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Abstract
Graph Neural Networks (GNNs) play a funda-
mental role in cheminformatics. However, typi-
cal GNNs cannot capture the concept of chiral-
ity, which means they cannot distinguish chiral
molecules from their enantiomers. The ability to
distinguish between enantiomers is important as
enantiomers may exhibit very distinct biochem-
ical properties. Herein, we proposed a method
that leverages the spatial structure of molecules
to incorporate conformational information into
GNNs. A Pretrained Graph Transformer was
designed for Chiral tasks (ChiPGT), which can
iteratively optimize raw 3D enantiomer conforma-
tions generated by inexpensive methods such as
RDKit. The results indicated that our ChiPGT out-
performs current state-of-the-art GNNs in chiral-
sensitive molecular property prediction tasks on
the D4DCHP and REDS datasets.

1. Introduction
Chiral molecules are those whose mirror-image struc-
tures (enantiomers) cannot be overlapped by any combina-
tion of rotations, translations, and conformational changes
(Kasprzyk-Hordern, 2010; Cahn et al., 1966). Most chi-
ral molecules contain at least one chiral center, typically a
carbon atom bonded to four different groups. Some chiral
molecules do not contain a chiral center but have a chiral
axis, known as axial chirality. Although enantiomers have
many identical physical and chemical properties, they can
exhibit vastly different behaviors when interacting with chi-
ral environments. This makes chiral molecules critically
important in various applications, particularly in pharma-
ceuticals, agrochemicals, and materials science (Kasprzyk-
Hordern, 2010; Cahn et al., 1966; Brandt et al., 2017). For
instance, the chirality of a drug molecule can significantly
influence its therapeutic efficacy and safety. One enantiomer
of a chiral drug might be therapeutically active, while the
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other could be inactive or even harmful (Nguyen et al.,
2006).

Graph neural networks (GNNs) are a class of deep learn-
ing models that can process graph-structured data, including
molecular graphs (Gilmer et al., 2017; Gasteiger et al., 2020;
Reiser et al., 2022). Benefiting from graph representation
of molecules, GNNs exhibit impressive learning capabili-
ties of molecular structures and promising performance on
many chemistry-related tasks, such as molecular property
prediction (Yang et al., 2019; Chen & Schwaller, 2024),
drug discovery (Brown et al., 2019; Li et al., 2022), and
reaction prediction (Chen & Jung, 2022; Tu & Coley, 2022).
However, typical GNNs fail to capture the concept of chi-
rality, roughly meaning they cannot distinguish between a
molecule and its enantiomer (Fig. 1). Traditional operations
directly represent atoms as nodes and chemical bonds as
edges, resulting in two-dimensional molecular graphs with
identical topological structures for enantiomers.

Figure 1. The 2D molecular graph loses chirality.

The recent developments of GNNs provide message passing
with information about bond distances, bond angles, and tor-
sion angles of conformational isomers (Schütt et al., 2017;
Liu et al., 2022; Gasteiger et al., 2021). These methods
theoretically enable the GNNs to differentiate enantiomers,
while they exhibit poor performance on chirality-related
tasks (Adams et al., 2021). Some researchers have attempted
to design chirality-sensitive models explicitly to incorporate
chiral information into GNNs, but the performance of these
models still needs improvement (Schneider et al., 2018;
Pattanaik et al., 2020; Mamede et al., 2021; Gaiński et al.,
2023). Additionally, methods designed specifically for chi-
ral centers not only fail to handle axial chiral molecules
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but may also lead to a decrease in the ability to handle
non-chiral tasks (Gaiński et al., 2023).

In this work, we adopt an approach that starts from the
overall spatial structure of molecules and incorporates con-
formational information into GNNs. We designed a graph
transformer (ChiPGT) capable of effectively handling chiral-
ity information. The ChiPGT’s graph encoder is pre-trained
on PCQM4MV2 dataset (Hu et al., 2021) with extensive
DFT-optimized molecular geometries, and able to optimize
raw 3D enantiomer conformations generated by inexpen-
sive methods such as RDKit. The results prove that our
ChiPGT outperforms current state-of-the-art methods in
chiral-sensitive molecular property prediction tasks on the
D4DCHP and REDS datasets.

