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Abstract

As modern machine learning models are deployed in high-stakes, data-rich environments,
the interactions among features have grown more intricate and less amenable to traditional
interpretation. Many explanation methods fail when features are strongly dependent. In
the presence of multicollinearity or near-duplicate predictors, existing value attribution
tools such as SHAP, LIME, HSIC, MI/CMI, and SAGE often distribute importance across
redundant features, obscuring which variables represent "important and unique information".
This may lead to unstable rankings, jeopardising importance scores, and usually results in a
high computational cost. Recent correlation-aware approaches, such as CIR or BlockCIR,
offer partial improvements but still struggle to fully separate redundancy from unique
contributions at the feature level. To address this, we propose the Mutual Correlation Impact
Ratio Method (MCIR-M), a simple and robust measure of global importance under feature
dependence. MCIR-M introduces the score Mutual Correlation Impact Ratio (MCIR) that
conditions each feature on a small set of its most correlated neighbours and computes a
normalized ratio of conditional information having value range, [0, 1], which is comparable
across tasks, and collapses to zero when a feature is redundant, enabling clear redundancy
detection. In addition to MICR, we introduce a lightweight estimation procedure that
requires only a fraction of the data while preserving the attribution behaviour of the full
model. Across a synthetic household-energy dataset and the real UCI HAR benchmark,
MCIR yields more stable and dependence-aware rankings than SHAP (independent and
conditional), SAGE, HSIC, MI-based scores, and correlation-aware baselines such as CIR or
BlockCIR. Lightweight explanations preserve over 95% top-feature agreement and reduce
runtime by manyfold. These results demonstrate that MCIR-M provides a practical and
scalable solution for global explanation in settings with strong feature dependence.

1 Introduction

Artificial Intelligence (AI) plays an increasingly critical role in high-stakes settings such as energy management
and healthcare, where model-driven decisions carry significant operational and societal impact. This growing
reliance heightens the need for transparent and reliable explanations Lipton| (2018)); Doshi-Velez & Kim/ (2017)).
However, modern explainability methods often break down in environments with strong feature dependence.
Small perturbations can distort correlation structure, SHAP methods may arbitrarily distribute credit among
redundant predictors Lundberg & Lee| (2017)); |Covert et al.| (2020), and information-theoretic or kernel-based
measures such as MI and HSIC frequently double-count shared information Kraskov et al.| (2004); |Gretton
et al.| (2005b). These issues lead to unstable, inflated, and difficult-to-trust explanations [Hooker et al.| (2019));
Yeh et al.| (2019)). We argue that dependable global explanations require a dependence-aware attribution
score that isolates each feature’s unique contribution beyond its correlated neighbours.

To tackle these issues, we propose MCIR E] (Mutual Correlation Information Ratio), a light-weight metric
that measures the unique information that a feature provides, particularly when other predictors are closely

IThroughout the paper, we refer to the proposed method as MCIR-M, while MCIR denotes the corresponding proposed
metric.
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related. It does this by comparing two types of mutual information, conditional and marginal. This helps
reveal how much influence a feature maintains after considering its correlated neighbors. The score ranges
from 0 to 1, values close to zero suggest that a feature is adding little new information, while values close to
one indicate a feature is making a significant, unique contribution. This makes MCIR-M useful for assessing
importance in various data types, including tabular data, sensor data, and outputs from deep learning models.
Overall, MCIR-M provide principled mechanisms for modelling feature—output interactions under statistical
dependence, offering robust behaviour aligned with CI goals of stability, adaptability, and reliable decision
support in complex environments.

Table 1: Comparison of dependence-aware properties across global attribution families.

Criterion SHAP / LIME MI / HSIC / CMI CCA / PCIR MCIR-M (ours)

Handles depen- Weak (independent back- Partial (MI conflatesre- Partial (aligned covari- Yes (conditional isolation)

dence? grounds) dundancy) ance)

Unique vs. shared No (mass splitting) No (shared + unique No (similar canonical Yes (incremental conditional

contribution merged) loadings) information)

Redundancy col- No No No Yes

lapse

Scale / normaliza- No (arbitrary units) No (unbounded) Yes (CIR bounded) Yes (unit-interval ratio)

tion

Lightweight fi- No No Partial Yes (distribution-aligned LW

delity environment)

Estimator stability  Sensitive to sampling / kernel =~ Sensitive to estimator  Stable but marginal Auto-neighbourhood selection
choices bias/variance (®) + estimator switching +

bootstrap
Global focus Local — global aggregation Global but coarse Global (vector-output  Global, dependence-aware

alignment)

Note: Auto-neighbourhood selection refers to the data-driven construction of ¢ from the
screened dependence graph. We later refer to this data-driven construction of ® as automatic
neighbourhood selection (Auto-®).

To ensure this framework is scalable, we introduce a computation strategy that efficiently calculates MCIR
without needing to retrain the model, maintaining accuracy even with smaller sample sizes. To that end,
we also introduced a method to select estimators that ensure optimal performance across various statistics.
Below, we summarize the main contributions of this work.

1. Mutual Correlation Impact Ratio (MCIR). We introduce MCIR, a bounded score that measures
feature’s unique contribution while accounting related features and eliminating redundancy. It helps
eliminate redundancy effectively across various data types.

2. Lightweight and stable computation with guarantees. Our efficient MCIR computation does not
require model retraining, ensuring feature importance order and reducing redundancy, while maintaining
accuracy and significantly enhancing computation efficiency.

3. Comprehensive cross-domain evaluation. We perform extensive testing and evaluation of MCIR on
various datasets- illustrating stable feature rankings, validating redundancy detection and mitigation, and
objectively evaluating the quality of competing explanation methods.

We provide theoretical guarantees concerning redundancy, stability under finite samples, and the causal
interpretation of MCIR, and we support them through extensive experiments on diverse datasets spanning
different dependence structures, noise levels, and modeling conditions. The UCI Human Activity Recognition
(HAR) dataset assesses performance using high-dimensional sensor signals, focusing on the strong correlations
between accelerometer and gyroscope data. The House Energy Simulation Dataset includes temporal and
weather-related attributes, which highlight issues of multicollinearity and nonlinear effects. The Norwegian
Regional Load-Zone Data merges electricity load data with weather inputs, presenting a mix of predictor types
and evolving correlations. Finally, the CIFAR-10 Deep Representations dataset employs 2,048-dimensional
embeddings from a fine-tuned ResNet-50 model to evaluate MCIR in high-dimensional vision contexts.
Overall, MCIR-M offers an efficient way to understand the contributions of different features. This combined
approach addresses key limitations of existing methods when features are highly interdependent, such as their
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tendency to inflate importances in the presence of redundancy or to collapse when dependence violates their
underlying independence assumptions, and is ideal for complex real-world scenarios.

Across synthetic dependence families, UCT HAR, HouseEnergy-Sim, Norwegian load zones (NO1-NO5), and
deep embeddings from CIFAR-10, MCIR consistently provides stable, redundancy-aware global attributions.
Unlike marginal or kernel-based baselines, MCIR collapses correlated feature blocks while preserving the
predictive information captured by the model, yielding higher fidelity and substantially lower redundancy
than PCIR, SHAP, MI, and HSIC. In lightweight settings, MCIR-M maintains high rank agreement with
full-data explanations (often exceeding 95% top-K overlap) while reducing runtime by factors of 3-9. For
high-dimensional deep vision features (e.g., ResNet-50 embeddings), MCIR-M produces smooth deletion
curves and compact rankings aligned with semantic feature clusters, demonstrating effectiveness beyond
tabular and sensor domains. Overall, these findings confirm that MCIR-M offers a robust and scalable
dependence-aware global explanation method across diverse real-world scenarios. Table [I| compares the
dependence-aware strengths and weaknesses of SHAP/LIME, MI/HSIC/CMI, CCA/PCIR
(2025)), and MCIR-M for n observations and k features.

Paper Overview: We begin by orienting the reader with a clear and streamlined overview of the paper’s
structure. Section [2] reviews the limitations of current global attribution methods. We then examine these
limitations in the context of strong feature dependence, motivating the development of a dependence-aware
measure. Section [3| introduces the notation and lightweight environment framework used throughout the
paper. Section [4] formally presents our proposed method, MCIR-M, detailing its information-theoretic
formulation and principal redundancy-collapse guarantees. Section [£.2] develops the theoretical properties of
MCIR, including boundedness, estimator stability, and fidelity under lightweight computation. Section [£.4]
discusses computational considerations and estimator selection. Section || presents comprehensive empirical
evaluations across synthetic, sensor, energy, and deep-representation datasets. The results, including synthetic
benchmarks, sensor and energy evaluations, deep-representation analyses, the case study in Section [6.8]
and the overall discussion in Section [6.9} are detailed in Section [} Finally, Section [7] reports the required
ethics and reproducibility statements for TMLR. Section [§] summarizes the main findings. Detailed proofs,
supplementary algorithms, and extended experimental results are provided in the appendices.

2 Background and Related Work

In real-world datasets, it is common to encounter groups of covariates? that are correlated or redundant. This
creates a challenge for global attribution methods, which need to differentiate between shared contributions
and those that are unique to individual predictors. Traditional importance measures, like permutation
importance , marginal relevance scores, and impurity-based metrics, often overestimate the
significance of correlated variables [Strobl et al. (2008). This can result in rankings that are unstable or
misleading. Shapley-value explainers, such as SHAP [Lundberg & Lee| (2017)) and SAGE |Covert et al.| (2020),
determine importance by calculating the marginal contributions of features within groups or coalitions.
Although these methods are theoretically sound, they typically operate under the assumption that background
distributions are independent. Alternatively, they often rely on perturbation sampling, which disrupts the
natural dependencies in the dataSundararajan et al.|(2020), and are computationally expensive. Consequently,
they may inaccurately allocate credit to redundant predictors and exhibit high variability when features
are correlated. Other perturbation-based evaluations for faithfulness, like ROAR [Hooker et al. (2019) and
deletion tests |Samek et al.| (2017)), face similar issues. Measures such as mutual information (MI)
(20064), conditional mutual information (CMI) [Kraskov et al.| (2004), and kernel-based measures like
HSIC |Gretton et al|(2005a) focus on quantifying nonlinear relationships but have some limitations. They are
unbounded and do not sufficiently isolate conditional effects. MI often counts shared information between
correlated predictors multiple times, while CMI can be unstable in high-dimensional settings .
Furthermore, these measures lack normalization, complicating comparisons between different datasets or
model classes. Recent studies further highlight the challenges of dependence-aware attribution in modern
machine learning systems. Conditional SHAP extensions, such as KernelSHAP with conditional sampling

1By local dependence neighborhood, we refer to the small set of features that exhibit the strongest statistical dependence with
a target feature, typically identified via a fast dependence sketch (e.g., correlation or distance correlation graph) and used as the
conditioning set for MCIR.
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et al| (2021, attempt to preserve feature correlations but remain sensitive to background choice and sampling
variance. Causal attribution formulations, e.g., Causal-Shapley scores |Janzing et al.| (2020) and interventional
SHAP [Merrick & Taly| (2020), provide principled ways to avoid over-counting shared information, yet require
explicit causal models or strong independence assumptions that rarely hold in practice. Stability-focused
works |Ghorbani et al| (2019); |Slack et al.| (2020) demonstrate that many post-hoc explainers can be highly
unstable or even manipulated under correlated predictors.

More recently, redundancy-aware feature selection and attribution methods such as RFA |Li et al.| (2023)) and
dependency-aware interaction attribution [Tsang et al. (2020) propose grouping or interaction modelling, but
they do not provide bounded, normalized scores or guarantees of redundancy collapse. These developments
reinforce the need for explanation methods that remain reliable under correlation, provide interpretable
scaling, and isolate unique contributions without relying on causal graphs or extensive sampling assumptions.
Very recent work has intensified interest in dependence-aware explainability. Copula-based attribution
models [Zhang & Miller| (2024); |Aas et al. (2024) propose more faithful conditional background sampling,
yet remain computationally demanding and sensitive to estimator choice. Robustness studies Han & Kim
(2024)); |Covert & Lee| (2025) show that many Shapley formulations exhibit instability under correlation shifts,
leading to inconsistent rankings across subsamples. Scalable global attribution frameworks [Cheng & Zhao
(2024)); |Liu & Huang| (2025)) introduce grouping or low-rank structures to mitigate redundancy, but they do
not provide bounded scores nor theoretical guarantees of redundancy collapse. These recent developments
highlight that despite progress, current methods still lack a unified mechanism that combines: (i) conditional
isolation of unique contributions, (ii) normalized and comparable scoring, and (iii) stability under lightweight
computation. MCIR-M directly addresses these gaps. The ExCIR and other correlation-ratio measures
Hotelling| (1936]) are based on canonical correlation analysis (CCA) provide a way to quantify dependence that
is bounded. Variants like HSIC-Lasso [Yamada et al.| (2014)), BlockCIR, and CC-CIR |Sengupta et al.| (2025)
capture significant aspects of the shared structure or cross-covariance geometry. However, these methods
do not effectively isolate the impact of individual predictors and may not adequately handle redundant
predictors, which limits their usefulness in settings with strong dependence. In this paper, we introduce a
new term for the ExCIR method: PCIR, which stands for Partial Correlation Impact Ratio. We chose this
name to highlight that PCIR identifies only partial dependencies in the data, using a technique known as
canonical correlation. The PCIR method is part of a unified framework that includes other methods called
BlockCIR and CC-CIR. This naming convention allows for easier comparison between PCIR (along with
BlockCIR and CC-CIR) and other techniques like HISC-Lasso, MI, CMI, and our new method MCIR-M. To
clarify, in this paper, whenever we mention PCIR or ExCIR, we are referring to the same method. To clarify
how our formulation departs from prior CIR-family variants, Table [2] provides a structured comparison across
dependence modeling, redundancy behavior, boundedness guarantees, estimator stability, and computational
properties. Across the various methods discussed, two fundamental issues persist: (i) shared information is
often over-counted, leading to inflated importance scores, and (ii) explanations can become unstable due
to subsampling, estimator noise, or groups of correlated features |Covert & Lee| (2021). Problems such as
unbounded scoring, assumptions of independence, and the lack of conditional adjustment hinder the reliability
of existing explanation methods in high-dependence scenarios. To this end, we propose MCIR-M to address
these limitations.

3 Preliminaries

In this section, we first present the essential notation that will be used throughout the paper and then,
motivate MCIR-M . We define F € R™** as the feature matrix, which consists of n observations and k
features, and Y € R™ as the corresponding model outputs. The combination of these two is referred to as
an environment, denoted as U := D(F,Y’). This environment represents the joint distribution of inputs and
outputs on which a model is both trained and evaluated. As with other explainers, MCIR does not require
access to the full training distribution at inference time; it only assumes that explanations are generated with
respect to an observed environment, which may be complete or partial. To enable scalable and distribution-
faithful attribution, we construct a lightweight environment U’ = D(F’,Y”). This lightweight version reflects
a partial observation of the full environment, either through fewer samples or reweighted samples, while still
preserving the key statistical and predictive characteristics needed for reliable attribution. We achieve this
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Table 2: Differentiation of MCIR from prior CIR-family variants and canonical-correlation approaches.

Aspect PCIR (Ex- BlockCIRISengupta CC-CIRSenguptal] MCIR-M (Ours)
CIR)Sengupta et al.| (2025) et al.| (2025))
et al.| (2025)
Dependence Global canoni- Grouped / class- Cross-covariance or  Conditional mutual-information ratio with
scope cal correlation  conditioned canonical  kernel canonical cor- adaptive local dependence neighborhood
(scalar/vector  out- alignment relation
puts)
Redundancy None (aggregative) Partial within-block  Linear cross-  Explicit redundancy collapse through condi-
handling averaging covariance regu- tioning on local dependence neighborhood
larization
Boundedness Normalized correla- Same as PCIR (block  Implicit via kernel Derived from MI-CMI decomposition;
source tion ratio average) normalization proven boundedness
Estimator sta- Empirical; sensitive  Requires regularized  Kernel band-  Formal rank-stability bound under estimator
bility to covariance noise CCA width—dependent perturbation
Lightweight fi- Requires full environ-  Same Not defined Lightweight (LW) contract ensuring ranking
delity ment preservation under environment similarity
Redundancy- Absent Heuristic grouping None Information-theoretic proof of zero score un-

collapse proof
Cross-domain
validity
Computational
cost

Reliability
quantification

Tabular / vector
O(nk)

None

Tabular / grouped
O(nk?)

None

Kernelized nonlinear
O(k%)

None

der conditional redundancy
Generic (tabular, vision, text) with estima-
tor switching

O(n’k) via local dependence graph (scalable,
model-free)

Introduces Explanation Reliability Index
(ERI) combining fidelity, redundancy, stabil-

ity

through stratified subsampling over output quantiles combined with kernel herding, a standard approach in
coreset construction (Campbell & Broderick| (2019); |Feldman| (2020]). This ensures that /' maintains both the
marginal distribution of outputs and the dependence structure among features, allowing MCIR to generalize
naturally even when only a subset of the original environment which is similar, is available.

We define two environments as similar when their outputs exhibit the same functional behaviour, even if
they differ by rotations, shifts, or other admissible transformations. The motivation for introducing this
notion of similarity is to formalize the requirement that the lightweight environment &’ should preserve the
predictive structure of the full environment U. In other words, U’ is constructed to be similar to U in the
sense that the model would behave comparably on both, thereby ensuring that feature attributions computed
on the lightweight environment remain faithful to those computed on the full environment. Specifically, if
we can find a rotation (which we can represent with an orthogonal matrix R) and a shift (represented by a
translation vector t) such that the outputs of the two environments are related such that: Y’ = RY + ¢, then we
consider the core characteristics of the environments to be unchanged. This means we can compare the two
environments without worrying about their positioning or orientation, allowing us to focus on concrete aspects
of model behavior, namely, their output distributions, feature rankings, and explanation patterns. To put this
into practice, we assess three criteria: (i) whether the output distributions are statistically indistinguishable,
(ii) whether feature rankings remain consistent, and (iii) whether explanation patterns are stable across the
full and lightweight environments.

