
Under review as a conference paper at ICLR 2024

PAPM: A PHYSICS-AWARE PROXY MODEL FOR PRO-
CESS SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Process systems, which play a fundamental role in various scientific and engineer-
ing fields, often rely on computational models to capture their complex temporal-
spatial dynamics. However, due to limited insights into the intricate physical prin-
ciples, these models can be imprecise or inapplicable, coupled with a significant
computational demand exacerbating inefficiencies. To address these challenges,
we propose a physics-aware proxy model (PAPM) to explicitly incorporate par-
tial prior mechanistic knowledge, including conservation and constitutive rela-
tions. Additionally, to enhance the inductive biases about strict physical laws and
broaden the applicability scope, we introduce a holistic temporal and spatial step-
ping method (TSSM) aligned with the distinct equation characteristics of different
process systems, resulting in better out-of-sample generalization. We systemati-
cally compare state-of-the-art pure data-driven models and physics-aware mod-
els, spanning five two-dimensional non-trivial benchmarks in nine generalization
tasks. Notably, PAPM achieves an average absolute performance improvement of
6.4%, while requiring fewer FLOPs, and only 1% of the parameters compared to
the prior leading method, PPNN.

1 INTRODUCTION

Process systems, spanning molecular dynamics to turbulent flows, are foundational across diverse
scientific and engineering domains (Cameron & Hangos, 2001). Computational modeling and sim-
ulation are pivotal for grasping the intricate temporal-spatial dynamics of these systems. Being
central to this progress, process models encapsulate vital conservation and constitutive relations,
while analytical solutions are often unattainable due to these models’ inherent complex non-linear
characteristics. Consequently, these models are converted into numerical solutions through spatial
and temporal discretization, employing traditional solvers such as finite difference, finite volume,
finite element, and spectral methods (Zachmanoglou & Thoe, 1986).

However, two main challenges complicate their applications. First, due to incomplete insights into
associated physics, the governing constitutive relations for certain process systems remain elusive,
rendering pure first-principled mechanistic models either inapplicable or imprecise. Proxy models,
bridging partially known physics and observational data, have emerged as an approach to capture
these dynamics (Nguyen et al., 2023). Second, while traditional numerical simulations offer valu-
able insights, they are computationally intensive, particularly in scenarios necessitating frequent
model queries like reverse engineering forward simulation (Dijkstra & Luijten, 2021), optimization
design (Gramacy, 2020), and uncertainty quantification (Zhu et al., 2019). These underscore the
pressing need for models balancing computational efficiency with accuracy, as highlighted in recent
scientific and engineering advancements (Karniadakis et al., 2021; Wang et al., 2023).

Recent advancements in scientific machine learning (SciML) have paved the way to tackle compu-
tational challenges more effectively. CNNs (Bhatnagar et al., 2019; Stachenfeld et al., 2021) and
GNNs (Sanchez-Gonzalez et al., 2020; Li & Farimani, 2022) target spatial dynamics within mesh
grids, while RNN (Kochkov et al., 2021) and LSTM (Zhang et al., 2020) focus on temporal pro-
gression. Neural operators (Lu et al., 2019; Li et al., 2020; Hao et al., 2023b; Gupta & Brandstetter,
2022; Raonić et al., 2023), excelling in mapping between temporal-spatial functional spaces, have
demonstrated success across various types of PDEs. Notably, these methods adopt a supervised
learning-from-data paradigm, emphasizing inductive biases only about network architecture over
strict physical laws. However, their reliance on extensive datasets and presumed train-test unifor-

1

Under review as a conference paper at ICLR 2024

T
Multiple Inputs

Initial conditions

Coefficients

𝑼 0; 𝑥, 𝑦 ~𝑎(−∆ + 𝑏𝐼)!"

𝜐~U[𝐴, 𝐵]

𝑇#$%𝑇&0

Test

Train
Training

Inference

Multiple Non-trivial Benchmark Process Systems Datasets

(b)

(a) (c)

ü Hybrid Modeling
ü Forward Acceleration

Process Systems

Conservation Relations

Constitutive Relations

Boundary Conditions

Process Model

Temporal Eular or R-K Scheme

Spatial
Structure-Preserved
Spatial Operation

☞ Partial Mechanism Knowledge
☞ Sparse Labeled Data

Temporal-Spatial Stepping Method (TSSM)

Physics-Aware

Physics-Aware Proxy Model (PAPM)

Figure 1: (a) Relationship structure diagram between process systems and PAPM. (b) Our task for time ex-
trapolation across multiple inputs. (c) Multiple non-trivial benchmarks from sciences are provided.

mity can result in inaccuracies, especially during prolonged evolutions in out-of-sample scenarios,
e.g., unseen initial conditions and coefficients, such as Reynolds number, and extrapolating in time.

As a more promising strategy, physics-informed machine learning (PIML) integrates physics-based
prior knowledge, such as strict physical laws, into neural networks (NNs) (Li et al., 2021; Hao
et al., 2022; Meng et al., 2022). This enhances the sample efficiency and generalizability of NNs,
particularly vital in scenarios with limited labeled data (Cuomo et al., 2022). The incorporation of
this knowledge diverges into two main methods: learning biases and inductive biases (Karniadakis
et al., 2021).

Learning Biases. Physics-informed neural networks (PINNs) (Raissi et al., 2019; Cai et al., 2021;
Lu et al., 2021b) embed a multi-layer perceptron tailored to specific PDEs, utilizing automatic dif-
ferentiation for initial and boundary conditions. However, a system with new parameters requires
re-training. Additionally, its demand for comprehensive mechanism information, coupled with op-
timization challenges and instability under complex equations (Wang et al., 2022), limits its real-
world applicability. This limitation continues with newer models like PI-DeepONet (Wang et al.,
2021) and PINO (Li et al., 2021). Despite their hybrid nature, both these models require a detailed
understanding of system mechanics, posing challenges in practical settings.

Inductive Biases. Contrary to the learning biases that integrate complete physics knowledge into its
loss function, this method only leverages the data loss while explicitly incorporating either entire or
partial mechanistic knowledge into the network architecture, aptly termed as “physics-aware” mod-
els. The purpose of such reliance is to reinforce the inductive biases concerning strict physical laws.
Inspired by traditional numerical methods, recent investigations have identified links between neural
network designs and equations (Long et al., 2018; Seo et al., 2020; Liu et al., 2022; Huang et al.,
2023b; Akhare et al., 2023; Rao et al., 2023; Huang et al., 2023a). However, these physics-aware
models are mainly spatial-derivative-focused, often overlooking integral components like conserva-
tion or constitutive relations, which leads to unreliable solutions.

Recognizing that real-world system modeling often necessitates conservation relations rooted in
diffusion and convection flows, this work aims to delve deeper. Notably, different process models
correspond to specific conservation or constitutive equations based on inherent system character-
istics (Cameron & Hangos, 2001; Takamoto et al., 2022; Hao et al., 2023a). While all of these
methods overlook this attribute, it’s beneficial to identify them and select the appropriate temporal-
spatial stepping modeling method for approximating unknown dynamics. Doing so can embed strict
physical laws as inductive biases into the network architecture, resulting in better out-of-sample
generalization.

As illustrated in Fig. 1 (a), we propose a physics-aware proxy model (PAPM), focused on out-of-
sample scenarios, as shown in Fig. 1 (b). PAPM is a composite of several modules by combining
partial prior knowledge and NNs, which is tailored to specific conservation and constitutive equa-
tions, encompassing a vast array of PDEs and algebraic equations. The core contributions of this
work are:

• The proposal of PAPM, a novel physics-aware architecture design that explicitly incorpo-
rates partial prior mechanistic knowledge such as boundary conditions, conservation, and

2

Under review as a conference paper at ICLR 2024

constitutive relations. This design proves to be superior in terms of both training efficiency
and out-of-sample generalizability.

• The introduction of TSSM, a holistic spatio-temporal stepping modeling method. It aligns
with the distinct equation characteristics of different process systems by employing step-
ping schemes via temporal and spatial operations, whether in physical or spectral space.

• A systematic evaluation of state-of-the-art pure data-driven models alongside physics-
aware models, spanning five two-dimensional non-trivial benchmarks in nine generaliza-
tion tasks, as depicted in Fig. 1 (c). Notably, PAPM achieved an average absolute perfor-
mance boost of 6.4%, requiring fewer FLOPs, and utilizing only 1%-10% of the parameters
compared to alternative methods.

2 RELATED WORK

Proxy Models. Proxy models serve as streamlined versions of complex models, reducing com-
putational expenses while retaining essential features of the original systems, often referred to as
surrogate models (Alizadeh et al., 2020). These models are crucial in applications like digital
twins (Chakraborty et al., 2021), where they compensate for the limitations of traditional models
by incorporating observational data. This enhances the representation of real system dynamics and
proves effective in various uses such as system analysis and complex tasks like optimization and
uncertainty assessment (Zhang et al., 2021; Bahrami et al., 2022; Zhu et al., 2019).

Pure Data-driven Method. ConvLSTM (Shi et al., 2015) captures spatial dependencies via convo-
lution operations while managing temporal dynamics using recurrent units. Dil-ResNet (Stachen-
feld et al., 2021) is devised to forecast the difference between consecutive states, incorporating
the encoder-process-decoder pattern (Sanchez-Gonzalez et al., 2020) via dilated convolutional net-
works (Yu et al., 2017). Another line is the neural operator. Fourier neural operator (FNO) (Li et al.,
2020) learns the operator by harnessing the spectral domain alongside the Fast Fourier Transform.
DeepONet (Lu et al., 2019) approximates various nonlinear operators by leveraging branch and
trunk networks for input functions and query points. Building upon this, MIONet (Jin et al., 2022)
addresses the challenges of multiple input functions within the DeepONet framework. Moreover, U-
FNets (Gupta & Brandstetter, 2022) and convolutional neural operators (CNO) (Raonić et al., 2023)
are modified U-Net (Ronneberger et al., 2015) variants, where the former replace U-Net’s layers by
FNO’s Fourier blocks, and the latter replace them by predefined convolutional block.

Physics-aware Method. Inspired by finite volume, FINN (Karlbauer et al., 2022) innovatively em-
ploys flux and state kernels for modeling components of advection-diffusion equations. PPNN (Liu
et al., 2022) bakes prior-knowledge terms from low-resolution data, estimates unknown parts with
the trainable network, and uses the Euler time-stepping difference scheme to form a regression
model for updating states. PiNDiff (Akhare et al., 2023) integrates partial physics knowledge into
the NN block for a specific composite manufacturing process, ensuring mathematical integrity via
differentiable programming. PeRCNN (Rao et al., 2023) employs convolutional operations to ap-
proximate unknown nonlinear terms in PDEs while incorporating known terms through difference
schemes.

Spatial and temporal decomposition. PiMetaL (Seo et al., 2020) decomposed modeling into spa-
tial and temporal parts, where the former shares the spatial derivatives in the global task, and the
latter learns specific adaptively for individuals. NeuralStagger (Huang et al., 2023b) accelerated
the solution of PDEs by spatially and temporally decomposing the original learning tasks into sev-
eral coarser-resolution subtasks. Moreover, these physics-aware methods just discussed (Karlbauer
et al., 2022; Liu et al., 2022; Akhare et al., 2023; Rao et al., 2023) all decomposed the spatial and
temporal part, where the spatial part updates the state in each time step, and temporal relations are
modeled via Neural ODE (Chen et al., 2018) or Eular schemes. These decomposition ways signif-
icantly reduce data requirements and are more conveniently integrated between prior physics with
data-driven models for modeling dynamic systems.

