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Abstract

High-quality pre-trained text representations
are powerful tools for various downstream
tasks. However, dialogue representation learn-
ing has received less attention compared to
tasks such as sentence representation learn-
ing. This can be attributed to two main chal-
lenges: 1) the lack of standard evaluation
benchmarks on dialogue representation learn-
ing, and 2) the complexity of incorporating
dialogue corpus into existing representation
learning paradigms. To overcome these chal-
lenges, we present the first comprehensive eval-
uation benchmark called DiaEval (Dialogue
Representation Evaluation Benchmark), which
covers 5 datasets across 3 tasks including ac-
tion prediction, dialogue inference, and re-
sponse retrieval. These datasets are metic-
ulously selected to ensure their comprehen-
siveness and representativeness. Second, we
propose a new dialogue embedding method
called WMDC (Weighted Multi-window-sized
Dialogue Contrastive learning). WMDC lever-
ages multiple context windows and sample
reweighting with contrastive learning to obtain
universal dialogue embeddings. The use of mul-
tiple context windows allows flexible encoding
with multiple granularity while the reweighting
method addresses the anisotropy and lack of
informativeness issues within the learned di-
alogue embedding space. Through extensive
comparison with various competitive baselines,
WMDC achieves state-of-the-art performance
on all tasks demonstrating its effectiveness and
scalability.

1 Introduction

Learning universal text representation (Penning-
ton et al., 2014; Conneau et al., 2017; Cer et al.,
2018; Reimers and Gurevych, 2019) is proven to
be effective for various downstream tasks. State-
of-the-art text representation techniques can attain
competitive performance with significantly reduced
training data, in contrast to less effective ones

(Xiong et al., 2022; Sarkar et al., 2022). Prior
research (Wu et al., 2020; Zhang et al., 2020)
has highlighted the inherent disparities in linguis-
tic patterns between conversations and plain texts,
underscoring the potential shortcomings in dia-
logue representations. Consequently, addressing
this shortfall entails a greater demand for annotated
data to achieve comparable performance in natural
language tasks involving conversational contexts.
However, dialogue-related human annotations are
generally much harder and more expensive to con-
duct due to their complex and nuanced form com-
pared with plain texts or sentences. Therefore,
learning proficient general dialogue representation
(Liu et al., 2021a, 2022; Bai et al., 2022) becomes
an important task, even though it has received rela-
tively less attention and remains underexplored in
comparison to the domain of sentence representa-
tion learning.

The availability of a standardized evaluation
benchmark (Wang et al., 2018; Nie et al., 2020;
Zhang et al., 2022a) is crucial to facilitate the de-
velopment of its research field. In the realm of sen-
tence representation learning, SentEval (Conneau
and Kiela, 2018) plays a vital role by facilitating
assessments of sentence embeddings’ capacity to
encapsulate diverse aspects of meaning related to
textual similarity, inference, and so on. Nonethe-
less, there is currently no established benchmark
for evaluating dialogue representations. Recent
works (Xu and Zhao, 2021; Liu et al., 2021a; Xu
and Zhao, 2021) in this area rely on diverse evalua-
tion tasks and metrics to assess their efficacy. The
diversity of evaluation methods leads to a lack of
consistency in evaluation, underscoring the neces-
sity for the establishment of a standardized bench-
mark.

Furthermore, prior dialogue representation learn-
ing techniques often lack generality. They suffer
from performance degradation when confronted
with out-of-domain data, primarily because they



are optimized for specific domains and datasets,
thereby greatly limiting their applicability in real-
world situations. Therefore, an imminent need
arises for universal dialogue representation, which
is capable of capturing generic information appli-
cable across a wide spectrum of tasks and domains.
TODBERT (Wu et al., 2020) and DSE (Zhou et al.,
2022b) have demonstrated enhanced generalizabil-
ity by leveraging a diverse set of nine different
dialogue corpora spanning 60 distinct domains, to-
taling approximately 0.1 million utterances. They
employ a contrastive learning mechanism to dif-
ferentiate dialogue contexts between correct and
incorrect responses. Nevertheless, both approaches
fall short in fully harnessing the training dialogue
datasets, failing to acquire a fine-grained multi-
granularity representation, due to their approach of
contrasting a single utterance with a fixed window
size context.

Dialogue corpora frequently display imbalanced
distributions. An examination of several widely
used dialogue datasets reveals that the top 1% most
frequent utterances represent a substantial portion,
ranging from 15% to 30% of the entire corpus (re-
fer to Figure 1). These frequently occurring ut-
terances typically lack substantial information and
are applicable across a wide array of dialogue con-
texts. Optimizing the standard contrastive learn-
ing object on these datasets can have detrimen-
tal effects, including: a) encouraging a significant
portion of dialogue embeddings clustering around
high-frequency utterances, resulting in an unsatis-
fying anisotropic embedding space; b) implicitly
drawing distinct dialogue contexts closer together,
leading to a less informative embedding space; c)
introducing a high false negative rate within a sin-
gle batch, impeding the optimization process.