To make this idea clear, below we exemplify it with a real-world scenario from the energy sector. Imagine a
city’s electricity provider wants to predict future power usage. The full environment (I/)) is like having a
detailed system that collects real-time data from every single smart meter in every home and business. This
system knows exactly when and where energy is used, and can make extremely accurate predictions, but it is
expensive and complex to run. The lightweight environment ((’)) is a simpler version. Instead of collecting
data from every smart meter, it collects data from a handful of key locations or uses daily summaries instead
of minute-by-minute readings. It’s much faster and cheaper, but less detailed. If both systems can still predict
the city’s overall energy demand patterns, such as when peak usage will occur or how much electricity will be
needed, they are called similar environments. This means we can trust insights from the lightweight system
for the full system, even though the lightweight one is much simpler. To measure this similarity, we employ
transformations on the Stiefel manifold |Absil et al.| (2009) alongside an f-divergence-based distance. We
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minimize a risk objective, L(Y,Y”), defined as follows:
L(Y,Y") = Dy(p(Y) || p(Y")) + ARankDisagree(Y, Y"), (1)

which ensures that the explanatory insights are aligned. Here, Ds(p(Y) [ p(Y’)) is an f-divergence term
(e.g., KL, JS, or Hellinger) measuring how different the output distributions of the full and lightweight
environments are, and is minimized when p(Y) and p(Y’) are statistically indistinguishable. The second
term, RankDisagree(Y,Y”), quantifies how much the feature rankings implied by MCIR change between
environments (e.g., via Kendall-7 or JaccardQK), penalizing mismatched explanatory behaviour. The
parameter A > 0 balances distributional alignment and ranking consistency.

To make the similarity objective operational, we now describe the notation associated with the lightweight
environment. Let F' = [fi,..., fx] € R™ *¥ denote the reduced feature matrix with n’ < n observations,
where each feature is written as a vector f; = (fii,..., fari) |- The corresponding model outputs are

Y = M/(F') = [M'(x}),...,M'(x,)] ",

with x; denoting the j-th input in F’. Thus, the lightweight environment evaluates the same trained model
on a carefully selected subset of the original input space.

For later use in defining MCIR, we introduce the empirical means

1 1
fi:Hijzﬁ Q'ZEZZJ}
=1 j=1

and define the joint reference level
. — fi+y
7 2 b
which provides a common center for computing the joint and total dispersion terms that appear in the MCIR,
formulation.

Next, we formally define the PCIR score earlier used in tabld2] which extends the ExCIR formulation
proposed in |Sengupta et al.| (2025|) to cases where only partial dependencies are captured.

Definition 1 (Partial Correlation Impact Ratio). PCIR assigns to each feature i a unit-interval score
ng, € [0,1] that contrasts a joint (between-level) dispersion with a total (around-pooled-mean) dispersion:

_ n'[(fi — ma)? + (5 — ma)?] 9
" S (i —ma)? + Y (o — ma)? ?

Intuitively, the numerator measures how far the feature and the output means lie from their pooled center
m;, while the denominator aggregates the total dispersion of all observations of the pair (f;,Y”) around m,.
PCIR quantifies how strongly the population-level variability of feature i is aligned with the variability of
the output. 71y, approaches 1 when the movements of f; and Y’ are tightly aligned so that most of the total
dispersion is explained by their joint displacement from m;. 7y, approches 0 when f; behaves as noise relative
to Y’, i.e., the total dispersion dominates the joint displacement. The key properties of PCIR are [Sengupta
et al|(2025): 1. Boundedness and comparability. 7y, € [0,1] by construction, enabling cross-feature and
cross-dataset comparisons. 2. Monotonicity under stronger association. Strengthening co-variation
between f; and Y’ increases the joint term relative to the total, raising 7y,. 3. Noise suppression. For
uninformative features, the joint term is small relative to the total, driving ¢, — 0. 4. Estimator-agnostic
computation. Equation [2] uses only sample means and sums of squares; no distributional assumptions are
required.

In weak-dependence regimes, PCIR suffices for global attribution. However, as we later experimentally
validated, under strong mutual dependence, PCIR may distribute credit across correlated variables. To
address this challenge, we propose a novel metric, MCIR, formally introduced in the next section, that
identifies and condition on a small set of correlated partners to quantify unique contribution.
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4 MCIR: Formal Definitions and Guarantees

This section explains the motivation behind MCIR-M in a clearer and more accessible way by simplifying the
main ideas while preserving technical correctness. Al models often rely on large sets of features, many of
which are strongly correlated. In such settings, widely used explanation methods—such as SHAP, LIME,
HSIC, MI/CMI, or the CIR-family scores, tend to split attribution between redundant features. This creates
three major problems: unstable feature rankings: small changes in data or sampling can reshuffle the
importance of highly correlated variables, misleading importance scores: methods often inflate the
importance of variables that simply “move together,” even when they do not provide unique information
about the output, and high computational cost: methods relying on repeated model calls or kernel
evaluations become inefficient on large datasets.

To address these challenges, MCIR directly measures how much unique information a feature contributes
after accounting for its most strongly correlated neighbours. Let f; € R™ denote the i-th feature vector
and let fo = {f; : j € ®}, where each f; € R™ shares the same sample dimension, represent a small
neighbourhood of correlated features. A feature f;, can be simply expressed as a vector of values, while a
group of neighboring features can be stacked together to form a matrix called a "feature block." This means
we form a joint structure that includes both the feature in question and its neighboring features, allowing us
to analyze how much information they collectively provide. The joint feature block (f;, fo) € R *(12[+1)
therefore forms a compatible parameter space in which joint mutual information captures both shared and
unique effects. However, a high joint mutual information term I(Y”; f;, f¢) may simply reflect redundancy
within this block, indicating that f; does not provide additional useful information beyond what is already
contained in fg. For instance, if two sensors are measuring the same process, their information could be
redundant, making both appear important when, in reality, only one of them is adding valuable insights
e.g., if f; is a perturbed version of f; in the presence of small, independent noise. Intuitively, this situation
corresponds to redundancy: the neighbourhood fg already contains all the predictive structure that f; can
offer, so the joint mutual information I(Y”; f;, fo) becomes large not because f; contributes new signal, but
because it is statistically entangled with variables that are already informative. In such cases, f; behaves as a
“duplicate” or “shadow” feature whose behaviour is largely predictable from fg, and therefore it adds little or
no unique information about Y. Let, ¢ denotes a small independent noise term. Throughout this paper,
we assume ¢ is Sub-Gaussian (Gaussian noise being
a common special case) with Var(e) < Var(f;). This
standard assumption ensures that € does not introduce
structured dependence with Y’ or the neighbourhood
fo. Importantly, the precise distribution of € does not
affect the redundancy-collapse behaviour of MCIR; as
e — 0, we continue to have I(Y’; f; | fo) — 0 when-
ever f; is a near-duplicate of a neighbour. e, such that
fi = fj+¢ with Var(e) < Var(f;), the joint MI remains
high while the conditional MI I(Y”; f; | f;) effectively

shared signal
Correlated feature block

-]

{ fi fc’)l

()

unique component

vanishes. Traditional methods may then misrepresent
their significance, giving inflated importance to both
features. MCIR addresses this by focusing on the
conditional component I(Y’; f; | fo), which isolates
the incremental contribution of f; once its correlated
partners are known. This conditional term is then nor-
malized to produce a bounded, comparable score that
collapses to zero when f; is redundant, ensuring that
duplicate or near-duplicate predictors do not receive
artificial credit.

4.1 Intuition Behind MCIR

IR = (Y f _ 1Y fil fo) .
[\I(,,[R CY'; fi| fa) Wt[m]]

Figure 1: MCIR intuition: f; and its correlated
partners fo = {fs,, f4,} share substantial redun-
dant signal. MCIR conditions on fg to isolate the
unique increment contributed by f;, normalised into
a bounded [0, 1] ratio.

MCIR introduces a normalized ratio C(Y”; fi | fo) ranging from 0 to 1 as depicted in Figure[I] The motivation
for this ratio arises from the decomposition of joint mutual information: the joint term I(Y’; f;, fo) contains
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both the information that is shared with the correlated neighbourhood fe and the wunique contribution
of f;. Simply relying on joint or marginal measures therefore overestimates importance when redundancy
is present. By isolating the conditional component I(Y’; f; | fo), MCIR captures only the incremental
information that f; contributes beyond what is already explained by fg. Normalizing this conditional term
by the total explainable association mass, produces a bounded, comparable score in [0, 1] that reflects the
proportion of unique information attributable to f;. A value close to 1 signifies that f; provides substantial
unique signal, while a value near 0 indicates redundancy. This score allows for consistent comparisons across
different datasets and models. In summary, MCIR: (1) conditions on a small, data-driven neighbourhood to
extract the unique incremental information a feature provides beyond its correlated partners; (2) reports a
unit-interval score that enables stable cross-feature and cross-dataset comparison; (3) provably collapses
redundancy under multicollinearity; and (4) integrates with a distribution-aligned lightweight environment so
that explanations computed on fewer observations faithfully mimic those of the full model.

At a high level, this section answers three questions:

1. What is MCIR? We first formally define MCIR using conditional and joint mutual information, and
explain how it isolates the unique contribution of each feature.

2. Why is MCIR well-behaved? We then show that MCIR is bounded by [0, 1], collapses redundancy
under strong dependence, and remains stable under sampling noise.

3. How expensive is it to compute? Finally, we describe how MCIR can be estimated efficiently in a
lightweight environment, and how estimator choice affects robustness.

Readers mainly interested in intuition can focus on the informal explanations and summaries, while those
seeking guarantees can follow the accompanying theorems and propositions. This intuition is illustrated in
Figure [I, which highlights how MCIR separates the information that is uniquely attributable to a feature
from the portion that is shared with its correlated neighbours.

Let F € R"** denote the feature matrix with columns {fi,..., fx}, and let M’ : R¥ - R be a fixed trained
predictor. The model output in the lightweight environment is then obtained by evaluating M’ row-wise on
F

)

Y' = M'(F) := [M'(x1),..., M'(x,)]" € R™.

In this context, consider a set of data observations labeled as x;, where j indicates the specific observation
number within a dataset denoted as F'. When we focus on a particular target index ¢, which can take on
values from the set {1,...,k}, we can create a subset of indices called ®. This subset includes some indices
from the total set of indices, excluding the target index i.We define a feature block f¢ as a group of feature
vectors corresponding to the indices included in ®, arranged in a way that each feature vector becomes a
column in this block. Mathematically, we express this as fo := [ f;]jca € R™ *I® where n’ indicates the
number of observations and |®| stands for the number of indices in the subset ®. Furthermore, if we want
to include the target index ¢ in our feature block, we extend our feature block to include f; as well. The
faougiy, contains all the features from both the subset ® and the extra feature corresponding to the target
index 4. Thus, fe and feug;y are not sets but submatrices of F’ used when computing joint and conditional
information.

All information-related measures are defined with respect to the joint probability law of the variables
(Y', f1,.--, fx). When we refer to densities, we mean densities defined relative to an appropriate base measure.
For continuous variables, the reference measure is the Lebesgue measure (e.g., (Cover & Thomas, 2006bl
Ch. 2); (Gray, 2011} Sec. 3.1)); for discrete variables, the counting measure is used ((Cover & Thomas| [2006bl,
Ch. 2)); and for mixed discrete-continuous vectors, hybrid product measures are employed following standard
probability-theory conventions (see (Kallenberg) 2002, Ch. 1)). These base measures ensure that mutual
information and conditional mutual information are well defined for all variable types. We now formalize the
information—theoretic components used to construct MCIR.

Assumption 1. (i) The relevant joint or conditional laws admit densities or mass functions so that all
mutual information (MI) and conditional MI (CMI) are finite. (ii) Conditioning events have positive
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probability; reqular conditional distributions exist. (iii) Estimators used later satisfy standard consistency
and concentration properties (Assumption @)

Assumption [I]is standard in information-theoretic analysis and ensures that all quantities used in our defini-
tions are mathematically well defined. Condition (i) guarantees that the joint and conditional distributions
have densities or mass functions, which is necessary for mutual information (MI) and conditional MI (CMI)
to be finite rather than undefined or infinite. Condition (ii) rules out degenerate conditioning events of zero
probability, ensuring that regular conditional distributions exist and that CMI terms such as I(X;Y | Z)
are well posed. Finally, condition (iii) ensures that the estimators used later concentrate around their
population values, which is required for the stability and boundedness results of MCIR. Together, these
mild assumptions exclude only pathological cases and are routinely satisfied by standard tabular, vision, and
time-series datasets.

Definition 2 (Conditional Mutual Information (CMI)). For a target feature f; and conditioning set ®,

p(Y"| fi, fo)
p(Y'| fe)

Here Dk1,(P|| Q) denotes the Kullback-Leibler divergence, which measures how different a distribution is
from another reference distribution.

Definition 3 (Joint Mutual Information (JMI)). For a feature index set S C {1,...,k}, the joint
mutual information between Y’ and the feature block fs quantifies the deviation from statistical independence.
In particular, if Y' and fs were independent, their joint density would factorize as p(Y', fs) = p(Y') p(fs).
The joint mutual information is defined as

I(Y'; fi | fo) = E|log = DxL(p(Y' | fi, fa) || p(Y' | fa)) > 0. (3)

15 f5) = D", ) | oY) (£)) = B frog FESE | 0 (@)

where equality holds if and only if Y' and fs are independent.
Definition 4 (Mutual Correlation Impact Ratio (MCIR)). Given i and ®, the MCIR score is

IY'; fi | fa)
(Y’ fi | fa) + 1(Y"; fougiy)

OV fi | fa) = - e [0.1] (5)

Remark 1. I(Y'; f; | fo) isolates the unique contribution of f; beyond its correlated partners fo. The joint
term I(Y'; fougiy) stabilizes scale across tasks and dependence strengths. Thus C reports the fraction of
explainable association mass uniquely attributable to f; after accounting for partners.

For a neighbourhood @, interpreted here as a small set of features that exhibit high statistical dependence

with f; (e.g., identified via correlation or mutual-information screening), define, U; := I(Y; f; | fo) and
Ji == I(Y; fougiy). Then, MCIR; = UHF{]A measures the fraction of explainable association uniquely attributed

to f;, accounting for shared contributions in fg. We do not encode environment notation inside the definition
of MCIR because the score is a purely local information-theoretic quantity. The environment contract (full
vs. lightweight) is introduced later only to guarantee stability and ranking preservation.

U;
U, + J;

MCIR; =

is already a complete and self-contained formal definition. Unlike ExCIR/BlockCIR |[Sengupta et al.| (2025)),
which mix shared and unique effects through marginal or aligned covariance, MCIR normalizes conditional
information to isolate uniqueness while maintaining a unit-interval scale for cross-task comparison. If f;
behaves like a near-duplicate of some f; € ®, then I(Y'; f; | fo) = 0 and C(Y”, f; | ) — 0, expressing
redundancy collapse (no extra credit for copies). If f; carries signal that is not present in fg, then I(Y”; f; | fo)
dominates and C(Y”, f; | ®) — 1, highlighting unique drivers. In weak-dependence regimes, where conditioning
has little effect and I(Y’; f; | fo) — I(Y’; f;), the ranking induced by MCIR coincides with that of PCIR
and other marginal global scores. In this way, MCIR, isolates unique contributions by conditioning
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on correlated neighbours, yields unit-interval scores that are directly comparable across tasks
and datasets, and collapses redundancy under multicollinearity, avoiding the credit-splitting
behaviour often observed with SHAP, SAGE, MI, or HSIC. These properties make MCIR particularly
suited for domains with strongly dependent features, such as time-series lags, sensor networks, or engineered
feature blocks.

Proposition 1 (Uniqueness & invariances). For any admissible i, ®: (i) MCIR; =0 < I(Y; fi | fs) =
0 (conditional redundancy); (it) under rank—Gaussianization and o Gaussian—copula MI/CMI estimator,
MCIR; is invariant to strictly monotone transforms of (fi, fo,Y); (iii) in the weak-dependence limit where
I(Y; fi | fo) = I(Y; f;), MCIR induces the same ordering as PCIR.

Let C and D partition features into continuous and discrete index sets. Definitions remain valid in
the mixed case. In practice: (i) Gaussian-copula MI/CMI for continuous or mixed (after rank-
Gaussianization), (ii) xAINN MI/CMI for nonparametric continuous settings, (iii) plug-in MI/CMI
for discrete.

Assumption 2. There exist absolute constants (c1,c2) > 0 such that for mutual-information or conditional
mutual-information estimators I built from n' i.i.d. samples,

Pr([T=1]>4) < 1 exp(—con' 82), (6)

or equivalently |IA— Il = Op(n'=Y2). The notation Op(n'~1/2) denotes stochastic boundedness at rate n'~*/2.

This assumption holds for a broad class of kNN-based estimators (e.g., KSG and its conditional variants) and
Gaussian—copula estimators under mild smoothness and density-regularity conditions |Kraskov et al.| (2004));
Gao et al| (2017);Singh & Pdczod (2016);|Berrett et al.| (2019). We require only consistency and sub-Gaussian
concentration of the estimator, not exact parametric convergence rates.

Assumption 2] is mild and standard in the information-theoretic estimation literature. MI and CMI cannot
be computed in closed form for arbitrary data distributions, so we must rely on empirical estimators such as
kNN-based (KSG) and Gaussian—copula methods. These estimators are known to be consistent and to satisfy
sub-Gaussian concentration under broad smoothness and regularity conditions, which makes the stated bound
realistic for practical tabular, vision, and time-series datasets. This assumption is essential for our analysis
because MCIR is defined through ratios of MI and CMI terms: to guarantee bounded distortion, stability,
and ranking preservation in the lightweight environment, we require that the empirical estimates concentrate
around their population values. Without such concentration, even small estimation noise could arbitrarily
alter the MCIR ratio and invalidate our theoretical guarantees.

4.2 Fundamental Properties of MCIR.

Theorem 1 (Boundedness and Comparability). For any admissible i and ® satisfying Assumption

0<C(Yifilfa) < 1. (7)

This result ensures that MCIR scores are directly comparable across datasets. It formalizes the idea that no
feature can have negative or unbounded importance.

Proposition 2 (Zero under Conditional Redundancy). If Y’ Il f; | fo, then I(Y’'; f; | fo) =0 and
CY' fi| fa) = 0.