3 PRELIMINARIES

This section presents the foundational description of process systems, known as the process model.
Additionally, further clarification is provided on the specific problem in this work.

3

Under review as a conference paper at ICLR 2024

𝜱𝒕State

𝜱" 𝒕

𝜱" 𝒕

Virtual boundary by padding
Interior

Physics-informed BCs

𝒕Input 𝝀 		𝜱𝟎

CFDF

TS

		∫
∫𝐭
𝐭$𝟏 &𝚽(𝐭

&)
dt

	𝛁

×

𝑫𝜱" 𝒕

𝑱𝑫

	−𝛁
−∇ + 𝑱𝑫

𝜱𝒕$𝟏Output

+

𝜱" 𝒕

𝑱𝑪

−∇ + 𝑱𝑪

𝝊

𝜱" 𝒕

IST

		ℎ! 		ℎ"

EST

+

×

	−𝛁

𝜱" 𝒕 𝑿𝑭

	𝑿𝑭

𝜕𝜱# 𝒕
𝜕𝑡

𝒒 𝑭

	𝝂 		ℎ- 		ℎ.

Mapping

	𝛁 		∫

Operator

+

×

Figure 2: A detailed structure of PAPM. The
mapping can be expressed by specific constitutive
equations or by NNs.

Process Model. Pivotal in engineering disciplines,
process models serve to represent and predict the
dynamics of diverse process systems. This model’s
mathematical foundation relies on two essential sets
of equations: the differential conservation equa-
tions, governing the dynamic behavior of fundamen-
tal quantities, and the algebraic constitutive equa-
tions, which describe the interactions among differ-
ent variables. Further details are provided in Ap-
pendix A.1.

Formally, Eq. 1 and Eq. 2 represent the conserva-
tion and constitutive equations, respectively. The
designed physics-aware proxy model (PAPM), de-
picted in Fig. 2, integrates these principles by em-
bedding various types of prior knowledge.

∂Φ

∂t
= −∇ · (JC + JD) + q + F

JC = Φ(x, t) · v, JD = −D · ∇Φ
(1)

{
v = v(Φ), D = λ

q = hO(Φ), F = hF (XF)
(2)

where Eq. 1 comprises four essential elements: the
diffusion flows JD, convection flows JC , the in-
ternal source q, and the external source F , with
Φ denoting the physical quantity. These four ele-
ments correspond to Diffusive Flows (DF), Convec-
tive Flows (CF), Internal Source Term (IST), and Ex-
ternal Source Term (EST) in PAPM’s structure diagram, as depicted in Fig. 2, respectively.

In Eq. 2, v denotes the velocity of the physical quantity being transmitted, D is the diffusion co-
efficient. Here, v, hO, and hF are the corresponding algebraic mapping, and this part determines
whether NN is needed for learning mapping according to the specific problem. See Section 4.1 for
more discussion.

Problem Formulation. Focus on out-of-sample scenarios containing unseen initial conditions and
coefficients, and extrapolating in time. Under different ICs and coefficients, given initial step size
t0, which contains a short temporal trajectory S0 = (s0, · · · , st0−1), the following trajectory
(st0 , · · · , sTend) should be predicted, and each st ∈ Rd is a vector, which consists of dense spatial
fields, like velocity, vorticity, pressure and temperature. Moreover, due to the high cost of generat-
ing labeled data, the training dataset D only contains the initial T ′-step trajectory, t0 ≤ T ′ ≪ Tend.
Formally, the dataset D = {(ak,Sk)}1≤k≤D, where Sk = G(ak), ak contains a set of inputs,
that is a set of initial trajectory S0

k and coefficient Pk, while Sk contains the following trajectory
STk = (st0k , · · · , sTk), and the mapping G(·) is our goal to learn. For each stk, we discretize it on the
grid {xi ∈ Ω}1⩽i⩽N ′ , and stk,i = stk(xi). In a nutshell, for modeling this operator G(·), we use a
parameterized neural network G̃θ, inputs ak, and outputs G̃θ(ak) = S̃k, where 1 ≤ k ≤ D.

Here, the training dataset is sparse, where T = T ′, t0 ≤ T ′ ≪ Tend, the size D = D0, and D0

is tiny, while the testing dataset T = Tend. PAPM Gθ with parameters θ autoregressively predict
st = Gθ(St), where St is a trajectory with length t0 form st−t0 to st−1, t0 ≤ t ≤ Tend. Our goal
is to minimize the L2 relative error loss between the prediction S̃k and real data Sk as,

min
θ∈Θ

1

D0

D0∑
k=1

∥ Sk − S̃k ∥2
∥ Sk ∥2

= min
θ∈Θ

1

D0 × (T − t0 + 1)

D0∑
k=1

T∑
t=t0

∥ st
k − s̃t

k ∥2
∥ st

k ∥2
(3)

where θ is a set of the network parameters and Θ is the parameter space.

4 METHODOLOGY

This section presents PAPM’s architecture specifically tailored to conservation and constitutive re-
lations. Then, a temporal-spatial stepping method (TSSM) is proposed, adapting to the unique

4

Under review as a conference paper at ICLR 2024

equation characteristics of various datasets. We conclude with a focus on our training approach, de-
tailing the loss function and highlighting the strategy of iterative refinement rounds within a causal
time-stepping training method.

4.1 PAPM OVERVIEW

Fig. 2 illustrates the PAPM, where the module comprises six distinct components. The input to
the model consists of four parts, which are time t, coefficient D, initial state Φ0, and external
source input XF . The sequence of embedding this prior knowledge unfolds as follows: 1) Physics-
informed Boundary Conditions. Using the given boundary conditions, the physical quantity Φt is
updated, yielding Φ̃t. A padding strategy is employed to integrate four different boundary conditions
in four different directions into PAPM. Further details are provided in Appendix A.2. 2) Diffusive
Flows (DF). Using Φ̃t and coefficients λ, we represent the directionless diffusive flow. The diffusion
flow and its gradient are obtained as JD = −D · ∇Φ and ∇JD via a symmetric gradient operator,
respectively. 3) Convective Flows (CF). The pattern v is derived from Φ̃t. Once v is determined, its
sign indicates the direction of the flows, enabling computation of JC = Φ(x, t)·v and∇JC through
a directional gradient operator. 4) Internal Source Term (IST) & External Source Term (EST).
Generally, IST and EST present a complex interplay between physical quantities and external inputs
XF . Often, this part in real systems doesn’t have a clear physics-based relation, prompting the use
of NNs to capture this intricate relationship. 5) Time Stepping (TS). From DF, CF, IST, and EST,
the dynamic ∂Φ/∂t are derived. Subsequently, the temporal operator is used to approximate the
evolving state as Φt+1 = Φt +

∫ t+1

t
∂Φ
∂t dt.

0 1 0
1 1
0 1 0
-4

0 1 0
1 0
0 0 0
-2

∇(#) ∇!(#)

0
0 0

∗
∗
∗
∗
∗∗ 0 0

0 0
⋆ ∗
∗
∗

∗

𝜱𝒕

FFT

IFFT

(")$
𝑘! 𝑘"

E-Conv
∇!(#)

DF CF

S-Conv

𝑓'

ST

IFFT

Conv Conv Conv⋯

𝜱𝒕

+

×
∇(#)

∇"(#)(#)"

DF CF ST

ResNet

⋯

𝑓

Figure 3: Left: Fixed and trainable convolutional kernels correspond to the matrices shown at the top and
bottom, respectively, where d = 3 is used as an illustrative example. The bottom kernels approximate the uni-
directional convection (upwind scheme) and directionless diffusion (central scheme), respectively. Symbols ∗
and ⋆ indicate trainable parameters corresponding to the upper triangular and symmetric matrices, respectively.
Mid: Structure-preserved localized operator. Right: Structure-preserved spatial operator.

4.2 TEMPORAL-SPATIAL STEPPING METHOD (TSSM)

We categorize TSSM into three cases based on structures of process systems, where each of them
decomposes spatial and temporal parts, i.e., structure-preserved localized operator, spectral operator,
and hybrid operator. Notably, despite adopting traditional time-stepping methods, such as Eular or
RK4 schemes, a unique feature of our approach is the integration of the NN block. This element not
only approximates unknown spatial components but also mitigates errors introduced by the time-
stepping scheme. As a result, this dual functionality achieves enhanced stability, as evidenced by
the consistent convergence of our training errors.

Structure-preserved localized operator. For systems with explicit structures, such as the Burgers
and RD equations, typified by expressions like −u∇u+∇2u, convolutional kernels in the physical
space are employed to capture system dynamics. Depending on our understanding of the system,
we opt for either fixed or trainable kernels, illustrated in Fig. 3(Left). Specifically, the fixed variant
is based on a pre-defined convolution kernel derived from difference schemes, and further details
are provided in Appendix A.3.1. On the other hand, the trainable version tailors its design to key
features of convection (either upper or lower triangular) and diffusion (symmetric). Once set, the
localized operator is depicted in Fig. 3(Mid). By using these predefined or trainable convolution
kernels, alongside partially known constitutive equations, we’re able to represent nonlinear terms

5

Under review as a conference paper at ICLR 2024

in DF and CF. Any unknown source terms are then addressed through the ResNet block. For these
explicit structures, the Euler scheme is introduced to establish the time-stepping update scheme.

Structure-preserved spectral operator. For systems with implicit structures, such as the Navier-
Stokes Equation in vorticity form, represented like −u∇w +∇2w, we adopt a sequential process,
as shown in Fig. 3(Right). Recognizing the implicit linkage between velocity and vorticity, w is
initially processed to extract the flow function, subsequently leading to the velocity derivation. The
spectral space dimensions (kx and ky) and spectral quantity (denoted as ·̂), are obtained by lever-
aging the FFT. Associating kx and ky with ·̂, differential operators like ∇i(·) are represented via
E-Conv (e.g., element-wise product), and then mapped back to the physical space using IFFT. This
process can be further detailed in Appendix A.3.2. Leveraging partly known constitutive relations,
simple computations such as addition and multiplication are performed to represent the nonlinear
terms in DF and CF. Moreover, spectral convolutions (S-Conv) are introduced to learn unknown
components within the spectral domain. For this complex process system with stiff challenges, such
as fluid dynamics showcasing fast and slow time scale variations, the RK4 scheme is preferable to
establish the time-stepping update scheme.

Structure-preserved hybrid operator. For systems with a hybrid structure, such as the Navier-
Stokes Equation in general form (e.g.,−u∇u+∇2u−∇p), given the implicit interrelation between
pressure p and velocity u, a combination of the aforementioned method is employed. Explicit con-
stituents, such as u∇u and ∇2u, are addressed through the localized operator. Meanwhile, implicit
relations are resolved similarly by the spectral operator. For unknown components, either of the two
operators can be engaged. We generally favor the localized operator as it allows for direct operations
without necessitating transitions between different spaces.

4.3 LOSS FUNCTION AND TRAINING STRATEGY

Here, we detail the loss function and highlight the strategy of iterative refinement rounds within a
causal time-stepping training method. As shown in Appendix A.4, Alg. 1 and Alg. 3 correspond to
the structure-preserved localized operator and spectral operator, respectively. And the third one is a
combination of the first two and will not be discussed here.

Loss Function. The mean L2 relative error between the model’s predictions and the true values
spanning Nt iterations is globally optimized, as illustrated in Eq. 4 (left side). Inspired by the in-
sights from (Wang et al., 2022), the accuracy of previous outcomes directly dictates the precision of
subsequent predictions within process systems. We propose a training strategy in forward optimiza-
tion to address this inherent sequential linkage, named iterative refinement rounds.

