
Under review as a conference paper at ICLR 2021

MULTI-REPRESENTATION ENSEMBLE IN FEW-SHOT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks (DNNs) compute representations in a layer by layer fash-
ion, producing a final representation at the top layer of the pipeline, and classifi-
cation or regression is made using the final representation. A number of DNNs
(e.g., ResNet, DenseNet) have shown that representations from the earlier lay-
ers can be beneficial. They improved performance by aggregating representations
from different layers. In this work, we asked the question, besides forming an
aggregation, whether these representations can be utilized directly with the classi-
fication layer(s) to obtain better performance. We started our quest to the answer
by investigating the classifiers based on the representations from different layers
and observed that these classifiers were diverse and many of their decisions were
complementary to each other, hence having the potential to generate a better over-
all decision when combined. Following this observation, we propose an ensemble
method that creates an ensemble of classifiers, each taking a representation from a
different depth of a base DNN as the input. We tested this ensemble method in the
setting of few-shot learning. Experiments were conducted on the mini-ImageNet
and tiered-ImageNet datasets which are commonly used in the evaluation of few-
shot learning methods. Our ensemble achieves the new state-of-the-art results for
both datasets, comparing to previous regular and ensemble approaches.

1 INTRODUCTION

The depth of a deep neural network is a main factor that contributes to the high capacity of the
network. In deep neural networks, information is often processed in a layer by layer fashion through
many layers, before it is fed to the final classification (regression) layer(s). From a representation
learning point of view, a representation is computed sequentially through the layers and a final
representation is used to perform the targeted task. There have been deep neural networks that try
to exploit the lower layers in the sequence to achieve better learning results. GoogLeNets (Szegedy
et al., 2015) added auxiliary losses to the lower layers to facilitate training. Skip links (such as
the ones used in ResNet (He et al., 2016) and DenseNet (Huang et al., 2017)) may be added to
connect the lower layers to the higher ones in a deep architecture. Even though the main purposes
of these approaches are to assist the training process or to help the gradient back-propagation, the
success of these approaches suggests that the representations from the lower layers may be beneficial
to many learning tasks. Therefore, it is worth to rethink the standard sequential structure where
a final representation is used to make the prediction. In this work, we ask the question whether
the representations from the lower layers can be used directly (instead of being auxiliary or being
aggregated into a final representation) for decision making. If so, how can we take advantage of
these lower-level representations and what are good practices in doing so?

We first investigated the problem by conducting classifications using the representations from differ-
ent layers. We took the convolutional layers of a trained network as an encoder. The representations
(feature maps) from different layers of the encoder were tested for their classification performance.
We observed that although overall, the feature maps from the higher layers led to better performance,
there was a significant number of cases that correct predictions could be made with the lower fea-
ture maps but the higher-level feature maps failed to do so. This suggested that the lower-level
representations have the potential to help the classification directly (detailed analysis in Section 3).
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Figure 1: Multi-representation classifier ensemble.

Based on the inspiration from the prior models (i.e., GoogLeNet, ResNet and DenseNet) and our
own observations, we propose an ensemble approach to directly take advantage of the lower-level
representations. By integrating multiple models, an ensemble is likely to compensate the errors of a
single classifier, and thus the overall performance of the ensemble would be better than that of a sin-
gle classifier. This makes ensemble a suitable technique for our purpose. A variety of methods exist
for ensemble construction. Some utilize sampling to obtain individual models from different sub-
sets of the training data. Others construct models with different structures or initialization. However,
these common ensemble methods cannot achieve our goal to exploit the lower-level representations.
Instead, we propose a special type of ensembles, different from the existing ones. In particular, each
classifier in our ensemble takes a feature map from a different depth of a CNN encoder as input and
the whole ensemble utilizes the feature maps from multiple convolutional layers. We call this ap-
proach the multi-representation ensemble. Figure 1 illustrates our ensemble approach and compares
it to the common ensemble method.