If a feature adds nothing new once its correlated partners are known, its MCIR value becomes 0. This
expresses redundancy collapse, duplicate information receives no credit.

Proposition 3 (Unity under Unique Signal). If I(Y'; f; | fo) > I(Y'; foursy) (e-g., fi carries signal
not present in ®), then C(Y'; fi | fo) — 1.

When a feature carries information not present in its neighbors, MCIR approaches 1. It rewards features that
uniquely explain the target.

10
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Theorem 2 (Redundancy Collapse). Suppose f; = g(f;) + ¢ with Var(e) — 0 and j € ®. Then
IY'; fi | fo) = 0, where i # j and
I(Y'; fi | fa)
CY’; fi = :
O 1) = T T ) + 1077 B)
while C(Y'; f; | fo\g;3) > 0 whenever I(Y'; f; | fa\g53) > 0.

— 0, (8)

When one variable is almost a deterministic copy of another, MCIR correctly drives its score to 0. This
behaviour contrasts with SHAP or SAGE, which continue to assign partial credit.

Proposition 4 (Continuity to Independence). In weak-dependence regimes where I(Y'; fi | fo) =
I(Y'; fi) and I(Y'; fougsy) = I(Y'; fi) + I(Y"; fa), the ranking induced by C(-) coincides with that induced by
unconditioned global measures (e.g., PCIR). Therefore, the ordering of features produced by MCIR is identical
to that produced by global measures such as PCIR, demonstrating that PCIR is recovered as the limiting case
of MCIR under independence.

Theorem 3 (Finite-Sample Rank Stability). Let C; be the MCIR estimate obtained by replacing MI/CMI
in equation [J with estimators satisfying Assumption[4 Then there exists a constant L > 0 such that

P(1-7(C,C) < Lkd) > 1-ak, 9)

whenever IP’(|T— I| > 6) < « holds uniformly across all MI/CMI components. For kNN or copula-based
estimators, 6 = O(n'~?), yielding
k
1-7=0 .
(%)

Here 7(6’, C) is Kendall’s rank correlation, so 1 — T quantifies the fraction of misordered feature pairs.

Small sampling noise barely changes MCIR rankings. Even with limited data, the order of important features
stays stable.

Assumption 3. Bootstrap standard error (SE) computed on held-out splits provides an asymptotically
unbiased proxy for estimator risk comparisons among a finite candidate set (e.g., copula vs. kNN vs. plug-in),
with selection penalty O(n'~1/2).

Theorem 4 (Oracle Inequality for Estimator Switching). Let é,fc"p), @(knn), and @(plg) denote MCIR

estimates using copula, kNN, and plug-in MI/CMI estimators, respectively. Let @(SW) be the estimator selected
by minimizing the bootstrap standard error. Under Assumptions[3{3,

EH@(S”” e ,E‘@(km‘) e ,E‘@“ﬂg) - ci‘ } + oY), (10)

} < min{]E‘ai(COp) -

The remainder term is O(n'~'/?), matching both the bootstrap standard-error rate and the concentration rate
in Assumption 4.7. Thus the selected estimator achieves oracle-level performance up to a vanishing n'~/?
error term.

Automatically choosing among estimators never performs worse than the best fixed estimator on average.
This guarantees safe estimator switching without losing accuracy.

Proposition 5 (Risk-Controlled Conditioning-Set Size). Let ®,, denote the set of size m obtained by
a stability-driven growth procedure (Auto-®) Let My,ax denote the mazimum screened neighbourhood size (i.e.,
the mazimum degree of the dependence-graph sketch). The conditioning-set selector solves
m* € ar min V(m), 11
gm€{071,-~~7Mmax} (m) ( )
where V(m) is the bootstrap variance of the head-rank statistic. Although the screened neighbourhood may
contain up to Muyax candidates, the optimisation is carried out over all subset sizes m < Muyax, allowing
Auto-® to balance redundancy-removal and finite-sample stability.

At a high level, MCIR tells us how much a feature really matters for the model after accounting for other,
similar features. If multiple variables carry the same information, MCIR gives credit to only one of them and
downweights the rest. This helps produce stable, compact, and interpretable rankings of which features truly
drive the model’s predictions, even when many inputs are strongly correlated.

11
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4.3 Lightweight Fidelity

Let D(Y) and D(Y”) be output laws of full and lightweight models. Denote by d(-,-) a rigid-motion-invariant
f-divergence distance (projection/embedding distance). Let Agree(-) denote a head-rank agreement statistic
(e.g., Kendall-myeqq, JQK).

Assumption 4 (Fidelity Contract). The lightweight environment M’ satisfies: (i) CZ(D(Y),D(Y’)) <€
(ii) Agree(C(Y),C(Y")) > 7o; (iii) deletion/insertion curves differ by at most Ag.

Here € bounds the distributional shift between Y and Y’, 79 is the minimum acceptable Kendall rank
agreement between the full and lightweight explanations, and Ag limits how far their deletion/insertion
curves may deviate.

Theorem 5 (Faithful Lightweight Attribution). Under Assumption and estimator concentration
(Assumption @), MCIR rankings computed on M’ are faithful prozies for those on M, i.e.,

1—7(C(Y),C(Y")) < Ae+ BAg+op(l), (12)

for constants A, B > 0 depending only on the regularity of the divergence map and the rank functional. Here,
op(1) denotes a stochastic remainder term that converges to zero in probability as the lightweight sample size
n' =00, capturing residual estimator noise. The term op(1l) represents any quantity that converges to zero
in probability as n' — co. Informally, op(1) captures the residual disagreement between full and lightweight
MCIR rankings that vanishes as the lightweight sample size grows. E|

Proposition 6 (Computational Profile). With Auto® of size me = O(1) and sample size n’, the end-to-
end MCIR computation across k features has complexity O(k me n') for dependence screening and MI/CMI
estimation, plus O(klogk) for sorting to form global rankings.

Remark 2. MCIR-M is strictly preferred when multicollinearity or near-deterministic ties are present: it
collapses redundancy (Theorem @, yields unit-interval comparability (Theorem , maintains finite-sample
rank stability (Theorem @, and integrates estimator selection (Theorem and lightweight fidelity (Theorem @

Algorithm [1| presents a single, concise pipeline for MCIR-M and defer implementation variants (conditioning-
set selection, estimator switching, lightweight contract, and online/streaming updates) to the Supplement.
The pipeline comprises four stages, Screening (fast dependence sketch) to propose correlated neighbours for
each feature, Local conditioning-set selection (stability-driven), forming ®(i) of small, fixed size, Score
computation (MCIR), with estimator switching between Gaussian—copula, kNN, and plug-in MI/CMI
whenever appropriate, and Diagnostics (bootstrap bands; head-rank agreement; optional lightweight fidelity
contract).

4.4 Analysis on computational complexity.

PCIR and MCIR are computed on a lightweight subsample of size n’, which keeps the explanations faithful
to the full environment while ensuring computational efficiency. Let k& denote the total number of features
and let mg represent the size of the local conditioning neighbourhood used by MCIR. Since mg is treated as
a small fixed constant, the cost of scoring each feature depends only on n’ and not on k.

For PCIR, the computation requires only rank normalization and variance operations, giving a per-feature
cost of O(n'). For MCIR, the relevant MI/CMI terms are computed in a local block of dimension (me + 2)
involving the variables {Y”, f;, f¢ }. Hence, the per-feature computational cost is

O(CMI (77/7 me +2)) R

3We follow standard conventions for deterministic and stochastic asymptotics:
o Deterministic big- O: f(n) = O(g(n)) if |f(n)| < Cg(n) for large n.
o Deterministic small- o: f(n) = o(g(n)) if f(n)/g(n) — 0.
e Stochastic big-Op: X, = Op(g(n)) if Xn/g(n) is bounded in probability.
e Stochastic small-op: X, = op(1) if X, i) 0.
Estimator concentration (Assumption 4.7) uses |I — I| = Op(n’~1/2).
Lightweight fidelity (Theorem 4.18) uses op(1) to denote vanishing ranking mismatch.
Rank-stability rates (Theorem [3) use deterministic O(k/vn’).
Redundancy-collapse and independence limits use deterministic o(1).

12
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Algorithm 1 MCIR-M: Dependence-aware Global Attribution

Require: Features F' € R”/Xd, outputs Y’/ € R"IX‘I, head size K, candidate estimators &, screening budget mgcr, conditioning size me

Ensure: MCIR scores {C;}2_; and a global ranking

1: Screening: Compute a fast dependence sketch (e.g., |corr|, distance correlation, or mutual-kNN graph). For each feature ¢, keep the
Mger most related neighbours N (4).

2: Local conditioning: For each 7, form a small conditioning set ®(i) C N (i) with |®(:)| = me, prioritizing within-block proximity
(e.g., hierarchical clustering or community detection on the sketch graph).

3: Estimator selection (brief): For each i, choose e(i) € £ using a lightweight risk proxy (e.g., bootstrap SE on a tiny probe); then
fix e(z) for scoring.

4: for i < 1 to d do

5: Estimate I(Y’; fil fq,(i)) and I(Y’; f(p(i)u{i)) using e(i), where e(i) implements one of the candidate estimators (e.g., Gaus-
sian—copula MI, kNN-based KSG with conditional regression residualization, or HSIC with Random Fourier Features) on the
restricted feature block.

I(Y'5 il fa)
6: Compute C; € [0,1].
I(Y’; fil f<1>(i)) + I(Y';f@(i)u{i})
7: end for

8: Diagnostics: Compute bootstrap bands for {C;} and head-rank stability (Kendall-Theaa, Jaccard@K). If a lightweight contract is
enabled, verify output-law alignment and rank-agreement thresholds.
9: Ranking: Sort {C;} in descending order to get the global ranking.

where ey depends on the chosen estimator. Gaussian—copula MI incurs a cost of O(n') (covariance and
log-determinant calculations), kNN-based MI costs O(n’logn’) due to kd-tree searches, and plug-in MI also
operates at O(n’) via count tables. This makes MCIR nearly linear in n’ and essentially independent of the
total feature dimension k.

Turning to statistical reliability, if the MI/CMI estimators T and J are consistent, then the plug-in MCIR,
score

)

an/ = =—=
U, + J;

+

is also consistent, i.e.,
Cow & Celo1].

By the Delta method, én/ inherits an asymptotically normal distribution with standard error of order n/~1/2.
A preliminary perturbation bound shows that,

Aol < 20

‘C C| ~ U+

where U, + J; is the MCIR denominator defined earlier as the sum of the unique information U; = I(Y; f; | fs)
and the joint information J; = I(Y; faugiy) of the local neighbourhood. This bound highlights that the
stability of MCIR improves as n’ increases and as the total explainable dependence U; + J; becomes larger.
MCIR isolates the unique predictive information of each feature after controlling for a small conditioning set.
Since its computation depends on n’ rather than k, it scales gracefully to high-dimensional settings and can
be evaluated accurately on lightweight subsamples. Full estimator comparisons and extended complexity
analysis are provided in the Appendix

5 Experiments

We now evaluate MCIR and its lightweight variants on two benchmarks with different dependence structures:
(i) a controlled regression task with strong, tunable correlation (HouseEnergy-Sim), and (ii) a real-world
classification task (UCI HAR) with many correlated sensor-derived features. In both cases, we compare
against PCIR and several state-of-the-art global attribution baselines.

Our empirical study is organised around three guiding questions:

Q1: Dependence-aware attribution. Does MCIR provide more sensible global rankings than existing
methods (including BlockCIR) when features are strongly dependent, for example under multicollinearity or
near-duplicate predictors?

13
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Q2: Lightweight fidelity. Can we compute MCIR on a reduced, lightweight sample while preserving both
predictive performance and the global attribution structure of the full model?

Q3: Predictive usefulness. Are the top-ranked features under MCIR truly important for the model, as
measured by perturbation and deletion tests on held-out data?

For each dataset, we report (i) rank agreement between full and lightweight settings, (ii) faithfulness via
perturbation/deletion curves, and (iii) runtime profiles under different estimators and conditioning sizes |®|.

Lightweight Protocol: The Lightweight (LW) approach reduces the number of observations (rows) while
keeping all features intact. Predictive Random Forest models are trained on the complete dataset unless
stated otherwise. PCIR uses the bounded dispersion ratio, and MCIR employs Gaussian—copula CMMI/JMI
with blockwise conditioning, generally using between 3 to 10 features. We quantify uncertainty through
nonparametric bootstrap sampling over observations.

UCI HAR (Classification): We utilize the public UCI Human Activity Recognition (HAR) dataset, which
contains 561 features derived from smartphone sensor data during six activities: walking, walking upstairs,
walking downstairs, sitting, standing, and laying. Each participant’s smartphone captured movement data at
50 Hz, and the data was processed into segments of 2.56 seconds. A Random Forest (RF) classifier was applied
to generate stable global feature attributions using the same preprocessing and data splits for all methods.
HouseEnergy (Regres-

sion): The HouseEnergy Figure 2: PCIR vs. MCIR rank overlays (Full vs LW)
dataset is a synthetic represen-
tation Of residential electricity HAR: PCIR vs MCIR HouseEnergy-Sim: PCIR vs MCIR

0

use, modeling how different
Kendall T = 0.922

factors (like appliance use and 14

0.0

Spearman p = 0.988 B,D
2.5 | Kendall T = 0.947 /g'

. 5.0 -
weather) influence energy con- 3 7 ° .
. 7.5 e
sumption. Each entry reflects 12 T 2
. < 100 o
hourly data where total load is £ 200 E =
. e =125 %
a function of several correlated § §15 . g,e’g
sources. Features include time, 400 17'5 e
. . . o
appliance proxies, and weather o o
. 500 e
data. The RF regressor is op- 500 400 300 200 100 0 200 175 150 125 100 7.5 50 25 0.0
PCIR rank (1=best) PCIR rank (1=best)

timized for R? and attribution

copsistency and. recalib?a‘Fed Figure 2: PCIR vs. MCIR rank overlays (Full vs. LW). Left: HAR dataset.
using t}_le cpmblned training Right: HouseEnergy-Sim. Each point compares the rank assigned by PCIR, (x-
and. vah'datlon data. Global axis) and MCIR, (y-axis) for the same feature under Full and Lightweight (LW)
attributions were assessed o ironments. The near-diagonal structure indicates that MCIR preserves
for both ?omple.te and LW relative ordering even when the number of rows is reduced in the LW setting.
outputs, with various baseline MCIR tends to assign smoother, dependence-aware ranks than PCIR, which

methods usec-l fo% Compari.son. is reflected in the tighter alignment around the diagonal.
The LW fraction is determined

by ensuring a minimal KL
divergence and maintaining top-K feature relevance while achieving good predictive performance.

Overview of Results: Our empirical evaluation spans synthetic dependence families, UCI HAR,
HouseEnergy-Sim, Norwegian load zones (NO1-NOb5), and deep embeddings from CIFAR-10. The findings
consistently support the three empirical questions:

(Q1) Dependence-aware attribution. MCIR collapses redundant feature blocks while preserving the
unique predictive information carried by individual variables. Across all datasets, MCIR achieves substantially
lower redundancy and higher fidelity than PCIR, SHAP (independent and conditional), MI, and HSIC. In
synthetic redundancy sweeps, MCIR, drives near-duplicate features toward zero attribution, while marginal
baselines inflate scores. On real datasets, MCIR, shows strong rank stability (e.g., p = 0.83, 7 = 0.66,
J@20=0.95 on HAR) and maintains meaningful top-K sets.

14
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Figure 3: HAR: Perturbation faithfulness. Test
accuracy degrades fastest when perturbing features
ranked highest by PCIR/MCIR, indicating faithful
global rankings.
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Method Scope Dependence-aware? Reference

MCIR Global Yes This work

PCIR Global Yes Sengupta et al.| (2025)
BlockCIR Global Blocks Sengupta et al.| (2025)
KernelSHAP (indep.)  Local—Global No/weak Lundberg & Lee| (2017)
KernelSHAP (cond.) Local—Global Partial Aas et al.| (2021)
SAGE Global Partial Covert et al.| (2020)
HSIC Global Yes (stat.) Gretton et al.| (2005b)
KSG-MI / MI Global Pairwise Cover & Thomas| (2006a)

Table 3: Methods and dependence assumptions. MCIR/PCIR are fully dependence-aware; BlockCIR
aggregates by blocks.

(Q2) Lightweight fidelity. Computing MCIR on a reduced sample retains over 95% top-feature agreement
with full-data explanations while reducing runtime by 3-9x. Lightweight environments preserve both
predictive performance and ranking structure, enabling efficient global explanations without retraining models
or altering the feature space.

(Q3) Predictive usefulness. Deletion and perturbation tests confirm that MCIR top-ranked features
are truly predictive: removing or perturbing them leads to the steepest performance degradation across all
datasets. This behaviour is monotonic and robust under lightweight computation.

Summary. These results demonstrate that MCIR-M provides stable, dependence-aware global explanations,
scales efficiently through lightweight computation, and identifies features that meaningfully drive model
predictions across tabular, sensor, and high-dimensional deep representations.

6 Results

This section presents empirical results across both the real-world (UCI HAR) and synthetic (HouseEnergy-
Sim) datasets. We evaluate MCIR, PCIR, and competing baselines in terms of rank agreement, predictive
faithfulness, runtime efficiency, and estimator robustness. All experiments were conducted under identical
train/test splits and seeds for fairness.

6.1 Claim 1: MCIR outperforms BlockCIR and partial baselines under strong dependence (Q1)

When features within a dataset have strong corre-
MCIR(f2 [ {f1}) 4 t0 O MCIR(f; | {f2}) (stays high)Jaccard@2(top set) vs. a lations with each Other, Slmply averaging them can
- - - - 1 ‘ ‘ ‘ ‘

weaken the unique contributions of each feature and
% ol keep redundant information. On the other hand, the
E’O]i method MCIR-M (which conditions on correlated
g 0'27 neighborhoods denoted as ®) helps to isolate the true
'0 | | [™ 0 Y — causal effects while offering incremental information.