Lr(θ) =
1

Nt

Nt∑
i=1

Lr (ti,θ) ⇒

Lr(θ) =

1

Nt

Nt∑
i=1

wiLr (ti,θ) ,

wi = exp

(
−α

i−1∑
k=1

Lr (tk,θ)

)
, α ∈ R

(4)

Iterative Refinement Rounds. By employing the causal time-stepping strategy (Wang et al., 2022),
our loss function is a weighted residual loss with the inverse exponential of the residuals acting as
weights wi (right side of Eq. 4). Moreover, the gradients of the wi term are detached to prevent
gradient descent on the θ term withinwi. However, exponential decay has the potential to impact the
model’s subsequent results significantly. To mitigate this effect, we deploy three iterative training
cycles, [α1, α2, α3 = 0], adjusting only the causality parameter α to refine performance, where
α1 > α2 > α3 = 0. Notably, when α = 0, the weighted residual loss aligns with our initial loss.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP AND EVALUATION PROTOCOL

Datasets. We employ five datasets spanning diverse domains, such as fluid dynamics and heat con-
duction. Detailed descriptions are available in Appendix A.5. By analyzing the TSSM scheme em-
ployed by PAPM, we’ve categorized these datasets accordingly, offering a structured understanding
of their roles. 1. Localized Category. Burgers2d (Huang et al., 2023a) is a 2D benchmark PDE
with periodic BC given by the equation ∂u

∂t = −u·∇u+ν∆u+f . Here, u = (ux, uy) represents ve-
locity. The aim is to predict subsequent frames of u under various initial conditions and viscosity nu

6

Under review as a conference paper at ICLR 2024

using the initial frames, while the forcing term f remains unknown. RD2d (Takamoto et al., 2022)
corresponds to a 2D F-N reaction-diffusion equation with no-flow Neumann BC, ∂u∂t = ν∆u + f .
Here, u = (u, v) are the activator and inhibitor, respectively. The goal is to project subsequent
frames under diverse initial conditions from the initial frames, with the source term as unknown. 2.
Spectral Category. NS2d (Li et al., 2020) is a dataset for incompressible fluid dynamics in vorticity
form with periodic BC. The equation is ∂w∂t = −u∇w+ν∆w+f , where u is velocity, w is vorticity,
and f is an unknown forcing term. The objective is to predict final frames from the initial frames of
vorticity w under varied initial conditions. 3. Hybrid Category. Lid2d is a classical 2D dataset for
incompressible lid-driven cavity flow with multiple BCs, ∂u∂t = −u · ∇u + ν∆u − ∇p. The goal
is to predict subsequent frames (u, v, p) based on initial ones at differing viscosity ν, assuming only
two flows are known. NSM2d is incompressible fluid dynamics with a magnetic field, described by
∂u
∂t = −u · ∇u+ ν∆u−∇p+ F. The target is to predict subsequent frames of (u, v, p) using the
initial frames, with the forcing term F as an unknown.

Baselines. For a comprehensive evaluation, we compared our approach with eight SOTA baselines.
ConvLSTM (Shi et al., 2015) is a classical time series modeling technique that captures dynamics
via CNN and LSTM. Dil-ResNet (Stachenfeld et al., 2021) adopts the encoder-process-decoder pro-
cess with dilated-ConvResNet for dynamic data through an autoregressive stepping manner. time-
FNO2D (Li et al., 2020) and MIONet (Jin et al., 2022) are two typical neural operators in learning
dynamics. U-FNet (Gupta & Brandstetter, 2022) and CNO (Raonić et al., 2023) are modified U-
Net (Ronneberger et al., 2015) variants. PeRCNN (Rao et al., 2023) incorporates specific physical
structures into a neural network, ideal for sparse data scenarios. PPNN (Liu et al., 2022) is a novel
autoregressive framework preserving known PDEs using multi-resolution convolutional blocks.

Metrics. We use the mean L2 relative error (abbreviated as ϵ) as the evaluation metric. Suppose
{Si}Nd

i=0 and {S̃i}Nd
i=0 are the ground-truth solution and the predicted solution respectively, where

Nd is the test dataset size. Si = (s1i , · · · , s
Nt
i), S̃i = (s̃1i , · · · , s̃

Nt
i) are sequence frames of length

Nt. Here, sji , s̃
j
i ∈ Rm denote the vector of m physical quantities at this time slice. The L2 error

can be formulated as follows:

ϵ =
1

Nd ×Nt ×m

Nd∑
i=1

Nt∑
j=1

m∑
k=1

∥s̃j
i,k − sj

i,k∥2
∥sj

i,k∥2
(5)

Evaluation Protocol. We conducted experiments in two settings: coefficient interpolation (referred
to as C Int.) and coefficient extrapolation (referred to as C Ext.). In both settings, our objective is to
extrapolate time. We consistently set the initial time step size for all datasets across various tasks
as t0 = 5. In the test set, Tend = 100, except for the NS2d. Specifically, for NS2d with viscosity
values of ν = 1e−3 and 1e−4, Tend = 50, while for ν = 1e−5, Tend = 20. The trajectory length
in the training set that can be used as label data is given by Tend/2 − t0. For C Int., the data is
uniformly shuffled and then split into training, validation, and testing datasets in a [7 : 1 : 2] ratio.
However, in the case of C Ext., the data splitter is determined based on the order of coefficients,
with equal proportions [7 : 1 : 2]. For example, the viscosity coefficients are divided from largest
to smallest, and the coefficients with the lowest viscosity, representing the most challenging tasks,
are selected as the test set. More information about the evaluation protocol, the hyper-parameters of
baselines, and our methods can be further detailed in Appendix A.6.2.

5.2 MAIN RESULTS

Performance Comparisons. Tab. 1 and Tab. 2 present the primary experimental outcomes and the
number of trainable parameters for each baseline across datasets, respectively. Our observations
from the data are as follows:

Firstly, PAPM exhibits the most balanced trade-off between parameter count and performance
among all methods evaluated, from explicit structures (Burgers2d, RD2d) to implicit (NS2d) and
more complex hybrid structures (Lid2d, NSM2d). Notably, even though PAPM utilizes only 1%
of the parameters employed by the prior leading method, PPNN, it still outperforms it by a large
margin. In a nutshell, our model enhances the performance by an average of 6.4% over nine tasks,
which affirms PAPM as a versatile and efficient framework suitable for diverse process systems.

Secondly, PAPM’s structured treatment of system inputs and states leads to a remarkable 10.8% per-
formance boost in three coefficient-extrapolation tasks. This highlights its superior generalization
capability in out-of-sample scenarios. Unlike models like PPNN, which directly use system-specific

7

Under review as a conference paper at ICLR 2024

Table 1: Main results (ϵ) across different datasets in time extrapolation
task.

Config Burgers2d RD2d NS2d Lid2d NSM2d
C Int. C Ext. C Int. ν=1e-3 ν=1e-4 ν=1e-5 C Ext. C Int. C Ext.

ConvLSTM 0.314 0.551 0.815 0.781 0.877 0.788 1.323 0.910 1.102
Dil-ResNet 0.071 0.136 0.021 0.152 0.511 0.199 0.261 0.288 0.314
time-FNO2D 0.173 0.233 0.333 0.118 0.100 0.033 0.265 0.341 0.443
MIONet 0.181 0.212 0.247 0.139 0.114 0.051 0.221 0.268 0.440
U-FNet 0.109 0.433 0.239 0.191 0.190 0.256 0.192 0.257 0.457
CNO 0.112 0.126 0.258 0.125 0.148 0.030 0.218 0.197 0.355
PeRCNN 0.212 0.282 0.773 0.571 0.591 0.275 0.534 0.493 0.493
PPNN 0.047 0.132 0.030 0.365 0.357 0.046 0.163 0.206 0.264

PAPM (Our) 0.039 0.101 0.018 0.110 0.097 0.034 0.160 0.189 0.245

Table 2: Comparison of the number
of trainable parameters (NP) across
different datasets.

Config spatial/M spectra/M hybrid/M

ConvLSTM 0.175 0.139 0.211
Dil-ResNet 0.150 0.148 0.152
time-FNO2D 0.464 0.463 0.464
MIONet 0.261 0.261 0.261
U-FNet 9.853 9.851 9.854
CNO 2.606 2.600 2.612
PeRCNN 0.001 0.001 0.001
PPNN 1.201 1.190 1.213

PAPM 0.014 0.034 0.035

𝑻 =
𝟏
𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑
𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏
𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

G
T

PP
N

N
PA

PM
 (o

ur
)

FN
O

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 5: Predicted flow velocity (∥u∥2) snapshots by FNO, PPNN, and PAPM (Ours) vs. Ground Truth (GT)
on NSM2d dataset in T Ext. task.

inputs, PAPM integrates coefficient data more intricately within conservation and constitutive rela-
tions, boosting its adaptability to varying coefficients.

Thirdly, data-driven methods are less effective than physics-aware methods like PPNN and our
PAPM in time extrapolation tasks, where incorporating prior physical knowledge through structured
network design enhances a model’s generalization ability. Notably, PeRCNN uses 1 × 1 convolu-
tion to approximate nonlinear terms, but experimental results suggest limited performance. Further
details are available in Appendix A.6.2.

1 20 45 60 80 95
Time step

0.00

0.03

0.06

0.09

0.12

L2
 R

el
at

iv
e

Er
ro

r

Burgers2d
Dil-ResNet
PPNN
PAPM
in
out

Figure 4: L2 errors at each time step on
Burgers2d, where in is the same as the train-
ing, but out is out-of-sample.

Visualization. Fig. 4 showcases the stepwise relative er-
ror of PAPM during the extrapolation process in the test
dataset, using Burgers2d’s C Int. as a representative ex-
ample. Compared to the two best-performing baselines,
our model (depicted by the red line) exhibits superior per-
formance throughout the extrapolation process, with the
least error accumulation. Turning our attention to the
more challenging NSM2d dataset, Fig. 5 presents the re-
sults across five extrapolation time slices. While FNO
demonstrates commendable accuracy within the training
domain (T = 1

2Tend), its performance falters signifi-
cantly outside of it (12Tend < T ≤ Tend). On the other
hand, physics-aware methods (PPNN), and PAPM in particular, consistently capture the evolving
patterns with a greater degree of robustness. Notably, our method emerges as a leader in terms of
precision. Additional visual results can be found in Appendix A.7.1.

Performance and Computational Cost. Tab. 3 showcases the comparison of primary results, com-
putational cost (FLOPs), and the number of trainable parameters using the Lid2d dataset for illus-
tration. Notably, PAPM strikes an optimal balance between performance and computational cost.

5.3 EFFICIENCY

Training and Inference Cost: Dataset generation for our work is notably resource-intensive, with
inference costs ranging from 103 ∼ 105 s for public datasets and up to 106 s for those we generated
using COMSOL Multiphysics®. In stark contrast, both baselines and PAPM register inference
times between 10−1 ∼ 10 s (detailed in Appendix A.7.2), achieving an improvement of 4 to 6
orders of magnitude. Notably, PAPM’s time cost rivals or even surpasses baselines across different
datasets. This indicates that introducing rigorous physical mechanisms, unlike traditional numerical

8

Under review as a conference paper at ICLR 2024

algorithms, doesn’t necessarily bloat time costs. PAPM’s efficiency remains competitive with other
data-driven methods.

5 10 40 60 80 100
Train datasize rate (%)

0.02

0.05

0.08

0.12

0.15

0.18
L2

 R
el

at
iv

e
Er

ro
r

PPNN
Dil-Resnet
PAPM

10 20 30 40 50
Train step size

0.02

0.05

0.08

0.12

0.15

0.18

L2
 R

el
at

iv
e

Er
ro

r

PPNN
Dil-Resnet
PAPM

Figure 6: Left: Results with varying training data on the RD2d dataset.
Right: Results with varying time step size on the RD2d dataset.

