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Abstract

High-quality pre-trained text representations001
are powerful tools for various downstream002
tasks. However, dialogue representation learn-003
ing has received less attention compared to004
tasks such as sentence representation learn-005
ing. This can be attributed to two main chal-006
lenges: 1) the lack of standard evaluation007
benchmarks on dialogue representation learn-008
ing, and 2) the complexity of incorporating009
dialogue corpus into existing representation010
learning paradigms. To overcome these chal-011
lenges, we present the first comprehensive eval-012
uation benchmark called DiaEval (Dialogue013
Representation Evaluation Benchmark), which014
covers 5 datasets across 3 tasks including ac-015
tion prediction, dialogue inference, and re-016
sponse retrieval. These datasets are metic-017
ulously selected to ensure their comprehen-018
siveness and representativeness. Second, we019
propose a new dialogue embedding method020
called WMDC (Weighted Multi-window-sized021
Dialogue Contrastive learning). WMDC lever-022
ages multiple context windows and sample023
reweighting with contrastive learning to obtain024
universal dialogue embeddings. The use of mul-025
tiple context windows allows flexible encoding026
with multiple granularity while the reweighting027
method addresses the anisotropy and lack of028
informativeness issues within the learned di-029
alogue embedding space. Through extensive030
comparison with various competitive baselines,031
WMDC achieves state-of-the-art performance032
on all tasks demonstrating its effectiveness and033
scalability.034

1 Introduction035

Learning universal text representation (Penning-036

ton et al., 2014; Conneau et al., 2017; Cer et al.,037

2018; Reimers and Gurevych, 2019) is proven to038

be effective for various downstream tasks. State-039

of-the-art text representation techniques can attain040

competitive performance with significantly reduced041

training data, in contrast to less effective ones042

(Xiong et al., 2022; Sarkar et al., 2022). Prior 043

research (Wu et al., 2020; Zhang et al., 2020) 044

has highlighted the inherent disparities in linguis- 045

tic patterns between conversations and plain texts, 046

underscoring the potential shortcomings in dia- 047

logue representations. Consequently, addressing 048

this shortfall entails a greater demand for annotated 049

data to achieve comparable performance in natural 050

language tasks involving conversational contexts. 051

However, dialogue-related human annotations are 052

generally much harder and more expensive to con- 053

duct due to their complex and nuanced form com- 054

pared with plain texts or sentences. Therefore, 055

learning proficient general dialogue representation 056

(Liu et al., 2021a, 2022; Bai et al., 2022) becomes 057

an important task, even though it has received rela- 058

tively less attention and remains underexplored in 059

comparison to the domain of sentence representa- 060

tion learning. 061

The availability of a standardized evaluation 062

benchmark (Wang et al., 2018; Nie et al., 2020; 063

Zhang et al., 2022a) is crucial to facilitate the de- 064

velopment of its research field. In the realm of sen- 065

tence representation learning, SentEval (Conneau 066

and Kiela, 2018) plays a vital role by facilitating 067

assessments of sentence embeddings’ capacity to 068

encapsulate diverse aspects of meaning related to 069

textual similarity, inference, and so on. Nonethe- 070

less, there is currently no established benchmark 071

for evaluating dialogue representations. Recent 072

works (Xu and Zhao, 2021; Liu et al., 2021a; Xu 073

and Zhao, 2021) in this area rely on diverse evalua- 074

tion tasks and metrics to assess their efficacy. The 075

diversity of evaluation methods leads to a lack of 076

consistency in evaluation, underscoring the neces- 077

sity for the establishment of a standardized bench- 078

mark. 079

Furthermore, prior dialogue representation learn- 080

ing techniques often lack generality. They suffer 081

from performance degradation when confronted 082

with out-of-domain data, primarily because they 083
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are optimized for specific domains and datasets,084