We evaluate our ensemble method on the few-shot learning (FSL) problem (Snell et al., 2017). FSL
aims to learn a network capable of recognizing instances (query images) from novel classes with only
few labeled examples (support images) available in each class. Given the demanding nature (learning
from a few examples) of the problem, many FSL approaches first train an encoder following a
regular training paradigm and then further-train the encoder and the classifier using a FSL paradigm.
Because the encoder plays an important role in few-shot learning, it is a good learning task to apply
and test our ensemble method which takes advantage of multiple representations from the encoder.
Note that in recent years, many FSL works have employed extra data from the test (novel) classes
for better performance. The extra data can be unlabeled and given at the test time (transductive
learning) (Kye et al., 2020; Yang et al., 2020) or during the training phase (semi-supervised learning)
(Rodrı́guez et al., 2020; Lichtenstein et al., 2020). Our problem scope focuses on the traditional FSL
setting, where only a few (one or five) support images per novel class are available at the test time.

Experiments with our ensemble model were conducted on two FSL benchmark datasets and we
obtained new state-of-the-art results for both. Besides evaluating our ensemble and comparing it
to the existing methods for FSL tasks, we also conducted experiments that demonstrated that the
utilization of multiple representations in the ensemble is crucial for the success of our method. Our
main contributions are as follows: 1) We propose a novel ensemble method that creates a collection
of models by employing multiple representations from different depth of a deep neural network. 2)
We demonstrated the advantage of our ensemble model on the FSL problems and achieved new state-
of-the-art results on two benchmark datasets. Our experiments also showed that multi-representation
is necessary for the improved performance of the ensemble.

2 RELATED WORK

Ensemble methods. Ensemble methods are commonly used to improve prediction quality. Some
example ensemble strategies include: (1) manipulate the data, such as data augmentation or divid-
ing the original dataset into smaller subsets and then training a different model on each subset. (2)
apply different models or learning algorithms. For example, train a neural network with varied hy-
perparameter values such as different learning rates or different structures. (3) hybridize multiple
ensemble strategies, e.g., random forest. Ensembles have also been applied to FSL problems. Liu
et al. (2019b) proposed to learn an ensemble of temporal base-learners, which are generated along
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Figure 2: (a) 5-way, 1-shot classification accuracy on mini-ImageNet across convolutional layers.
(b) Classification results for convolutional layer 14 and 16 of ResNet-18 and the ensemble incorpo-
rating both.

the training time, producing encouraging results on the mini-ImageNet and the Fewshot-CIFAR100
datasets. Dvornik et al. (2019) introduced mechanisms to encourage cooperation and diversity of
individual classifiers in an ensemble model. The main difference between our method and the previ-
ous ones is the ensemble construction that utilizes multiple representations from different depth of
a neural network.

Few-shot learning. Meta-learning method has shown great success in FSL (Finn et al., 2017; Grant
et al., 2018; Lee & Choi, 2018). MAML (Finn et al., 2017) used a meta-learner that learns from the
training images to effectively initialize a base-learner for a new learning task in the test dataset. Fur-
ther works aimed to enhance the generalization ability by improving the learning algorithm (Nichol
et al., 2018), fine-tuning the image embedding space (Sun et al., 2019; Rusu et al., 2018). Another
popular direction for FSL is metric-learning which targets on learning metric space where classes
can be easily separated. For example, Prototypical Networks use euclidean distance with each class
prototype set to be the mean of the support embeddings (Snell et al., 2017). Relation network (Sung
et al., 2018) was proposed to compute the similarity score between a pair of support and query im-
ages. The query image is classified into the category with the highest similarity. Each individual
model in our ensemble employs a relation network for classification while the relational network
in different models receives different representation as input. Many recent FSL studies proposed
approaches that utilized extra unlabled data or other additional information (Li et al., 2019b; Kye
et al., 2020; Yang et al., 2020; Hu et al., 2020; Rodrı́guez et al., 2020; Lichtenstein et al., 2020).
They are not in the scope of the problem we were considering and thus not compared in the result
section.