Table 3: Main results (ϵ), FLOPs,
and comparison of the number of train-
able parameters (NP) on Lid2d.

Config FLOPs Np ϵ

convLSTM 327.54M 211k 1.323
Dil-ResNet 624.00M 152k 0.261
timeFNO2d 6.89M 464k 0.265
MIONet 6.89M 261k 0.221
U-FNet 559.89M 9854k 0.192
CNO 835.37M 2612k 0.218
PeRCNN 3.44M 1k 0.534
PPNN 348.56M 1213k 0.163

PAPM 1.22M 11k 0.160

Data Efficiency. Owing to PAPM’s structured design, data utilization is significantly enhanced.
To evaluate data efficiency, we conducted tests using RD2d as a representative example, with Dil-
Resnet and PPNN symbolizing pure data-driven and physics-aware methods. The results, displayed
in Fig. 6, depict PAPM’s efficiency concerning data volume and label data step size in training. (1)
Amount of Data: With a fixed 20% reserved for the test set, the remaining 80% of the total data
is allocated to the training set. We systematically varied the training data volume, ranging from
initially utilizing only 5% of the training set and progressively increasing it to the entire 100%.
PAPM’s relative error distinctly outperforms other baselines, especially with limited data (5%). As
depicted in Fig. 6(Left), PAPM’s error consistently surpasses other methods, stabilizing below 2%
as the training data volume increases. (2) Time Step Size: We varied the data step size from 1/10
to half of the total, increasing in tenths. Results of Fig. 6(Right) reveal that PAPM can achieve long-
range time extrapolation with minimal dynamic steps, consistently outshining other methods even
with shorter training data step sizes.

5.4 ABLATION STUDIES

We selected the Burger2d dataset due to its representation of diffusion, convection, and force terms.
Several configurations are defined to determine the effects of individual components. no DF ex-
cludes diffusion, while no CF omits convection. no Phy retains only a structure with a residual
connection, eliminating both diffusion and convection. The no BCs setup removes explicit BCs
embedding, no All is purely data-driven, and no Iter bypasses the Iterative Refinement Rounds
training strategy.

Key findings include recognizing the crucial roles of diffu-
sion and convection in dictating system dynamics. This was
evident when the no DF configuration showed that integrat-
ing the viscosity coefficient with the diffusion term was vi-
tal. Its absence led to significant errors, most notably in
parameter extrapolation tasks. The necessity of boundary
adherence to physical laws became clear with the no BCs
approach, as it notably reduced BC’s relative errors. Lastly,
the no Iter setup accentuated the importance of the causal
training strategy in the model’s training process.

Table 4: Comparison of the main result (ϵ) and the
number of trainable parameters (NP) on Burgers2d.

Config NP
T Ext. C Ext.
ϵ BC ϵ ϵ BC ϵ

no DF 13.90k 0.067 0.051 0.207 0.067
no CF 13.93k 0.062 0.043 0.131 0.054
no Phy 13.84k 0.149 0.051 0.210 0.144
no BCs 13.99k 0.068 0.097 0.136 0.193
no All 13.84k 0.162 0.195 0.216 0.250
no Iter 13.99k 0.080 0.039 0.141 0.048

PAPM 13.99k 0.039 0.037 0.101 0.043

6 CONCLUSION

In response to challenges posed by limited physical understanding and computational demands,
we introduced PAPM, a novel physics-aware architecture. It uniquely incorporates partial prior
mechanistic knowledge, including BCs, conservation, and constitutive relations specific to process
systems. We extensively validated the efficacy of PAPM’s structured design and its comprehensive
spatio-temporal stepping modeling approach across five datasets and nine distinct out-of-sample
tasks. Notably, PAPM achieved an average absolute performance improvement of 6.4%, requir-
ing fewer FLOPs, and only 1% of the parameters employed by the prior leading method, PPNN.
Through such analysis, the structural design and specialized spatio-temporal stepping method of
PAPM exhibit the most balanced trade-off between accuracy and computational efficiency among
all methods evaluated and an impressive out-of-sample generalization.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Deepak Akhare, Tengfei Luo, and Jian-Xun Wang. Physics-integrated neural differentiable (pindiff)
model for composites manufacturing. Computer Methods in Applied Mechanics and Engineering,
406:115902, 2023.

Reza Alizadeh, Janet K Allen, and Farrokh Mistree. Managing computational complexity using
surrogate models: a critical review. Research in Engineering Design, 31:275–298, 2020.

Peyman Bahrami, Farzan Sahari Moghaddam, and Lesley A James. A review of proxy modeling
highlighting applications for reservoir engineering. Energies, 15(14):5247, 2022.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64:525–545, 2019.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Ian T Cameron and Katalin Hangos. Process modelling and model analysis. Elsevier, 2001.

Souvik Chakraborty, Sondipon Adhikari, and Ranjan Ganguli. The role of surrogate models in the
development of digital twins of dynamic systems. Applied Mathematical Modelling, 90:662–681,
2021.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

Marjolein Dijkstra and Erik Luijten. From predictive modelling to machine learning and reverse
engineering of colloidal self-assembly. Nature materials, 20(6):762–773, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Robert B Gramacy. Surrogates: Gaussian process modeling, design, and optimization for the ap-
plied sciences. CRC press, 2020.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling. arXiv preprint arXiv:2209.15616, 2022.

Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su, and Jun Zhu.
Physics-informed machine learning: A survey on problems, methods and applications. arXiv
preprint arXiv:2211.08064, 2022.

Zhongkai Hao, Jiachen Yao, Chang Su, Hang Su, Ziao Wang, Fanzhi Lu, Zeyu Xia, Yichi Zhang,
Songming Liu, Lu Lu, et al. Pinnacle: A comprehensive benchmark of physics-informed neural
networks for solving pdes. arXiv preprint arXiv:2306.08827, 2023a.

Zhongkai Hao, Chengyang Ying, Zhengyi Wang, Hang Su, Yinpeng Dong, Songming Liu,
Ze Cheng, Jun Zhu, and Jian Song. Gnot: A general neural operator transformer for operator
learning. arXiv preprint arXiv:2302.14376, 2023b.

Xiang Huang, Zhuoyuan Li, Hongsheng Liu, Zidong Wang, Hongye Zhou, Bin Dong, and Bei
Hua. Learning to simulate partially known spatio-temporal dynamics with trainable difference
operators. arXiv preprint arXiv:2307.14395, 2023a.

Xinquan Huang, Wenlei Shi, Qi Meng, Yue Wang, Xiaotian Gao, Jia Zhang, and Tie-Yan Liu.
Neuralstagger: accelerating physics-constrained neural pde solver with spatial-temporal decom-
position. arXiv preprint arXiv:2302.10255, 2023b.

10

Under review as a conference paper at ICLR 2024

Pengzhan Jin, Shuai Meng, and Lu Lu. Mionet: Learning multiple-input operators via tensor prod-
uct. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022.

Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, and
Martin V Butz. Composing partial differential equations with physics-aware neural networks. In
International Conference on Machine Learning, pp. 10773–10801. PMLR, 2022.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Zijie Li and Amir Barati Farimani. Graph neural network-accelerated lagrangian fluid simulation.
Computers & Graphics, 103:201–211, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola B Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021.

Xin-Yang Liu, Hao Sun, Min Zhu, Lu Lu, and Jian-Xun Wang. Predicting parametric spa-
tiotemporal dynamics by multi-resolution pde structure-preserved deep learning. arXiv preprint
arXiv:2205.03990, 2022.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators. arXiv
preprint arXiv:1910.03193, 2019.

Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep learning library
for solving differential equations. SIAM review, 63(1):208–228, 2021a.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b.

Chuizheng Meng, Sungyong Seo, Defu Cao, Sam Griesemer, and Yan Liu. When physics
meets machine learning: A survey of physics-informed machine learning. arXiv preprint
arXiv:2203.16797, 2022.

Phong CH Nguyen, Joseph B Choi, HS Udaykumar, and Stephen Baek. Challenges and oppor-
tunities for machine learning in multiscale computational modeling. Journal of Computing and
Information Science in Engineering, 23(6), 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, and Yang Liu. Encoding physics
to learn reaction–diffusion processes. Nature Machine Intelligence, pp. 1–15, 2023.

Bogdan Raonić, Roberto Molinaro, Tobias Rohner, Siddhartha Mishra, and Emmanuel de Bezenac.
Convolutional neural operators. arXiv preprint arXiv:2302.01178, 2023.

11

Under review as a conference paper at ICLR 2024

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Sungyong Seo, Chuizheng Meng, Sirisha Rambhatla, and Yan Liu. Physics-aware spatiotemporal
modules with auxiliary tasks for meta-learning. arXiv preprint arXiv:2006.08831, 2020.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. Ad-
vances in neural information processing systems, 28, 2015.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Hanchen Wang, Tianfan Fu, Yuanqi Du, Wenhao Gao, Kexin Huang, Ziming Liu, Payal Chandak,
Shengchao Liu, Peter Van Katwyk, Andreea Deac, et al. Scientific discovery in the age of artificial
intelligence. Nature, 620(7972):47–60, 2023.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric par-
tial differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605,
2021.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404, 2022.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 472–480, 2017.

Eleftherios C Zachmanoglou and Dale W Thoe. Introduction to partial differential equations with
applications. Courier Corporation, 1986.

Ruiyang Zhang, Yang Liu, and Hao Sun. Physics-informed multi-lstm networks for metamodeling
of nonlinear structures. Computer Methods in Applied Mechanics and Engineering, 369:113226,
2020.

Wencan Zhang, Zhicheng Liang, Weixiong Wu, Guozhi Ling, and Ruixin Ma. Design and opti-
mization of a hybrid battery thermal management system for electric vehicle based on surrogate
model. International Journal of Heat and Mass Transfer, 174:121318, 2021.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56–81, 2019.

12

Under review as a conference paper at ICLR 2024

A APPENDIX

In this appendix, we first describe the process model further, showing in detail the starting point
of our problem (A.1). Secondly, we perform a further theoretical presentation on the details of
physical-informed boundary conditions (A.2, see in Fig. 2). Then, the technical details (A.3) of
the proposed temporal and spatial stepping method (i.e., TSSM) are further elaborated. Moreover,
the algorithm display is detailed for the first two operators of TSSM (A.4). Subsequently, the five
datasets are further described (A.5), where the generations of Lid2d and NSM2d are detailed by
COMSOL multiphysics (A.5.2). The hyper-parameters settings of different baselines and PAPM are
shown in detail (A.6), and some additional experimental results are shown. These are data visual-
ization (A.7.1), training, and inference time cost-specific details (A.7.2). Then, we show another
ability of PAPM, adaptive resolution (A.7.3). Here, we consider a classical multi-physics field cou-
pling problem, low-temperature argon plasma discharge to show PAPM’s excellent advantages when
facing more complex process systems (A.8). Finally, the limitations and future work are discussed
(A.9).

A.1 PROCESS MODELS

Pivotal in engineering disciplines, process models serve to represent and predict the dynamics of
diverse process systems, from entire plants to single equipment pieces. These models primarily rely
on the interplay between conservation and constitutive equations, ensuring an accurate depiction of
system dynamics. Conservation equations dictate the model’s dynamics using partial differential
equations that govern primary physical quantities like mass, energy, and momentum. On the other
hand, constitutive equations relate potentials to extensive variables via algebraic equations, such as
flows, temperatures, pressures, concentrations, and enthalpies, enriching the model’s comprehen-
siveness. Additionally, the model’s reliability is ensured by accounting for initial and boundary
conditions, making these four components interdependently integral to the model’s solid mathemat-
ical framework.