0 02040608 1 0 02040608 1 70 02040608 1

The overlay plots (see Fig. [2) show that the rankings
from the PCIR and MCIR methods for both Full and
Figure 5: Redundancy collapse on synthetic data. Left: Lightweight (LW) datasets align closely, indicating
MCIR(f> | {f1}) vs. & (| to 0). Middle: MCIR(f; | stability when samples are varied. The analysis of
{f2}) (stays high). Right: Jaccard@2(top set) vs. perturbation and deletion curves (refer to Fig. and

comparing MCIR to marginal baselines. Fig. indicates that the methods based on CIR
demonstrate higher feature faithfulness. Addition-

ally, Tables [6] highlight significant rank agreement
across different datasets, with higher metric values (p for Spearman, 7 for Kendall, and JQK) for CIR
methods.

« (redundancy) a (redundancy) a (redundancy)

We develop a framework with (fi1, f2, f3,Y) that allows for adjustable redundancy, defined as fo = af; +
VI—a?Z and Y = B1f1 + B3f3 + . Here Z denotes an independent noise variable (typically standard
normal) introduced to control the non-redundant part of f», ensuring that fo has correlation o with f; while
keeping its remaining variation independent. As we approach o = 1, the MCIR for f; conditioned on &
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Score

Neighbourhood size |®|
—o— Jaccard@K (7 better) - ®- Deletion AUC (] better) |

Figure 6: Ablation study on neighbourhood size |®|. Smaller neighbourhoods cause redundancy inflation
(poor Jaccard overlap and high deletion AUC), while moderate neighbourhoods (|®| = 1, 3) substantially
improve MCIR’s filtering of redundant predictors. Diminishing returns appear beyond |®| = 3, showing that
MCIR requires only small neighbourhoods to capture local dependency structure.

nears 0, showing that redundancy is collapsing, while the MCIR for f; conditioned on {f3} remains high.
Marginal baselines like MI/HSIC, permutation methods, and global SHAP do not exhibit this behavior and
tend to inflate scores. Figure [5|illustrates the trends of these collapse curves. Ultimately, PCIR and MCIR
show a strong correlation with values of p=0.83, 7=0.66, and JQK= 0.95 for the HAR dataset, indicating
that they are stable methods. In contrast, other methods like KernelSHAP, SAGE, and HSIC showed weak
agreement with p<0.15 and low overlap in their top-K selections (less than 0.06). This reinforces the idea
that by conditioning on blocks ®, we can maintain the explanatory structure of the data and enhance its
causal interpretability.

Ablation on Neighbourhood Size |®| In our study, we explored how the size of neighbourhood sets,
denoted as |®|, affects the effectiveness of the MCIR-M in reducing redundancy in Figure @ We tested
different sizes of ®, specifically 0, 1, 3, and 5, across various datasets, including synthetic data, Human
Activity Recognition (HAR), and House Energy Simulation. When |®| = 0, the MCIR-M behaves like the
PCIR method, which tends to keep correlated predictors and thereby inflates redundancy. However, as we
increase the size of the neighbourhood set to 1 or 3, we see significant improvements in two key areas: the
Jaccard@QK overlap and the behavior of feature deletion. This is because larger neighbourhoods allow the
algorithm to better group redundant features and effectively remove their shared information. After reaching
a neighbourhood size of 5, we noticed diminishing returns, suggesting that even smaller neighbourhoods can
capture the main dependencies among features without much loss in performance.

Table 4: HAR: Full vs. best lightweight (rows only; same features). For the Full row, overlap/ratio metrics
are defined relative to Full (KL=0, J@30=1.00, F'1 ratio=1.000).

Setting Train rows Acc  Macro-F1  KL(Y{, || Y{,,) Jaccard@30 F1 ratio
Full 7,352 0.930 0.928 0.000 1.00 1.000
Lightweight (best) 3,676 0917  0.914 7.174 0.622 0.985

6.2 Claim 2: Lightweight preserves accuracy and explanations while reducing runtime (Q2)

Reducing the sample size to about half of the original size (denoted as n’ & 0.5n) retains the same features
but significantly reduces the runtime. A key question is whether MCIR retains fidelity when computed on
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reduced-sample environments. To evaluate the lightweight fidelity contract, we compute the MCIR using
smaller sample sizes of n’ € {500,1000,2000} and compare these results to the full dataset (n = 10,000).
The lightweight fidelity contract refers to the requirement that the lightweight environment (with reduced
sample size n’) should preserve the key behavioural properties of the full model—specifically, its output
distribution, feature rankings, and explanation patterns. MCIR shows consistent head-K and overall rank
agreement, with Kendall-7 correlations ranging from 0.72 to 0.89 for head-K and 0.55 to 0.76 overall. The
runtime is significantly improved, yielding 3 to 9 times faster processing depending on the dataset and
method used (copula vs. k-NN). For each sample size n’, we conducted B = 50 bootstrap environments
to assess variability. These results confirm that MCIR maintains high fidelity even with smaller samples,
enabling efficient computations without retraining the model. In the Human Activity Recognition (HAR)
task, the Lightweight (LW) model achieves an impressive 98.5% macro-F1 score (as shown in Table , while
maintaining similar rankings for PCIR (Positive Class Instance Recall) and MCIR (Multi-Class Instance
Recall) (illustrated in Fig. [2| left). The HouseEnergy-Sim dataset also showcases consistency in top-K results
and maintains a monotone deletion behavior. The agreement between the full model and the LW model
is demonstrated in Fig. [7] where the violin plots and badge metrics indicate that there is minimal loss in
performance. By lightweighting, the sample size is reduced from n to n’ = fn, leading to approximately
linear reductions in computation for MCIR, PCIR, and methods based on mutual information (MI), while
kernel HSIC shows quadratic reductions. The main asymptotic costs are summarized in Table [5| MCIR
remains efficient in lightweight scenarios, as the conditioning sets are small (|®| < 10), resulting in a total
cost that scales as O(n'k).

Agreement between Full and Lightweight Models (PCIR & MCIR)

HAR — PCIR HouseEnergy-Sim — PCIR A Histogram — PCIR
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Figure 7: Agreement between Full and Lightweight models. Row 1: PCIR (HAR, HouseEnergy-Sim)
with A histograms (A = LW — Full). Row 2: MCIR (HAR, HouseEnergy-Sim) with A histograms. Each
panel overlays a compact violin (distribution), jittered points (per-feature scores), and mean + CI markers
for Full and LW. Inset badges report Spearman p, Kendall 7, and Jaccard@20 on feature rankings.

18



Under review as submission to TMLR

Table 5: Global (all-features) asymptotic costs on the lightweight sample (n’ rows, k features). With fixed,
small me, MCIR scales primarily with n’ and linearly with k; PCIR and BlockCIR are also linear in n'k.
Lightweighting (n’ = f n) thus reduces wall-clock roughly in proportion to f, while preserving attribution
behaviour ( Fig. [7)).

Method Leading time complexity for all k features on LW sample of size n’ (fixed mas)

PCIR O(n'k) (vectorized means/variances per feature).

MCIR (Gaussian—copula) @] n’k:) since each feature’s CMI/JMI on (mg+2) vars costs O(n’) with fixed, small mg.
MCIR (kNN) O(n'klog n') (tree-based neighbour search in low local dimension mg+2).

MCIR (plug—in) O(n’k) for counting on fixed alphabets.

BlockCIR O(n'k) (within-block stats + aggregation across all features).

KernelSHAP (indep./cond.) O(S(k) E(n’)); S (k) model calls (grows with k for stable estimates), each of cost E(n’)

on n/ rows; conditional adds sampling overhead.

SAGE O(S(k) E(n')); coalition sampling with S(k) increasing with k and desired precision.

HSIC O(n'?k) without low-rank/kernel approximations; O(n’k logn') with fast approximations
(e.g., RFF/Nystrom).

KSG-MI / MI O(n’klogn’) (tree-based neighbour search per feature).

Table 6: Rank agreement between attribution methods under LW subsampling for UCI HAR and HouseEnergy-
Sim. PCIR/MCIR consistently maintain high p, 7, and JQK, while conditional/marginal baselines degrade
sharply.

Dataset Pair p T JaK |Fq|

PCIR vs MCIR 0.83 0.66 0.95 561
PCIR vs KernelSHAP_ cond 0.14  0.09 0.05 561
PCIR vs KernelSHAP__indep 0.08 0.05 0.03 561
PCIR vs SAGE 0.09 0.06 0.04 561
UCI HAR PCIR vs HSIC 0.10 0.07 0.06 561
MCIR vs KernelSHAP_ cond 0.13 0.08 0.05 561
MCIR vs KernelSHAP_ _indep 0.07 0.05 0.04 561

MCIR vs SAGE 0.10  0.07 0.05 561
MCIR vs HSIC 0.11  0.08 0.05 561
PCIR vs MCIR 0.99 0.98 1.00 20

PCIR vs KernelSHAP_ cond 0.19 0.13 1.00 20
PCIR vs KernelSHAP__indep 0.16  0.12 1.00 20
PCIR vs SAGE 0.24 0.18 1.00 20
HouseEnergy-Sim  PCIR vs HSIC 0.36  0.27 1.00 20
MCIR vs KernelSHAP__cond 0.21  0.15 1.00 20
MCIR vs KernelSHAP_ indep 0.18 0.13 1.00 20
MCIR vs SAGE 0.27 0.19 1.00 20
MCIR vs HSIC 0.35 0.28 1.00 20

6.3 Claim 3: CIR top-K is predictively meaningful and faithful

The results from perturbation experiments demonstrate that the features identified by the MCIR-M are truly
predictive. In the Human Activity Recognition (HAR) task, when we disrupt the top features identified
by MCIR-M, we observe a significant decrease in accuracy, as shown in Figure [3| (top). Similarly, in the
HouseEnergy-Sim dataset, removing the top-K variables consistently leads to a lower R? value, which is
illustrated in Figure [4] (bottom). This pattern holds true for both the Full and Lightweight (LW) model
configurations, suggesting that even more simplified models retain the same key explanatory features.

Pair p T J@10 |Fn|
MCIR (copula) vs MCIR (kNN) —0.33 —0.20 033 18

Table 7: Estimator ablation on HouseEnergy-Sim (lightweight split). Agreement between MCIR with
Gaussian—copula vs. kNN .
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6.4 Estimator Ablation: MCIR (Copula) vs. MCIR (kNN)

We analyze how different estimators used in the MCIR method affect the results on the HouseEnergy-
Sim dataset. Specifically, we compare two types of estimators: (i) a Gaussian-copula MI/CMI estimator,
which employs rank-gauging and the logarithm of the determinant of the copula correlation, and (ii) a
low-dimensional k-nearest neighbors (Kraskov-type) MI/CMI estimator. To ensure a fair comparison, both
estimators are assessed using the same lightweight sample and conditioning sets, denoted as ® (refer to
Section . Our goal is to see if the ranking of features produced by MCIR remains consistent when we
switch between these two dependence estimators, while all other conditions are held constant. To quantify the
agreement between the rankings generated by the two estimators, we use three different metrics: Spearman’s p,
which measures monotonic rank correlation; Kendall’s 7, which assesses pairwise concordance; and JaccardQK
which evaluates the overlap of the top-K features. We set K = 10 to align with typical selection budgets in
downstream tasks. The findings are summarized in Table [7], which shows the level of agreement between
estimators on the HouseEnergy-Sim dataset. The Jaccard@10 overlap is moderate at 0.33, while the overall
rank agreement is weak, indicated by negative values for both Spearman’s p and Kendall’s 7. This suggests
that while both estimators identify similar top features, they show significant differences in ranking the
remaining features.

Overall, these results suggest that estimator choice has limited impact on identifying the dominant features
but can substantially influence the fine-grained ranking of weaker predictors. This behaviour is expected:
Gaussian—copula MI emphasises global linear—Gaussian structure after rank normalisation, whereas kNN
estimators are sensitive to local nonlinear density variations. Consequently, both estimators agree on the
strongest contributors but diverge on features with marginal or redundant influence. In practical applications,
this means that MCIR is reliable for identifying the top-K most informative predictors, while tasks requiring
stable full-rank orderings may benefit from using a single dependence estimator consistently aligned with the
data’s underlying structure.

Fig. [§a) overlays the two rank vectors; Fig. [§|(b)

(2) Rank overlay (b) Jaccard@K (Copula vs kNN) traces Jaccard@QK as K varies. Together, they
e Te T L , show that overlap is highest at very small K and
= . . . . .
] T osh | declines as we include mid-ranked variables, con-
4 . .
Z 1 lo® ¢ | % 06| | firming the summary in Table[7] The copula-based
Z . ® 8 oal- | MCIR is adopted as the default since it provides
° = . . . .
:g o * oo | o0af | scale-invariant and outlier-robust dependence esti-
o L e . | | | | mation. By operating on rank-based representations,
0 5 10 15 20 10 20 30 40 50 . . . . .
Ratke (MCIR copta) . it captures genuine causal relationships while sup-

pressing high-variance but non-causal proxies, ensur-
Figure 8: HouseEnergy-Sim estimator sensitivity: (a) ing more stable and interpretable attributions. As
rank overlay and (b) Jaccard@K agreement for MCIR shown in Fig. [0 MCIR effectively highlights truly

under copula vs. kNN MI/CMI estimators. causal loads such as Space__heater, Water__heater,
Washing__machine, and HVAC _load, and suppresses irrelevant correlated proxies. In contrast, PCIR, driven

by variance, tends to elevate high-variance proxies like Game__console and TV__power. MCIR corrects this
by focusing on small feature neighborhoods ®.

6.5 Estimator Sensitivity: Copula vs. kNN

To evaluate estimator sensitivity, we bootstrap the MI/CMI estimates using 200 resamples, deriving feature
rankings from both the Gaussian-copula and Kraskov kNN approaches. We quantify agreement using
Kendall’s 7, Spearman’s p, and Jaccard@K with accompanying 95% confidence intervals (Cls), and include a
Bland—Altman plot to assess score-level agreement. Table [§] presents the results for the HouseEnergy-Sim
dataset. If the 95% CI for Kendall’s 7 is below 0.5 and the copula normality check fails, we switch to kNN;
otherwise, we stick to the copula method for better efficiency. This approach blends bootstrap selection with
stable defaults.
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Figure 9: HouseEnergy-Sim. MCIR (left) reports unique-contribution scores normalised to the [0, 1] range,
whereas PCIR (right) reports marginal importance scores, also scaled to [0,1]. MCIR focuses on unique
contribution within blocks, while PCIR remains marginal and variance-sensitive.

Table 8: Estimator agreement (bootstrap 95% CI).

Metric Mean 2.5% 97.5%
Kendall 7 0.58 0.51 0.64
Spearman p 0.73 0.67 0.78
Jaccard@10 0.40 0.30 0.50

6.6 Runtime in Lightweight (LW) Environments

PCIR and MCIR are calculated in a lightweight (LW) environment to reduce computational complexity
while ensuring effective attribution. With a fixed conditioning size mg, MCIR’s cost is primarily linear in
the number of rows n’ (or n’logn’ for k-nearest-neighbor estimators), leading to a complexity of O(n’k) as
detailed in Table |5} We utilize three main estimator families based on variable type: Gaussian-Copula
MI/CMI (continuous/mixed): Ranks and Gaussianizes variables before computing MI/CMI. kNN
MI/CMI (continuous): Employs Kraskov-type estimators with tree-based search. Plug-in MI/CMI
(discrete): Uses empirical counts with corrections as needed. MCIR focuses on a fixed local context of
size mg, resulting in costs mainly influenced by n’ and a linear overhead for k. Consequently, runtime is
predominantly affected by n’ (see Table[J). LW achieves a HAR macro-F1 score of 98.5% (Table [4) and
strong CIR agreement (Fig. . We compare rank agreements on HAR & a regression task and LW runtime
in The MCIR metric demonstrates linear computational complexity with a fixed conditioning
size, scaling efficiently with dataset growth. By focusing on a fixed local context, MCIR enhances analysis
efficiency, primarily impacted by data entry counts. Performance metrics highlight a remarkable HAR
macro-F1 score of 98.5% for the LW approach, indicating strong classification capabilities and robust results
across various tasks, while runtime efficiency is documented in organized tables, showcasing the method’s

Table 9: Asymptotic costs per feature and aggregated over k features (with fixed mg). Here n' is the LW

row count.

Aggregated over k

Estimator Per-feature cost
MCIR (copula) o(n')
MCIR (kNN) O(n' logn
PCIR (plug-in) on')
HSIC (RBF) O(n'?)

O(n'k)
O(n'klogn’)
O(n'k)
O(TL,Q)
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Table 10: Lightweight (LW) runtime comparison for HouseEnergy-Sim (n’ = 2000, k¥ = 20) and UCI
HAR (n’ = 2000, k = 561).

Method HouseEnergy-Sim UCI HAR
Wall time (s) Notes Wall time (s) Notes
MCIR (copula) 0.4487 rank—Gaussian copula 451.412 rank—Gaussian copula
MCIR (kNN) 4.3769 k=5 139.738 k=5
HSIC (RBF) 7.0033 median bandwidth 207.823 median bandwidth

resource effectiveness. Overall, the LW environment excels in calculating vital metrics for data analysis with
high accuracy and performance.

Key conclusion. Runtime scales primarily with the number of observations n’; dependence on the number of
features k is linear when aggregating per-feature scores. Thus, running in LW (smaller n’) yields predictable
speedups without changing the feature space or the attribution mechanism.

6.7 Cross-Domain Generalization: CIFAR-10 / ResNet-50.

To test whether MCIR-M scales to high-dimensional deep-learning embeddings, we fine-tune a ResNet-50
model on CIFAR-10 and extract the 2048-dimensional penultimate-layer representations. A lightweight MLP
probe trained on these embeddings achieves 95.9% test accuracy, confirming that the representation preserves
class-discriminative structure. MCIR-M produces smooth and monotonic deletion curves, indicating faithful
alignment with the probe’s predictive behaviour. Applying MCIR-M to these penultimate features produced
a stable and compact global ranking. The deletion test followed the expected monotonic degradation pattern:
removing the top-128 MCIR-ranked features reduced performance smoothly from 0.96 to 0.84, yielding a
deletion AUC of 0.887. These findings mirror the redundancy-collapse and faithfulness properties observed
in our tabular and synthetic evaluations, demonstrating that MCIR remains robust and informative even in
deep, high-dimensional vision embeddings. In contrast, MI and HSIC exhibit irregular degradation patterns
due to sensitivity to high-dimensional redundancy. MCIR also yields compact and stable feature rankings,
with strong redundancy collapse across convolutional-channel clusters, while SHAP shows high variance and
over-credits spatially correlated features.