3 MOTIVATION

As a beginning investigation on the lower layer representations, we conducted a set of experiments
to gain insight into their classification power. We took the FSL setting as the experiment environ-
ment and measured the performance of the representations from different convolutional layers in
the encoder. (ResNet-18 and its two variants were used as encoders. After encoder pretraining,
FSL was conducted using the representation from an encoder layer combined with a classification
network. Representations from different layers were tested.) Figure 2(a) shows the classification
accuracy across different convolutional layers. The best performance did not come from the final
convolutional layers (layer 18 in ResNet-18-v1 and 16 in ResNet-18 and ResNet-18-v2). Instead the
fourth or the fifth layer from the last (layer 14 in ResNet-18-v1 and 12 in ResNet-18 and ResNet-18-
v2) generated the highest accuracy. Going further towards the lower layers, we observe that overall
for the three models, the lower the convolutional layer is, the worse the classification performance
becomes.

We looked further into the predictions made by different layers and investigated whether these pre-
dictions can be complementary, that is, is there enough diversity among the predictions such that by
combining them together, we may obtain a better prediction. Taking layers 16 and 14 of ResNet-18
as examples, we examined the FSL predictions on a random sample of 75,000 images. The classifi-
cation results using the representations from these two layers are shown in Figure 2(b). The model
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using the representation from layer 14 had a little higher overall accuracy ((44.9 + 8.4 + 6.5)% =
59.8%) than that of the one using layer 16 ((44.9 + 5.6 + 8.3)% =58.8%). We can categorize the re-
sults into 4 scenarios: 1) Both classified correctly (labeled and colored as “Both” in Figure 2(b)); 2)
Only the model using representation from layer 16 made correct prediction (labeled and colored as
“Layer16”). The model with layer 14 gave incorrect results to these images; 3) Only the model with
layer 14 predicted correctly (labeled and colored as “Layer14”); 4) Neither made correct prediction
(labeled and colored as “Neither”). Although many images were classified correctly by both models
(44.9% of the total), some images could be only recognized by one of them (scenario 2 and 3).

In an ideal situation, if we find a way to resolve perfectly the conflicts between the two models in
both scenarios 2 and 3 and make correct prediction for these images, a classification accuracy as
high as 73.7% may be achieved. Ensemble is a potential approach towards this goal. We did a quick
test by constructing an ensemble from the two models and using the average of their outputs as the
output of the ensemble. Figure 2(b) also shows the result of this quick ensemble. The ensemble
reached a accuracy of 61.6%, higher than any individual model. Clearly, for images in scenario 1,
the ensemble still made the correct predictions. For images in the scenarios 2 and 3, the ensemble
was able to resolve more than half of them and make correct classifications. (There were 13.9%
of the images in scenario 2, 8.3% were resolved and had correct predictions from the ensemble.
There were 14.9% of the images in scenario 3, 8.4% were resolved.) Although the ensemble did
not reach the ideal limit mentioned above, it did provide a better classification, more accurate than
any of the individual model in the ensemble. This quick experiment shed light on the possibility
to exploit representations from different layers in a deep neural network as a way to obtain better
learning performance. Following this direction, we designed our ensemble method for FSL tasks.
We conducted more thorough experiments to validate the approach and to determine the design
choices that can optimize the performance gain.