2. Related Work
The most common method for incorporating chirality into
GNNs is using local or global chirality labels (Schneider
et al., 2018; Mamede et al., 2021). For each carbon atom
with four nonequivalent groups (referred to as a chiral cen-
ter), we can order the four groups according to specific rules.
The position of the highest numbered group (4) should be
oriented away from the observer, and the relative positions
of the groups numbered (1), (2) and (3) determine the chi-
ral center’s clockwise (CW) or counterclockwise (CCW)
direction, forming the chirality label. Both local and global
chirality labels have very limited expressivity.

A theoretically feasible approach to incorporating chiral
information into graph neural network models is to provide
the set of torsion angles to 3D GNNs. However, even access
to a complete set of torsion angles does not guarantee the ex-
pressivity for chirality-sensitive tasks, as torsion angles are
sensitive to bond rotation and can be negated by reflections
of non-chiral molecules(Adams et al., 2021). In(Adams
et al., 2021), the authors proposed the ChIRo model, which
embeds sets of torsion angles with common bonds rather
than individual torsion angles. ChIRo explicitly models
conformational flexibility by integrating a novel type of in-
tramolecular bond rotation invariance into the architecture,
thus reducing the need for extensive conformational data
augmentation. Tests show that ChIRo effectively learns chi-
ral information and achieves satisfactory performance on
R/S classification tasks.

Another approach to incorporating chiral information into
graph neural network models is to modify the message-
passing scheme. In typical GNNs, incoming messages from
neighboring nodes are treated as a set and aggregated us-
ing permutation-invariant functions such as summation or
averaging. Since enantiomers have the same graph connec-
tivity, symmetrical aggregators operating on different chiral
centers will collapse their neighbors into identical represen-

tations regardless of chirality, making message passing un-
able to distinguish chiral graphs. In (Pattanaik et al., 2020),
the authors proposed the Tetra-DMPNN model, which re-
places the classic message-passing scheme with a chirality-
sensitive scheme. The proposed aggregation scheme is
guided by local chirality labels, and its effectiveness in tasks
such as enantiomer ranking demonstrates its ability to dis-
tinguish enantiomers. In(Gaiński et al., 2023), the authors
proposed a chirality-sensitive message-passing scheme that
does not rely on distances, angles or torsion angles but in-
stead uses the directions of neighbors around a node. The
authors applied this method to construct the chiral edge
neural network (ChiENN) layer in the context of molecu-
lar chirality which can be attached to any GNN model to
achieve chiral awareness. ChiENN is the current state-of-
the-art method for chirality-sensitive tasks.

3. Method
3.1. ChiPGT Architecture

As shown in Fig. 2, the ChiPGT model consists of a
graph encoder and an output block. Based on Uni-Mol+
(Lu et al., 2023) architecture, our ChiPGT’s graph encoder
can iteratively update 3D conformations and atom embed-
dings using molecular graphs with coarse atomic coordi-
nates as input. The initial atomic positions are generated
from SMILES through inexpensive methods such as RDKit.
ChiPGT’s graph encoder is pre-trained on PCQM4MV2
dataset (Hu et al., 2021) with extensive DFT-optimized
molecular geometries, and able to optimize molecular con-
formations towards an equilibrium state. Subsequently, the
ChiPGT is fine-tuned on chirality-related datasets without
DFT-optimized structures. The optimized 3D conforma-
tions and corresponding atomic embeddings output from the
graph encoder are used to predict chirality-related properties
through the output block.