To solve the problems mentioned above, in this
paper, we first present a new Dialogue Repre-
sentation Evaluation Benchmark called DiaEval.
This benchmark consists of five datasets, covering
three distinct tasks designed to assess the dialogue
understanding capabilities of different representa-
tion learning methods. Furthermore, we propose
WMDC - a new Weighted Multi-window-sized
Dialogue Contrastive learning method. We bet-
ter utilize existing dialogue corpora by contrast-
ing unfixed window-size contexts that share the
same response. We project diverse window-sized
embeddings into different representation spaces to
alleviate the inherent semantic gap. Additionally,
we identify and tackle the issue of distribution im-

balance in existing dialogue corpora by utilizing
a reweighted contrastive learning object based on
inverse response frequency. Through extensive ex-
periments, our proposed method achieves SOTA
performances on all tasks among a broad range of
baselines and shows strong scalability.!

Our main contributions can be summarized as
follows:

* We introduce a novel dialogue representa-
tion evaluation benchmark (DiaEval). This
benchmark encompasses five datasets, cover-
ing three tasks commonly employed for as-
sessing dialogue understanding.

* We propose WMDC, a sample-reweighted
multi-window-sized dialogue contrastive
learning method. WMDC not only optimizes
corpus utilization but also effectively tackles
the challenges presented by distribution
imbalances in dialogue corpora, including
anisotropic uninformative embedding spaces
and optimization issues.

* We collect a dialogue corpus consisting of 17
million dialogues and 37 million utterances
used for unsupervised dialogue representation
learning. We demonstrate the efficacy and the
scalability of our proposed method through
comprehensive experiments.

2 Related Work

2.1 Contrastive Learning

Learned embeddings in PLMs can cluster at a nar-
row cone in the vector space rather than distribute
uniformly, which can severely limit representation
quality. This anisotropy problem is naturally con-
nected to uniformity (Wang and Isola, 2020) and
can be intuitively eased by optimizing the con-
trastive learning object. Contrastive learning aims
to learn effective representation by pulling together
semantically close neighbors (positive pair) while
pushing away the unrelated ones (negative pair)
(Hadsell et al., 2006). SimCSE (Gao et al., 2021)
greatly advances state-of-art sentence embeddings
by simply leveraging dropout as the minimal pos-
itive pair construction method and in-batch nega-
tives. In the same vein, DiffCSE (Chuang et al.,
2022) is an instance of equivariant contrastive learn-
ing (Dangovski et al., 2022). It learns sentence
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embeddings sensitive to specific types of augmen-
tations. The edited sentence is obtained by firstly
stochastically masking out the original one and then
sampling from a masked language model. Liu et al.
(2023); Seonwoo et al. (2023) extend contrastive
learning with ranking information among sentences
to learn more fine-grained semantics. Other re-
cent works (Wang et al., 2022; Yan et al., 2021;
Liu et al., 2021b; Carlsson et al., 2021) explore
to contrast different views of the same sentence
or document, by data augmentation or different
copies of models. Contrastive learning can be
applied to various topics beyond text embedding,
like classification (Zhou et al., 2022a; Chen et al.,
2022), named entity recognition (Ying et al., 2022;
Huang et al., 2022), multi-modal alignment (Rad-
ford et al., 2021; Guzhov et al., 2022; Zhang et al.,
2022b).

2.2 Dialogue Representation Learning

Pretrained with response selection task, TODBERT
(Wu et al., 2020) and DSE (Zhou et al., 2022b)
learn universal dialogue representation by employ-
ing contrastive objectives on massive dialogue cor-
pora. They differ in positive pair construction meth-
ods. TODBERT uses an utterance and the concate-
nation of all its previous utterances in the same
dialogue as positive pairs, while DSE only uses
two consecutive utterances to enhance the embed-
ding. Also, there are studies addressing the non-
flat nature of dialogues (Bonial et al., 2020; Bai
et al., 2021, 2022; Banarescu et al., 2013). They
excel in abstracting core semantic knowledge and
reducing data sparsity by leveraging AMR (Ab-
stract Meaning Representation) or designing new
parsing schemes. However, parsing unstructured
dialogues into structured data is computationally
expensive and prone to errors, sacrificing its scala-
bility for dialogue pretraining.