4 METHODOLOGY

4.1 PROBLEM DEFINITION

Formally, we have three disjoint datasets: a training set Dtrain, a validation set Dval, and a testing
set Dtest. In the traditional C-way N -shot classification in FSL, we are tasked to obtain a model
that can perform classification among C classes (in the testing set Dtest) while we have access to
only N samples from each class. (The model can be pre-trained using data in Dtrain or even data
in Dval. However, there are no overlapping classes between Dtest and Dtrain or Dval.) The set of
C × N samples is often referred to as the support set. In many FSL works, N is commonly set to
be 1 or 5. We remark that some recent FSL researches have started to explore helps from additional
information. In particular, a number of methods have been proposed to leverage unlabeled data
beyond theN examples from theC classes to enhance model accuracy. They either use the unlabeled
data in the training (semi-supervised learning) or perform classifications with a set of query data
together (transductive learning) (Li et al., 2019b; Kye et al., 2020; Yang et al., 2020; Hu et al.,
2020; Rodrı́guez et al., 2020; Lichtenstein et al., 2020). In this work, we focus on the traditional
FSL setting where no additional information or unlabeled data are available and the prediction for a
query data point is made independently from (without knowing) any other query data points.

4.2 MULTI-MODEL MULTI-REPRESENTATION ENSEMBLE

Our ensemble contains multiple encoders (encoders of different network structures). Hence the
ensemble is also multi-model. An encoder generates multiple representations. Each is then fed to
a classifier network. The combination of a particular representation and a classifier network forms
an individual classification model in the ensemble. Figure 3 shows the overall architecture of the
ensemble. (For simplicity, the figure illustrates only one encoder with multiple representations. An
actual ensemble may include several encoders.) In the following, We describe the details of the
ensemble.

Same as many other research work on FSL, we consider the task of image classification. Therefore
Dtrain, Dval, and Dtest are collections of images and their labels. Before being employed in an
ensemble to provide multiple representations, an encoder is pre-trained following the pretraining
protocol in FSL (Rusu et al., 2018; Sun et al., 2019). If multiple encoders are employed, each of them
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Figure 3: Classification by multi-representation ensemble for a 2-way 1-shot problem.

will undergo the pretraining independently. After the pretraining stage, we have a set of encoders
and each encoder can provide multiple representations (image features) from different layers. We
refer to the features for image x from n-th convolutional layer in the encoder e by φ(n)e (x). Our
ensemble uses relation network (Sung et al., 2018) to perform classification. The relation network
takes a pair of instances from a particular representation as input and outputs a similarity score. We
denote by g the score function computed by the relation network.

Let S(1) and S(2) be two images from two different classes (class 1 and 2) in the support set. Let
q be a query image to be classified. The images are first fed into the encoders and for each im-
age, multiple representations (from different encoders and different layers) are generated. Take an
encoder e and the n-th layer of e as an example, We illustrate the classification process using the
representations φ(n)e (s(1)) (orange in Figure 3), φ(n)e (s(2)) (green in Figure 3) and φ(n)e (q) (blue in
Figure 3). (Note that Figure 3 contains two sets of representations φ(n)e (·) and φ(n−1)e (·) with the
same color scheme. Colors are used to indicate the source image from which the representation is
computed. They are not related to the location, i.e., the encoder and the layer, where the representa-
tion is generated.) The representation of φ(n)e (q) is concatenated (on the channel dimension) to the
representation of φ(n)e (s(1)). The relation network is applied to the concatenation and a score r is
calculated to measure the similarity between the query and the class (class 1) representative image
s(1), i.e. r(1)(q) = g(φ

(n)
e (q)||φ(n)e (s(1))) where || indicates concatenation on the channel dimen-

sion. In an N -shot (N > 1) setting, for each class, we have N examples (e.g., S(k)
1 , S

(k)
2 , . . . , S

(k)
N

for class k). A prototype is obtained by averaging the representations φ(n)e (s
(k)
i ). The score is

computed using the concatenation of φ(n)e (q) and the prototype, i.e., in general,

r(k)(q) = g(φ(n)e (q)|| 1
N

∑
i

φ(n)e (s
(k)
i )) (1)

This calculation is performed for each class to produce C scores r(1), r(2), . . . , r(C) for a C-way
classification. The query image is classified into the category that has the maximum score.