3.2. Graph Encoder Backbone

In the ChiPGT’s graph encoder, a raw conformation is
iteratively updated to its target DFT equilibrium confor-
mation, and the learned conformation will be encoded to
atom embedding and then be used to predict the chirality-
related properties. To effectively learn this update process
towards the equilibrium conformation, the graph encoder
maintains two tracks of representations: 1) Atom represen-
tation (x ∈ Rn×dx , where dx is the dimension of the atom
representation) and 2) Pair representation (p ∈ Rn×n×dp ,
where dp is the dimension of the pair representation).

Update of Atom Representation The atom representation
x(0) is initialized by the embeddings of atom features. At
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Figure 2. Model architecture of ChiPGT for molecular property prediction tasks.

l-th block, x(l) is sequentially updated as follow:

x(l) = x(l−1) + SelfAttention
(
x(l−1),p(l−1)

)
, (1)

x(l) = x(l) + FFN
(
x(l)

)
. (2)

The SelfAttention function f1 is denoted as:

Q(l,h) = x(l−1)W
(l,h)
Q , K(l,h) = x(l−1)W

(l,h)
K , (3)

B(l,h) = p(l−1)W
(l,h)
B , V (l,h) = x(l−1)W

(l,h)
V , (4)

f1 = softmax

Q(l,h)
(
K(l,h)

)T

√
dh

+B(l,h)

V (l,h),

(5)

where dh is the head dimension, W (l,h)
Q ,W

(l,h)
K ,W

(l,h)
V ∈

Rdx×dh ,W
(l,h)
B ∈ Rdp×1. FFN is a feedforward network

with one hidden layer. For simplicity, layer normalizations
are omitted. Compared to the standard Transformer layer,
the only difference here is the usage of attention bias term
B(l,h) to incorporate p(l−1) from the pair representation
track.

Update of Pair Representation The pair representation
p(0) is initialized by the positional encoding ψ. The update
process of pair representation begins with an outer product
of x(l), followed by a O

(
n3

)
triangular multiplication, and

is then concluded with an FFN layer. Formally, at l-th block,
p(l) is sequentially updated as follow:

p(l) = p(l−1) + OuterProduct
(
x(l)

)
, (6)

p(l) = p(l) + TriangularUpdate
(
p(l)

)
, (7)

p(l) = p(l) + FFN
(
p(l)

)
. (8)

The OuterProduct function (f2) is used for atom-to-pair
communication, denoted as:

a = x(l)W
(l)
O1, b = x(l)W

(l)
O2, (9)

oi,j = flatten (ai ⊗ bj) , (10)

f2 = oW
(l)
O3, (11)

where W
(l)
O1,W

(l)
O2 ∈ Rdz×do , do is the hidden dimension

of OuterProduct, and W
(l)
O3 ∈ Rd2

o×dp , o = [oi,j ]. Please
note that a, b,o are temporary variables in the OuterProduct
function. TriangularUpdate function (f3) is used to enhance
pair representation further, denoted as:

a = sigmoid
(
p(l)W

(l)
T1

)
⊙

(
p(l)W

(l)
T2

)
, (12)

b = sigmoid
(
p(l)W

(l)
T3

)
⊙

(
p(l)W

(l)
T1

)
, (13)

oi,j =
∑
k

ai,k ⊙ bj,k +
∑
k

ak,i ⊙ bk,j , (14)

f3 = sigmoid
(
p(l)W

(l)
T5

)
⊙

(
oW

(l)
T6

)
, (15)

where W
(l)
T1,W

(l)
T2,W

(l)
T3,W

(l)
T4 ∈ Rdp×dt ,W

(l)
T5 ∈

Rdp×dp ,W
(l)
T6 ∈ Rdt×dp , o = [oi,j ], and dt is the hid-

den dimension of TriangularUpdate. a, b,o are temporary
variables.
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4. Experiments
4.1. Datasets

For chirality-related property prediction tasks, we conduct
our experiments on two datasets designed specifically to
evaluate the capability of a model to express chirality.

D4DCHP(Pattanaik et al., 2020) is a dataset assessing chiral
interactions of molecules in the D4 dopamine receptor pro-
tein. There are a large number of chiral centers in complex
proteins, making protein pockets a chiral environment, so
enantiomers can show different interaction energies when
complexed with target proteins.