Conservation equations. The general form in differential representation is:
∂Φ

∂t
= −∇ · (JC + JD) + q + F (6)

where JC = Φ · v, JD = −D · ∇Φ, and Φ(x, t) represents the state of the model, which is the
object of our modeling, x ∈ Ω and t ∈ [0, T], T ∈ R+. JC represents convective flows, and JD
represents diffusive or molecular flows. v describes the convective flow pattern into or out of the
system volume. D represents the diffusion coefficient. q, the internal source term, for example,
the chemical reaction for component mass conservation, where species appear or are consumed due
to reactions within the space of interest. Other internal source terms arise from energy dissipation,
conversion, compressibility, or density changes. F , the external source term, including gravitational,
electrical, and magnetic fields as well as pressure fields.

Constitutive equations. For the internal source term, it usually depends on the state of the model
and can be expressed as q = hq(Φ,x, t). The external source term is usually related to the external
effects imposed and can be expressed as F = hF (XF), where XF is a vector of parameters im-
posed externally, which may include voltages, pressures, etc. For convective flows, the velocity v
may be determined by the state of the model, which can be expressed as v = g(Φ,x, t).

Initial conditions (IC). Every process or system evolves over time, but to predict or understand
this evolution, we need a reference or a starting point. The initial conditions provide this starting
point. For example, in the context of a reactor, initial conditions might describe the concentration of
various reactants at t = 0. Mathematically, IC can be represented as Φ(x, 0) = Φ0(x).

Boundary conditions (BC). Initial conditions set the foundation at t = 0, while boundary condi-
tions inform how a system evolves and interacts with its environment, for instance, by specifying
heat flux at a heat exchanger’s boundary or flow rate at a reactor’s inlet. These boundary condi-
tions can be categorized as Dirichlet, prescribing specific values like temperature on the boundary;
Neumann, defining derivatives or fluxes such as the heat flux; and Robin, which combines aspects
of both Dirichlet and Neumann, encompassing parameters like both heat transfer rates and surface
temperatures. Regardless of the type, they’re mathematically expressed as Φ(xb, t) = fb(t), where
xb ∈ ∂Ω.

13

Under review as a conference paper at ICLR 2024

A.2 EMBEDDING BOUNDARY CONDITIONS

This part covers the method of embedding four different boundary conditions (Dirichlet, Neumann,
Robin, and Periodic) into neural networks via convolution padding. Let’s consider a rectangular
region in a 2D space, Ω = [0, a] × [0, b], which can be discretized into an M × N grid, δx = a

M ,
δy = b

N . Each grid point can be represented as Xij = (xi, yj), where i = 1, 2, ...,M and j =
1, 2, ..., N . Hence, we can transform the continuous space into a discrete grid of points.

Boundary Conditions on the X-axis. The direction vector is n = (1, 0)T , which means the
boundary conditions are the same for each y value.

• Dirichlet: If the boundary condition is given as Φ(X, t) = f(X, t), X ∈ ∂Ω, the discrete
form would be ΦMj = fj , and we can use a padding method in the convolution kernel
ΦMj = fj .

• Neumann: If the boundary condition is given as ∂Φ(X,t)
∂n = f(X, t), X ∈ ∂Ω, the discrete

form would be Φ(M+1)j−Φ(M−1)j

2δx = fj and we can use a padding method in the convolution
kernel Φ(M+1)j = Φ(M−1)j + (2× δx)× fj .

• Robin: If the boundary condition is given as αΦ(X, t) + β ∂Φ(X,t)
∂n = f(X, t), X ∈ ∂Ω,

the discrete form would be αΦMj + β
Φ(M+1)j−Φ(M−1)j

2×δx = fj . We can use a padding
method in the convolution kernel Φ(M+1)j =

2×δx
β (fj − αΦMj) +Φ(M−1)j .

• Periodic: If the boundary condition is given as Φ(X1, t) = Φ(X2, t), X1 ∈ ∂Ω1, X2 ∈
∂Ω2, where Ω1 denotes the left boundary and Ω2 the right boundary, the discrete form
would be ΦMj = Φ1j . We can use a padding method in the convolution kernel ΦMj =
Φ1j ,Φ(M+1)j = Φ2j .

Boundary Conditions on the Y -axis. The direction vector is n = (0, 1)T . The basic handling
method is similar to the x-direction case but with the grid spacing replaced with δy, and the boundary
conditions applied to the upper and lower boundaries, i.e., j = 1 and j = N . The corresponding
y-direction expressions can be derived by replacing x with y in the x-direction expressions and
swapping i with j.

Arbitrary Direction Boundary Conditions in the Rectangular Area. The direction vector
n = (cos(θ), sin(θ))T . Both x and y directions need to be considered, resulting in the follow-
ing expressions for each of the four boundary conditions:

• Dirichlet:Given the condition Φ(X, t) = f(X, t), its discrete form remains Φij = fij .
The corresponding padding method in the convolution kernel is Φij = fij .

• Neumann: For the boundary condition ∂Φ(X,t)
∂n = f(X, t), the discrete form can be

represented as cos(θ)Φ(i+1)j−Φ(i−1)j

2δx + sin(θ)
Φi(j+1)−Φi(j−1)

2δy = fij . The correspond-
ing padding method in the convolution kernel can be written as Φ(i+1)j = Φ(i−1)j +
2cos(θ)δxfij and Φi(j+1) = Φi(j−1) + 2sin(θ)δyfij .

• Robin: Given the condition αΦ(X, t) + β ∂Φ(X,t)
∂n = f(X, t), the discrete form becomes

αΦij + βcos(θ)
Φ(i+1)j−Φ(i−1)j

2δx + βsin(θ)
Φi(j+1)−Φi(j−1)

2δy = fij . The corresponding
padding method in the convolution kernel is Φ(i+1)j =

1
βcos(θ) [fij−αΦij]×2δx+Φ(i−1)j

and Φi(j+1) =
1

βsin(θ) [fij − αΦij]× 2δy +Φi(j−1).

• Periodic: For the condition Φ(X1, t) = Φ(X2, t), the discrete form is ΦMj = Φ1j and
ΦNi = Φ1i. The corresponding padding method in the convolution kernel is ΦMj =
Φ1j ,Φ(M+1)j = Φ2j and ΦNi = Φ1i,Φi(N+1) = Φi2.

Directionless Boundary Conditions in the Rectangular Area. The following strategies are em-
ployed for handling the Neumann and Robin boundary conditions:

14

Under review as a conference paper at ICLR 2024

• For ∂Φ
∂X = f(X, t), the discrete form is Φ(i+1)j−Φ(i−1)j

2δx = fij and Φi(j+1)−Φi(j−1)

2δy = fij .
We can use a padding method in the convolution kernel where Φ(i+1)j = Φ(i−1)j+2δxfij
and Φi(j+1) = Φi(j−1) + 2δyfij .

• For αΦ(X, t) + β ∂Φ(X,t)
∂X = f(X, t), the discrete form is αΦij + β

Φ(i+1)j−Φ(i−1)j

2δx = fij

and αΦij + β
Φi(j+1)−Φi(j−1)

2δy = fij . We can use a padding method in the convolution
kernel where Φ(i+1)j =

1
β [fij − αΦij]× 2δx+Φ(i−1)j and Φi(j+1) =

1
β [fij − αΦij]×

2δy +Φi(j−1).

A.3 TEMPORAL-SPATIAL STEPPING METHOD

A.3.1 STRUCTURE-PRESERVED LOCALIZED OPERATOR

Fixed convolution operations. The differential operator can be approximated via convolution op-
erations. For a one-dimensional function u(x), we could use a convolution kernel of the form:

K =
1

2∆x
[−1, 0, 1] (7)

where ∆x represents the step size. This convolution operation, corresponding to this kernel, can
approximate the first-order central difference operator as follows:

u′(x) ≈ u(x+∆x)− u(x−∆x)

2∆x
≈ u(x)⊛K, (8)

with ⊛ denoting the convolution operation. For a two-dimensional function, it can be decomposed
into a convolution of two one-dimensional functions. Assuming u(x, y) is a two-dimensional func-
tion, the kernel could be formed as:

K =
1

h2

[
0 1 0
1 −4 1
0 1 0

]
=

1

h2

[
0 0 0
1 −2 1
0 0 0

]
+

1

h2

[
0 1 0
0 −2 0
0 1 0

]
, (9)

where h = ∆x = ∆y signifies the step size. The convolution operation corresponding to this kernel
can approximate the second-order central difference operator, which is:

∇2u(x, y) =
∂2u(x, y)

∂x2
+
∂2u(x, y)

∂y2

≈ u(x+ h, y)− 2u(x, y) + u(x− h, y)
h2

+
u(x, y + h)− 2u(x, y) + u(x, y − h)

h2

=
u(x+ h, y) + u(x, y + h)− 4u(x, y) + u(x− h, y) + u(x, y − h)

h2

= u(x, y)⊛K.

(10)

Analogously, different convolution kernels can approximate other orders’ differential operators. Uti-
lizing convolution operations to approximate differential operators can boost computational effi-
ciency. Nevertheless, careful consideration is needed when choosing a convolution kernel, as differ-
ent kernels can influence the stability and accuracy of the numerical solution.

Selection of FD kernels. FD kernels are used to approximate derivative terms in PDEs, which
directly affect the computational efficiency and the reconstruction accuracy. Therefore, it is crucial
to choose appropriate FD kernels for discretized-based learning frameworks. For spatio-temporal
systems, we need to consider both temporal and spatial derivatives. In specific, the second-order
central difference is utilized for calculating temporal derivatives, i.e.,

∂u

∂t
=
−u(t− δt, ξ, η) + u(t+ δt, ξ, η)

2δt
+O

(
(δt)2

)
, (11)

where {ξ, η} represent the spatial locations and δt is time spacing. In the network implementation,
it can be organized as a convolutional kernel Kt,

Kt = [−1, 0, 1]× 1

2δt
.

15

Under review as a conference paper at ICLR 2024

Likewise, we also apply the central difference to calculate the spatial derivatives for internal nodes
and use forward/backward differences for boundary nodes. For instance, in this paper, the fourth-
order central difference is utilized to approximate the first and second spatial derivatives. The FD
kernels for 2D cases with the shape of 5× 5 are given by

Ks,1 =
1

12(δx)

0 0 0 0 0
0 0 0 0 0
1 −8 0 8 −1
0 0 0 0 0
0 0 0 0 0

 ,Ks,2 =
1

12(δx)2

0 0 −1 0 0
0 0 16 0 0
−1 16 −60 16 −1
0 0 16 0 0
0 0 −1 0 0

 ,
(12)

where δx denotes the grid size of HR variables; Ks,1 and Ks,2 are FD kernels for the first and
second derivatives, respectively. In addition, we conduct a parametric study on the selection of FD
kernels, including the second-order (3 × 3), the fourth-order (5 × 5), and the sixth-order (7 × 7)
central difference strategies.

A.3.2 STRUCTURE-PRESERVED SPECTRAL OPERATOR

In Fourier space, the simplification of problem-solving involves converting differential operations
and wave number multiplications. In 2D space, the discrete values of the set function Φ(x, y) in
real space, denoted as Φij , correspond to Φ̂mn in Fourier space, with kx and ky representing the
respective wave numbers. Differential operators are transformed as follows. (1) The first-order
differential operator, ∂Φ∂x , becomes ikxΦ̂mn in the x direction and ikyΦ̂mn in the y direction. (2)
The second-order differential operator, ∂2Φ

∂x2 , is represented as −k2xΦ̂mn for the x direction and
−k2yΦ̂mn for the y direction. (3) The Laplacian operator ∇2Φ transforms into (−k2x − k2y)Φ̂mn in
Fourier space.