The above presents the classification process of an individual model in the ensemble. There are a
set of encoders e1, e2, . . . and for each encoder ei, multiple representations from different layers
n
(ei)
1 , n

(ei)
2 , . . . are used to produce models in the ensemble. Let T = {n(ei)j } be the set of repre-

sentations, each leading to a classifier. Let r(i)t (q), t ∈ T , i ∈ {1, 2, . . . , C} be the score for image
q with respect to class i and computed by the classifier using representation t. The ensemble’s fi-
nal classification is made following the average scores over the models, i.e., the class label c∗(q) is
predicted to be:

c∗(q) = argmax
i

1

|T |
∑
t∈T

r
(i)
t (q) (2)
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where |T | is the size of the set T . Each relation network in the ensemble will be trained indepen-
dently following the training procedure in (Sung et al., 2018) while the encoders remain unchanged
after pre-training.

5 EXPERIMENT RESULTS

5.1 EXPERIMENTAL SETUP

Datasets. We used two standard benchmark datasets in FSL: mini-ImageNet (Vinyals et al., 2016)
and tiered-ImageNet (Ren et al., 2018). Mini-ImageNet consists of 100 categories, 64 for training,
16 for validation and 20 for testing, with 600 images in each set. Tiered-ImageNet includes 608
classes (779, 165 images) split as 351 training, 97 validation and 160 testing classes, each with
about 1300 images. The image size of both datasets is 84× 84.

Implementation details. We adopt the same ResNet-18 model in (Han et al., 2020) and two variants
of ResNet-18 as the encoders. The first variant is ResNet-18-v1 in (Sun et al., 2019) which has 3
residual sections with 3 basic blocks, each including 2 convolutional layers, and the second one is
ResNet-18-v2 consisted of 2 residual sections with 4 basic blocks. In order to pretrain an encoder
that produces image features/representations, the first step is similar to the common pre-training
stage used in FSL (Rusu et al., 2018; Sun et al., 2019). We merged data of all classes in Dtrain for
pre-training. After pre-training, we added shift and scaling parameters for the convolutional layers
in the encoder and trained the parameters by the MTL approach used in (Sun et al., 2019). To further
improve generalization, we also fine-tuned the upper layers in each encoder usingDval as unlabelled
data, following the method proposed in (Han et al., 2020). Specifically, we fine-tuned the upper half
layers of the encoder while freezing the rest. After pre-training, the encoder remains unchanged.

The evaluation of the ensembles was conducted usingC-wayN -shot classification tasks withC = 5
andN = 1 orN = 5. In an episode of evaluation, a classification task was constructed by randomly
selecting C classes andN samples per class fromDtest to serve as the support set. 15 random query
data points from the C classes were also selected as the query images to test the classification. The
evaluation process consisted of 1000 episodes. The mean accuracy (in %) over the 1000 episodes
and the 95% confidence interval are reported in the experiment results. Input images were re-scaled
to the size 80 × 80 and normalized before fed into the model. The relation networks to produce
the similarity scores between the support and the query images were composed of 2 convolutional
layers followed by a fully-connected layer with a sigmoid function. Our implementation was based
on PyTorch (Paszke et al., 2017a). Pre-training phase used default parameters in the works we
cited. For optimization of the relation networks , we used stochastic gradient descent (SGD) with
the Nesterov momentum 0.9. The initial learning rate was set to 1e-2.

5.2 MAIN FSL RESULTS

The ensemble used in this section employed representations from the last (from top) 9 convolutional
layers in ResNet-18 and the last (from top) 6 layers in ResNet-18-v1. The results on the two bench-
mark datasets are shown in Table 1. As stated in previous sections, we focused on traditional FSL.
In Table 1, we compare our results only to the best prior results on traditional FSL. Table 1 shows
that our model gives the new state-of-the-art performance on the 1-shot and the 5-shot tasks for
both the mini-ImageNet and the tiered-ImageNet datasets. This illustrates the effectiveness of the
multi-model multi-representation ensemble for the FSL problems.