thereby greatly limiting their applicability in real-085

world situations. Therefore, an imminent need086

arises for universal dialogue representation, which087

is capable of capturing generic information appli-088

cable across a wide spectrum of tasks and domains.089

TODBERT (Wu et al., 2020) and DSE (Zhou et al.,090

2022b) have demonstrated enhanced generalizabil-091

ity by leveraging a diverse set of nine different092

dialogue corpora spanning 60 distinct domains, to-093

taling approximately 0.1 million utterances. They094

employ a contrastive learning mechanism to dif-095

ferentiate dialogue contexts between correct and096

incorrect responses. Nevertheless, both approaches097

fall short in fully harnessing the training dialogue098

datasets, failing to acquire a fine-grained multi-099

granularity representation, due to their approach of100

contrasting a single utterance with a fixed window101

size context.102

Dialogue corpora frequently display imbalanced103

distributions. An examination of several widely104

used dialogue datasets reveals that the top 1% most105

frequent utterances represent a substantial portion,106

ranging from 15% to 30% of the entire corpus (re-107

fer to Figure 1). These frequently occurring ut-108

terances typically lack substantial information and109

are applicable across a wide array of dialogue con-110

texts. Optimizing the standard contrastive learn-111

ing object on these datasets can have detrimen-112

tal effects, including: a) encouraging a significant113

portion of dialogue embeddings clustering around114

high-frequency utterances, resulting in an unsatis-115

fying anisotropic embedding space; b) implicitly116

drawing distinct dialogue contexts closer together,117

leading to a less informative embedding space; c)118

introducing a high false negative rate within a sin-119

gle batch, impeding the optimization process.120

To solve the problems mentioned above, in this121

paper, we first present a new Dialogue Repre-122

sentation Evaluation Benchmark called DiaEval.123

This benchmark consists of five datasets, covering124

three distinct tasks designed to assess the dialogue125

understanding capabilities of different representa-126

tion learning methods. Furthermore, we propose127

WMDC – a new Weighted Multi-window-sized128

Dialogue Contrastive learning method. We bet-129

ter utilize existing dialogue corpora by contrast-130

ing unfixed window-size contexts that share the131

same response. We project diverse window-sized132

embeddings into different representation spaces to133

alleviate the inherent semantic gap. Additionally,134

we identify and tackle the issue of distribution im-135

balance in existing dialogue corpora by utilizing 136

a reweighted contrastive learning object based on 137

inverse response frequency. Through extensive ex- 138

periments, our proposed method achieves SOTA 139

performances on all tasks among a broad range of 140

baselines and shows strong scalability.1 141

Our main contributions can be summarized as 142

follows: 143

• We introduce a novel dialogue representa- 144

tion evaluation benchmark (DiaEval). This 145

benchmark encompasses five datasets, cover- 146

ing three tasks commonly employed for as- 147

sessing dialogue understanding. 148

• We propose WMDC, a sample-reweighted 149

multi-window-sized dialogue contrastive 150

learning method.WMDC not only optimizes 151

corpus utilization but also effectively tackles 152

the challenges presented by distribution 153

imbalances in dialogue corpora, including 154

anisotropic uninformative embedding spaces 155

and optimization issues. 156

• We collect a dialogue corpus consisting of 17 157

million dialogues and 37 million utterances 158

used for unsupervised dialogue representation 159

learning. We demonstrate the efficacy and the 160

scalability of our proposed method through 161

comprehensive experiments. 162

2 Related Work 163

2.1 Contrastive Learning 164

Learned embeddings in PLMs can cluster at a nar- 165

row cone in the vector space rather than distribute 166

uniformly, which can severely limit representation 167

quality. This anisotropy problem is naturally con- 168

nected to uniformity (Wang and Isola, 2020) and 169

can be intuitively eased by optimizing the con- 170

trastive learning object. Contrastive learning aims 171

to learn effective representation by pulling together 172

semantically close neighbors (positive pair) while 173

pushing away the unrelated ones (negative pair) 174

(Hadsell et al., 2006). SimCSE (Gao et al., 2021) 175

greatly advances state-of-art sentence embeddings 176

by simply leveraging dropout as the minimal pos- 177

itive pair construction method and in-batch nega- 178

tives. In the same vein, DiffCSE (Chuang et al., 179

2022) is an instance of equivariant contrastive learn- 180

ing (Dangovski et al., 2022). It learns sentence 181

1The code will be available here.
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embeddings sensitive to specific types of augmen-182

tations. The edited sentence is obtained by firstly183

stochastically masking out the original one and then184

sampling from a masked language model. Liu et al.185

(2023); Seonwoo et al. (2023) extend contrastive186

learning with ranking information among sentences187

to learn more fine-grained semantics. Other re-188

cent works (Wang et al., 2022; Yan et al., 2021;189

Liu et al., 2021b; Carlsson et al., 2021) explore190

to contrast different views of the same sentence191

or document, by data augmentation or different192

copies of models. Contrastive learning can be193

applied to various topics beyond text embedding,194

like classification (Zhou et al., 2022a; Chen et al.,195

2022), named entity recognition (Ying et al., 2022;196

Huang et al., 2022), multi-modal alignment (Rad-197

ford et al., 2021; Guzhov et al., 2022; Zhang et al.,198

2022b).199

2.2 Dialogue Representation Learning200

Pretrained with response selection task, TODBERT201

(Wu et al., 2020) and DSE (Zhou et al., 2022b)202

learn universal dialogue representation by employ-203

ing contrastive objectives on massive dialogue cor-204

pora. They differ in positive pair construction meth-205

ods. TODBERT uses an utterance and the concate-206

nation of all its previous utterances in the same207

dialogue as positive pairs, while DSE only uses208

two consecutive utterances to enhance the embed-209

ding. Also, there are studies addressing the non-210

flat nature of dialogues (Bonial et al., 2020; Bai211

et al., 2021, 2022; Banarescu et al., 2013). They212

excel in abstracting core semantic knowledge and213

reducing data sparsity by leveraging AMR (Ab-214

stract Meaning Representation) or designing new215

parsing schemes. However, parsing unstructured216

dialogues into structured data is computationally217

expensive and prone to errors, sacrificing its scala-218

bility for dialogue pretraining.219

3 DiaEval: Dialogue Representation220

Evaluation Benchmark221

In this section, we introduce DiaEval, a bench-222

mark designed for assessing the quality of univer-223

sal dialogue representations. Drawing inspiration224

from SentEval, DiaEval comprises 5 datasets en-225

compassing a variety of dialogue-level tasks, in-226

cluding action prediction, dialogue inference, and227

response selection. Furthermore, we deliberately228

select datasets with diverse topics and domains.229

The choice of these tasks is based on a consensus230

within the community regarding the most suitable 231

evaluations for assessing universal dialogue under- 232

standing. Additionally, these three tasks are pivotal 233

in the context of industrial applications of dialogue 234

systems. The action prediction task informs the 235

system about the aspect in which to respond, the 236

response retrieval task seeks an appropriate answer, 237

and the inference tasks assess the consistency of 238

the answer with the dialogue history. 239

DiaEval offers a comprehensive evaluation 240

framework for assessing the quality of dialogue 241

representations and aims to facilitate the develop- 242

ment of dialogue representation learning methods. 243

The detailed statistics are shown in Table 1. 244

3.1 Evaluation Settings 245

Our benchmark focuses on dialogue-level tasks and 246

comprises two types: classification and retrieval. 247

For classification tasks, including action prediction 248

and dialogue inference, we add one MLP layer on 249

top of the fixed encoder and only tune this added 250

layer. We use grid-search on the validation set to 251

find the best hyperparameters to avoid the random- 252

nesses (Conneau and Kiela, 2018). To evaluate the 253

encoder’s performance on a specific task, we cal- 254

culate the average score across all datasets in that 255

task, allowing for different hyperparameters for 256

each dataset. For retrieval tasks, DSTC7-Ubuntu, 257

we calculate the cosine similarity between two rep- 258

resentations without the need for any additional 259

parameters. 260

3.2 Action Prediction 261

Action prediction uses the most recent dialogue his- 262

tory as input to predict the action labels of the next 263

utterance. This task is formulated as a multi-label 264

classification problem because a dialogue system 265

response can contain multiple actions, such as in- 266

forming and inquiring simultaneously. 267

We concatenate the most recent dialogue history 268

X , pass it through the encoder F , and classify the 269

encoding using MLP before applying a Sigmoid 270

layer. The output of this process is the action label 271

A. 272

A = Sigmoid (MLP (F (X))) . (1) 273

The model predicts an action label if its proba- 274

bility exceeds 0.5. 275

DSTC2 (Henderson et al., 2014), introduced as 276

the second dialogue state tracking challenge, is a 277

human-machine interactive dataset labeled with 19 278
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Task Category Datasets # Samples
(train / val / test) # Labels Metrics

Action Prediction GSIM 11,831 / 2,837 / 6,505 13 Macro F1
Macro F1DSTC2 20,130 / 6,856 / 17,546 19

