigating how model degradation may
be mitigated when subtracting many different task vectors from the same model. We explored a
large variety of methods and found that simple or existing technique do not sufficiently mitigate
the degradation of the model on tasks unrelated to the applied TV edits. Therefore, we suggusted
an adaptive technique that finds the relevant TV to be applied to a diffusion model at the inference
time. Finally, we evaluate our suggested method and find it is effective in mitigating the degradation
generations unrelated to the applied TV edits.
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REPRODUCIBILITY STATEMENT

We include implementation details for our analysis experiments and code for the suggested method.

IMPACT STATEMENT

Studying edits to foundation models can impact society in various ways. On one hand, it might
enhance the controllability of these models and reduce their potential to cause social harm. On the
other hand, improving their quality could introduce new harmful capabilities. This work, however,
focuses on the fundamental interactions between tasks rather than any specific capabilities. Therefore,
we do not believe its impact significantly differs from that of the majority of studies investigating
foundation models.

A MULTI-TASK INTERACTION WITH TASK ARITHMETIC IN THE TANGENT
SPACE

Figure 7: The control task degrades linearly with increasing the amount of subtracted TVs
also for Task Arithmetic in the Tangent Space TVs. Control task accuracy (50-classes CIFAR
classification) of a CLIP backbone as function of the number of TV edits applied with a fixed
magnitude each, even when using the tangent space technique technique by Ortiz-Jimenez et al.
(2024). When editing an increasing number of TVs, the control task performance linearly degrades
up to a significant amount of vectors. We examine two different scaline coefficients depicted in the
title of each figure.
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B PAIR-WISE INTERACTION TYPE FOR A CLIP CLASSIFIER

Figure 8: The pair-wise interaction type of different Task Vectors correlates with the semantic
similarity of the tasks. For each of Task Vectors we report (i) The permanence heatmap based
on the two TV edit magnitudes. (ii) The non-linearity score defined as the average normalized
difference between diagonal and off-diagonal (edge) elements in the similarity matrix (iii) The total
angle between the Task Vector, and (iv) The number layer with internal angle of above 75 degrees
threshold between the two Task Vectors. As we can see, the total angle and number of layers above
the threshold correlate with non-linearity as seen in the graph and quantified by our non-linearity
score.
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C PAIR-WISE INTERACTION TYPE FOR A STABLE DIFFUSION

We include heatmaps for the interaction of TV applied to a stable diffusion model in Fig.9. We note
that class-specific TV addition degrades the model similarly to TV subtraction.

Figure 9: Interaction maps for positive (addition) and negative (subtraction) TV edits to a stable
diffusion model.
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D IMPLEMENTATION DETAILS

Scaling Under Multiple Task Interactions. To generate the 50 TVs necessary for this experiment,
we finetuned the classification head of a classifier with a CLIP ViT-B-32 backbone independently on
50 different CIFAR-100 classes, each for 3 epochs with a batch size of 128 and learning rate of 1e-5.

Non-Linear TV Combination & Learnable Task Vector weights. In each of these experiences, we
examine 5 Task Vectors, fine-tuned for a single class out of 5 CIFAR100 classes (out of the first 50).
We use accuracy on the last 50 classes as the control task. We scan the magnitude hyperparameter
sporadically to generate relevant values for control task performance.

Control Task for Stable Diffusion. We use the generation quality (measured by CLIP) as the control
task accuracy for the SD1.4 foundation model: "Alphonse Mucha", "H.R. Giger", "Gustav Klimt",
"Hayao Miyazaki", "M.C. Escher", "Yoshitaka Amano", "Salvador Dalí", "James Gurney", "Jean
Giraud (Moebius)", "John Singer Sargent", "airplane", "automobile", "bird", "cat", "deer", "dog",
"frog", "horse", "ship", "truck".

Task Vectors. We train all task vectors using 5000 epochs of a standard SD1.4 finetuning procedure,
using 10 images for each reported concept.

Adaptive Task Vector Selection. For Fig.6 we examine these tasks pairs: ("ajin demi human", "kelly
mckernan"), ("kilian eng", "thomas kinkade"), ("thomas kinkade", "tyler edlin"), ("tyler edlin", "van
gogh"), ("van gogh", "ajin demi human"), ("kelly mckernan", "kilian eng").

We use a single concept TV for “Our” and “Simple addition”, and train task vectors for concept pair
in “Co-Training”. The presented results are averaged across the different pairs that we may use.
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