Moreover, for a 2D flow field, the relationship between the flow function ψ and the velocity fields
(u, v) can be expressed by the following partial differential equation, u = ∂ψ

∂y and v = −∂ψ∂x ,
where we can use kx and ky to obtain differential results. Moreover, here S-Conv is from FNO (Li
et al., 2020) (the module named as “SpectralConv2d fast”). This “SpectralConv2d fast” class is a
neural network module that performs a 2D spectral convolution by applying an FFT, a learned linear
transformation in the Fourier domain, and an IFFT.

A.4 ALGORITHM DISPLAY

Here, we detail the loss function and highlight the strategy of iterative refinement rounds within a
causal time-stepping training method. As shown in Alg. 1 and Alg. 3, the first two operators are
detailed, and the third one is a combination of the first two and will not be discussed here.

16

Under review as a conference paper at ICLR 2024

Algorithm 1: Structure-preserved localized operator with iterative refinement rounds.
Initialization: Fixed or pre-defined convolutional kernels K (with parameters θ), as shown in

Fig. 3 (Left); Initialize other network parameters θ ∈ Θ;
Input: A set of inputs ak for 1 ≤ k ≤ D0, initial step size t0, and temporal trajectory length
T ′, time interval ∆t, iterative refinement rounds parameters [α1, α2, α3];

Output: The mapping Gθ, where S̃k ← G̃θ(ak);
Require: Parameterized neural network G̃θ, and iterative refinement rounds strategy ;
for α in [α1, α2, α3] do

for k = 1 to D0 do
ak ← [s0k, s

1
k, . . . , s

t0−1
k] ;

for t = t0 to T ′ do
(·)n,∇n(·), n = 0, 1, . . .← ak ⊛K;
DF, CF, IST, EST← (·)n,∇n(·),ak;
TS← DF+CF+IST+EST;
Next states st+1

k ← stk + TS×∆t;
Update input ak ← st+1

k ;
end
Subsequent trajectory S̃k ← G̃θ(ak) ;
Loss Lr(θ)← Eq. 4 ;
Detach gradients of wi to prevent gradient descent on θ within wi ;
Update weights θ by minimizing the loss Lr(θ) ;

end
Adjust causality parameter α for the next refinement round;

end

Algorithm 2: Update State by Structure-Preserved Spectral Operator
Input: ak and time interval ∆t
Output: Next states st+1

k

1. kx, ky, ·̂ ← FFT(ak);
2. (̂·)

n
, ∇̂n(·), n = 0, 1, . . .← E-Conv(kx, ky, ·̂);

3. DF,CF← (·)n,∇n(·),ak;
4. IST,EST← S-conv(·);
5. TS← DF + CF + IST + EST;
6. ∆st+1

k ← stk + TS×∆t;

17

Under review as a conference paper at ICLR 2024

Algorithm 3: Structure-Preserved Spectral Operator with Iterative Refinement Rounds
Initialization: Initialize E-Conv (1× 1 conv) and S-conv (spectral convolutions) with

parameters θ as shown in Fig. 3 (Right);
Input: A set of inputs ak for 1 ≤ k ≤ D0, initial step size t0, temporal trajectory length T ′,

time interval ∆t, iterative refinement rounds parameters [α1, α2, α3]

Output: The mapping Gθ where S̃k ← G̃θ(ak)
Require: Parameterized neural network G̃θ and iterative refinement rounds strategy

foreach α in [α1, α2, α3] do
for k = 1 to D0 do

ak ← [s0k, s
1
k, . . . , s

t0−1
k];

for t = t0 to T ′ do
r1 ← Alg2(ak, 0);
ak ← stk + r1 × ∆t

2 ;
r2 ← Alg2(ak, ∆t2);
ak ← stk + r2 × ∆t

2 ;
r3 ← Alg2(ak, ∆t2);
ak ← stk + r3 ×∆t;
r4 ← Alg2(ak,∆t);
st+1
k ← stk +

∆t
6 (r1 + 2r2 + 2r3 + r4);

Update input: ak ← st+1
k ;

end
S̃k ← G̃θ(ak) ;
Compute loss Lr(θ) according to Eq. 4 ;
Detach gradients of wi to inhibit gradient descent on θ within wi ;
Update weights θ by minimizing the loss Lr(θ) ;

end
Adjust the causality parameter α for the next refinement round;

end

18

Under review as a conference paper at ICLR 2024

A.5 DATASETS

We employ five datasets spanning diverse domains, such as fluid dynamics and heat conduction.
Based on the TSSM scheme employed by PAPM, we categorize the aforementioned five datasets into
three types: Burgers2d and RD2d fall under the localized category, NS2d is classified as spectral,
while Lid2d and NSM2d are designated as hybrid. The generations of Lid2d and NSM2d are
detailed via COMSOL multiphysics in A.5.2. We are particularly keen to make Lid2d and NSM2d
publicly available, anticipating various research endeavors on these datasets by the community.

A.5.1 FIVE DATASETS

Burgers2d (Huang et al., 2023a). The 2D Burgers equation is one of the fundamental nonlinear
partial differential equations. Its formulation is given by:

∂u

∂t
= −u · ∇u+ v∆u+ f ,

u|t=0 = u0(x, y)
(13)

where u = (u(x, y, t), v(x, y, t)) represents the velocity field, and the spatial domain is Ω =
[0, 2π]2 with periodic boundary conditions. The viscosity coefficient v varies within the range
v ∈ [0.001, 0.1]. The forcing term is defined as:

f(x, y,u) = (sin(v) cos(5x+ 5y), sin(u) cos(5x− 5y))⊤. (14)

The initial condition, denoted as u0(x, y), is drawn from a Gaussian random field characterized by
a variance of 25(−∆ + 25I)−3. Subsequently, it is linearly normalized to fall within the range of
[0.1, 1.1]. A total of N = 500 samples are generated, each spanning M = 3200 time steps with a
step size of δt = 0.01

32 . For the generation of high-precision numerical solutions, a high-resolution
traditional numerical solver is employed. This solver utilizes the value of δt and operates on a finely
discretized 256× 256 grid. The resulting high-precision solutions are stored at intervals of every 32
time step, resulting in 100 time slices. Subsequently, these solutions are downsampled to a coarser
64× 64 grid.

RD2d (Takamoto et al., 2022). Considering the 2D diffusion-reaction equation, the conservation
of the activator u and inhibitor v can be represented as:

∂u

∂t
= −∇Ju +Ru,

∂v

∂t
= −∇Jv +Rv

Ju = −Du∇u, Jv = −Dv∇v
(15)

Where Ju and Jv are the flux terms for the activator and inhibitor, respectively. These represent
the diffusive or molecular flows for each component. The reaction functions Ru and Rv for the
activator and inhibitor, respectively, are defined by the Fitzhugh-Nagumo (FN) equation, written as
Ru = u− u3 − k − v and Rv = u− v, where k = 5× 10−3 and the diffusion coefficients for the
activator and inhibitor are Du = 1×10−3 and Dv = 5×10−3, respectively. The initial condition is
characterized by a standard normal random noise, with u(0, x, y) ∼ N (0, 1.0) for x ∈ (−1, 1) and
y ∈ (−1, 1). The boundary conditions are defined as no-flow Neumann boundary conditions. This
entails that the partial derivatives satisfy the conditions: Du∂xu = 0, Dv∂xv = 0, Du∂yu = 0,
and Dv∂yv = 0, all applicable for the domain x, y ∈ (−1, 1)2. This dataset 1 is transformed into a
coarser grid with dimensions of 64× 64 while keeping the time step consistently constant.

NS2d (Li et al., 2020). We refer to FNO as the source for our exploration of the two-dimensional
incompressible Navier-Stokes equation in vorticity form. This equation is defined on the unit torus
and is outlined as follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f,

∇ · u(x, t) = 0,

w(x, 0) = w0(x),

(16)

where x ∈ (0, 1)2, t ∈ (0, T], and u represents the velocity field,w = ∇×u denotes the vorticity,w0

stands for the initial vorticity distribution, ν ∈ R+ signifies the viscosity coefficient and f denotes
1This dataset can be downloaded at https://github.com/pdebench/PDEBench

19

https://github.com/pdebench/PDEBench

Under review as a conference paper at ICLR 2024

the forcing function. In this work, the viscosity coefficient is set to ν = 1 × 10−3, 1 × 10−4, 1 ×
10−5. It’s worth noting that, for the purpose of maintaining a consistent evaluation framework, the
resolution is standardized at 64 × 64 for both training and testing phases, given that the baseline
methods are not inherently resolution-invariant.

Lid2d. A constant velocity across the top of the cavity creates a circulating flow inside. To simulate
this, a constant velocity boundary condition is applied to the lid while the other three walls obey
the no-slip condition. Different Reynolds numbers yield different results, so in this article, Re ∈
[100, 1500] are applied. At high Reynolds numbers, secondary circulation zones are expected to
form in the corners of the cavity. The system of differential equations (N-S equations) consists of
two equations for the velocity components u = (u(x, y, t), v(x, y, t)), and one equation for pressure
(p(x, y, t)):

∂u

∂t
= −u · ∇u+

1

Re
∆u−∇p,

∇ · u = 0
(17)

where (x, y) ∈ (0, 1)2. The initial condition is (u, v, p) = 0 everywhere. And the boundary
conditions are: u = 1 at y = 1 (the lid), (u, v) = 0 on the other boundaries, ∂p/∂y = 0 at y=0,p=0
at y = 1, and ∂p/∂x = 0 at x = 0, 1. The data generation for the Lid2d is processed by COMSOL
Multiphysics®, and a total of N = 500 samples are generated, each spanning M = 1000 time steps
with a step size of δt = 0.1

10 . Every 10 steps, we save the data, resulting in 100 time slices. This
solver utilizes the value of δt and operates on a finely discretized 128 × 128 grid. Subsequently,
these solutions are downsampled to a coarser 64× 64 grid.

NSM2d. Consider the Navier-Stokes equations with an additional magnetic field:
∂u

∂t
+ u · ∇u = −∇p+ ν∇2u+ F , t ∈ [0, T],

∇ · u = 0,
(18)

where (x, y) ∈ [0, 4] × [0, 1], u = [u(x, y, t), v(x, y, t)] ∈ R2 is the velocity vector, p(x, y, t) ∈ R
is the pressure, ν = 1/Re represents the kinematic viscosity (withRe as the Reynolds number), and
F = [Fx, Fy] is an external source term induced by the magnetic field. The components of F are
defined as follows: Fx = mH

∂H

∂x
, Fy = mH

∂H

∂y

H(x, y) = exp
[
−8

(
(x− L/2)2 + (y −W/2)2

)] (19)

where L = 4, W = 1, m = 0.16 is the magnetization, and H is a time-invariant magnetic intensity.
The simulation is conducted on a 2D rectangular domain {x, y} ∈ [0, 4] × [0, 1] with the follow-
ing boundary conditions: the inflow boundary (x = 0) is prescribed with a velocity distribution
u(0, y, t), where y0 represents the vertical position of the inlet jet center:

u(0, y, t) =

[
u(0, y, t)
v(0, y, t)

]
=

 exp
(
−50 (y − y0)2

)
sin(t) · exp

(
−50 (y − y0)2

) (20)

The outflow boundary (x = 4) is set with a reference pressure p(4, y, t) = 0. The no-slip boundary
condition is applied at the top and bottom walls (y = 0, 1). The Reynolds number is dimensionless
and ranges from 100 to 1500. The inlet jet position y0 is varied within the domain 0.4 ≤ y0 ≤
0.6. The data generation for the NSM2d is processed by COMSOL Multiphysics®, and a total of
N = 500 samples are generated, each spanning M = 1000 time steps with a step size of δt = 0.2

10 .
Every 10 steps, we save the data, resulting in 100 time slices. This solver utilizes the value of δt and
operates on a finely discretized 256 × 64 grid. Subsequently, these solutions are downsampled to a
coarser 128× 32 grid.