3 DiaEval: Dialogue Representation
Evaluation Benchmark

In this section, we introduce DiaEval, a bench-
mark designed for assessing the quality of univer-
sal dialogue representations. Drawing inspiration
from SentEval, DiaEval comprises 5 datasets en-
compassing a variety of dialogue-level tasks, in-
cluding action prediction, dialogue inference, and
response selection. Furthermore, we deliberately
select datasets with diverse topics and domains.
The choice of these tasks is based on a consensus

within the community regarding the most suitable
evaluations for assessing universal dialogue under-
standing. Additionally, these three tasks are pivotal
in the context of industrial applications of dialogue
systems. The action prediction task informs the
system about the aspect in which to respond, the
response retrieval task seeks an appropriate answer,
and the inference tasks assess the consistency of
the answer with the dialogue history.

DiaEval offers a comprehensive evaluation
framework for assessing the quality of dialogue
representations and aims to facilitate the develop-
ment of dialogue representation learning methods.
The detailed statistics are shown in Table 1.

3.1 Evaluation Settings

Our benchmark focuses on dialogue-level tasks and
comprises two types: classification and retrieval.
For classification tasks, including action prediction
and dialogue inference, we add one MLP layer on
top of the fixed encoder and only tune this added
layer. We use grid-search on the validation set to
find the best hyperparameters to avoid the random-
nesses (Conneau and Kiela, 2018). To evaluate the
encoder’s performance on a specific task, we cal-
culate the average score across all datasets in that
task, allowing for different hyperparameters for
each dataset. For retrieval tasks, DSTC7-Ubuntu,
we calculate the cosine similarity between two rep-
resentations without the need for any additional
parameters.

3.2 Action Prediction

Action prediction uses the most recent dialogue his-
tory as input to predict the action labels of the next
utterance. This task is formulated as a multi-label
classification problem because a dialogue system
response can contain multiple actions, such as in-
forming and inquiring simultaneously.

We concatenate the most recent dialogue history
X, pass it through the encoder F, and classify the
encoding using M L P before applying a Sigmoid
layer. The output of this process is the action label
A.

A = Sigmoid (MLP(F(X))). (1)

The model predicts an action label if its proba-
bility exceeds 0.5.

DSTC2 (Henderson et al., 2014), introduced as
the second dialogue state tracking challenge, is a
human-machine interactive dataset labeled with 19



# Samples

Task Category Datasets (train / val / test) # Labels Metrics

Action Prediction GSIM 11,831/2,837 /6,505 13 Macro F1
DSTC2 20,130/ 6,856/ 17,546 19 Macro F1

Dialogue Inference  IC-TOD 2,553/319/318 2 Accuracy
DECODE 31,011/1,650/ 1,650 3

Response Retrieval DSTC7-Ubuntu -/-76,000 - TOP@N

Table 1: Summarization of datasets and tasks included in DiaEval.

actions related to restaurant search. It consists of
dialogues under a spoken dialogue system, where
the utterances are automatically transcribed using
ASR (Automatic Speech Recognition) techniques.
This can result in transcription errors and make
natural dialogue understanding challenging. We
utilize the processed dataset by Wu et al. (2020).

GSIM (Shah et al., 2018a) is a human-rewrote
machine-machine interactive dataset, with 3k di-
alogues in the restaurant and movie domains. It
contains 13 different system dialogue acts and
was collected using an M2M approach (Shah
et al., 2018b), which combines self-play and crowd-
sourcing steps to obtain high-quality dialogues with
considerable diversity, coverage, and correctness.
Similar to the above dataset, we use the processed
data provided by Wu et al. (2020).

3.3 Dialogue Inference

Dialogue inference involves detecting contradic-
tions within a dialogue, such as inconsistencies in
persona, logic, and knowledge. The goal is to help
dialogue systems determine whether a response
aligns with the dialogue history.

We approach this task as a multi-class classifica-
tion problem. We use a softmax function applied to
the output of a multi-layer perceptron (MLP) to ob-
tain the prediction probabilities. Denoting the label
set as L, the input text as X, and the dialogue en-
coder I, the formulation is the same as the action
prediction task:

L = Softmax (MLP(F(X))). )

The label with the highest probability is consid-
ered the predicted label.

IC-TOD (Qin et al., 2021) is proposed to detect
various types of consistency issues in task-oriented
dialog systems. It spans three distinct tasks in the
in-car personal assistant space: calendar schedul-
ing, weather information retrieval, and point-of-
interest navigation. The type of inconsistency is

annotated. These types of inconsistencies include
dialogue history inconsistency, user query inconsis-
tency, and knowledge base inconsistency. However,
in our benchmark, we only focus on the first two
types and disregard the knowledge base. A dia-
logue is considered inconsistent if it contradicts
either the dialogue history or the user query.