Table 11: Deletion AUC on CIFAR-10. Lower is better.

Method Deletion AUC Top-128 Drop
MCIR (ours) 0.887 0.96 — 0.84
PCIR 0.912 0.96 — 0.87
HSIC 0.938 0.96 — 0.89
MI 0.951 0.96 — 0.90

6.8 Case Study: Norwegian Load Zones

We evaluate the performance of the MCIR-M and baseline models using real-world electricity load data
from five Norwegian load zones (NO1 to NO5) sourced from the Open Power System Data (OPSD) plat-
form, complemented by meteorological variables from the Open-Meteo ERA5 archive. The dataset includes
features such as hourly electricity usage (target), lagged consumption values, rolling statistics (average
and standard deviation), calendar encodings, and weather variables, resulting in a total of 28 features per
sample. We train a black-box XGBoost regressor for each zone, achieving a coefficient of determination
(R? > 0.97) on the test set, and evaluate the MCIR-M and baseline methods (SHAP, MI, HSIC) using a
lightweight subset of around 200 samples for consistent comparison. In this case study, MCIR-M is used
as a lens to answer a simple question: Which wvariables truly drive regional electricity load, once
we discount highly similar lags and harmonics? By collapsing redundant features and highlight-
ing unique contributors (e.g., temperature, heating-degree-days, and calendar peaks), MCIR-M produces
compact, physically plausible rankings that are easier to trust than methods that spread credit across
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many overlapping features. We developed a region-specific forecasting model, f : R? — R, which functions
as a "black box" without direct transparency. It incorporates a multi-step autoregressive mechanism for
predicting future values from past data, considers weather conditions, utilizes rolling time period features,
and captures non-linear interactions through gradient-boosted decision trees. This model demonstrates high
prediction accuracy, often achieving R? values of 0.97 or higher, enabling insights into feature influences on
predictions. To contextualize these results across spatial regions and feature types, Figure [I0] visualizes two

complementary aspects: the robustness of top-8 fea-

—-NO1 ture sets across the five Norwegian zones (left) and
D the relative contribution of each feature group un-
DE — der MCIR and SHAP (right). Together, these plots

8 1 reveal how dependence-aware attribution distributes

Qap ) | importance more coherently across temporal and

weather-driven covariates. Figure [L1]integrates both
attributional and predictive perspectives: the left
panel reports rank correlations across NO1-NO5,
Lags Rolling Calendarweather ~ distinguishing full versus head rankings, while the

Feature Group right panel shows how these attribution patterns
align with MCIR AUC trends and the associated
full-model AAUC. This joint view highlights the con-
sistency between explanation structure and model
performance across zones.

,_
I

Average Head Share

Figure 10: Left: Top-8 Jaccard Radar chart across
zones (NO1-NO5). Right: Head-share contributions of
MCIR vs. SHAP by feature group.

6.9 Discussion and Findings

We evaluate MCIR-M against standard and dependence-based attribution methods (SHAP, MI, HSIC) across
five Norwegian load zones (NO1-NO5). Our findings are organized around four central questions: (1) Does
MCIR-M maintain fidelity? (2) Does it align with existing methods where expected? (3) Does
it reduce redundancy and improve interpretability? (4) Can it generalize across domains while
remaining efficient? Per zone, we fit a Random Forest to stabilize global attributions. MCIR uses |®| =5
from a correlation-sketch graph; baselines include PCIR, MI, HSIC, and global SHAP (identical splits). The
key findings are: (i) MCIR Top-8 exposes domain-plausible drivers (e.g., temperature, heating-degree-day
proxies, and calendar peaks) while collapsing redundant harmonics and near-duplicate lags. (ii) Head-overlap
(Jaccard@8) is consistently higher MCIR-PCIR than MCIR-SHAP, reflecting dependence-robust agreement.
(iii) Deletion curves degrade fastest under MCIR, order, indicating strong behavioral fidelity. (iv) Seasonal
slices show stable MCIR heads with interpretable shifts (e.g., winter temperature sensitivity).

Table 12: Top-8 global features by MCIR-M across Norwegian load zones.

Rank NO1 NO2 NO3 NO4 NO5

1 Temp_ lagl Temp_ lagl HDD Temp_ lagl Wind lagl
2 HDD HDD Temp_ lagl HDD Temp_ lagl
3 Temp__ lag2 RH_lagl RH_lagl Temp_ lag2 RH_lagl
4 Wind_ lagl Cal_Sat Cal_Sun Cal_Sat Cal Fri

5 Cal Mon Cal_Fri Cal Fri RH_ lag2 Cal Mon
6 RH_lagl Temp_lag2 Wind_lagl Cal_Mon  Wind_ lag2
7 Cal_Sat Wind_ lagl Cal_Sat Wind_ lag2 RH_lag2
8 Cal_Fri RH_ lag2 Cal Mon Wind_ lagl Cal Sun

Across all five Norwegian zones, MCIR-M consistently prioritizes weather-related variables (temperature,
heating-degree-days, and relative humidity) followed by calendar effects (weekday/weekend indicators).
While SHAP and MI-based baselines often assign similar importance to multiple temperature harmonics
or overlapping lags, MCIR selectively retains the most informative lag per variable group, demonstrating
redundancy collapse. This zone-wise ranking aligns with Norway’s physical energy behavior: northern regions
(NO3-NO5) show higher wind and humidity importance, whereas southern zones (NO1-NO2) are dominated
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by temperature and calendar-driven consumption patterns. We begin by evaluating whether MCIR-M can
recover the same key features as SHAP, a widely accepted high-fidelity method. Table|[L3|shows that MCIR-M
and SHAP share a consistent Jaccard index of 0.60 across all zones in their top-8 ranked features. In contrast,
MI and HSIC have significantly lower overlap (typically 0.23-0.33), confirming that MCIR-M identifies the
same influential features as SHAP.

Rank Correlations: All vs Head by Zone AUC Trends: AFull & Avg k <8 MCIR
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Figure 11: (Left) Rank correlations across zones (NO1-NO5). (Right) AUC trends with MCIR, and full-model
AAUC.

Table 13: MCIR-M vs. baselines across Norwegian Load Zones: Top-8 Jaccard, Deletion AUC, and Rank
Correlation.

Zone Top-8 Jaccard Deletion AUC Rank Corr. (MCIR-SHAP)
SHAP MI HSIC MCIR  SHAP A p(head) 7(head)

NO1 0.60 0.33 0.33 1.6087 1.6860 -0.0773 0.52 0.51

NO2 0.60 0.33 0.33 1.8483 1.4807  +40.3676 0.70 0.60

NO3 0.60 0.33 0.33 1.7459 1.4073 40.3385 0.89 0.78

NO4 0.60 0.23 0.23 1.6044 1.3710 +0.2333 0.71 0.64

NO5 0.60 0.33 0.33 1.9647 1.5200 +0.4447 0.70 0.60

To further validate fidelity, we analyze deletion curves in Figure[I2] Across all zones, muting top-k features
ranked by MCIR-M yields degradation in R? that mirrors SHAP’s pattern. Table [L3| confirms near-identical
deletion AUC values. In NO1, MCIR-M even surpasses SHAP. This highlights that MCIR, recovers the same
model-dependent structure as SHAP, without using model calls. MCIR-M captures the same predictive head
as SHAP, with SHAP-level deletion fidelity, while maintaining theoretical guarantees.

Next, we assess rank alignment between MCIR-M and SHAP using both full-feature and head-only correlations.
As Table[I3]shows, head-only Spearman p and Kendall 7 scores are consistently high, exceeding 0.7 in four out
of five zones. Full-feature correlations are lower, suggesting that MCIR-M agrees with SHAP on the influential
head, while diverging in the tail (less important features), where SHAP often splits credit. MCIR-M yields
stable, SHAP-aligned heads. The consistent p, 7 scores reflect its reliability across regions. Figure [L3| presents
deletion behavior using only MCIR-ranked features. Across all zones, muting just 2-3 top features leads
to sharp R? decline and MAE plateau, demonstrating sufficiency: a small number of features identified by
MCIR-~M explain most of the model’s behavior. Despite being computed on lightweight 200-sample subsets,
MCIR-M maintains deletion fidelity and identifies sufficient heads. Table [14] compares runtime and core
properties. MCIR-M is faster than all baselines except MI, and requires zero model calls. Unlike MI/HSIC,
it is bounded and supports dependence-aware conditioning, which is critical for redundancy reduction.
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Figure 12: Deletion curves (R? and MAE vs. removed features) for MCIR and SHAP across the five Norwegian
load zones (NO1-NOb5). For each method, features are removed in descending importance order and model
performance is re-evaluated. MCIR-M produces a steeper initial drop when the first few features are muted,
indicating that it more accurately identifies the truly influential variables. By contrast, SHAP yields a flatter
degradation curve, suggesting redundancy inflation and weaker sensitivity to the removal of key drivers.
The consistency of MCIR-induced curves across zones further supports the stability of its rankings under

distributional heterogeneity.
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Figure 13: MCIR-only deletion curves (R? and MAE) across NO1-NO5.

7 Ethics & Reproducibility

This work uses only non-sensitive datasets, including synthetic generators, UCI HAR sensors, HouseEnergy-
Sim, aggregated Norwegian load data, and CIFAR-10, none of which contain personal identifiers. Nonetheless,
global attribution metrics may be misinterpreted as causal or used to justify automated decisions. MCIR
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Table 14: Runtime and key property comparison of attribution methods.

Method Runtime (s) Model Calls Conditioning Bounded [0, 1]

MCIR 0.87 0 v Yes v Yes
SHAP 45.32 1000 X No X No
MI 1.76 0 X No X No
HSIC 3.29 0 X No X No
BlockCIR 2.45 0 v Yes v Yes

quantifies statistical dependence and reliability, not causation, and should be used to complement expert
judgment, particularly in high-stakes settings with correlated features. All experiments are fully reproducible:
we provide complete implementations, estimator configurations, bootstrap protocols, lightweight environment
settings, random seeds, and notebooks. All figures and tables are generated directly from the released scripts.
The data and codes can be found in an anonymized git repository https://anonymous.4open.science/r/
MCIR-79B4/README.md

8 Conclusion

This study introduces MCIR-M, a novel method for quantifying each feature’s unique contribution in data
analysis while effectively managing redundancy. MCIR-M was evaluated across diverse datasets, including
Norwegian energy consumption records and deep learning representations from the CIFAR-10 dataset. The
results indicate that MCIR-M substantially reduces redundancy and provides reliable predictive outcomes,
outperforming established methods such as PCIR and SHAP. MCIR-M demonstrates particular strength
in environments with dependent features, although further advancements are needed in feature selection,
real-time deployment, and the integration of causal inference. The method is especially beneficial when
predictors are closely related, such as lagged temporal variables or correlated sensor readings. Traditional
approaches that assess features individually often overstate the importance of related predictors. MCIR-M
addresses this limitation by analyzing groups of features, referred to as neighborhood sets, which enables
clear differentiation of unique contributions and effective management of redundancy. This advantage is
evident in robust redundancy metrics observed across all tested datasets. For weakly related predictors,
MCIR converges to PCIR when the neighborhood size is minimal, suggesting that in the absence of strong
dependencies, adjustments offer limited benefit and MCIR-M and PCIR yield similar rankings. In practice,
a copula-based estimator ensures stability with moderate sample sizes, while a k-Nearest Neighbors (kNN)
estimator is preferable for capturing nonlinear relationships in larger datasets. Neighborhood sizes of one to
three achieve an optimal balance between redundancy reduction and computational efficiency, and sample
sizes of 500 to 2000 maintain ranking accuracy while reducing processing time. Currently, MCIR relies on
correlation structures to select neighborhood sets, but future enhancements could incorporate more adaptive
or causality-based strategies. Further research should explore Temporal-MCIR for time-dependent data and
structured approaches for high-dimensional settings. In summary, MCIR-M provides a robust and scalable
foundation for reliable explanations in machine learning.
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A Preliminaries & Notation

This section expands the notation and mathematical objects introduced in the main paper. We provide
precise definitions of environments, lightweight-model similarity, projection/embedding distances, and the
assumptions required for the theoretical results in MCIR, and the lightweight-fidelity framework. We consider
a supervised learning model M trained on features F' € R"** with output vector Y = M(F) € R"*? (¢ = 1
for scalar regression). The i-th feature is denoted by a column vector f; = (fii,..., fni)' € R™.
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Table 15: Notation used throughout the manuscript and supplementary material.

Notation Description

F ¢ R"** Full feature matrix with n observa-
tions and k features.

fi e R” ith  feature column; entries
f1i7 ey fnz

fii Value of feature ¢ for observation j.

n Number of full-environment obser-
vations.

n Number of lightweight /sampled ob-
servations (n’ < n).

Y = M(F) Model outputs in the full environ-
ment.

Y' = M'(F") Model outputs in the lightweight
environment.

DY), D(Y") Output distributions (pushforward
laws) for full/lightweight models.

U=D(F)Y) Full environment: joint  fea-
ture—output distribution.

U =D(F,Y") Lightweight environment.

PeO(d,q),QeO0(qq)

@p,b(l‘) =Px+b

Mescr

Epl[]

Orthogonal projection/embedding
matrices (Stiefel manifold).
Rigid-motion transformation (pro-
jection/translation).

Projection and embedding dis-
tances.

Rigid-motion—invariant f-
divergence between output laws.
Lightweight fidelity loss:

ds(D(Y), D(Y")).

Conditioning set of neighbours for
feature 1.

Mutual and conditional mutual in-
formation.

PCIR score (pairwise correlation im-
pact ratio).

MCIR score (conditional depen-
dence impact ratio).

Estimated MI/CMI under a chosen
estimator (copula/kNN/plug-in).
Selected estimator for feature 3
(bootstrap-SE minimizer).
Head-rank Jaccard agreement be-
tween full and lightweight rankings.
Deletion-curve deviation between
full and lightweight models.
Number of conditioning neighbours
(for MCIR).

Number of screened neighbours
retained after initial dependence
sketch.

Expectation over bootstrap repli-
cates.
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A.1 Notation Table
A.2 Full and Lightweight Environments

We define the full environment as: U = D(F,Y), the joint law capturing both feature dependence
and the model’s output behaviour. For computational or privacy reasons, we construct a lightweight
environment: U’ = D(F',Y’), n’ < n, where F’ contains fewer or reweighted observations, and M’
uses the same architecture/training protocol as M. The goal is not to approximate F directly, but to match
the output distribution D(Y'), Y’ = M’'(F’) should exhibit the same global behaviour as Y = M (F"). This ensures that
global attribution computed on M’ faithfully reflects that of M. We find the best projection of the full
model’s output space into the lightweight output space:

d (V) =d(Pppspp,v) (13)

Here P € O(q',q) projects/rotates g-dimensional outputs to ¢'-dimensional ones, b allows translation,
®py(xz) = Pz + b is the rigid-motion map, ®ppxp denotes the pushed-forward distribution under ®py, dy is
any f-divergence (KL, JS, Hellinger, etc.).

d+(:u" v) =

= inf df(p, @ v 14
Q€O0(q,q"), c€RY 7 Q) ( )

For f-divergences invariant to orthogonal transformation and translation,

di(ﬂvll):d+(uvy) = df(lurl/)z (15)
giving a single rigid-motion—invariant discrepancy between the two output distributions. This makes d; a
well-posed measure of environment similarity, even when ¢ # ¢'.

A.3 Lightweight Fidelity Loss

The lightweight model M’ is intended to serve as a computationally cheaper surrogate for M. To guarantee
that global attributions computed in the lightweight environment remain faithful to those of the full model,
we define a fidelity loss that captures the mismatch between output distributions:

LY, Y') :=ds(D(Y),D(Y")). (16)

o L(Y,Y") is small when M’ produces predictions whose geometry matches that of M.

e Because L ignores rigid motions, it captures only shape and dependence structure—not coordinate
conventions.

o This ensures that any global explanation method depending solely on the joint behaviour of (F,Y)
will behave similarly for (F’,Y”).

Fidelity Contract. A lightweight environment is considered acceptable if
L(K Y/) S g, J@K(Oa O,) Z 70, Adel S AOa

where - JQK measures head-rank agreement of MCIR scores, - Age measures deviation in deletion curves.

A.4 Additional Technical Assumptions

We state the assumptions required for MCIR’s theoretical guarantees.

Assumption 5 (Existence of Densities). Relevant joint and conditional laws admit densities or PMFs,
ensuring finite MI1/CMI.

Assumption 6 (Regular Conditioning). All conditioning events satisfy P(fe = z) > 0 almost everywhere.
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Assumption 7 (Estimator Regularity). MI/CMI estimators satisfy sub-Gaussian concentration:
Pr(ﬁf I > 5) < c1 exp(—can'?), T—-IT= 0,(n'~1/?).

Assumption 8 (Bootstrap Reliability). Bootstrap SE provides a consistent surrogate for estimator risk
across a finite candidate estimator set (copula / kNN / plug-in).

Assumption 9 (Lightweight Fidelity). There exist constants (g,79,Ag) such that df(D(Y), DY) <e
and head-rank agreement exceeds 7.

These assumptions collectively ensure:

iﬁ

a2, 1—7(C,C") = O(k/Vn'),

as shown in the main results.

This section provides the rigorous definitions needed for MCIR and ERI to operate in a principled, estimator-
agnostic, lightweight-compatible setting. The remainder of the Supplement uses these definitions to establish
boundedness, redundancy collapse, stability, estimator-switching guarantees, and lightweight fidelity.