A.5.2 DETAILED DATA GENERATION PROCESS

Our research employed COMSOL multiphysics software 2 for fluid dynamics simulation in a lid-
driven cavity and a magnetic stirring scenario. The simulation parameters are outlined in the main

2https://www.comsol.com/

20

https://www.comsol.com/

Under review as a conference paper at ICLR 2024

text, utilizing grids of 128 × 128 and 256 × 64 for each case, respectively. The Time-Dependent
Module, with specific time steps, was used for execution. The simulations required substantial com-
putational resources, solving for 49,152 and 16,130 internal degrees of freedom (DOFs) in each
scenario. To generate a comprehensive dataset, we varied simulation parameters, running 500 simu-
lations for each scenario with different Reynolds numbers and, in the magnetic stirring case, the y0
value. This data was stored in h5 format.

The computational intensity was significant: a single run in the lid-driven scenario took 91 seconds
on average, while the magnetic stirring case took 226 seconds. The total computation time was
approximately 106 seconds for all 500 cases, highlighting the time-consuming nature of such sim-
ulations. The intricacy of multi-physics coupling and the extensive computational demand in these
simulations point towards the necessity of more efficient methods. This situation underscores the
potential of neural networks in accelerating simulation processes. By leveraging neural networks,
we aim to reduce the computational time significantly, addressing the inherent slowness of detailed
simulations like those in our study. This approach could transform the feasibility and scalability of
complex simulations in various scientific and engineering domains.

A.6 HYPER-PARAMETERS AND DETAILS FOR MODELS

A.6.1 EXPERIMENTAL SETUP

We train all models with AdamW (Loshchilov & Hutter, 2017) optimizer with the exponential de-
caying strategy, and epochs are set as 500. The causality parameter α1 = 0.1 and α0 = 0.001. The
initial learning rate is 1e-3, and the ReduceLRonPlateau schedule is utilized with a patience of 20
epochs and a decay factor of 0.8. For a fair comparison, the batch size is identical across all methods
for the same task, and all experiments are run on 1 ∼ 3 NVIDIA Tesla P100 GPUs.

To account for potential variability due to the partitioning process, each experiment is performed
three times, and the final result is derived as the average of these three independent runs. Except for
the predefined parameters, the parameters of all models are initialized by Xavier (Glorot & Bengio,
2010), setting the scaling ratio c = 0.02.

A.6.2 HYPER-PARAMETERS

PAPM. In this work, PAPM designed three different temporal-spatial modeling methods according
to the characteristics of five different data sets.

• Localized Operator. For Burgers2d and RD2d, the localized operator is selected in spa-
tial, while the Euler scheme is selected in temporal. Burgers2d uses the predefined fixed
convolution kernel as the convolution kernel parameter of diffusive and convective flows,
while a 4-layer convolution layer characterizes the source term. Its channel is set to 16, and
the GELU activation function is used. In RD2d, trainable convolutional kernels are used
as the convolution kernel parameter of diffusive flows, and the kernel is set to 5. For the
source term, like burgers2d, a four-layer convolutional layer with channel 16 and GELU is
used to characterize the source term.

• Spectral Operator. In NS2d, the spectral operator is selected in spatial, while the RK-4
scheme is selected in temporal. After FFT, kx, ky and ŵ are input into a 1× 1 conv for dot
product, which is used to solve the partial derivatives of vorticityw and velocity field u, and
then to physical space through IFFT. Simple operations such as multiplication and addition
are performed according to conservation relations. As for the source term is characterized
by a layer of S-Conv (i.e., spectralConv2d fast) with (width= 12, modes1= 12, modes2=
12).

• Hybrid Operator. For Lid2d and NSM2d datasets, the hybrid operator is chosen in spa-
tial, while the RK-4 scheme is selected in temporal. According to the velocity part of the
conservation equation, we set the kernel as five using trainable convolutional kernels as
the convolution kernel parameters of diffusive and convective flows. We use a three-layer
convolutional layer with channel 16 and GELU to represent the source term. Then, the
intermediate results of the velocity field are fed into an S-Conv (width= 8, modes1= 8,
modes2= 8) to map the complete velocity field and pressure field.

21

Under review as a conference paper at ICLR 2024

ConvLSTM (Shi et al., 2015). Specializing in spatial-temporal prediction, ConvLSTM blends
LSTM’s temporal cells with CNN spatial extraction. The setup consists of three distinct blocks:
an encoding block employing a 5 × 5 convolution kernel with channel 32, an LSTM cell-based
forecasting block, and a decoding block featuring 2 CNN layers with 5 × 5 kernels and 2 Res
blocks. Notably, multi-step predictions are achieved through state concatenation within the fore-
casting block. Despite its strengths, its performance in complex process systems can be limited due
to potential error accumulations.

Dil-ResNet (Stachenfeld et al., 2021). This model combines the encode-process-decode paradigm
with the dilated convolutional network. The processor consists of N = 4 residual blocks connected
in series, and each is made of dilated CNN stacks with residual connections. One stack consists of
7 dilated CNN layers with dilation rates of (1, 2, 4, 8, 4, 2, 1), where a dilated rate of N indicates
that each pixel is convolved with multiples of N pixels away. Each CNN layer in the processor is
followed by ReLU activation. The key part of this network is a residual connection, which helps
avoid vanishing gradients, and dilations allow long-range communication while preserving local
structure. We found difficulties running this model on complex datasets due to computing and
memory constraints.

time-FNO2D (Li et al., 2020). This model applies matrix multiplications in the spectral space
with learnable complex weights for each component and linear updates and combines embedding in
the spatial domain. The model consists of 2 MLP layers for encoding and decoding and 4 Fourier
operation blocks (width= 12, modes1= 12, modes2= 12). Each block contains Fourier and CNN
layers, followed by GELU activation. Optionally, low-pass filtering truncates high-frequency modes
along each dimension in the Fourier-transformed grid.

MIONet (Jin et al., 2022). In the original paper, the Depth of MIONet is set to 2, the width is 200,
and the number of parameters is 161K. Build MIONet with DeepXDE (Lu et al., 2021a) 3. In this
work, we have greatly adjusted the number of parameters; the number of parameters is about 20k,
and the width is set to 20. Consistent with FNO, MLP is also introduced to construct the project
layer for data, and then projection is also carried out in output. Other contents are consistent with
the original text.

U-FNet (Gupta & Brandstetter, 2022). This model improves U-Net architectures, replacing lower
blocks both in the downsampling and in the upsampling path of U-Net architectures by Fourier
blocks, where each block consists of 2 FNO layers and residual connections. Other contents are
consistent with the original text. In this work, we have adjusted n input scalar components and
n output scalar components to the number of channels of the physical field in our datasets, and
both time history and time future are set to 5 for better fitting.

CNO (Raonić et al., 2023).This model proposes a sequence of layers with the convolutional neural
operator, mapping between bandlimited functions based on U-Net architectures. The convolutional
neural operator consists of 4 different blocks, i.e., the downsampling block, the upsampling block,
the invariant block, and the ResNet block. In the original paper, the width and height of spatial size
for the mesh grid should be identical. In this work, we relaxed this restriction in activation function
filtered lrelu to fit on non-square grids like the NSM2d dataset. Other contents are consistent with
the original text.

PeRCNN (Rao et al., 2023). The network consists of two components: a fully convolutional de-
coder as an initial state generator and a novel recurrent block named

∏
-block for recursively up-

dating the state variables. Here, since the available measurement size in our experiments is full, we
have omitted this decoder. In the recurrent

∏
-block, the state first goes through multiple parallel

1 × 1 Conv layers with stride 1 and output channel 32. The feature maps produced by these lay-
ers are then fused via the elementwise product operation. Then, the multi-channel goes through a
conv layer with a filter size of 1 to obtain the output of the desired number of channels. We found
this method unstable when approaching nonlinear complex terms and prone to NaN values during
training.

PPNN (Liu et al., 2022). This model combines known partial nonlinear functions with a trainable
neural network, which is named ConvResNet. The only difference between these two models is that
a trainable portion of PPNN has an extra input variable F , provided by the PDE-preserving portion

3https://github.com/lululxvi/deepxde

22

https://github.com/lululxvi/deepxde

Under review as a conference paper at ICLR 2024

of PPNN. The state first goes through the decoder, which is made of four ConvResNet blocks, and
each of them consists of a 7 × 7 kernel with 96 channels and a zero padding of 3. The following
decoder includes a pixel shuffle with an upscale factor equal to 4 and a convolution layer with a 5×5
kernel. Due to the physics-aware design, this model shows lower relative error in the extrapolation
range.

A.7 ADDITIONAL EXPERIMENTAL RESULTS

In this section, we will first detail the data visualization and training and inference time cost-specific
details, then show another ability of PAPM, adaptive resolution.

A.7.1 VISUALIZATION

Fig. 7 and Fig. 8 showcase the results across five extrapolation time slices on Burgers2d and RD2d
datasets. Both datasets clearly show that the physics-aware methods, PPNN and PAPM (our), can
predict the dynamics of these two complex systems well. However, in the second half of the ex-
trapolation (T ≥ 1

2Tend), It can be seen that our method PAPM is better than PPNN in local detail
reconstruction. It is worth mentioning that our method has only 1% of the number of parameters
and FLOPs of PPNN. However, the effect is better than PPNN, which further affirms the superiority
of our structured design and specific spatio-temporal modeling method.

G
ro

un
d

Tr
ut

h
PP

N
N

PA
PM

 (o
ur

)

𝑻 =
𝟏
𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑
𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏
𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

0.2 0.4 0.6 0.8 1.0

Figure 7: Predicted flow velocity (∥u∥2) snapshots by PPNN, and PAPM (Ours) vs. Ground Truth (GT) on
Burgers2d dataset in T Ext. task.

A.7.2 TRAINING AND INFERENCE TIME COST

Dataset generation for our work is notably resource-intensive, with inference costs ranging from
103 ∼ 105 s for public datasets and up to 106 s for those we generated using COMSOL Multi-
physics®. In stark contrast, both baselines and PAPM register inference times between 10−1 ∼ 10
s in Tab 5, achieving an improvement of 4 to 6 orders of magnitude. Notably, PAPM’s time cost
rivals or even surpasses baselines across different datasets. This indicates that introducing rigorous
physical mechanisms, unlike traditional numerical algorithms, doesn’t necessarily bloat time costs.
PAPM’s efficiency remains competitive with other data-driven methods.

23

Under review as a conference paper at ICLR 2024

G
ro

un
d

Tr
ut

h
PP

N
N

PA
PM

 (o
ur

)

𝑻 =
𝟏
𝟐
𝑻𝒆𝒏𝒅 𝑻 =

𝟑
𝟒
𝑻𝒆𝒏𝒅𝑻 =

𝟏
𝟒
𝑻𝒆𝒏𝒅𝑻 = 𝟏 𝑻 = 𝑻𝒆𝒏𝒅

−0.2 −0.1 0.0 0.1 0.2

Figure 8: Predicted flow velocity (∥u∥2) snapshots by PPNN, and PAPM (Ours) vs. Ground Truth (GT) on
RD2d. dataset in C Ext. task.