DECODE (Nie et al., 2021) consists of di-
alogues labeled as either contradiction or non-
contradiction. The dataset is collected from four
pre-selected open-domain dialogue source corpora,
encompassing both human-human and human-bot
interactions. These dialogues cover a wide range
of conversational topics and require logical and
context-related reasoning beyond personal facts.
To ensure computational efficiency, we only con-
sider dialogues with less than 256 tokens for this
benchmark.

3.4 Response Retrieval

Response retrieval assesses models’ ability to se-
lect the most appropriate response from a candidate
pool based on a given dialogue history. The model
takes the concatenated dialogue history as input
and aims to retrieve the next utterance that is con-
textually relevant and coherent with the previous
dialogue turns.

We frame it as a ranking problem. We calculate
similarity scores between the given history C' and
response R; from the candidate pool as follows:

r; = Cosine (F(C), F (R;)) . 3)

DSTC7-Ubuntu (Lowe et al., 2017) is an up-
dated version of Ubuntu Dialogue Corpus, which
is a large dataset consisting of multi-turn dialogues
between two participants. Training, valid, and test
sets are separated based on time. This dataset has
gained popularity due to its long context, large size,
and approximate power law relationship between
the number of dialogues and turns per dialogue. In
our evaluation, We utilize both the validation and



test sets to assess the model’s ability to retrieve
suitable responses in a zero-shot retrieval scenario.
This means that the model is evaluated without any
prior training on the dataset, testing its capability
to select appropriate responses solely based on the
given dialogue context.

4 Methods

In this section, we delve into the datasets employed
for pretraining and introduce our dialogue embed-
ding method, WMDC. WMDC is composed of two
pivotal elements: positive pair construction tech-
niques and the contrastive loss function reweighted
with inverse response frequency.

4.1 Unsupervised Training Corpus

To ensure a thorough and impartial comparison,
we employ the identical training corpus as TOD-
BERT, which contains approximately 0.1 million
dialogues, and 1.4 million utterances, spanning
across 60 domains.

Scalability becomes a crucial consideration in
the progress of dialogue modeling. To assess our
method’s scalability, we’ve compiled a significantly
larger dialogue corpus, consisting of 17 million
dialogues and 37 million utterances. In comparison
to the dataset mentioned earlier, this training corpus
contains approximately 172 times more dialogues
and 27 times more utterances.

Details of both corpora can be found in Ap-
pendix C.

4.2 Our Method: WMDC

In this sub-section, we present WMDC, a sample-
reweighted multi-window-sized dialogue con-
trastive learning method. It contains two main parts:
a new weighted contrastive loss, and a new positive
pair construction method.

4.2.1 Weighted Contrastive Object

Imbalanced data distribution is a common occur-
rence in real-world scenarios. We analyze several
most popular dialogue datasets, finding no excep-
tions. As shown in figure 1, the top 1% of most
repetitive expressions account for a substantial pro-
portion (15% to 30%) of the entire dataset.
NT-Xent loss (Chen et al., 2020) is a widely
adopted loss function for contrastive learning. It
optimizes the model by bringing together the se-
mantically related pairs while pushing away the
unrelated ones. However, it encounters challenges

°

proportion within the corpus

°
o
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Figure 1: Data imbalance in the existing dialogue cor-
pus. We arrange the utterances in descending order of
their frequency. The top 1% of the most frequent ut-
terances constitute a substantial portion of the entire
corpus.

when dealing with imbalanced data. In the embed-
ding space, the more frequent an utterance is, the
more utterances will be pulled into its vicinity, re-
sulting in the formation of numerous large clusters
of vectors. This leads to an anisotropic embed-
ding space where vectors are unevenly distributed
in terms of directions, significantly limiting repre-
sentation expressiveness, as noted in (Gao et al.,
2021). Furthermore, these embedding clusters can
contain distinct dialogue contexts, due to shared
responses. Most common expressions like "yes"
or "thank you" carry limited information, which
further diminishes the informativeness of the em-
beddings as illustrated in Appendix 5. Finally,
unsupervised contrastive learning always replies
to big batch sizes to boost its performance. How-
ever, as we increase batch sizes, the potential for an
elevated false negative rate arises due to the pres-
ence of a growing number of appropriate responses
within a single batch. Optimization becomes chal-
lenging when the data is riddled with false labels.

To tackle this challenge, we enhance the NT-
Xent loss by incorporating sample reweighting
based on the inverse response frequency. The pri-
mary goal is to allocate less optimization emphasis
to text pairs that involve frequently occurring utter-
ances. This approach offers a dual advantage: it
encourages the dispersion of clustering vectors, re-
sulting in a more isotropic embedding space, while
also increasing the informativeness of embeddings
by increasing the separation between distinct di-
alogues. In unsupervised learning datasets, the
presence of false negatives is inevitable. However,
since we assign relatively low weights to false neg-
atives, their impact on the optimization process is
mitigated.