Dialogue Inference IC-TOD 2,553 / 319 / 318 2 AccuracyDECODE 31,011 / 1,650 / 1,650 3
Response Retrieval DSTC7-Ubuntu - / - / 6,000 - TOP@N

Table 1: Summarization of datasets and tasks included in DiaEval.

actions related to restaurant search. It consists of279

dialogues under a spoken dialogue system, where280

the utterances are automatically transcribed using281

ASR (Automatic Speech Recognition) techniques.282

This can result in transcription errors and make283

natural dialogue understanding challenging. We284

utilize the processed dataset by Wu et al. (2020).285

GSIM (Shah et al., 2018a) is a human-rewrote286

machine-machine interactive dataset, with 3k di-287

alogues in the restaurant and movie domains. It288

contains 13 different system dialogue acts and289

was collected using an M2M approach (Shah290

et al., 2018b), which combines self-play and crowd-291

sourcing steps to obtain high-quality dialogues with292

considerable diversity, coverage, and correctness.293

Similar to the above dataset, we use the processed294

data provided by Wu et al. (2020).295

3.3 Dialogue Inference296

Dialogue inference involves detecting contradic-297

tions within a dialogue, such as inconsistencies in298

persona, logic, and knowledge. The goal is to help299

dialogue systems determine whether a response300

aligns with the dialogue history.301

We approach this task as a multi-class classifica-302

tion problem. We use a softmax function applied to303

the output of a multi-layer perceptron (MLP) to ob-304

tain the prediction probabilities. Denoting the label305

set as L, the input text as X , and the dialogue en-306

coder F , the formulation is the same as the action307

prediction task:308

L = Softmax (MLP (F (X))) . (2)309

The label with the highest probability is consid-310

ered the predicted label.311

IC-TOD (Qin et al., 2021) is proposed to detect312

various types of consistency issues in task-oriented313

dialog systems. It spans three distinct tasks in the314

in-car personal assistant space: calendar schedul-315

ing, weather information retrieval, and point-of-316

interest navigation. The type of inconsistency is317

annotated. These types of inconsistencies include 318

dialogue history inconsistency, user query inconsis- 319

tency, and knowledge base inconsistency. However, 320

in our benchmark, we only focus on the first two 321

types and disregard the knowledge base. A dia- 322

logue is considered inconsistent if it contradicts 323

either the dialogue history or the user query. 324

DECODE (Nie et al., 2021) consists of di- 325

alogues labeled as either contradiction or non- 326

contradiction. The dataset is collected from four 327

pre-selected open-domain dialogue source corpora, 328

encompassing both human-human and human-bot 329

interactions. These dialogues cover a wide range 330

of conversational topics and require logical and 331

context-related reasoning beyond personal facts. 332

To ensure computational efficiency, we only con- 333

sider dialogues with less than 256 tokens for this 334

benchmark. 335

3.4 Response Retrieval 336

Response retrieval assesses models’ ability to se- 337

lect the most appropriate response from a candidate 338

pool based on a given dialogue history. The model 339

takes the concatenated dialogue history as input 340

and aims to retrieve the next utterance that is con- 341

textually relevant and coherent with the previous 342

dialogue turns. 343

We frame it as a ranking problem. We calculate 344

similarity scores between the given history C and 345

response Ri from the candidate pool as follows: 346

ri = Cosine (F (C), F (Ri)) . (3) 347

DSTC7-Ubuntu (Lowe et al., 2017) is an up- 348

dated version of Ubuntu Dialogue Corpus, which 349

is a large dataset consisting of multi-turn dialogues 350

between two participants. Training, valid, and test 351

sets are separated based on time. This dataset has 352

gained popularity due to its long context, large size, 353

and approximate power law relationship between 354

the number of dialogues and turns per dialogue. In 355

our evaluation, We utilize both the validation and 356
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test sets to assess the model’s ability to retrieve357

suitable responses in a zero-shot retrieval scenario.358

This means that the model is evaluated without any359

prior training on the dataset, testing its capability360

to select appropriate responses solely based on the361

given dialogue context.362

4 Methods363

In this section, we delve into the datasets employed364

for pretraining and introduce our dialogue embed-365

ding method, WMDC. WMDC is composed of two366

pivotal elements: positive pair construction tech-367

niques and the contrastive loss function reweighted368

with inverse response frequency.369

4.1 Unsupervised Training Corpus370

To ensure a thorough and impartial comparison,371

we employ the identical training corpus as TOD-372

BERT, which contains approximately 0.1 million373

dialogues, and 1.4 million utterances, spanning374

across 60 domains.375

Scalability becomes a crucial consideration in376

the progress of dialogue modeling. To assess our377

method’s scalability, we’ve compiled a significantly378

larger dialogue corpus, consisting of 17 million379

dialogues and 37 million utterances. In comparison380

to the dataset mentioned earlier, this training corpus381

contains approximately 172 times more dialogues382

and 27 times more utterances.383

Details of both corpora can be found in Ap-384

pendix C.385

4.2 Our Method: WMDC386

In this sub-section, we present WMDC, a sample-387

reweighted multi-window-sized dialogue con-388

trastive learning method. It contains two main parts:389

a new weighted contrastive loss, and a new positive390

pair construction method.391

4.2.1 Weighted Contrastive Object392

Imbalanced data distribution is a common occur-393

rence in real-world scenarios. We analyze several394

most popular dialogue datasets, finding no excep-395

tions. As shown in figure 1, the top 1% of most396

repetitive expressions account for a substantial pro-397

portion (15% to 30%) of the entire dataset.398

NT-Xent loss (Chen et al., 2020) is a widely399

adopted loss function for contrastive learning. It400

optimizes the model by bringing together the se-401

mantically related pairs while pushing away the402

unrelated ones. However, it encounters challenges403

Figure 1: Data imbalance in the existing dialogue cor-
pus. We arrange the utterances in descending order of
their frequency. The top 1% of the most frequent ut-
terances constitute a substantial portion of the entire
corpus.