Table 5: Training and inference time cost (iteration/second) of different baselines.

Config Burgers2d RD2d NS2d Lid2d NSM2d
Train Infer Train Infer Train Infer Train Infer Train Infer

ConvLSTM 5.41 1.12 21.41 3.94 7.05 0.86 8.68 3.22 4.39 0.92
Dil-ResNet 6.64 1.73 27.06 4.06 9.96 1.19 10.90 3.66 6.34 1.03
time-FNO2D 4.87 1.46 8.94 1.95 5.16 0.79 10.41 2.11 3.35 0.69
MIONet 5.69 1.58 8.69 2.03 5.05 0.89 10.54 3.02 4.03 0.76
U-FNet 3.64 0.52 14.56 1.96 6.67 0.51 10.42 1.14 6.96 0.82
CNO 4.02 0.60 15.72 2.28 4.92 0.44 11.08 1.12 5.90 0.68
PeRCNN 5.02 1.72 5.73 1.47 6.53 0.84 17.44 4.08 4.24 0.82
PPNN 5.07 0.96 8.88 1.19 4.87 0.91 15.58 3.44 8.08 0.64
PAPM 3.44 0.93 8.62 2.07 3.70 1.27 8.91 2.94 5.13 0.88

24

Under review as a conference paper at ICLR 2024

A.7.3 ADAPTIVE RESOLUTION

Incorporating prior physics knowledge into models brings a pivotal requirement: resolution indepen-
dence akin to that observed in traditional numerical methods. This expectation guides our design
of the Physics-Aware Proxy Model (PAPM). During its construction, we deliberate on two funda-
mental modes of matter motion, convection and diffusion, and the source term’s impacts on model
dynamics. Consequently, the different components of our model are designed to exhibit robustness
against resolution variations. Specifically, in the convection and diffusion components (i.e., CF and
DF in Fig. 2), the resolution scale (e.g., scale ∈ [32, 64, 128, 256]) serves as a hyperparameter in-
fluencing the convolution kernel parameters. Here, the mesh size is defined as 1

scale , which, when
combined with predefined kernels, imparts resolution awareness to the model. However, the original
TSSM’s ResNet-based source term lacks adaptability to resolution changes. To address this, we pro-
pose a modification in line with the lift-mapping-project structures seen in FNO (Li et al., 2020) and
CNO (Raonić et al., 2023). We alter the ResNet structure into a lift-ResNet-project format for the
localized operator’s source term. In contrast, we adopt the S-Conv structure for spectral operators,
aligning with the FNO approach.

As detailed in Table 6, we assess the adaptive resolution performance of various models, including
our PAPM, across three public datasets: Burgers2d, RD2d, and NS2d (with ν = 1 × 10−4). For
each dataset, training was performed at a standard resolution of [64, 64]. We explored three scaling
scenarios, [1/2, 2, 4, corresponding to resolutions of 32, 128, and 256, respectively, to conduct zero-
shot evaluations of the models.

The results highlight that modifications to the PAPM structure have notably enhanced its adaptive
resolution capabilities across different resolutions, confirming the effectiveness of this architecture.
Notably, PAPM demonstrates robust performance in various scaling scenarios, indicating its re-
silience to resolution changes. Compared to other physical-aware methods, PAPM exhibits superior
adaptive resolution ability. Moreover, the results of purely data-driven approaches, which lack this
adaptive resolution capability, underscore the importance of integrating physics priors for enhanced
adaptability to varying resolutions. However, it is also essential to acknowledge that regarding adap-
tive resolution, PAPM still lags behind other neural operators like FNO and CNO. This observation
suggests a potential area for further improvement in PAPM’s design and implementation.

Table 6: Main results (ϵ) across different datasets in time extrapolation task with 0.5, 2, 4 scaling.

Config Burgers2d RD2d NS2d
C Int. C Ext. C Int. ν = 1e-4

Scale 0.5 1 2 4 0.5 1 2 4 0.5 1 2 0.5 1 2 4

ConvLSTM 0.480 0.314 0.339 0.287 0.654 0.551 0.6581 0.679 0.879 0.815 0.900 0.894 0.877 0.923 0.925
Dil-ResNet 0.223 0.071 0.216 0.226 0.272 0.136 0.257 0.288 0.170 0.021 0.169 0.623 0.511 0.489 0.471
time-FNO2D 0.303 0.173 0.170 0.171 0.312 0.233 0.234 0.231 0.607 0.333 0.320 0.113 0.100 0.110 0.114
U-FNet 0.409 0.109 0.294 0.305 0.451 0.433 0.479 0.484 0.309 0.239 0.264 0.235 0.190 0.206 0.226
CNO 0.154 0.112 0.139 0.101 0.180 0.126 0.158 0.178 0.271 0.258 0.239 0.145 0.148 0.156 0.157
PPNN 0.263 0.047 0.242 0.246 0.329 0.132 0.306 0.295 0.442 0.030 0.491 0.891 0.357 0.543 0.591

Vanilla PAPM 0.144 0.039 0.084 0.107 0.205 0.101 0.140 0.164 0.064 0.018 0.079 0.141 0.097 0.117 0.133
PAPM 0.071 0.039 0.043 0.045 0.101 0.098 0.113 0.108 0.034 0.018 0.039 0.141 0.097 0.117 0.133

A.8 APPLICATION OF PAPM TO PLASMA MODELING.

Here, we consider a more complex process system, low-temperature argon plasma discharge4, as
depicted in Fig. 9. This process system is a classical multi-physics field coupling problem, which is
a widely recognized phenomenon that occurs when applying an electric field to a gas, leading to gas
ionization and plasma formation.

Modeling. The sequence of events involved in this process includes the creation of free electrons,
ionization, electron impact excitation, and recombination, which can be described mathematically
using mechanism equations, such as the maxwell, drift-diffusion, and fluid equations. It does not
strictly adhere to the definition in Eq. 1. Still, for the physical quantities to be modeled, their

4More detailed information can be shown in https://www.comsol.com/model/gec-icp-reactor-argon-
chemistry-8649.

25

https://www.comsol.com/model/gec-icp-reactor-argon-chemistry-8649
https://www.comsol.com/model/gec-icp-reactor-argon-chemistry-8649

Under review as a conference paper at ICLR 2024

Non regular grids

Figure 9: The schematic of 2D low-temperature Argon plasma discharge with non-regular grids.

overall pattern follows the basic setting in which convection, diffusion, and source terms act together.
Therefore, we can still construct a proxy model for plasma through PAPM.

Data generation. We implemented this complex example by COMSOL®. Here, the input condi-
tion is not the initial conditions and equation coefficients but the working condition parameters. The
parameter range of η is defined as [Vmin, Vmax] × [Pmin, Pmax], which contains two parameters
for voltage and air pressure. The dynamic of the system is completely different, with different pa-
rameters. For instance, as illustrated in Fig. 10, the significant variations observed in the dynamic
evolutionary characteristics among electron density, electron temperatures, and potentials under dif-
ferent simulation conditions emphasize the distinctiveness of their physical attributes.

Figure 10: Variation characteristics of electron density ne, electron temperature te, and electric
potential ϕ. Dynamic evolution curves of the mean value from the initial to the final state under
different simulation conditions.

Our task is to model the plasma dynamics within a set range of operating conditions, the same as
the previous task setting. In particular, for the working condition of each group ηi = [Vi, Pi], input
model St0 = [s0, . . . , st0−1], a total of t0 step state, we want to get the state of the following
Tend − t0 step. Here, s ∈ R3 is a vector, where s = [ne, te, ϕ], denoting electron density, electron
temperature, and electric potential, respectively. In training, we only the first half data to training,
input St0 , label data for [st0 − 1, . . . , sTend/2]. We perform five-fold cross-validation for plasma
data with 40 sets of uniformly sampled data under the operating range setting of [150, 500]×[20, 70].

Results. For handling irregular mesh data, we initially applied bilinear interpolation to transform
it into regular mesh data with a spatial resolution of [160, 160]. We set the initial time t0 = 5 and

26

Under review as a conference paper at ICLR 2024

the end time Tend = 200, using data from the first half of the Tend/2 time steps for training. In the
testing phase, we input the initial state sequence at t0 = 5 to predict the states from t0 to Tend.

Despite the absence of exact physics equations for the plasma process, we effectively derived gra-
dient information of three physical quantities through convection and diffusion components. This
was followed by feature fusion via the source component, aiding in understanding the potential un-
derlying mechanism equation. The RK-4 format was employed for time stepping. As demonstrated
in Table 7, our method surpasses others in accuracy, generalization, and efficiency. Moreover, we
explored enhancing the model’s complexity by scaling up the number of parameters in PAPM. This
involved varying the hidden channel numbers (hidden channel = [16, 32, 64]), which led to a sig-
nificant increase in the parameter count (from 3w to 20w). However, the improvements in model
performance were relatively modest when weighed against the substantial increase in computational
resources incurred. This discrepancy might be attributed to the limitations posed by the size of the
dataset.

Table 7: Main results (ϵ), FLOPs, training and inference time cost (iteration/second), and the number
of trainable parameters (NP) on Plasma2d.

Config ϵ FLOPs Train Test Np

convLSTM 0.750 2.05G 5.05 0.43 0.080M
Dil-ResNet 0.316 3.90G 7.61 0.59 0.152M
timeFNO2d 0.286 0.11G 2.37 0.31 0.465M
U-FNet 0.718 5.22G 9.38 1.49 10.091M
CNO 0.407 3.50G 8.46 0.92 2.674M
PPNN 0.228 3.01G 4.60 0.63 1.300M

PAPM-16 0.178 0.07G 4.66 0.47 0.032M
PAPM-32 0.176 2.05G 6.94 0.60 0.082M
PAPM-64 0.171 6.41G 9.94 0.79 0.245M

A.9 LIMITATION AND FUTURE WORK

Our approach centers around two primary considerations. Firstly, we aim to extend our model to
more realistic process systems, particularly those used in industrial simulations. While our current
validation has been on standard 2D spatio-temporal dynamic systems with well-defined process
model mechanisms, PAPM has demonstrated a superior balance in accuracy, operational efficiency,
and generalization capabilities. A notable example is our application of PAPM to plasma, a complex
case involving multi-physics field coupling. The results from this plasma experiment exemplify
PAPM’s strengths in handling more intricate process systems. Moving forward, we plan to explore
PAPM’s architecture in multi-physics field coupling scenarios, such as fluid-structure and thermal
fluid-structure coupling problems.

The second consideration is the potential scalability of PAPM concepts to a larger model framework.
Since most dynamic systems adhere to three primary aspects – convection (with advection being a
specific case), diffusion, and source terms – we are keen to integrate this structured design into
developing larger-scale models. We aim to construct a foundational model for process systems that
can efficiently and accurately model various processes with a unified approach.

27

	Introduction
	Related Work
	Preliminaries
	Methodology
	PAPM Overview
	Temporal-Spatial Stepping Method (TSSM)
	Loss Function and Training strategy

	Experiments
	Experimental setup and evaluation protocol
	Main Results
	Efficiency
	Ablation Studies

	Conclusion
	Appendix
	Process models
	Embedding Boundary Conditions
	Temporal-Spatial Stepping Method
	Structure-preserved localized operator
	Structure-preserved spectral operator

	Algorithm Display
	Datasets
	Five datasets
	Detailed Data Generation Process

	Hyper-parameters and details for models
	Experimental setup
	Hyper-parameters

	Additional experimental results
	Visualization
	Training and inference time cost
	Adaptive resolution

	Application of PAPM to Plasma Modeling.
	Limitation and future work