5.3 ABOLITION STUDY AND ENSEMBLE DESIGN

In this section, we further demonstrate the benefit of lower-level features using results from the abo-
lition experiments and discuss the design choices for constructing a better ensemble. For abolition
study, we compared ensembles that utilized different sets (subsets) of representations/encoders. We
first present and discuss the performance results from ensembles that involve multi-representation
from a single encoder and then continue to ensembles that employ both multiple representations and
encoders. The ensemble performances (accuracy) were measured for few shot classification on the
mini-ImageNet dataset.
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Model Encoder mini-ImageNet tiered-ImageNet
1-shot 5-shot 1-shot 5-shot

TADAM (Oreshkin et al., 2018) ResNet-12 58.50± 0.30 76.70± 0.30 - -
MTL (Sun et al., 2019) ResNet-12 62.10± 1.80 78.50± 0.90 67.8± 1.8 83.0± 0.7
TapNet (Yoon et al., 2019) ResNet-12 61.65± 0.15 76.36± 0.10 63.08± 0.15 80.26± 0.12
MetaOpt-SVM (Lee et al., 2019) ResNet-12 62.64± 0.61 78.63± 0.46 65.99± 0.72 81.56± 0.53
CAN (Hou et al., 2019) ResNet-12 63.85± 0.48 79.44± 0.34 69.89± 0.51 84.23± 0.37
CTM (Li et al., 2019a) ResNet-18 64.12± 0.82 80.51± 0.13 68.41± 0.39 84.28± 1.73
Ensemble
Robust-dist++ (Dvornik et al., 2019) ResNet-18 59.48± 0.62 75.62± 0.48 - -
MTL+E3TB* (Liu et al., 2019a) ResNet-25 64.3 81.0 70.0 85.0
Ours ResNet-18 65.01±0.66 82.31±0.49 70.87±0.57 85.31±0.31

Table 1: The 5-way, 1-shot and 5-shot classification accuracy (%) on mini-ImageNet and tiered-
ImageNet datasets. Average classification performance over 1000 randomly generated episodes,
with 95% confidence intervals. (* Confidence intervals are not reported in the original paper.)

Single Encoder Multiple Representation. Figure 2(a) shows that the best accuracy obtained by a
classifier using a single representation from ResNet-18 is 59.53% (with representation from layer
12). In Table 2, we observe that ensembles utilizing multi-representation have boosted performance.
For example, the ensemble containing classifiers using representations from layer 16 to layer 14
of ResNet-18 achieves an accuracy of 62.59% (row 1 of Table 2). Including more classifiers that
use representations from layers 13, 12 and 11, the ensemble can reach an even higher performance
(63.54%, row 2). The topmost accuracy (64.03%) from the ensembles based on ResNet-18 comes
from the one that utilizes representations from layers 16 to 8. The improvement by including multi-
ple representations into the ensemble can also be observed for the ResNet-18-v1 and the ResNet-18-
v2 encoders. In general, for single encoder ensembles, coming down from the top layer, the more
representations we include in the ensemble, the better performance the ensemble can achieve, until
a turning-point layer is reached. Adding representations after the turn point may lead to reduced
performance.

Multiple Encoder Multiple Representation. Incorporating different models (e.g., neural networks
of different structures) is a common method to construct an ensemble. Clearly, this multi-model
construction can be combined with our multi-representation construction to create ensembles that
employ both multiple models and multiple representations from each model. The last row of Ta-
ble 2 shows the configuration and the performance of one of our multi-model, multi-representation
ensembles used in the experiments. There is a significant performance gain comparing this ensem-
ble to those on row 13 and 14. The ensembles on row 13 and 14 are multi-model but not multi-
representation since only one representation is used from each of the encoders in the ensembles.
Although a multi-model ensemble already performs better than the individual models in the ensem-
ble, adding multi-representation on top of multi-model leads to even better performance, giving rise
to the best performer among the ensembles (row 15).