when dealing with imbalanced data. In the embed- 404

ding space, the more frequent an utterance is, the 405

more utterances will be pulled into its vicinity, re- 406

sulting in the formation of numerous large clusters 407

of vectors. This leads to an anisotropic embed- 408

ding space where vectors are unevenly distributed 409

in terms of directions, significantly limiting repre- 410

sentation expressiveness, as noted in (Gao et al., 411

2021). Furthermore, these embedding clusters can 412

contain distinct dialogue contexts, due to shared 413

responses. Most common expressions like "yes" 414

or "thank you" carry limited information, which 415

further diminishes the informativeness of the em- 416

beddings as illustrated in Appendix 5. Finally, 417

unsupervised contrastive learning always replies 418

to big batch sizes to boost its performance. How- 419

ever, as we increase batch sizes, the potential for an 420

elevated false negative rate arises due to the pres- 421

ence of a growing number of appropriate responses 422

within a single batch. Optimization becomes chal- 423

lenging when the data is riddled with false labels. 424

To tackle this challenge, we enhance the NT- 425

Xent loss by incorporating sample reweighting 426

based on the inverse response frequency. The pri- 427

mary goal is to allocate less optimization emphasis 428

to text pairs that involve frequently occurring utter- 429

ances. This approach offers a dual advantage: it 430

encourages the dispersion of clustering vectors, re- 431

sulting in a more isotropic embedding space, while 432

also increasing the informativeness of embeddings 433

by increasing the separation between distinct di- 434

alogues. In unsupervised learning datasets, the 435

presence of false negatives is inevitable. However, 436

since we assign relatively low weights to false neg- 437

atives, their impact on the optimization process is 438

mitigated. 439

The formulation of the weighted contrastive 440
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Figure 2: An illustration of MWPP. MWPP constructs multiple positive samples for the same response A3 by
concatenating different window-sized consecutive turns adjacent to it. ‘+’ means the concatenation of utterances.

learning object can be found in Appendix A.441

4.2.2 Positive Pair Construction442

We consider consecutive dialogue turns as context443

and define the positive pair as the context and its444

immediately following response. (See Figure 2)445

In the initial step, we define a set of window446

sizes denoted as W = {1, 2, 3, . . .}, and we se-447

lect the window size iteratively. Following this,448

we pick one utterance from the dialogue as the449

response and establish a positive context by con-450

sidering the last window-sized turns leading up to451

that response. All other combinations are catego-452

rized as negatives. This approach to generating453

contrastive pairs is named MWPP, an abbreviation454

for Multiple Window-sized Positive Pairs.455

Directly contrasting encodings of the same re-456

sponse with those of different window-sized con-457

texts can be problematic since these contexts differ458

in information richness. We must retain the in-459

herent semantic distinctions among contexts from460

various turns while preserving their inferential sim-461

ilarity. Drawing inspiration from Wang and Li462

(2022), we incorporate linear layers to map differ-463

ent window-sized text pairs onto distinct embed-464

ding spaces. This enables flexible semantic match-465

ing during the training phase, enhancing our ability466

to capture semantics at various levels of granularity467

within the dialogue data. It is important to empha-468

size that projection layers are omitted during the469

evaluation phase.470

5 Experiments471

We initialize our training checkpoint with the pre-472

trained BERTbase and RoBERTabase models. To473

derive dialogue representations, we compute the474

average of the input token encodings from the fi-475

nal layer of the transformer encoder. During the476

training phase, we introduce multiple contrastive477

heads at the upper part of the encoder to enable 478

contrastive learning at various levels of semantic 479

granularity. Training details can be seen in D 480

5.1 Baselines 481

We compare WMDC against several text repre- 482

sentation models, including BERT and RoBERTa, 483

which serve as widely adopted baselines for lan- 484

guage understanding tasks. These models are pre- 485

trained on extensive general text corpora. Addition- 486

ally, we compare WMDC to SimCSE-unsup (Gao 487

et al., 2021), which employs contrastive learn- 488

ing to acquire representations. It utilizes dropout 489

as a minimal data augmentation strategy to con- 490

struct positive pairs and in-batch negatives. Sim- 491

ilarly, SimCSE-sup (Gao et al., 2021) leverages 492

entailments as positives and contradictions as hard 493

negatives. For dialogue understanding, TOD- 494

BERT (Wu et al., 2020) employs contrastive learn- 495

ing by considering a random response and the con- 496

catenation of all its history as positive pairs. In 497

contrast, DSE (Zhou et al., 2022b) defines positive 498

pairs as two consecutive utterances within the same 499

dialogue and treats all other pairs as negatives. 500

5.2 Results and Analysis 501

Action Prediction Table 2 shows the results for 502

the action prediction task. Notably, WMDC con- 503

sistently outperforms all baselines on both datasets 504

by a substantial margin. WMDC surpasses the 505

strongest baselines by 10.3 points on micro F1 and 506

6.3 points on macro F1, highlighting its superiority 507

in capturing the overall meaning and anticipating 508

future information within dialogue contexts. How- 509

ever, it’s worth noting that despite these promising 510

results, the overall performance of the action pre- 511

diction task across all models remains relatively 512

low, underscoring the task’s difficulty and the po- 513

tential for further enhancements. 514
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Model DSTC2 GSIM AVG.
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

BERT 53.1 10.6 49.1 22.4 51.1 16.5
SimCSE-BERTunsup 52.2 10.5 46.4 22.4 49.4 16.4
SimCSE-BERTsup 52.9 10.9 47.2 21.7 50.1 19.0
TOD-JNT-BERT 52.9 12.7 55.1 30.0 54.0 21.3
DSE-BERT 52.0 12.6 50.4 25.7 51.2 19.1
WMDC-BERT 56.9 16.8 66.1 38.3 61.5 27.6
RoBERTa 48.7 6.5 37.0 10.5 42.9 8.5
SimCSE-RoBERTaunsup 49.6 7.0 37.2 11.7 43.4 9.3
SimCSE-RoBERTasup 49.9 6.7 37.6 11.8 43.7 9.2
DSE-RoBERTa 48.0 6.8 39.6 12.3 43.8 9.6
WMDC-RoBERTa 50.0 7.3 39.8 13.0 44.9 10.2

Table 2: Results on action prediction task.

Model IC-TOD DECODE AVG.
BERT 69.8 70.4 70.1
SimCSE-BERTunsup 71.1 66.3 68.7
SimCSE-BERTsup 71.4 69.1 70.3
TOD-JNT-BERT 70.8 69.7 70.3
DSE-BERT 70.8 69.6 70.2
WMDC-BERT 73.3 70.7 72.0
RoBERTa 70.1 76.0 73.1
SimCSE-RoBERTaunsup 65.7 72.5 69.1
SimCSE-RoBERTasup 67.3 71.4 69.4
DSE-RoBERTa 73.3 72.5 72.9
WMDC-RoBERTa 74.8 80.7 77.8

Table 3: Results on dialogue inference task.