Ranking Enantiomers by Docking Scores dataset(later re-
ferred to as REDS dataset) (Adams et al., 2021) is also a
dataset consists of docking scores for enantiomeric pairs of
molecules. The difference is, REDS defined two different
tasks: enantiomer ranking and docking score prediction.
The former involves predicting which molecule in an enan-
tiomeric pair has relatively lower binding affinity in a chiral
protein pocket, while the latter, sharing the same molecular
data as the former, focuses on regression for docking score.

4.2. Baselines

We benchmark our method, ChiPGT, in comparison to sev-
eral GNN architectures, including general GNNs: GPS
(Rampášek et al., 2022), SAN (Kreuzer et al., 2021),
DMPNN (Yang et al., 2019), and chirality-sensitive GNNs:
Tetra-DMPNN (Pattanaik et al., 2020), ChIRo (Adams et al.,
2021), ChiENN (Gaiński et al., 2023), with ChiENN being
the current state-of-the-art method for chiral-sensitive tasks.
Models not specifically designed for chirality are considered
to add chiral atom labels to their node features or stack them
with the chirality-sensitive layer of ChiENN.

4.3. Evaluation Metrics

For the molecular property prediction task on D4DCHP, the
evaluation metric employed is the Root Mean Square Error
(RMSE), which evaluates the regression accuracy for dock-
ing scores prediction. For the two different tasks in REDS,
the evaluation metrics are: Enantiomer ranking accuracy,
which evaluates the accuracy of predicting the molecule
with lower binding energy in enantiomeric pairs, and Mean
Absolute Error (MAE), which evaluates the regression accu-
racy for docking score prediction.

4.4. Training details

Before model training, we first use the RDKit method to
generate 8 initial conformations for each molecule at a cost
of approximately 0.005s per molecule.

For model training, we choose Mean Squared Error (MSE)

as the loss function, used the AdamW optimizer with a
learning rate of 5 × 10−5 for D4DCHP dataset and 2 ×
10−4 for REDS dataset, a batch size of 128 (molecules).
We trained for 30 epochs on D4DCHP dataset (287,468
molecules) and for 250 epochs on REDS dataset (69,120
molecules), 10% of which are warm-up steps.

The training took approximately 5 hours for each dataset,
utilizing one NVIDIA A6000 GPU. The inference on the
D4DCHP test set (28,746 molecules) took approximately 9
minutes, and on the REDS test set (10,386 molecules) took
approximately 2 minutes, utilizing one NVIDIA A6000
GPU. The reported statistics are averages of five runs, using
standord training/validation/testing split and different initial
random seeds.

4.5. Results

Table 1. The comparison between the ChiPGT and baseline models
on D4DCHP dataset. The results of baselines are from Tetra-
DMPNN work (Pattanaik et al., 2020).

METHOD
BINDING AFFINITY

RMSE ↓
GCN + PERM 6.67 ± 0.06
GIN + PERM 6.39 ± 0.06
DMPNN + PERM 6.39 ± 0.06
GCN + PERM-CAT 6.62 ± 0.06
GIN + PERM-CAT 6.37 ± 0.07
DMPNN + PERM-CAT 6.38 ± 0.06
CHIPGT (OUR METHOD) 5.99 ± 0.01

As depicted in Table 1 and 2, it can be observed that our
method achieved state-of-the-art performance on regres-
sion tasks across two chiral-related datasets. On D4DCHP
dataset, our ChiPGT model significantly outperformed the
chiral message passing baselines in the prediction of dock-
ing score, achieving a root mean square error (RMSE) of
5.99 kcal/mol. This represents a reduction of approximately
6% compared to the previous best method combination
(GIN + PERM-CAT), which uses chirality-sensitive aggre-
gation functions for message passing and achieves an RMSE
of 6.37 kcal/mol. On the REDS dataset, we compared
the ChiPGT method with the current state-of-the-art chiral-
sensitive GNNs for the docking score prediction. ChiPGT
achieved the lowest mean absolute error (MAE) of 0.249
kcal/mol, surpassing the current best ChiENN method com-
bined with the SAN, which had an MAE of 0.257 kcal/mol.