The formulation of the weighted contrastive



Al: i need a place to stay in the east.

B1: i want to confirm you want to book 1 seat on the
train , is this correct ?

A2: thanks , but i would like to book a guesthouse
B2: is there a certain side of town or price range you
have in mind ?

A3: i would like a moderately priced guesthouse please .

1
1
B2 || A3
# A2+ B2 || A3
B1+ A2+ B2 || A3

Al+Bl+ A2 +B2|| A3

Figure 2: An illustration of MWPP. MWPP constructs multiple positive samples for the same response A3 by
concatenating different window-sized consecutive turns adjacent to it. ‘+” means the concatenation of utterances.

learning object can be found in Appendix A.

4.2.2 Positive Pair Construction

We consider consecutive dialogue turns as context
and define the positive pair as the context and its
immediately following response. (See Figure 2)

In the initial step, we define a set of window
sizes denoted as W = {1,2,3,...}, and we se-
lect the window size iteratively. Following this,
we pick one utterance from the dialogue as the
response and establish a positive context by con-
sidering the last window-sized turns leading up to
that response. All other combinations are catego-
rized as negatives. This approach to generating
contrastive pairs is named MWPP, an abbreviation
for Multiple Window-sized Positive Pairs.

Directly contrasting encodings of the same re-
sponse with those of different window-sized con-
texts can be problematic since these contexts differ
in information richness. We must retain the in-
herent semantic distinctions among contexts from
various turns while preserving their inferential sim-
ilarity. Drawing inspiration from Wang and Li
(2022), we incorporate linear layers to map differ-
ent window-sized text pairs onto distinct embed-
ding spaces. This enables flexible semantic match-
ing during the training phase, enhancing our ability
to capture semantics at various levels of granularity
within the dialogue data. It is important to empha-
size that projection layers are omitted during the
evaluation phase.

5 Experiments

We initialize our training checkpoint with the pre-
trained BERT},s. and RoBERTa, s, models. To
derive dialogue representations, we compute the
average of the input token encodings from the fi-
nal layer of the transformer encoder. During the
training phase, we introduce multiple contrastive

heads at the upper part of the encoder to enable
contrastive learning at various levels of semantic
granularity. Training details can be seen in D

5.1 Baselines

We compare WMDC against several text repre-
sentation models, including BERT and RoBERTa3,
which serve as widely adopted baselines for lan-
guage understanding tasks. These models are pre-
trained on extensive general text corpora. Addition-
ally, we compare WMDC to SimCSE-unsup (Gao
et al., 2021), which employs contrastive learn-
ing to acquire representations. It utilizes dropout
as a minimal data augmentation strategy to con-
struct positive pairs and in-batch negatives. Sim-
ilarly, SimCSE-sup (Gao et al., 2021) leverages
entailments as positives and contradictions as hard
negatives. For dialogue understanding, TOD-
BERT (Wu et al., 2020) employs contrastive learn-
ing by considering a random response and the con-
catenation of all its history as positive pairs. In
contrast, DSE (Zhou et al., 2022b) defines positive
pairs as two consecutive utterances within the same
dialogue and treats all other pairs as negatives.

5.2 Results and Analysis

Action Prediction Table 2 shows the results for
the action prediction task. Notably, WMDC con-
sistently outperforms all baselines on both datasets
by a substantial margin. WMDC surpasses the
strongest baselines by 10.3 points on micro F1 and
6.3 points on macro F1, highlighting its superiority
in capturing the overall meaning and anticipating
future information within dialogue contexts. How-
ever, it’s worth noting that despite these promising
results, the overall performance of the action pre-
diction task across all models remains relatively
low, underscoring the task’s difficulty and the po-
tential for further enhancements.



Model DSTC2 GSIM AVG.
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1  Macro F1

BERT 53.1 10.6 49.1 224 51.1 16.5
SimCSE-BERT y,5up 52.2 10.5 46.4 224 494 16.4
SimCSE-BERT 52.9 10.9 47.2 21.7 50.1 19.0
TOD-JNT-BERT 52.9 12.7 55.1 30.0 54.0 21.3
DSE-BERT 52.0 12.6 50.4 25.7 51.2 19.1
WMDC-BERT 56.9 16.8 66.1 38.3 61.5 27.6
RoBERTa 48.7 6.5 37.0 10.5 42.9 8.5
SimCSE-RoBERTa,5up 49.6 7.0 37.2 11.7 434 9.3
SimCSE-RoBERTa,,,, 49.9 6.7 37.6 11.8 43.7 9.2
DSE-RoBERTa 48.0 6.8 39.6 12.3 43.8 9.6
WMDC-RoBERTa 50.0 7.3 39.8 13.0 44.9 10.2

Table 2: Results on action prediction task.