Model TOP@1 TOP@3 TOP@5 TOP@10
BERT 8.2 14.8 18.8 26.7
SimCSE-BERTunsup 15.3 23.9 28.8 36.6
SimCSE-BERTsup 14.7 23.7 29.3 37.7
TOD-JNT-BERT 7.2 13.8 18.3 26.4
DSE-BERT 16.7 25.9 30.4 38.5
WMDC-BERT 17.3 27.3 33.3 42.4
RoBERTa 5.7 11.8 15.9 23.6
SimCSE-RoBERTaunsup 16.7 26.6 32.5 41.9
SimCSE-RoBERTasup 14.5 24.0 29.4 38.7
DSE-RoBERTa 18.3 27.1 32.2 40.9
WMDC-RoBERTa 19.6 29.7 36.0 46.2

Table 4: Results on response selection task.

Dialogue Inference Table 3 presents the results515

for the dialogue inference task. Our model achieves516

state-of-the-art results on both datasets. Surpris-517

ingly, SimCSE-RoBERTasup, despite being trained518

on extensive NLI data, exhibits relatively lower519

performance in this task. This observation not only520

indicates a large disparity in patterns between plain521

texts and dialogues but also highlights WMDC’s522

capability to comprehend the intrinsic conversa-523

tional semantics and capture the nuances within524

dialogues. 525

Response Selection Table 4 showcases the re- 526

sults for response selection task. Our method out- 527

performs all baselines across all evaluation metrics 528

by a large margin. Notably, the performance gap 529

widens as the value of N in TOP@N increases. 530

We observe that even when contrasting plain texts, 531

there is a significant enhancement in performance 532

at the dialogue level, a contrast to the findings in 533

the dialogue inference task. 534

5.3 Ablation Study 535

In this subsection, we analyze the influence of 536

MWPP and sample reweighting on the performance 537

of action prediction, dialogue inference, and re- 538

sponse retrieval tasks. We evaluate the micro F1, 539

accuracy, and TOP@3 performance for each task. 540

However, we exclude the TOP@1 evaluation met- 541

ric for the response retrieval task due to the pres- 542

ence of multiple false negatives in the candidate 543

pool, which renders this metric unreliable. 544

Sample Reweighting. As illustrated in figure 545

3, it is evident that irrespective of the context win- 546

dow size, the exclusion of sample reweighting from 547

the contrastive learning objective leads to a perfor- 548

mance decline in all tasks. This observation un- 549

derscores the importance of mitigating frequency 550

imbalance issues and emphasizes the effectiveness 551

of our sample reweighting strategy in improving 552

the quality of dialogue representation. 553

MWPP. The arrow line in figure 3 reveals ev- 554

ident positive trends in performance among all 555

tasks with increasing context window size. This 556

phenomenon can be attributed to the fact that as 557

the window size increases, more dialogue-level in- 558

formation is integrated. Notably, we observe that 559

7



Figure 3: Ablation study on MWPP and sample
reweighting. We present the averaged performance
scores across all tasks, demonstrating that both meth-
ods consistently enhance performance. Notably, perfor-
mance levels off as the window size increases.

Figure 4: With the increase in model size, there is a con-
sistent improvement in performance. This improvement
shows no signs of saturation, suggesting the potential
for further enhancements with even larger model sizes.

the performance experiences the most significant560

change when the window size transitions from 2561

to 3, after which the rate of change becomes less562

pronounced. This suggests that if computational563

resources are constrained, a window size of 3 can564

be a viable and efficient choice.565

5.4 Scalibility566

In this subsection, we study the scalability of our567

method regarding the size of the model and the568

training corpus.569

Model Size. To scale up the model, we employ570

the pre-trained encoder of T5 series (Raffel et al.,571

2020), including three different sizes: T5-small,572

T5-base, and T5-large. We fine-tune these mod-573

els using a comparatively smaller corpus obtained574

from TODBERT. From figure 4, the performance575

across all tasks consistently improves as models576

scale up. This improvement can be attributed to577

Figure 5: We present the average performance score
across all tasks. As the corpus size expands, there is a
continuous improvement in performance. This indicates
that increasing the size of the corpus can result in en-
hanced performance across a range of tasks.

the increased capacity and generalization ability 578

stemming from the greater number of parameters 579

in the larger models. 580

Corpus Size. We train the T5 series with a con- 581

siderably larger corpus, as detailed in Appendix C. 582

Figure 5 demonstrates that as the corpus size scales 583

up, the performance on each task consistently im- 584

proves, indicating that the model has not reached 585

saturation yet. This enhancement can be attributed 586

to the greater volume of dialogue information ac- 587

quired during the training phase. 588

We believe that further gains can be achieved by 589

scaling up both the model size and corpus size. 590

6 Conclusion 591

In this paper, we introduce DiaEval, a novel bench- 592

mark designed to assess dialogue representation 593

models’ ability to capture general dialogue seman- 594

tic information. DiaEval consists of 5 datasets cov- 595

ering 3 distinct tasks, namely, action prediction, 596

dialogue inference, and response selection. Fur- 597

thermore, we have identified a frequency imbal- 598

ance issue within existing dialogue corpora that 599

can adversely affect the quality of dialogue rep- 600

resentation. To address this issue and leverage 601

the dialogue corpus more effectively, we propose 602

WMDC, a Weighted Multi-window-sized Dialogue 603

Contrastive learning method. It adjusts sample 604

weights based on response frequency and contrasts 605

the response with multiple adjacent window-sized 606

contexts. Additionally, we conduct extensive exper- 607

iments to demonstrate the effectiveness of our ap- 608

proach and to demonstrate its promising scalability 609

on the extensive dialogue corpus we’ve collected. 610
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Limitations611