4.6. Ablation Study

We conduct an ablation study to study the impact of pre-
training (Table 3). The ChiPGT models trained from scratch
exhibited an increase in RMSE from 5.95 to 6.50 on the
D4DCHP dataset, while MAE increased from 0.248 to
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0.283 and the enantiomer ranking accuracy decreased from
0.738 to 0.665 on the REDS dataset. The results prove
that ChiPGT’s prediction performance on chirality-related
tasks can be obviously improved through pre-training on
the PCQM4MV2 dataset (Hu et al., 2021) with extensive
DFT-optimized molecular geometries.

Table 2. The comparison between the ChiPGT and baseline models
on REDS dataset. The results of baselines are from ChiENN work
(Gaiński et al., 2023).

METHOD
ENANTIOMER

RANKING
DOCKING SCORE

R.ACCURACY ↑ MAE ↓
DMPNN 0.000±0.000 0.310±0.001
GPS 0.000±0.000 0.330±0.003
SAN 0.000±0.000 0.317±0.004
DMPNN + TAGS 0.701±0.003 0.285±0.001
GPS + TAGS 0.669±0.037 0.318±0.004
SAN + TAGS 0.722±0.004 0.278±0.003
CHIRO 0.691±0.006 0.359±0.009
CHIENN 0.760±0.002 0.275±0.003
GPS + CHIENN 0.753±0.004 0.258±0.001
SAN + CHIENN 0.764±0.005 0.257± 0.002
CHIPGT 0.732± 0.004 0.249± 0.001

Table 3. Ablation study on D4DCHP and REDS.

METHOD
D4DCHP REDS
RMSE ↓ R.ACC ↑ MAE ↓

FROM SCRATCH 6.50±0.01 0.665±0.011 0.283±0.004
FINETUNING 5.99±0.01 0.732±0.004 0.249±0.001

5. Conclusion
In this work, we propose a method that leverages the spa-
tial structure of molecules to incorporate conformational
information into GNNs, aiming to address the challenges in
handling chiral molecules. We employ the proposed method
to construct a pre-trained graph Transformer specifically
for chiral tasks (ChiPGT). The ChiPGT’s graph encoder is
pre-trained on PCQM4MV2 dataset with extensive DFT-
optimized molecular geometries, and able to optimize raw
3D enantiomer conformations generated by inexpensive
methods such as RDKit. The experimental results demon-
strate that the ChiPGT significantly outperforms current
state-of-the-art GNNs in chirality-sensitive molecular prop-
erty prediction tasks.

References
Adams, K., Pattanaik, L., and Coley, C. W. Learning 3D

Representations of Molecular Chirality with Invariance
to Bond Rotations, 2021. arXiv:2110.04383 [cs].

Brandt, J. R., Salerno, F., and Fuchter, M. J. The added value
of small-molecule chirality in technological applications.
Nature Reviews Chemistry, 1(6):0045, 2017.

Brown, N., Fiscato, M., Segler, M. H., and Vaucher, A. C.
GuacaMol: Benchmarking Models for de Novo Molecu-
lar Design. Journal of Chemical Information and Model-
ing, 59(3):1096–1108, 2019.

Cahn, R. S., Ingold, C., and Prelog, V. Specification of
molecular chirality. Angewandte Chemie International
Edition in English, 5(4):385–415, 1966.

Chen, J. and Schwaller, P. Molecular hypergraph neural
networks. The Journal of Chemical Physics, 160(14),
2024.

Chen, S. and Jung, Y. A generalized-template-based graph
neural network for accurate organic reactivity prediction.
Nature Machine Intelligence, 4(9):772–780, 2022.
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