Model IC-TOD DECODE AVG.
BERT 69.8 70.4 70.1
SimCSE-BERT .54 71.1 66.3 68.7
SimCSE-BERT,,;, 71.4 69.1 70.3
TOD-JNT-BERT 70.8 69.7 70.3
DSE-BERT 70.8 69.6 70.2
WMDC-BERT 73.3 70.7 72.0
RoBERTa 70.1 76.0 73.1
SimCSE-RoBERTa,;5u 65.7 72.5 69.1
SimCSE-RoBERTa,,, 67.3 71.4 69.4
DSE-RoBERTa 73.3 72.5 72.9
WMDC-RoBERTa 74.8 80.7 77.8

Table 3: Results on dialogue inference task.

Model TOP@1 TOP@3 TOP@5 TOP@10
BERT 82 14.8 18.8 26.7
SimCSE-BERT yy,5up 153 23.9 28.8 36.6
SimCSE-BERT,,, 14.7 23.7 29.3 37.7
TOD-INT-BERT 72 13.8 18.3 26.4
DSE-BERT 16.7 25.9 30.4 38.5
WMDC-BERT 17.3 273 333 2.4
RoBERTa 5.7 11.8 15.9 23.6
SimCSE-ROBERTaneup | 16.7 26.6 325 41.9
SimCSE-RoBERTa 145 24.0 29.4 38.7
DSE-RoBERTa 18.3 27.1 322 40.9
WMDC-RoBERTa 19.6 29.7 36.0 46.2

Table 4: Results on response selection task.

Dialogue Inference Table 3 presents the results
for the dialogue inference task. Our model achieves
state-of-the-art results on both datasets. Surpris-
ingly, SimCSE-RoBERTay,,;,, despite being trained
on extensive NLI data, exhibits relatively lower
performance in this task. This observation not only
indicates a large disparity in patterns between plain
texts and dialogues but also highlights WMDC’s
capability to comprehend the intrinsic conversa-
tional semantics and capture the nuances within

dialogues.

Response Selection Table 4 showcases the re-
sults for response selection task. Our method out-
performs all baselines across all evaluation metrics
by a large margin. Notably, the performance gap
widens as the value of N in TOP@N increases.
We observe that even when contrasting plain texts,
there is a significant enhancement in performance
at the dialogue level, a contrast to the findings in
the dialogue inference task.

5.3 Ablation Study

In this subsection, we analyze the influence of
MWPP and sample reweighting on the performance
of action prediction, dialogue inference, and re-
sponse retrieval tasks. We evaluate the micro F1,
accuracy, and TOP@3 performance for each task.
However, we exclude the TOP@1 evaluation met-
ric for the response retrieval task due to the pres-
ence of multiple false negatives in the candidate
pool, which renders this metric unreliable.

Sample Reweighting. As illustrated in figure
3, it is evident that irrespective of the context win-
dow size, the exclusion of sample reweighting from
the contrastive learning objective leads to a perfor-
mance decline in all tasks. This observation un-
derscores the importance of mitigating frequency
imbalance issues and emphasizes the effectiveness
of our sample reweighting strategy in improving
the quality of dialogue representation.

MWPP. The arrow line in figure 3 reveals ev-
ident positive trends in performance among all
tasks with increasing context window size. This
phenomenon can be attributed to the fact that as
the window size increases, more dialogue-level in-
formation is integrated. Notably, we observe that
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M w/o sample reweight w/ sample reweight

Figure 3: Ablation study on MWPP and sample
reweighting. We present the averaged performance
scores across all tasks, demonstrating that both meth-
ods consistently enhance performance. Notably, perfor-
mance levels off as the window size increases.
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Figure 4: With the increase in model size, there is a con-
sistent improvement in performance. This improvement
shows no signs of saturation, suggesting the potential
for further enhancements with even larger model sizes.

the performance experiences the most significant
change when the window size transitions from 2
to 3, after which the rate of change becomes less
pronounced. This suggests that if computational
resources are constrained, a window size of 3 can
be a viable and efficient choice.

5.4 Scalibility

In this subsection, we study the scalability of our
method regarding the size of the model and the
training corpus.