Further investigations are necessary to address the612

limitations associated with this approach. Firstly,613

WMDC, along with other universal dialogue rep-614

resentation methods, is data-thirsty. Besides a615

considerable carbon footprint, this poses a chal-616

lenge in some languages where data may be scarce.617

Moreover, experiments in this paper solely employ618

encoder-only architecture. There is no warranty on619

its performance under other model architectures,620

such as the promising decoder-only GPT series.621

As for future directions, we acknowledge that622

real-world conversations often involve multi-modal623

inputs, including audio and images, which are not624

currently included in our benchmark. Furthermore,625

although our method permits an unfixed number626

of turns as context, there remains a fixed hyperpa-627

rameter for maximum input length. In actual con-628

versations, however, dialogue can be much longer.629

Hence, further research is necessary to explore dia-630

logue representation for extremely long, or even un-631

limited input lengths. Lastly, our proposed method632

is limited to English dialogue datasets. The effec-633

tiveness of our approach on dialogue datasets in634

other languages remains uncertain and warrants635

further investigation.636

Ethics Statement637

All the datasets utilized in this paper are sourced638

from publicly available repositories. However, it639

is important to acknowledge that inherent biases640

may still exist due to the nature of the data being641

collected from the Internet. It is crucial to em-642

phasize that this paper does not involve any data643

collection or release, thereby eliminating any pri-644

vacy concerns. Additionally, it is worth noting that645

our model has been trained on GPU, which may646

have environmental implications. Furthermore, this647

research does not involve any form of experimenta-648

tion involving human subjects.649
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madan, and Milica Gašić. 2018. MultiWOZ - a large- 683
scale multi-domain Wizard-of-Oz dataset for task- 684
oriented dialogue modelling. In Proceedings of the 685
2018 Conference on Empirical Methods in Natural 686
Language Processing, pages 5016–5026, Brussels, 687
Belgium. Association for Computational Linguistics. 688

Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai 689
Sankar, Arvind Neelakantan, Ben Goodrich, Daniel 690
Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young 691
Kim, and Andy Cedilnik. 2019. Taskmaster-1: To- 692
ward a realistic and diverse dialog dataset. In Pro- 693
ceedings of the 2019 Conference on Empirical Meth- 694
ods in Natural Language Processing and the 9th In- 695
ternational Joint Conference on Natural Language 696
Processing (EMNLP-IJCNLP), pages 4516–4525, 697
Hong Kong, China. Association for Computational 698
Linguistics. 699

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan- 700
gelia Gogoulou, Erik Ylipää Hellqvist, and Magnus 701
Sahlgren. 2021. Semantic re-tuning with contrastive 702
tension. In International Conference on Learning 703
Representations. 704

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, 705
Nicole Limtiaco, Rhomni St. John, Noah Constant, 706
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, 707
Brian Strope, and Ray Kurzweil. 2018. Universal 708
sentence encoder for English. In Proceedings of 709
the 2018 Conference on Empirical Methods in Nat- 710
ural Language Processing: System Demonstrations, 711
pages 169–174, Brussels, Belgium. Association for 712
Computational Linguistics. 713

Derek Chen, Howard Chen, Yi Yang, Alexander Lin, 714
and Zhou Yu. 2021. Action-based conversations 715
dataset: A corpus for building more in-depth task- 716
oriented dialogue systems. In Proceedings of the 717

9

https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2021.acl-long.342
https://doi.org/10.18653/v1/2021.acl-long.342
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/2022.coling-1.49
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/D19-1459
https://doi.org/10.18653/v1/D19-1459
https://openreview.net/forum?id=Ov_sMNau-PF
https://openreview.net/forum?id=Ov_sMNau-PF
https://openreview.net/forum?id=Ov_sMNau-PF
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/D18-2029
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239
https://doi.org/10.18653/v1/2021.naacl-main.239


2021 Conference of the North American Chapter of718
the Association for Computational Linguistics: Hu-719
man Language Technologies, pages 3002–3017, On-720
line. Association for Computational Linguistics.721

Junfan Chen, Richong Zhang, Yongyi Mao, and Jie Xu.722
2022. Contrastnet: A contrastive learning frame-723
work for few-shot text classification. Proceedings724
of the AAAI Conference on Artificial Intelligence,725
36(10):10492–10500.726

Ting Chen, Simon Kornblith, Mohammad Norouzi, and727
Geoffrey Hinton. 2020. A simple framework for728
contrastive learning of visual representations. In729
Proceedings of the 37th International Conference730
on Machine Learning, volume 119 of Proceedings731
of Machine Learning Research, pages 1597–1607.732
PMLR.733

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,734
Yang Zhang, Shiyu Chang, Marin Soljacic, Shang-735
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.736
DiffCSE: Difference-based contrastive learning for737
sentence embeddings. In Proceedings of the 2022738
Conference of the North American Chapter of the739
Association for Computational Linguistics: Human740
Language Technologies, pages 4207–4218, Seattle,741
United States. Association for Computational Lin-742
guistics.743

Alexis Conneau and Douwe Kiela. 2018. SentEval: An744
evaluation toolkit for universal sentence representa-745
tions. In Proceedings of the Eleventh International746
Conference on Language Resources and Evaluation747
(LREC 2018), Miyazaki, Japan. European Language748
Resources Association (ELRA).749

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc750
Barrault, and Antoine Bordes. 2017. Supervised751
learning of universal sentence representations from752
natural language inference data. In Proceedings of753
the 2017 Conference on Empirical Methods in Nat-754
ural Language Processing, pages 670–680, Copen-755
hagen, Denmark. Association for Computational Lin-756
guistics.757

Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011.758
Chameleons in imagined conversations: A new ap-759
proach to understanding coordination of linguistic760
style in dialogs. In Proceedings of the 2nd Workshop761
on Cognitive Modeling and Computational Linguis-762
tics, pages 76–87, Portland, Oregon, USA. Associa-763
tion for Computational Linguistics.764

Rumen Dangovski, Li Jing, Charlotte Loh, Seung-765
wook Han, Akash Srivastava, Brian Cheung, Pulkit766
Agrawal, and Marin Soljacic. 2022. Equivariant767
self-supervised learning: Encouraging equivariance768
in representations. In International Conference on769
Learning Representations.770

Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie771
Zumer, Justin Harris, Emery Fine, Rahul Mehrotra,772
and Kaheer Suleman. 2017. Frames: a corpus for773
adding memory to goal-oriented dialogue systems.774

In Proceedings of the 18th Annual SIGdial Meeting 775
on Discourse and Dialogue, pages 207–219, Saar- 776
brücken, Germany. Association for Computational 777
Linguistics. 778

Mihail Eric, Lakshmi Krishnan, Francois Charette, and 779
Christopher D. Manning. 2017. Key-value retrieval 780
networks for task-oriented dialogue. In Proceedings 781
of the 18th Annual SIGdial Meeting on Discourse 782
and Dialogue, pages 37–49, Saarbrücken, Germany. 783
Association for Computational Linguistics. 784