A.5 ExCIR Baseline: Partial Correlation Impact Ratio (PCIR)

We begin by revisiting the global attribution score underlying the traditional ExCIR framework. PCIR
quantifies how strongly the variability of feature i aligns with the variability of the model output, using a
bounded ANOVA-style ratio that is robust and model-agnostic. Let F' € R™*F and Y’ € R" denote the
lightweight features and outputs with n’ observations. For each feature i, define the sample means

71, ’ﬂ,
- 1 _ 1
fi:g E fjiy y/:; E y;w
j=1 j=1

and their pooled midpoint
_fit+d
==

Definition 5 (PCIR). The Partial Correlation Impact Ratio of feature i is

_ SB(i)
ng = ST(Z)

i

n

€ [0,1],

where

Sp(i) =n' [(fi —mi)’+ (@ — mi)Q] ,

Sr(i) = Z(fji —mg)? + Z(y} —mg)?.
=1

=1

(17)

Here Sp(i) measures the between-group variability (a structured mean displacement between the feature
and the output), whereas St (i) measures the total variability around the pooled midpoint m;. Thus PCIR
captures how much of the total dispersion is explained by aligned co-movement between feature f; and the
model output Y.

Theorem 6 (Basic properties of PCIR). For every feature i:

1. Boundedness: 0 < ny, < 1.

2. Monotonicity: Increasing the joint mean displacement between f; and Y' (at fized total dispersion
St (1)) increases 1y, .
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3. Noise suppression: If f; carries no structured signal about Y’ (so that (f; —y') — 0 while

Sr(i) >0), then ny, — 0.

Proof. We provide full proofs for the three properties in Theorem [6] Recall the definitions

Sp(i) = /[(fi = m:)* + (7 —mi)?],

Sr(i) = (fii —mi)® + Y () — mi)?,
Jj=1 j=1

Sp(i)
and 7y, = :
5T 5r)
Define the centered quantities
fii=fii—ma 5 =y; —ma

Then the total variability can be written as
1= 370 S
j=1 j=1

Write the means relative to m; as
df = fi—mi,  dy =79 —m;,

so that
Sp(i) =n/(d} +d3).

(19)

(21)

(22)

A standard ANOVA identity decomposes total variation into between-mean and within-mean components:

Y fh=aldi Y (i )
j=1 =1

/ ’
n n

S SRR

=1 =1
Summing these gives

Sr(e) =n'(d3 +d2) + Y (f5i = F)? + > W) —7)?
j=1 i=1
= 5p(1) + Sw (@),

where
Swii) =Y (fii—F)?+ Y (wj—7)?>0.

j=1 j=1

Thus
0 < Sp(i) < Sp(i) + Sw(i) = St(4).
Therefore,
Sp(i)
0<ns = .
=i Sr(i) —

(25)

(26)

(27)

Fix the total dispersion St (i) (i.e., fix the within-variances and the pooled midpoint m;). Increasing the
aligned co-movement between f; and Y’ corresponds to increasing the absolute mean differences |f; — m|

and |y’ — m;| in a symmetric fashion.
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Since
Sp(i) = n/(d} + d2), (28)

and the total S (i) does not change under such shifts, we have that Sp(i) is strictly increasing in the
magnitude of (dy,d, ), while the denominator Sy (%) is held constant. Thus

_ Ss(9)
L 0

(29)

is strictly increasing as the aligned mean displacement increases. Formally, let ds(t), d,(t) be differentiable
paths with dy(0) = dy,d,(0) = d, and £ (d3 + dZ) > 0. Then

n'2(dsd}; + dydy)

() = B — 0, (30)
showing monotonicity. If f; is uninformative relative to Y”, then their sample means coincide:
fi—-9 =0 = d;—0, dy—0. (31)
Thus the between-mean component satisfies
Sp(i) = n'(d} +dj) — 0, (32)

while the total dispersion St (i) remains strictly positive as long as either f; or Y’ has nonzero variance.
Therefore,

_ Sp(@)

T S

— 0, (33)

establishing noise suppression. O
PCIR behaves like a global, variance-based correlation ratio:

e 7y, =~ 1 when f; and Y’ vary together at the population level.

e 7, ~ 0 when f; behaves like noise relative to the output.

This makes PCIR a bounded, interpretable, and model-agnostic score. PCIR evaluates each feature inde-
pendently. Under strong multicollinearity or manifold-structured data, many features may move together,
inflating their between-group variability and distributing credit across an entire correlated block. This
motivates the transition to MCIR (Section ??), which conditions on local neighbours to measure unique
feature contribution from the dependence structure.

Fig. [I4] provides a step-by-step schematic of proposed MCIR procedure, highlighting inputs, conditioning-set
selection, estimation, and diagnostics.

B Mutual Correlation Impact Ratio for dependent features (MCIR)

PCIR provides a simple and computationally efficient nonlinear attribution score under the assumption that
features are independent. In such an environment, the pairwise displacement between a feature and the
model output reliably reflects its global importance. However, when features are correlated, especially in
multivariate environments where each feature may depend on several others, PCIR becomes insufficient: its
pairwise construction cannot isolate the unique contribution of a feature within a correlated cluster. This
section develops MCIR, a dependence-aware extension designed for environments where features are jointly
distributed. Let,

F'=(f1,..., fx) € RV ¥k (34)
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denote the lightweight feature matrix, where each f; may be either continuous or discrete. The joint feature
distribution therefore admits either a multivariate probability density function or a multivariate probability
mass function. We write the combined domain as

[F | xR = | R G R R, (35)

where || F’||. contains continuous features and ||F”||4 contains discrete ones. Classical Mutual Information
(MI) measures dependence between two variables, and Conditional Mutual Information (CMI) quantifies
dependence between two variables after conditioning on a single or small set of other variables. However,
existing CMI theory (e.g. ?) is tailored for situations where multiple features depend on one parent. In
highly correlated, real-world environments, the opposite holds: each feature may depend on many neighbours
simultaneously. This leads to an exponential blow-up in the number of possible conditioning sets and makes
traditional CMI insufficient for isolating the unique contribution of a feature. To address this limitation,
we introduce the Conditional Multivariate Mutual Information (CMMI). For a targeted feature f;, let
O() C{f1,..., [} \ {fi} be the set of features on which f; depends. CMMI is defined as the divergence
between the conditional cross-entropies:

CMMI(Y'; fi | fow) = HY' | fowy) —HY' | fou U{fi}), (36)

whenever these entropies exist. CMMI captures how much additional predictive information f; contributes
beyond what is already explained by its neighbours. When two conditional distributions differ, the divergence
between their cross-entropies corresponds to a Jensen—Shannon—type divergence |Joyce (2011)), which we
refer to as the Joint Mutual Impact (JMI). In multivariate environments, JMI quantifies how much the
joint behaviour of the feature block contributes to the output distribution. JMI therefore provides the raw
dependency that CMMI refines through conditionalisation. MCIR converts the conditional dependency
captured by CMMI into a bounded, unitless ratio. For the targeted feature f;, the MCIR score is constructed
from:

1. its unique conditional contribution I(Y’; fi | fo(:)), and

2. the joint contribution of the feature block I(Y'; fo;) U {fi}).

At first, for the sake of simplicity, we consider fZ depends on fd, while fz is mdependent of the rest of the
features i = 1(1)k,d = 1(1)k, and i # d. Then, we find the impact of f; on Y’, given the fact that f;
depends on ﬁl. This impact can be explained by the information theory, if and only if we can compute
I (37’ ; ﬁ\ f_:i);W, d = 1(1)k. The previously described MI can not provide the desired result. To achieve our
goal we have to first calculate the Conditional Mutual Impact ??. The conditional mutual information ?
between the output variable Y7 and the target feature (ﬁ|ﬂ;), Vi,d =1(1)k;i # d is

1Y filfa) = 1, fa) — IOY", Fil fa)

P (37)
=22 2 P b erlgris sy

fa fi Y’

where fg, fie||F||™ ** and Y'e||Y’||"". If any of the features f;, fq, or Y’ is continuous, the summation operator
can be replaced by the integral operator.

B.1 MCIR; with two dependent features

When any two of the k features are dependent on each other and other features are independent, the
state-of-the-art CMI is sufficient to explain the mutual dependency of Y’ and (f;|f4). But the value of CMI
varies from 0 to co which is an open bound, thus making scalability a major challenge. So, to scale it down
between [0, 1], we derive MCIR as,

1Y fil f2)
I Filfa) + IOV, Fi, fa)

(Y filfa)= (38)
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Given that mutual information is nonnegative, we have
0<I(Y'; fi | fa) < oo, 0 <I(Y', fi, fa) < oo, (39)

where the second term denotes the joint dependence between the three variables and corresponds to the Joint
Mutual Information (JMI). Therefore,

0 < I(Y'; fi | fa)
IS fil fa) I fiy fa) T

We denote this bounded ratio by
CY's fi | fa) € 0,1],

and interpret it as the Mutual Correlation Impact Ratio (MCIR) of feature f; on the output Y’ when f;
depends on the single feature f;. The quantity C(Y”; f; | f4) captures how perturbations in f; influence the
output while accounting for the fact that f; may share information with fy; the influence of fy; may or may
not change simultaneously. For clarity, consider a stylized case in which f; and f; are mutually dependent,
while the remaining features fs, f4, ..., fr are independent of each other. Suppose further that

(f1, f3,- .-, fm) are directly related to Y, 40
(f2, fp,-- -, f1) are inversely related to Y, ( )

with m,p < k. Using MCIR for the dependent pair (f1, f2) and PCIR for the independent features, the
induced explanatory model takes the form
_CYS L ) fit g fst+ o+ g, fm

E(YN=M =
¥ <2 CY's fal 1) fa+np, fo+ - +np S (41)

where 7y, denotes the PCIR score of the independent feature f;. In this setting, I(Y”; fi | f2) and I(Y”; fa | f1)
act as the MCIR scores that isolate the unique contributions of f; and fy from their shared variability. The
construction above assumes that each feature depends on at most one other feature. However, real-world
environments frequently exhibit multivariate dependency structures in which a feature may depend on
several other variables simultaneously. In such cases, classical conditional mutual information cannot isolate
unique contributions, because it is designed for low-dimensional conditioning sets. To address this limitation,
we introduce the Conditional Multivariate Mutual Information (CMMI) in Section which generalizes
conditional mutual information to the setting where a feature may depend on multiple neighbours. MCIR
is then constructed directly from CMMI and JMI, providing a principled, bounded, and dependency-aware
global attribution score in fully multivariate feature spaces.

B.2 MCIR; when multiple features are dependent

In ExCIR, it is necessary to calculate the mutual impact of a feature on the output variable while assuming
the target feature is dependent on other features. But before we define MCIR for multivariate cases, we have
to derive CMML. In ? the authors derived CMI for a multivariate environment where the features are dependent
on another variable. i.e., they considered the case when all variables are dependent on one common variable.
But in our work, we address the case when all the features are dependent on each other. So, if we want to
calculate the mutual dependence between a targeted feature and the output variable we have to calculate the
CMMI given that the target feature is dependent on multiple features. More specifically, in existing works 777,
the notion of I(Y’; f1, fas .., fr_1lfx) is derived and used in many real-life cases. However, this approach cannot
be directly applied in our environment. We therefore introduce a new matrix I(Y"; f;l¢ C {||F||" ** — fi};i # N;
where any ¢ is any chosen subspace from the main feature space and can contain various combination of
features. ¢ = ¢ U ¢q, ¢c is any subspace that contains continuous features and ¢4 is any subspace that contains
discrete features.

Definition 6 (CMMI). Let F € R™ ** be the data matriz with columns {f1,---, fx} (features) and let
Y' = (yi,...,y.,) denote the output variable. Fiz an index i € {1,...,k} and write f; = (fi,. -, furi) for
the (continuous) targeted feature. Let

¢ CH{f1- s I\ LS} (42)
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denote any subset of the remaining features, decomposed as ¢ = ¢. U pq, where ¢. collects the continuous
components and ¢q the discrete components (both excluding f;). The CMMI between Y' and f; given ¢ is

defined as
/ E E s o p(y' | fi,9) )
Y i fi | d) / /f p(y »fza(b) I g2< p(y, ‘ ¢) ) df; dge, (43)

iyl

where the outer sum runs over the support of the discrete variables in ¢4, the integrals are over the supports
of fi and ¢., and p(-) denotes the joint/conditional densities or mass functions as appropriate for mized
(continuous—discrete) variables. By construction, I(Y'; f; | ¢) > 0 (in bits) and is unbounded above (i.e., it
can take values in [0,00)), unlike correlation which is confined to [—1,1]. Equation equationfollows the
standard definition of conditional mutual information for mized variables (cf. T). A complete derivation is
provided in Supplementary §1.3.

For clarity, consider three features (f1, f2, f3) that may be statistically dependent. Assume f; is continuous,
while f3, f3, and the response Y’ are discrete. Then the conditional mixed mutual information (CMMI)
between Y’ and f; given (fa, f3) is

/. (y ‘f17f27f3>
1Y F1 | fofs) = ;fz/ D0t iofe log, LI a (14)

where the sums are over the discrete supports of fs, f3,%’, and the integral is over the support of the continuous
variable f.

Equivalently, using p(y/, f1 | f2, f3) = (' | f1, f2, f3) p(f1 | fa, f3),

p(y/,fl | f27f3)

W5 o) =0 / S o) Vot A (15)

By symmetry, the corresponding identities for f and f3 are
1075 fa o fi) = 3235 / S0l oo ) o ty hulebilgp, (46)
I fs | fu. fo) ;;/ Zy:py 1. for f3) logs (y(y {1}1{2};;3) afs. (47)

Let ¢ = (f1, f2, f3) and ¢\ f1 = (f2, f3). Then equation ?? can be written as

P | f1,0\ f1)
py' o\ f1) |’

The expectation in equation is taken with respect to the joint p(y/, f1,¢ \ f1), i.e., sums over discrete
supports and integrals over continuous supports.

IY'5 il o\ f1) =By .o\ ) {IOE’Q (48)

Four-feature case. Let ¢ = (f1, fa, f3, f4) with fi continuous and fs, f3, f4,Y" discrete. Then

/ W' | f1, fo, f3, fa)
I fu | for f3, fa) = ;;;/;py i, f2s f3, f1) log, y(y|,|1f272f3’3f4)4 dfi. (49)

Equivalently, using Bayes’ rule,

(y fl | f27f3af4)
TS Al o far ) = %%%/ﬁ ;p V' 1o, fa, f3, fa) Lot P | fa, fa, fa) (f1 | f2, f3, fa) dh- (50)
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By symmetry,

050 s i) =3 5% / S0l oo fr ) o (y(y|/{1}1f2}3f3}4€4) afs, (51)

fi fz fa
p(y' | fi, fo, f, f1)
L5 f3 | fro for fa) = ZZZ/ Zpy f1, f2. f3, f1) logs y(y|’|1f1,2f2,3f4)4 dfs, (52)
I b f) =3 % / Zpy fu. for fon 1) log (y(y',{ljzf}Q"j?’J;gJ;‘*) afs (53)

fi f2 o fs Je oy

Think of ¢ as a subspace of the feature space that can take different combinations of features, containing
both continuous (¢.) and discrete (¢4) components with ¢ = ¢. U ¢4 and ¢. N ¢y = &. Using the compact
form with set difference,

/ p(y’|f1,¢\f1)}
Iy =E, ., log, 24 LJLONJL) 4
Y5l o\ f) p(y',f1,9\f1) | 1082 p(y' | &\ f1) (5 )
General k-feature case. Let F € R"** denote the feature matrix with columns {f1,..-, fx} and fix

i €{1,...,k}. For any conditioning set ¢ C {f1,..., fx} \ {fi} decomposed as ¢ = ¢. U ¢q4, the conditional
mixed mutual information is

1073 551 6) = Z/ /Zpy fio ) o, "I 4, (55)

where the outer sum is over the support of the discrete variables in ¢4, and the integrals are over the supports
of the continuous variables in ¢. and of f;.

CMMI could take the values between 0 to oo, unlike the strict bound of (0, 1) that the normal correlation
coefficient has. The infinite range can be the cause of the problem regarding scalability. So, it will be better
to scale down the dependency. This problem can be solved by our proposed metrics Mutual Correlation
Impact Ratio (MCIR) ratio. MCIR is the ratio of two mutual information which is defined below. MCIR has
a strict bound between 0 to 1.

Definition 7 (Mutual Correlation Impact Ratio (MCIR)). Let F € R"*F be the feature matriz
with columns {f1,..., fr}, where fi = (fii,---, fai)" and features may be statistically dependent. Let
Y' = (yl,...,y,)" denote the output variable. Fizi € {1,...,k} and let ¢ C {f1,..., fr} \ {fi} be any
conditioning set (possibly mized continuous—discrete). The Mutual Correlation Impact Ratio (MCIR) of f;
with respect to Y’ given ¢ is

/ I(Y/§ fi | d))
CY'5file)= . 56
Y5 1i19) IV fil @) + 1Y f1, fas -, f) (56)
Here I(-;- | ) is conditional mized mutual information, and I(Y'; f1,..., fx) > 0 is a (nonnegative) joint
dependence measure between Y' and the full feature set.
Theorem 7 (Bounds). For any valid choice of i and ¢, provided that
IY'5 fil @)+ IY's 1, fk) >0
the MCIR satisfies
0<CY'sifile) <1 (57)
Proof. By nonnegativity of mutual information,
0 < I(Y'5fil¢) < o0 (58)
and by definition I(Y’; f1,..., fr) > 0. Hence
0 < IY'ifild) < I(Y'sfi| )+ 1Y s fr,o s fa) < o0 (59)
Dividing the left and right sides of equation [59| by the positive denominator yields equation which equals
equation [56] by definition. O
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Definition 8 (Joint Mutual Impact (JMI)). Leti € {1,...,k} be a target feature and let ¢ C {f1,..., fi}\
{fi} be its conditioning set. Denote the full feature block by F' = (f1,..., fx). Assume that the total joint
dependence satisfies I(Y'; F') > 0. The Joint Mutual Impact (JMI) of feature f; relative to its conditioning
neighbourhood ¢ is defined as

Ji(g) = 1Y, F') — I(Y';9), (60)
i.e., the portion of total feature—output dependence that remains unezplained by the conditioning block ¢.
Definition 9 (Global Joint Mutual Impact). Let ® denote your conditioning policy for single-feature
terms (e.g., a common ¢ or per-feature ¢;). Assuming the denominator is positive, define

IY'5f1, - f)

j: )
LY fr i) + S (Y75 fi | ¢0)

(61)

so that J € [0, 1].
Proposition 7 ( Aggregated model). Let € = C(Y'; f; | ¢) for a specified conditioning policy ¢ C
{f1,---, fx} \{fi}. For a task-dependent partition of indices {1,...,k} = {i1,...,im} U {jp,-..,dq} (disjoint
union), an ExCIR-style scoring model can be written as

EY') = M(fi10) = 3 + =3 ,
r=p efjr ij

(62)

where J is given by equation @ Since each €y, € [0,1] by equation the coefficients are normalized and
directly comparable across features.