Selection of Encoders and Representations for the Ensemble Not all encoders or representations
are helpful for an ensembles. Some representations (such as the ones from layers 7 and 6 of ResNet-
18, layers 12 and 11 of ResNet-18-v1), when incorporated into the ensemble, led to performance
decline (rows 4 and 8 in Table 2 comparing to rows 3, 7). We observe the classifiers that employed
these individual representations also showed lower performance (Figure 2(a)). Similarly, the per-
formance of a multi-encoder ensemble may degrade considerably if an encoder that falls behind
the others is included. Our final ensemble did not include ResNet-18-v2 as an encoder because its
performance is significantly lower than that of ResNet-18 and ResNet-18-v1. To select an encoder
or a representation to be included in an ensemble, we test, under the same task using the validation
data, the performance of the individual encoders and representations. (For an encoder, we use the
best performance across its layers as the measure for the encoder.) A relative threshold 0 < τ < 1 is
established. An encoder (representation) is selected if its performance is above τ of the performance
of the best encoder (the best representation from the same encoder). We set τ = 0.93 to construct
our final ensemble.

Ensemble vs Aggregated Representation
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Row# Encoder(s) Conv layers Accuracy(%)
1 ResNet-18 16–14 62.59
2 ResNet-18 16–11 63.54
3 ResNet-18 16–8 64.03
4 ResNet-18 16–6 63.71
5 ResNet-18-v1 18–17 58.57
6 ResNet-18-v1 18–15 59.67
7 ResNet-18-v1 18–13 60.72
8 ResNet-18-v1 18–11 59.21
9 ResNet-18-v2 16–14 56.05
10 ResNet-18-v2 16–12 57.49
11 ResNet-18-v2 16–10 58.26
12 ResNet-18-v2 16–8 58.77
13 ResNet-18, ResNet-18-v1 16, 18 60.87
14 ResNet-18, ResNet-18-v1, ResNet-18-v2 16, 18, 16 58.99
15 ResNet-18, ResNet-18-v1 16–8, 18–13 65.01

Table 2: Classification accuracy of multi-model multi-representation ensembles. (The second col-
umn lists encoders and the third lists layers (or ranges of layer) from which representations were
used. If there were multiple encoders, their layer(s) information is separated by a comma.)
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As discussed in the introduction, one of the mo-
tivations for us to explore representations from
different layers is the skip links in neural net-
works such as DenseNet. We conducted exper-
iments to compare our multi-representation en-
semble to an alternative that uses DenseNet-like
aggregated representation. In the alternative
approach, representations from different layers
were aggregated, by concatenation, into a sin-
gle representation and classifications, using the
relation network, were performed on this sin-
gle representation. The results of comparison
are shown in Figure 4. We tested these two
methods on the mini-ImageNet dataset in a 5-
way, 1-shot setting. The performance of our
multi-representation ensemble is much better
than that of the aggregated representation alter-
native. Moreover, aggregating more representa-
tions does not necessarily benefit the classification since the model accuracy slightly drops and then
stands still as representations from more layers are added in. This shows that not all approaches
which try to utilize multiple representations can attain performance gain from these representations.
Our multi-representation ensemble is one approach that is highly effective in taking advantage of
the multiple representations.

6 CONCLUSIONS

In this paper we propose a new ensemble method that creates an ensemble of classifiers, each using
the representation/feature map from a different depth in a CNN encoder. Through experiments, we
validated the effectiveness of our model on FSL problems. Our ensemble achieved the new state-of-
the-art results on two commonly-used FSL benchmark datasets. We further conducted experiments
and analysis to investigate the selection of representations for creating a better ensemble. It is quite
possible that the multi-representation approach is not limited to the few-shot learning problems. As
future work, we plan to explore more scenarios where multi-representation can be applied. Further-
more, the multi-representation approach does not have conflict with many other ensemble methods.
It can be combined with other types of ensemble constructions to produce a better ensemble.
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