Joachim Fainberg, Ben Krause, Mihai Dobre, Marco Da- 785
monte, Emmanuel Kahembwe, Daniel Duma, Bonnie 786
Webber, and Federico Fancellu. 2018. Talking to my- 787
self: self-dialogues as data for conversational agents. 788

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 789
SimCSE: Simple contrastive learning of sentence em- 790
beddings. In Proceedings of the 2021 Conference 791
on Empirical Methods in Natural Language Process- 792
ing, pages 6894–6910, Online and Punta Cana, Do- 793
minican Republic. Association for Computational 794
Linguistics. 795

Karthik Gopalakrishnan, Behnam Hedayatnia, Qin- 796
lang Chen, Anna Gottardi, Sanjeev Kwatra, Anu 797
Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür. 798
2019. Topical-Chat: Towards Knowledge-Grounded 799
Open-Domain Conversations. In Proc. Interspeech 800
2019, pages 1891–1895. 801

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda, 802
Anirudha Rayasam, and Zachary C. Lipton. 2019. 803
Amazonqa: A review-based question answering task. 804
In Proceedings of the Twenty-Eighth International 805
Joint Conference on Artificial Intelligence, IJCAI-19, 806
pages 4996–5002. International Joint Conferences on 807
Artificial Intelligence Organization. 808

Andrey Guzhov, Federico Raue, Jörn Hees, and An- 809
dreas Dengel. 2022. Audioclip: Extending clip to 810
image, text and audio. In ICASSP 2022-2022 IEEE 811
International Conference on Acoustics, Speech and 812
Signal Processing (ICASSP), pages 976–980. IEEE. 813

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension- 814
ality reduction by learning an invariant mapping. In 815
2006 IEEE Computer Society Conference on Com- 816
puter Vision and Pattern Recognition (CVPR’06), 817
volume 2, pages 1735–1742. 818

Matthew Henderson, Blaise Thomson, and Jason D. 819
Williams. 2014. The second dialog state tracking 820
challenge. In Proceedings of the 15th Annual Meet- 821
ing of the Special Interest Group on Discourse and 822
Dialogue (SIGDIAL), pages 263–272, Philadelphia, 823
PA, U.S.A. Association for Computational Linguis- 824
tics. 825

Yucheng Huang, Kai He, Yige Wang, Xianli Zhang, 826
Tieliang Gong, Rui Mao, and Chen Li. 2022. COP- 827
NER: Contrastive learning with prompt guiding for 828
few-shot named entity recognition. In Proceedings of 829
the 29th International Conference on Computational 830
Linguistics, pages 2515–2527, Gyeongju, Republic 831

10

https://doi.org/10.1609/aaai.v36i10.21292
https://doi.org/10.1609/aaai.v36i10.21292
https://doi.org/10.1609/aaai.v36i10.21292
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://doi.org/10.18653/v1/2022.naacl-main.311
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://aclanthology.org/L18-1269
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/D17-1070
https://aclanthology.org/W11-0609
https://aclanthology.org/W11-0609
https://aclanthology.org/W11-0609
https://aclanthology.org/W11-0609
https://aclanthology.org/W11-0609
https://openreview.net/forum?id=gKLAAfiytI
https://openreview.net/forum?id=gKLAAfiytI
https://openreview.net/forum?id=gKLAAfiytI
https://openreview.net/forum?id=gKLAAfiytI
https://openreview.net/forum?id=gKLAAfiytI
https://doi.org/10.18653/v1/W17-5526
https://doi.org/10.18653/v1/W17-5526
https://doi.org/10.18653/v1/W17-5526
https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.18653/v1/W17-5506
https://doi.org/10.18653/v1/W17-5506
http://arxiv.org/abs/1809.06641
http://arxiv.org/abs/1809.06641
http://arxiv.org/abs/1809.06641
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.21437/Interspeech.2019-3079
https://doi.org/10.21437/Interspeech.2019-3079
https://doi.org/10.21437/Interspeech.2019-3079
https://doi.org/10.24963/ijcai.2019/694
https://ieeexplore.ieee.org/document/9747631
https://ieeexplore.ieee.org/document/9747631
https://ieeexplore.ieee.org/document/9747631
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://doi.org/10.3115/v1/W14-4337
https://aclanthology.org/2022.coling-1.222
https://aclanthology.org/2022.coling-1.222
https://aclanthology.org/2022.coling-1.222
https://aclanthology.org/2022.coling-1.222
https://aclanthology.org/2022.coling-1.222


of Korea. International Committee on Computational832
Linguistics.833

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A834
method for stochastic optimization.835

Xiujun Li, Yu Wang, Siqi Sun, Sarah Panda, Jingjing836
Liu, and Jianfeng Gao. 2018. Microsoft dialogue837
challenge: Building end-to-end task-completion dia-838
logue systems.839

Che Liu, Rui Wang, Junfeng Jiang, Yongbin Li, and840
Fei Huang. 2022. Dial2vec: Self-guided contrastive841
learning of unsupervised dialogue embeddings. In842
Proceedings of the 2022 Conference on Empirical843
Methods in Natural Language Processing, pages844
7272–7282, Abu Dhabi, United Arab Emirates. As-845
sociation for Computational Linguistics.846

Che Liu, Rui Wang, Jinghua Liu, Jian Sun, Fei Huang,847
and Luo Si. 2021a. DialogueCSE: Dialogue-based848
contrastive learning of sentence embeddings. In Pro-849
ceedings of the 2021 Conference on Empirical Meth-850
ods in Natural Language Processing, pages 2396–851
2406, Online and Punta Cana, Dominican Republic.852
Association for Computational Linguistics.853
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A Weighted Contrastive object1092