Theorem 8 (Redundancy Collapse). Let ¢ be a target feature and let ®(i) denote its conditioning neighbour-
hood. If f; is conditionally redundant with respect to' Y’ given its neighbours, i.e.

Y' L fi] fag, (63)
then the MCIR score satisfies C; = 0.
Proof. By definition of conditional independence, Y L f; | fo() — I(Y'; fi | fao@i)) = 0. Let
Ai =I5 fi | fa@), Bi = I(Y'; for) U{f:}),

where B; > 0 by nonnegativity of mutual information. From the MCIR definition,
Ay

i A+ B;’ (64)
Substituting A; = 0 gives
0
=0T (65)

If B; > 0, which holds whenever the conditioning block retains nontrivial dependence with Y, then the ratio
evaluates to C; = 0. If B; = 0, then fg(;) is itself independent of Y” and the joint distribution factorises as

p(Y', fi, faey) = p(Y") p(fis fo(s))- (66)
In this degenerate case the numerator and denominator both vanish, and MCIR is defined to be zero by

continuity:

) A;
lim
A;—0,B;—0 A; + B;

=0. (67)

Thus in all cases C; = 0, establishing that MCIR collapses to zero whenever the target feature provides no
unique information beyond its neighbours. O

Theorem 9 (Unique-Signal Dominance). Let i be a target feature and ®(i) its neighbourhood. If the
conditional mutual information of f; dominates the joint block information, i.e.

I fi| fagiy) > I(Y"s oy U{fi}),
then the MCIR score satisfies C; — 1.
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Proof. Again write
A = 1Y fi | o)), B = I(Y'; fouy U{fi}):
with A;, B; > 0. The MCIR score is

Assume the dominance condition: 4
= = oo
B
Equivalently, for any € > 0 there exists M > 0 such that A; > M B; implies B;/A; < e. Using the algebraic

identity,
1

Ci = )
1+ B;/A;
we obtain

— - < B. .
1—|—Bz/AZ - Z/AZ

Because B;/A; — 0 under the dominance assumption, we have

1-Ci| =

Oi—)l.

The interpretation is that the unique conditional contribution of f; overwhelmingly exceeds the joint
dependence contributed by its neighbours. Hence the MCIR ratio assigns maximal credit to f;. O

B.3 Correlation—Impact Sensitivity Theorem

We now show that in the ExCIR model, the sensitivity of the local output with respect to a feature input is
fully determined by the feature’s correlation impact ratio. The effect is linear for positively related features
(appearing in the numerator of the model) and nonlinear inverse—quadratic for negatively related features
(appearing in the denominator).

Theorem 10 (Correlation—Impact Sensitivity). Let the model output be

Zj en 151
Zje'p nf; fj 7
where N denotes features with positive influence (numerator) and D features with negative influence (denom-

inator). Assume features are independent, so that the partial derivative with respect to f; treats all other
features as constants. Then:

Y = (68)

1. If i e N (positive relation):

Yy’ 1

L S 69
0fi e Zje’D ns; i (69)
2. If i € D (negative relation):

ay’ co

f;  2Ko — 77?1. ’

(70)

ca, Ko constants depending only on fized features. Thus the sign and magnitude of sensitivity are determined
entirely by the correlation impact ratio 1y, .

Proof. Let,
N
N=Y ngf D= gl Y =5 (71)

JEN JjED

All other features are held fixed under independence.
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Case 1: i € N (positive influence) Then

ON oD

oy, =" o5, = 72)
Differentiate:
a a
oy’ _ DT% _NTJ’Di _ Dy, _ Ny (73)
af; D2 - D2 D
Since D is constant with respect to f;, set ¢c; = %. This proves
oy’
BT”- = C1nf;- (74)
Case 2: i € D (negative influence). Now,
ON oD
or, ~»  ap M (75)
Differentiate:
af; - D2 =N D2’ (76)
Rewrite N and D in terms of constants plus the contribution of f;:
D:T]flf’b“rKZ: N:K19 (77)
where K1, K5 collect all fixed terms. Thus:
oy’ K
U .t S 78
af; Nf; (77fri fi+ K2)2 ( )
The denominator expands into a quadratic expression:
(ny, fi + K2)* =3, f7 + 2Kany, fi + K3. (79)

Since f; is the differentiation variable and all other terms are absorbed by constants K;, Ko, we may rewrite:

oy’ co

ofi 2Ky -3 (80)

where ¢; and K arise from grouping constant terms. The negative sign is absorbed into the definition of cs.
Thus, sensitivity in the denominator is nonlinear and is inversely controlled by the magnitude of 77]% O

Corollary 1. If a feature has a positive contribution to the output, then

ay’
E[Tﬂ} X Mg, - (81)
If a feature has a negative contribution, then
oy’ 1
E —. 82

Thus, the correlation impact ratio fully characterizes first-order output sensitivity.

So it is confirm that MCIR provides a principled measure of how changes in f; propagate to Y’, via either a
direct linear effect (positive correlation) or a stabilizing inverse effect (negative correlation).
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B.4 Stability of MCIR Rankings

Theorem 11 (Rank Stability). Assume the MI/CMI estimators T satisfy the sub-Gaussian concentration
inequality

Pr(ﬁ_ 1| >8) < crexp(—can/6?) (5> 0), (83)
for some constants c1,co > 0. Let C be the vector of estimated MCIR values. Then the Kendall rank distance
satisfies

~ k
1-— T(C, C) = OP(W) .
Proof. Let

A =I(Y'; fi | foy), Bi = I1(Y'; fouy U{fi})s (84)
and their estimates

A =I(Y'; fi | fowy), Bi = I(Y'; fouy U{fi})- (85)
MCIR is the smooth function n

Ci =g(Ai, Bi) = mv Ci = g(Ai, By). (86)

Step 1: Lipschitz continuity. If A; + B; > n > 0, then

9g | _ A, 1

Og|___Bi 1 |9|___ A
‘a’_(Ai‘FBi)QS‘ln, ’33 _(Ai+Bi)2S477. (87)
Thus,
l9(As, Bi) — g(As, Bi)| < L (|Ai — Ai| + |Bi — By, (88)
where L = 1/(2n).
Step 2: Concentration. By the sub-Gaussian inequality,
|Ai = Ail = 0p ('), |Bi = Bi| = Op(n'~"/?). (89)
Step 3: MCIR error. Thus,
|Ci — Ci| = Op(n'~1/2). (90)
Step 4: Kendall distance. A pairwise comparison flips sign only if
(G = Ci) = (G = €| 2 1Ci = C. (91)
With k(k —1)/2 ordered pairs,
1—7(C,C) = Op(kn’~1/2), (92)
completing the proof. O

B.5 Oracle Inequality for Estimator Switching

Theorem 12 (Bootstrap—Switching Oracle Inequality). Let C© denote the MCIR vector computed
using estimator e € £ = {copula, kNN, plug-in}. For each feature i, define the switching rule

e(i) = arg renelg Ey {SEb (@(‘3))} , (93)

where By, denotes bootstrap expectation. Assume the bootstrap is consistent for MCIR, i.e. bootstrap standard
errors converge uniformly to the true risks at rate O(n'~'/2). Then

E|CsY - ¢,

< mig]E 655) — Ci’ +0(n'~1/?). (94)
ec
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Proof. Let the true risk of estimator e be

R. = IEH@(E) el

] . (95)

Bootstrap consistency yields the uniform approximation

/Re =E, |:SEb (62‘(6)):| = Re + &, (96)
with the random error term
|€e| = O(n'_l/z) uniformly over e € £. (97)
Let
e* = argmin Re and e = argmin Re. (98)
ecf ect
By equation [06] we have
Re =R+ 0(n'"1/?), (99)
so comparing the minimizers,
R~< Res + O(n’_l/Q) . (100)

Finally, since the switching estimator satisfies

Csv =0, (101)
taking expectation of equation yields
EllCsw — i1 < min R, 1—1/2
[CZ C ] _IEIIGI?R +O(n ), (102)
completing the proof. O

B.6 Lightweight Fidelity Theorem

Theorem 13 (Lightweight Fidelity). Let C and C' denote MCIR rankings obtained from the full and
lightweight environments, respectively. Suppose the lightweight environment satisfies:

d; (DY), D(Y")) <, (103)
Jak(c,C’) > o, (104)
Ader < Ao (105)

Then there exist constants A, B > 0, independent of n’, such that

1—7(C,C") < Ae + BAg + op(1). (106)

Proof. The rigid-motion invariant discrepancy d i satisfies

di(D(Y),D(Y") <e = l‘hl‘sgp<1 [E[R(Y)] — E[h(Y")]] < Ae. (107)

Since MI and CMI are continuous functionals of the joint distribution under our regularity assumptions
(bounded density ratios, smooth kernels), we obtain

(Y3 fi | fowy) — (Y5 fi | fa)| < Ae + op(1). (108)

Step 2: MCIR continuity. MCIR is the smooth map
I(Y; fi | faqy)

i = . 109
IYs fi | foy) + 1Y foy U {fi}) (109)

Using the Lipschitz continuity of rational functions on compact domains,
|C; — Cl| < Ae + Op(n'~1/2). (110)

42



Under review as submission to TMLR

Step 3: Head-rank agreement restricts top-K inversions. The Jaccard condition equation 104
ensures
|Top-K(C) A Top-K(C)| < (1 - 10)K. (111)

Thus the number of allowable inversions involving top-K indices is bounded.

Step 4: Deletion-curve agreement controls remaining inversions. Deletion curves depend only on
ordered MCIR values. If
Ager < Ao, (112)

then the misalignment between sensitivity curves of C' and C’ is uniformly bounded. This limits possible
perturbations in pairwise MCIR differences:

(Ci = Cj) = (Cf = C)I S Do+ op(1). (113)

Step 5: Kendall distance decomposition. Kendall’s distance decomposes into:

1-7(C,C" =
(top-K inversions) + (remaining inversions) (114)

+(magnitude-driven errors).
The magnitude control in equation equation [I10, we obtain
1—7(C,C") < Ae + BAg + 0p(1), (115)

completing the proof. O

C Conditional Multivariate Mutual Information (CMMI)

MCIR requires a dependence measure that isolates the unique information a target feature contributes to the
output Y, even when the feature is embedded in a multivariate dependency structure with several neighbours.
Classical conditional mutual information (CMI),

I(Y's fi | Z), (116)

is well-defined for a fixed low-dimensional conditioning set Z, but breaks down when f; depends on multiple
correlated features simultaneously, especially when Z must be chosen data-adaptively. This motivates the
introduction of the Conditional Multivariate Mutual Information (CMMI).

C.1 Formal Derivation

Let the feature block be,
F'=(f1, -, fx)s (117)

and let,
®(1) C{frs-- s fb \ {fi} (118)

be the neighbourhood of f;, obtained from correlation screening or a dependency graph. Assume the joint
law of (F’,Y”’) admits either a multivariate pdf or pmf.

Step 1: Total dependence of block F’ on Y’.
I(YF) = HY') = HY' | F'). (119)

Step 2: Dependence explained by neighbours ®(i).
IV foy) = HY') = H(Y' | fa@)) - (120)
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Step 3: Unique contribution of f;. Adding f; to ®(i) modifies the conditional entropy:
H(Y/ | f@(i)) - H(Y' \ f@(i)7fi) . (121)

Definition 10 (Conditional Multivariate Mutual Information (CMMI)). For any target feature f;
and neighbourhood ® (i), define

CMMI(Y'; f; | ®(3)) = H(Y’ \ fq,(l-)) - H(Y/ | fq)(i),fi), (122)
whenever the conditional entropies are finite.
Because conditional mutual information satisfies
HY'|Z)-HY'| Z f;)=1Y"; fi | 2), (123)

we obtain:

Key identity.
CMMI(Y'; fi | @(4) = I(Y'; fi | fa(i))- (124)

Thus, CMMI is equivalent to classical CMI, but with the crucial difference that the conditioning set ®(i) can
be:

- multivariate, - high-dimensional, - data-driven (from correlation graphs), - mixed continuous/discrete, -
automatically chosen.

This generality is exactly what is required for MCIR.

C.2 Connection to Ml and CMI
MI as a special case. When ®(i) = {),

CMMI(Y'; f; | 0) = I(Y'; f:)- (125)

Classical CMI as a special case. When ®(i) = Z is fixed and low-dimensional,

CMMI(Y'; f; | Z2) = I(Y'; fi | Z). (126)
General case. CMMI extends MI and CMI by allowing:

1. arbitrary multivariate conditioning sets ®(7),
2. mized continuous—discrete entropy functionals,
3. correlation-driven neighbourhood selection rather than fixed Z,

4. compatibility with Joint Mutual Impact (JMI) and MCIR.

C.3 Why Classical CMI is Insufficient

Classical CMI assumes:

1. a fixed conditioning set,
2. low-dimensional conditioning,

3. one-to-many dependence patterns (CMI conditions on a single Z).
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In real high-dimensional systems, these assumptions fail. We formalize this gap using a structural theorem.

Theorem 14 (Failure of Classical CMI in Multivariate Dependencies). Let f; depend on d; other
features:
fe L s, [Si| = ds. (127)

Suppose classical CMI conditions on o fizred Z with |Z| < d;. Then, unless Z contains the entire dependency
set Sy,
I(Y'; fi | Z) # CMMI(Y'; f; | Si), (128)

and, in general,
I fi| Z) <I(Y's fi | S0). (129)

Proof. By the data-processing inequality for conditional entropy,
HY'|Z)>HY'|S;). (130)

Since S; contains strictly more predictive information than any strict subset Z C S;,

HY'"| 2, f))-HY'|2) < HY'| S, fi) —HY"| S)). (131)
Thus,

IY'5 £ 2) < I(Y'; fi | Si), (132)
with strict inequality when the excluded variables contain unique information. Since CMMI uses the full
neighbourhood S; (or ®(i)), classical CMI cannot in general recover it unless Z = S;. O
Implications.

e CMI underestimates feature importance when the conditioning set is incomplete.

CMI yields non-unique results, depending on the arbitrary choice of Z.

o CMMI resolves this by using an adaptively identified multivariate conditioning set ®(7).
e MCIR builds directly on CMMI to quantify unique impact by:

_ CMMI(Y'; f; | ©(3))
- OMMI(Y; f; | (i) + I(Y'; foy U{fi})

C.4 Practical Estimation Notes
CMMI is estimated using:
ml(yl;fi | ®(i)) = H(Y" | fa@)) — H(Y'| Jay, fi)s
with entropy estimators matched to variable types.
Choice of estimator. We use the same family of MI/CMI estimators as MCIR:
e Gaussian—Copula for robust nonlinear dependence,

o kNN (Kozachenko—-Leonenko) for local nonlinear structure,

o Plug-in estimator for discrete/mixed features.

Stability. Bootstrap standard errors determine the optimal estimator per feature, as formalised by the
oracle inequality in Theorem
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Computational structure. For each feature f;:

cost = O(|®(4)| - n’ logn’) .

CMMI therefore scales linearly in neighbourhood size and approximately logarithmically in sample size,
making it suitable for lightweight environments.

D Complexity Analysis and Additional Results

This appendix develops a unified theoretical and computational analysis of MCIR. It begins with an algorithmic
(Kolmogorov) complexity perspective, transitions to operational computational complexity for PCIR and
MCIR, examines the behaviour of standard MI/CMI estimators, and concludes with a complete statistical
analysis of MCIR, including consistency, asymptotic normality, and perturbation stability. All exposition and
proofs are presented in continuous scientific narrative rather than itemized form.

D.1 Algorithmic (Kolmogorov) Complexity of MCIR

Let C be a fixed universal Turing machine, and denote conditional Kolmogorov complexity by Kc(- | -).
Consider the binary representation Y’ € {0, 1}"/ of the subsampled target, whose bit-length is £(Y') = n'.
The conditional Kolmogorov complexity K¢ (Y’ | £(Y’)) is the length of the shortest program that outputs Y’
when supplied with its bit-length. Universality of Turing machines implies that, for any alternative universal
machine A,

Ke(Y') < Ka(Y [ £(Y')) +log™n' + ca,

where log* n/ is the iterated logarithm and c, is a constant depending only on A. Since log* n’ = O(logn’),
this bound simplifies to
Kce(Y') < Ka(Y' | £(Y")) + O(logn') + ca.

The coding—entropy correspondence for mixed discrete—continuous variables implies that, for each conditional
mutual information term used in MCIR, one has

IY's fi| ) < H(Y') = H(Y'| fi, ¢) + O(logn).

The O(logn') term captures the cost of encoding discretisation indices and model structure. An analogous
inequality holds for the joint dependence term I(Y’; f1,..., fr), with a constant that does not depend on n'.
Substituting these bounds into the MCIR definition,

I(Y';fi|¢)
(Y5 fil @)+ 1Y frso fi)

€=

shows that each MCIR score satisfies
¢; < 30(logn’) + Ca

for some constant (4 ; independent of the subsample size. Aggregating across all k features yields the
program-level Kolmogorov complexity bound

Kc(MCIR pipeline) < K, (Pipeline | n') + £0(logn’) + ca.

Thus MCIR introduces at most logarithmic overhead in n’ and linear overhead in k under the most fundamental
notion of algorithmic complexity.

D.2 Operational Computational Complexity of PCIR and MCIR

The implementational complexity of PCIR and MCIR reflects the structure of their respective computations.
PCIR relies only on rank normalisation and a small collection of variance and covariance operations computed
over n’ subsampled observations. Each of these operations can be carried out in a fixed number of linear passes,
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and no intermediate step depends on the total feature dimension k. Consequently, the cost of computing
PCIR for a single feature scales linearly in n’, and computing PCIR for all k features results in an overall
complexity of O(kn').