Model Size. To scale up the model, we employ
the pre-trained encoder of TS5 series (Raffel et al.,
2020), including three different sizes: T5-small,
T5-base, and T5-large. We fine-tune these mod-
els using a comparatively smaller corpus obtained
from TODBERT. From figure 4, the performance
across all tasks consistently improves as models
scale up. This improvement can be attributed to

0.7
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0.5

0.4

0.3

0.2
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t5-small t5-base t5-large

w/o corpus scale 2w/ corpus scale

Figure 5: We present the average performance score
across all tasks. As the corpus size expands, there is a
continuous improvement in performance. This indicates
that increasing the size of the corpus can result in en-
hanced performance across a range of tasks.

the increased capacity and generalization ability
stemming from the greater number of parameters
in the larger models.

Corpus Size. We train the TS5 series with a con-
siderably larger corpus, as detailed in Appendix C.
Figure 5 demonstrates that as the corpus size scales
up, the performance on each task consistently im-
proves, indicating that the model has not reached
saturation yet. This enhancement can be attributed
to the greater volume of dialogue information ac-
quired during the training phase.

We believe that further gains can be achieved by
scaling up both the model size and corpus size.

6 Conclusion

In this paper, we introduce DiaEval, a novel bench-
mark designed to assess dialogue representation
models’ ability to capture general dialogue seman-
tic information. DiaEval consists of 5 datasets cov-
ering 3 distinct tasks, namely, action prediction,
dialogue inference, and response selection. Fur-
thermore, we have identified a frequency imbal-
ance issue within existing dialogue corpora that
can adversely affect the quality of dialogue rep-
resentation. To address this issue and leverage
the dialogue corpus more effectively, we propose
WMDC, a Weighted Multi-window-sized Dialogue
Contrastive learning method. It adjusts sample
weights based on response frequency and contrasts
the response with multiple adjacent window-sized
contexts. Additionally, we conduct extensive exper-
iments to demonstrate the effectiveness of our ap-
proach and to demonstrate its promising scalability
on the extensive dialogue corpus we’ve collected.



Limitations

Further investigations are necessary to address the
limitations associated with this approach. Firstly,
WMDC, along with other universal dialogue rep-
resentation methods, is data-thirsty. Besides a
considerable carbon footprint, this poses a chal-
lenge in some languages where data may be scarce.
Moreover, experiments in this paper solely employ
encoder-only architecture. There is no warranty on
its performance under other model architectures,
such as the promising decoder-only GPT series.

As for future directions, we acknowledge that
real-world conversations often involve multi-modal
inputs, including audio and images, which are not
currently included in our benchmark. Furthermore,
although our method permits an unfixed number
of turns as context, there remains a fixed hyperpa-
rameter for maximum input length. In actual con-
versations, however, dialogue can be much longer.
Hence, further research is necessary to explore dia-
logue representation for extremely long, or even un-
limited input lengths. Lastly, our proposed method
is limited to English dialogue datasets. The effec-
tiveness of our approach on dialogue datasets in
other languages remains uncertain and warrants
further investigation.

Ethics Statement

All the datasets utilized in this paper are sourced
from publicly available repositories. However, it
is important to acknowledge that inherent biases
may still exist due to the nature of the data being
collected from the Internet. It is crucial to em-
phasize that this paper does not involve any data
collection or release, thereby eliminating any pri-
vacy concerns. Additionally, it is worth noting that
our model has been trained on GPU, which may
have environmental implications. Furthermore, this
research does not involve any form of experimenta-
tion involving human subjects.
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B Most common utterances

We present the top ten most common utterances
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Utterances Frequecy
yes. 5371
yes 4543
thank you. 3680
thanks 2971
okay. 2629
thank you 2347
thanks. 1910
thanks! 1678
anything else? 1594
what date and time would you like to go? 1481

A Weighted Contrastive object

Adapting from NT-Xent loss, let ¢ and r denote the
embedding of context and response, respectively.
The training objective for a single text pair ¢ in a
mini-batch of N pairs is given by:

esim(ci )/ T

N

lo
g(zjl

sim(r;,c;) /7T

1

esim(ci,r;) /T
(&
N

1
e (2 )

where 7 is the temperature hyper-parameter and
sim is cosine similarity.

To address the issue of frequency imbalance,
we extend this objective function with sample
reweighting. The weight assigned to each pair is
determined by an inverse function of its response
frequency. By assigning a lower weight, utterances
positive to the frequent ones will receive less op-
timization strength, allowing them to remain rela-
tively distant.

esim(ri,c;) /T
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Table 5: Most common utterances in TODBERT train-
ing corpus. All utterances are lowercase.

C Training Corpus

We utilize the same corpus as TODBERT to en-
sure a valid comparison. This dataset is a com-
position of nine sub-datasets, including 1) Metal -
WOZ (Schulz et al., 2019), 2) Schema (Rastogi
et al., 2020), 3) Taskmaster (Byrne et al., 2019),
4) MWOZ (Budzianowski et al., 2018), 5) MSR-
E2E (Li et al., 2018), 6) SMD (Eric et al., 2017),
7) Frames (El Asri et al., 2017), 8) WOZ (Mrksic
etal., 2017) and 9) CamRest676 (Wen et al., 2017).
See Table 6 for detailed information.