Adapting from NT-Xent loss, let c and r denote the1093

embedding of context and response, respectively.1094

The training objective for a single text pair i in a1095

mini-batch of N pairs is given by:1096

ℓi = −1

2
log

(
esim(ci,ri)/τ∑N
j=1 e

sim(ci,rj)/τ

)
1097

−1

2
log

(
esim(ri,ci)/τ∑N
j=1 e

sim(ri,cj)/τ

)
1098

where τ is the temperature hyper-parameter and1099

sim is cosine similarity.1100

To address the issue of frequency imbalance,1101

we extend this objective function with sample1102

reweighting. The weight assigned to each pair is1103

determined by an inverse function of its response1104

frequency. By assigning a lower weight, utterances1105

positive to the frequent ones will receive less op-1106

timization strength, allowing them to remain rela-1107

tively distant.1108

Let freqr denote the frequency of response r in 1109

the training data. The inverse response frequency 1110

weight IRF for text pair i can be calculated as: 1111

IRFi =
1

log freqri + 1
, (4) 1112

The weighted contrastive loss function can then 1113

be defined as: 1114

IRFi ∗ ℓi (5) 1115

B Most common utterances 1116

We present the top ten most common utterances 1117

in Table 5. A majority of these utterances offer 1118

limited information and are versatile in various 1119

dialogue contexts. 1120

Utterances Frequecy
yes. 5371
yes 4543

thank you. 3680
thanks 2971
okay. 2629

thank you 2347
thanks. 1910
thanks! 1678

anything else? 1594
what date and time would you like to go? 1481

Table 5: Most common utterances in TODBERT train-
ing corpus. All utterances are lowercase.

C Training Corpus 1121

We utilize the same corpus as TODBERT to en- 1122

sure a valid comparison. This dataset is a com- 1123

position of nine sub-datasets, including 1) MetaL- 1124

WOZ (Schulz et al., 2019), 2) Schema (Rastogi 1125

et al., 2020), 3) Taskmaster (Byrne et al., 2019), 1126

4) MWOZ (Budzianowski et al., 2018), 5) MSR- 1127

E2E (Li et al., 2018), 6) SMD (Eric et al., 2017), 1128

7) Frames (El Asri et al., 2017), 8) WOZ (Mrkšić 1129

et al., 2017) and 9) CamRest676 (Wen et al., 2017). 1130

See Table 6 for detailed information. 1131

To assess the scalability of our proposed 1132

method, we have assembled a larger cor- 1133

pus. This dataset encompasses approximately 1134

20 sub-datasets, including 1) Reddit (Zhang 1135

et al., 2020), 2) AmazonQA (Gupta et al., 1136

2019), 3) Movie-Dialogs (Danescu-Niculescu- 1137

Mizil and Lee, 2011), 4) MetaLWOZ (Schulz 1138

et al., 2019), 5) Self-Dialog (Fainberg et al., 1139
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Datasets # Dialogue # Utterance Avg. Turn Domain
MetaLWOZ (Schulz et al., 2019) 37,884 432,036 11.4 47
Schema (Rastogi et al., 2020) 22,825 463,284 20.3 17
Taskmaster (Byrne et al., 2019) 13,215 303,066 22.9 6
MWOZ (Budzianowski et al., 2018) 10,420 71,410 6.9 7
MSR-E2E (Li et al., 2018) 10,087 74,686 7.4 3
SMD (Eric et al., 2017) 3,031 15,928 5.3 3
Frames (El Asri et al., 2017) 1,369 19,986 14.6 3
WOZ (Mrkšić et al., 2017) 1,200 5,012 4.2 1
CamRest676 (Wen et al., 2017) 676 2,744 4.1 1
TOTAL 100,707 1,388,152 13.8 60

Table 6: Data statistics of the training corpus. We keep the original table from (Wu et al., 2020) and only add the
last line.

2018), 6) TaskMaster1 (Byrne et al., 2019),1140

7) TaskMaster2 (Byrne et al., 2019), 8) TaskMas-1141

ter3 (Byrne et al., 2019), 9) Schema (Rastogi1142

et al., 2020), 10) PersonaChat (Zhang et al., 2018),1143

11) MWOZ (Budzianowski et al., 2018), 12) MSR-1144

E2E (Li et al., 2018), 13) TopicChat (Gopalakrish-1145

nan et al., 2019), 14) ABCD (Chen et al., 2021),1146

15) ChitChat (Myers et al., 2020), 16) SMD (Eric1147

et al., 2017), 17) Frames (El Asri et al., 2017),1148

18) WOZ (Mrkšić et al., 2017), 19) CCPE-1149

M (Radlinski et al., 2019), and 20) Cam-1150

Rest676 (Wen et al., 2017). See Table 7 for data1151

statistic information.1152

D Hyper-parameters1153

Each head is a linear layer with a size of (d * d),1154

where d is the hidden size of the model. We set the1155

batch size to 256, and use the AdamW optimizer1156

(Kingma and Ba, 2017) along with the OneCy-1157

cleLR learning rate scheduler (Smith and Topin,1158

2018). The learning rate for the encoder is set to1159

3e-5, while the learning rate for the contrastive1160

heads is amplified by a factor of 40. We set the1161

contrastive temperature τ to 0.05.1162
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Datasets # Dialogue # Utterance Avg. Turn
Reddit (Zhang et al., 2020) 15,914,021 31,908,317 2.0
AmazonQA (Gupta et al., 2019) 962,260 1,924,520 2.0
Movie-Dialogs (Danescu-Niculescu-Mizil and Lee, 2011) 220,579 441,158 2.0
MetaLWOZ (Schulz et al., 2019) 37,884 356,268 9.4
Self-Dialog (Fainberg et al., 2018) 24,165 348,554 14.4
TaskMaster1 (Byrne et al., 2019) 13,215 135,176 10
TaskMaster2 (Byrne et al., 2019) 17,289 137,064 7.9
TaskMaster3 (Byrne et al., 2019) 23,789 237,617 10.0
Schema (Rastogi et al., 2020) 22,825 463,284 20.3
PersonaChat (Zhang et al., 2018) 18,876 250,634 13.3
MWOZ (Budzianowski et al., 2018) 10,420 71,410 6.9
MSR-E2E (Li et al., 2018) 10,087 74,686 7.4
TopicChat (Gopalakrishnan et al., 2019) 10,784 235,434 21.8
ABCD (Chen et al., 2021) 8,034 64,500 8.0
ChitChat (Myers et al., 2020) 7,168 258,145 36
SMD (Eric et al., 2017) 3,031 15,928 5.3
Frames (El Asri et al., 2017) 1,369 19,986 14.6
WOZ (Mrkšić et al., 2017) 1,200 7,624 6.4
CCPE-M (Radlinski et al., 2019) 502 12,000 24.0
CamRest676 (Wen et al., 2017) 676 2,744 4.1
TOTAL 17,308,174 36,965,049 2.1

Table 7: Data statistics of the training corpus for scaling.
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