To assess the scalability of our proposed
method, we have assembled a larger cor-
pus. This dataset encompasses approximately
20 sub-datasets, including 1) Reddit (Zhang
et al, 2020), 2) AmazonQA (Gupta et al.,
2019), 3) Movie-Dialogs (Danescu-Niculescu-
Mizil and Lee, 2011), 4) MetaLWOZ (Schulz
et al., 2019), 5) Self-Dialog (Fainberg et al.,
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Datasets # Dialogue # Utterance Avg. Turn Domain
MetaLWOZ (Schulz et al., 2019) 37,884 432,036 114 47
Schema (Rastogi et al., 2020) 22,825 463,284 20.3 17
Taskmaster (Byrne et al., 2019) 13,215 303,066 22.9 6
MWOZ (Budzianowski et al., 2018) 10,420 71,410 6.9 7
MSR-E2E (Li et al., 2018) 10,087 74,686 7.4 3
SMD (Eric et al., 2017) 3,031 15,928 5.3 3
Frames (El Asri et al., 2017) 1,369 19,986 14.6 3
WOZ (Mrksié et al., 2017) 1,200 5,012 4.2 1
CamRest676 (Wen et al., 2017) 676 2,744 4.1 1
TOTAL \ 100,707 1,388,152 13.8 60

Table 6: Data statistics of the training corpus. We keep the original table from (Wu et al., 2020) and only add the
last line.

2018), 6) TaskMasterl (Byrne et al., 2019),
7) TaskMaster2 (Byrne et al., 2019), 8) TaskMas-
ter3 (Byrne et al., 2019), 9) Schema (Rastogi
et al., 2020), 10) PersonaChat (Zhang et al., 2018),
11) MWOZ (Budzianowski et al., 2018), 12) MSR-
E2E (Li et al., 2018), 13) TopicChat (Gopalakrish-
nan et al., 2019), 14) ABCD (Chen et al., 2021),
15) ChitChat (Myers et al., 2020), 16) SMD (Eric
et al., 2017), 17) Frames (El Asri et al., 2017),
18) WOZ (Mrksi¢ et al., 2017), 19) CCPE-
M (Radlinski et al., 2019), and 20) Cam-
Rest676 (Wen et al., 2017). See Table 7 for data
statistic information.

D Hyper-parameters

Each head is a linear layer with a size of (d * d),
where d is the hidden size of the model. We set the
batch size to 256, and use the AdamW optimizer
(Kingma and Ba, 2017) along with the OneCy-
cleLR learning rate scheduler (Smith and Topin,
2018). The learning rate for the encoder is set to
3e-5, while the learning rate for the contrastive
heads is amplified by a factor of 40. We set the
contrastive temperature 7 to 0.05.
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Datasets # Dialogue # Utterance Avg. Turn
Reddit (Zhang et al., 2020) 15,914,021 31,908,317 2.0
AmazonQA (Gupta et al., 2019) 962,260 1,924,520 2.0
Movie-Dialogs (Danescu-Niculescu-Mizil and Lee, 2011) 220,579 441,158 2.0
MetaLWOZ (Schulz et al., 2019) 37,884 356,268 94
Self-Dialog (Fainberg et al., 2018) 24,165 348,554 144
TaskMasterl (Byrne et al., 2019) 13,215 135,176 10
TaskMaster2 (Byrne et al., 2019) 17,289 137,064 7.9
TaskMaster3 (Byrne et al., 2019) 23,789 237,617 10.0
Schema (Rastogi et al., 2020) 22,825 463,284 20.3
PersonaChat (Zhang et al., 2018) 18,876 250,634 13.3
MWOZ (Budzianowski et al., 2018) 10,420 71,410 6.9
MSR-E2E (Lietal., 2018) 10,087 74,686 7.4
TopicChat (Gopalakrishnan et al., 2019) 10,784 235,434 21.8
ABCD (Chen et al., 2021) 8,034 64,500 8.0
ChitChat (Myers et al., 2020) 7,168 258,145 36
SMD (Eric et al., 2017) 3,031 15,928 5.3
Frames (EI Asri et al., 2017) 1,369 19,986 14.6
WOZ (Mrksic et al., 2017) 1,200 7,624 6.4
CCPE-M (Radlinski et al., 2019) 502 12,000 24.0
CamRest676 (Wen et al., 2017) 676 2,744 4.1
TOTAL 17,308,174 36,965,049 2.1

Table 7: Data statistics of the training corpus for scaling.
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