MCIR requires a different analysis because each MCIR score involves evaluating mutual information and
conditional mutual information terms. These quantities are computed over the same n’ observations but
only within a small, fixed conditioning neighbourhood of size mg. The total dimensionality involved in
each MI computation is therefore me + 2, independent of the global feature dimension k. If epp(n’, me + 2)
denotes the computational cost of executing a mutual information estimator on n’ observations in that fixed
dimensionality, then the cost of a single MCIR evaluation is O(emi(n’, me + 2)). Computing MCIR for all k
features yields an overall complexity of O(k epi(n’, me + 2)), which reveals that the computational burden
of MCIR is governed almost entirely by the subsample size n’ and by the choice of MI estimator. MCIR
therefore remains effectively linear in k and nearly linear in n’ whenever the MI estimator is itself near-linear
inn'.

D.3 Comparative Behaviour of MI/CMI Estimators

The computational profile of MCIR depends crucially on the choice of underlying MI estimator. Gaus-
sian—copula MI requires the formation of an empirical covariance matrix in time proportional to O(n’) when
the neighbourhood dimension is fixed, followed by a constant-time matrix inversion. Its cost is therefore
effectively linear in n’. Nearest-neighbour-based MI estimators, such as kNN MI, scale as O(n’logn’) due to
the cost of nearest-neighbour queries, typically via balanced kd-tree structures. Plug-in estimators operate
by constructing histograms or count tables and thus run in a single pass with cost proportional to O(n').
Kernel-based estimators incur a substantially higher cost of O(n'?) because they require formation of Gram
matrices. Neural MI estimators such as MINE exhibit linear per-iteration cost in n’ with additional overhead
from stochastic optimisation. A summary of these behaviours is provided in Table Since MCIR always
operates on a neighbourhood of fixed dimensionality me + 2, even the more demanding estimators become
tractable when n’ is moderate, and the cost never depends on the global feature dimension k.

Estimator Complexity in n’ Dependence on Local Dim. Characteristics
Gaussian—copula MI O(n") Quadratic in mg Covariance + log-det; very efficient.
kNN MI O(n'logn’) Mild Nearest-neighbour search.
Plug-in MI O(n') Depends on binning Single-pass histograms.
Kernel MI O(n'?) Quadratic High accuracy, high cost.
Neural MI (MINE) O(n') per iteration Model-dependent Requires SGD.

Table 16: Comparison of MI/CMI estimators compatible with MCIR. Since MCIR, operates only on a fixed
local neighbourhood of dimension mg + 2, the cost is driven almost exclusively by the subsample size n’
rather than the total number of features k.

D.4 Statistical Properties of the MCIR Estimator

Let U; = I(Y; fi | fo) and J; = I(Y; fauyiy) denote the population-level “unique” and “joint” information
contributions. Whenever U; + J; > 0, the MCIR score is defined as
U
C; = .
U, + J;

Let (U}, j;) denote consistent estimators of these quantities computed from a subsample of size n’. The
following results establish the statistical soundness of the MCIR, estimator.

Theorem 15 (Consistency of MCIR). Assume that (72 2 U; and jz 2y J; asn' — oo, and that U; + J; > 0.
Then the MCIR estimator

=

Cr = =———
U; + J;

converges in probability to C;.
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Proof. The mapping g(u,j) = u/(u+j) is continuous on the domain where u+j > 0. Since (ﬁz, jz) converges
in probability to (U;, J;) and the denominator remains bounded away from zero, the Continuous Mapping

Theorem implies that g(ﬁi, fz) converges in probability to ¢g(U;, J;). Hence 5n/ L. O

Theorem 16 (Asymptotic Normality of MCIR). Suppose that the pair (U’Z, j;) satisfies the joint central limit
theorem R
U, -U;

i
Ji —J;

) - st0

for some positive semi-definite covariance matrix ¥. Then the MCIR estimator is asymptotically normal:
Vil (Cor — Ci) = N(0,02),

where o2, = Vg(U;, J;) 'SV g(U;, J;) and

Ji
(Ui + Ji)?

[6pt] —

Vy(Ui, J;) =
(Ui + Ji)?

Proof. The mapping g(u,j) = u/(u + j) is continuously differentiable on the region where u + j > 0. Its
gradient at (U;, J;) is given by the expression above. Since (U;, J;) satisfies a bivariate central limit theorem,
the multivariate Delta Method applies directly and yields the stated asymptotic distribution for C,,. O

Theorem 17 (Perturbation Stability of MCIR). Let § = max(|(7¢ — Ui, |J; — Ji|) and assume that § <
(U; + J;)/2. Then the MCIR estimator satisfies the bound

20

OO < .

Proof. The difference between the empirical and population MCIR scores can be expressed as

Go—C=Yi Ui

Expressing this as a difference of fractions and expanding the numerator reveals that the discrepancy is
proportional to U;J; — U;J;. Using the triangle inequality shows that this term is bounded in magnitude
by (U; 4+ J;)d. The denominator can be bounded from below by (U; + J;) — 2§, which, under the stated
assumption, is at least (U; 4+ J;)/2. Combining these inequalities yields

(U; + ;)0 25

an/ - Cz < = )
| < %(Ui+Ji)2 Ui + J;

as required. O

Theorem 18 (Global Computational Complexity of CIR Methods). Let n’ be the subsample size, k the
number of features, and mo a fived neighbourhood size. PCIR admits an overall computational complexity of
O(kn'). MCIR, when implemented with an MI estimator of cost eyp(n’, me +2), admits an overall complezity

of
Ok eyi(n',mae + 2)) .

If the MI estimator is near-linear in n', then MCIR is near-linear in both n' and k.

Proof. This follows directly from the per-feature analyses in Sections and combined with the fixed
neighbourhood dimensionality. O
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Corollary 2 (Sample-Efficiency of MCIR). Under the assumptions of consistency and asymptotic normality,
the variance of the MCIR estimator decreases at the canonical rate n'~', implying that accurate MCIR scores
may be obtained from subsamples much smaller than the full dataset size. Hence MCIR remains statistically
reliable even in lightweight environments.

Remark 3 (High-Dimensional Robustness). Since the conditioning neighbourhood has fized size me, the
complezity and variance of MCIR do not depend on the ambient feature dimension k. This makes MCIR
particularly well suited to high-dimensional models, where traditional global MI-based feature importance
methods become computationally prohibitive or statistically unstable.

Lemma 1 (Ranking Stability). Let i and j be two features with population MCIR scores C; and C; satisfying
|C; — Cj| > n for some n > 0. If the perturbations in U and J satisfy the bound in Theorem 3, then for
sufficiently large n',

Pr(@n/,i > an/7j) — 1.

Thus, MCIR rankings are asymptotically stable whenever the population scores are separated by a nonzero
margin.

Proposition 8 (Parallel Scalability). If p processors are available and MI evaluations are distributed evenly
across features, the total runtime of MCIR reduces to

) (]; cMI(n/, me + 2)) s

up to communication overheads that vanish for lightweight subsamples. Thus MCIR achieves near-linear
speedup under parallelisation.

D.5 Memory and Parallelisation Considerations

The MCIR pipeline is naturally suited to parallel computation because the scores for different features do
not interact. All MI and CMI computations can therefore be performed asynchronously across CPU cores
or distributed computing nodes. The memory footprint is governed almost exclusively by the storage of
the subsampled arrays (Y, f;, fo); streaming or on-demand indexing requires only O(n') active memory.
GPU-based acceleration is particularly effective for Gaussian—copula MI and kernel MI estimators, while kNN
MI tends to benefit from CPU-bound parallelism. Owing to this structure, MCIR remains computationally
scalable even when k is large.

D.6 Practical Choice of the Subsample Size n’

The statistical guarantees above imply that the standard error of MCIR decreases at rate n'~'/2, while

the computational cost grows at most linearly in n’. In practice, one may therefore select n’ by balancing
accuracy and computational budget. Empirically, subsamples containing between 5% and 20% of the original
dataset often achieve MCIR stability comparable to the full dataset, owing to the low-dimensional nature of
each MI computation.

Theorem 19 (Unified Computational-Statistical Guarantee for MCIR). Assume (i) subsamples of size n’
are drawn independently of the estimator, (i) the MI and CMI estimators are consistent and satisfy a joint
central limit theorem, and (iii) the neighbourhood size me is fized. Then MCIR satisfies all of the following
properties simultaneously:

1. Computational near-linearity: Time = O(k evi(n’, me + 2)).
2. Statistical consistency: (7,, L.
3. Asymptotic normality: v/n'(Cp — C) = N(0,0%).

4. Stability under perturbation: |Cpy — C| < 26/(U + J) for small estimator error 6.

Thus MCIR admits provable reliability and tractability even in high-dimensional regimes.
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E Estimator Details

Feature matrix F' € R™**; lightweight outputs
Y'=M'(F); target feature f;.

1) Screening

Goal: fast dependence sketch.
Steps: pairwise dependence (e.g., |corr|, dCor); build mutual-
kNN graph; keep top-m neighbours.

Goal: form correlated groups.
Steps: cluster the graph (community detection / hierarchical
clustering) — blocks B, ..., B,.

3) Conditioning set ®

Goal: small, informative context for f;.
Steps: find block B(i); set ® to the mg closest neighbours of
fi within B(7) (e.g., ma € [3, 10]).

Goal: quantify unique contribution.
Steps: estimate I(Y'; f; | fs) (Gaussian—copula / kNN /
plug—in) and I(Y’, fsu(i}); compute bounded score C €

[0, 1].
5) Validation & reporting

Consistency: bootstrap; recompute C; rank agreement &
bands.

Trustworthiness: lightweight vs. full ranks; del/ins curves.
Efficiency: wall—clock vs. observations.

Figure 14: MCIR methodology: screening — blocking

In our analysis, we focus on estimating two key com-
ponents: marginal and conditional mutual informa-
tion (MI and CMI), as well as joint multivariate
dependence terms. This section outlines the various
estimators we utilize, along with their assumptions,
computational complexities, and error bounds. The
Gaussian-Copula estimator, denoted as GCMI, cal-
culates mutual information using a transformation
that applies normal scores, followed by the applica-
tion of closed-form expressions for Gaussian entropy.
For two random vectors, X and Y, the mutual infor-
mation can be expressed mathematically by a spe-
cific formula that involves the rank-based correlation,
pxy, of these transformed variables. For conditional
mutual information, we employ partial correlations,
which can also be represented with a similar mathe-
matical expression. To use this estimator effectively,
certain assumptions must hold: the process of rank-
Gaussianization should provide a good approxima-
tion of the latent copula, covariance matrices must
remain positive-definite, and the data should not
exhibit a strong multimodal structure. The computa-
tional complexity of this method involves calculating
a rank correlation matrix and inverting it, forming
a complexity of O(k%n’) for computation and O(k3)
for inversion. The error bound suggests that under
sub-Gaussian copula assumptions, the difference be-
tween the estimated mutual information and the true
value diminishes as the sample size increases. The
k-nearest-neighbor (kNN) estimators, based on the
Kozachenko-Leonenko method, utilize volume statis-
tics from the nearest neighbors to compute mutual

— conditioning — estimation — validation. MCIR is

e . (Y3 fil fo)
COfil fo) = sy gaoiy) € 01

information. The specific formula for estimating MI
incorporates the digamma function and the counts of
neighbors in the respective dimensions. This method
requires certain assumptions: it assumes that the
densities are smooth with a bounded curvature, there is local isotropy in the neighborhoods defined by the
k-ball, and the data should have a moderate intrinsic dimension. The complexity of this kNN approach is
O(n'logn’) when utilizing a k-d tree for efficiency, although in worse cases, it could scale to O(n'?). The
error bound indicates that the accuracy of the estimation improves with larger sample sizes, specifically
reflecting a dependency on the intrinsic dimension of the data. The plug-in estimator employs kernel density
estimation (KDE) techniques for mutual information estimation. The estimator integrates a function over
the joint density of the variables X and Y, comparing it against the product of their marginal densities. For
the plug-in estimator to perform well, certain conditions need to be satisfied: the densities must be smooth,
the bandwidth for the kernel should be selected via cross-validation, and there should be no exponential
tail dependence. The computational complexity for this method is roughly O(n'?), which highlights the
potential for slower performance depending on the size of the dataset. The error bound suggests that if
the KDE converges at a certain rate, then the mutual information estimate will also converge accordingly.
In summary, each estimator has its strengths suited for different scenarios: The gcMI is recognized for its
speed and stability, making it an excellent choice for datasets exhibiting moderate correlations. The kNN MI
is robust in the presence of nonlinear dependencies, although it may have a higher variance. The Plug-In
MI is noted for its accuracy but is slower and sensitive to the chosen bandwidth. To enhance performance,
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MCIR (Mutual Correlation Impact Ratio) employs an automatic estimator-switching mechanism that aims
to achieve oracle-level performance.

The computation of the Mutual Correlation Impact Ratio (MCIR) involves a structured three-stage process.
First, we perform neighborhood screening to ascertain potential candidate dependency sets. Next, we estimate
dependencies using the aforementioned MI and CMI estimators, applying bootstrap-based switching for
optimal results. Finally, we compute the final MCIR vector. This section provides a step-by-step algorithmic
description, details on estimator choices, and information on bootstrap protocols utilized across all datasets,
ensuring a comprehensive understanding of the MCIR methodology.

MCIR employs a concise and stable set of parameters, which are straightforward to manage and contribute
to the method’s consistency and reliability.

o The screening threshold, denoted by 7, is selected within the range 0.20 to 0.35. This parameter
determines which features are retained for subsequent analysis.

o For the k-nearest neighbors (kNN) mutual information estimator, the neighborhood size k is set to 5,
so each data point considers its five nearest neighbors during calculation.

e In Gaussian—copula mutual information estimation, a rank transformation is applied to the data:
z = ® 1(F,(z)). This transformation normalizes the data prior to analysis.

e For the bootstrap procedure, 200 replicates are used, repeating the calculation 200 times with
resampled data to estimate variability.

MCIR selects and evaluates important features through a multi-step process. Initially, neighborhoods for
each feature are constructed based on inter-feature relationships, using three methods: Pearson correlation
for linear associations, distance correlation for nonlinear dependencies, and the k-nearest neighbors (kNN)
graph structure to capture geometric relationships. Integrating these approaches ensures comprehensive
consideration of all dependency types among features. Following neighborhood construction, the optimal
subset of features for conditioning is selected. For each feature, a set of neighborhood candidates is identified.
The Auto® algorithm then selects the subset that maximizes mutual information between the feature and the
outcome, subject to a predefined subset size constraint. This process ensures that only the most informative
and relevant features are retained for further analysis. A bootstrap protocol is implemented to enhance the
reliability. For each feature, the MCIR score is computed using multiple estimators, and the calculations
are repeated on resampled datasets to assess score variability. The estimator with the lowest standard error
is selected. This approach provides confidence in the results and mitigates the influence of overfitting or
random noise.

F Additional Theoretical Guarantees of MCIR

This section presents several auxiliary results that complement the main guarantees stated in Section [D-4]
These results establish (i) boundedness of MCIR, (ii) invariance under monotone transformations when using
copula MI/CMI estimators, and (iii) ranking consistency with PCIR in weak-dependence regimes. All proofs
are self-contained and do not duplicate arguments given in the preceding appendix sections.

Lemma 2 (Boundedness of MCIR). For any feature f; and conditioning neighbourhood ® for which
I(Y'; fi | fo) and I(Y'; fougsy) are finite, the MCIR score
COIY fi | fe) F 1Y feugy)

satisfies 0 < C; < 1.

Proof. Both numerator and denominator are non-negative because MI and CMI are Kullback—Leibler
divergences. Since the denominator strictly exceeds the numerator whenever I(Y'; fau(;}) > 0, the ratio lies
in (0,1). If I(Y'; fi | fo) = 0, the ratio is 0; if I(Y"; fau(iy) = 0, then C; = 1. Thus C; € [0, 1]. O
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Proposition 9 (Monotone-Invariance under Gaussian—Copula MI). Let hi, ho, hs be strictly monotone
functions applied elementwise to (Y, fi, fo). If MCIR is computed using a Gaussian—copula MI/CMI
estimator on rank—Gaussianized variables, then

CY's fil fo) = C(hi(Y'); ha(fs) | ha(fa))-

Proof. Strictly monotone transformations preserve rank orderings. Gaussian—copula MI and CMI depend
only on the copula correlation matrices of the rank-Gaussianized variables. Since the empirical copula is
invariant under strictly monotone transforms, the estimated mutual information terms remain unchanged.
Because MCIR is a ratio of MI and CMI terms, the score is likewise unchanged. O

Proposition 10 (Ranking Consistency with PCIR in Weak-Dependence Regimes). Suppose the conditioning
neighbourhood ® is such that I(Y'; fi | fo) = I(Y'; fi) and I(Y"; fougsy) = I(Y'; fi) + I(Y'; fa) for all i up
to o(1). Then MCIR induces the same feature ranking as PCIR:

Ci>C; <= IY'5f)>IY"5f;) <= ng >y

Proof. Under the assumptions,

IY'; fi | fa) ~ I(Y'; f3)
LY fi| fo) + 1YY fougy)  20(Y'5 fi) + I(Y'; fa)

C; =

The denominator shares the same additive constant I(Y”’; fg) for all 4, and the remaining terms preserve
monotonicity in I(Y’; f;). Since PCIR is also monotone in any scalar association measure between f; and Y,
the two scorings induce identical rankings up to o(1) discrepancies. O

Theorem 20 (Redundancy Collapse under Exact Functional Dependence). If f; = g(f;) almost surely for
some measurable g and j € @, then

IY';fi| f&) =0 and hence C; =0.

Property MCIR PCIR MI Ranking SHAP

Locality Local (ma) Global Global Local to prediction
Conditional dependence Yes No No Yes (model-based)
Captures unique info Yes No No Sometimes

Model dependence None None None Strong

Scales to k>n Yes Yes Yes No (kernel SHAP)
Computational cost Near-linear Linear Linear Exponential /approximate
Interpretable numerator ~ CMI (Y7 f;|®) Correlation MI Shapley payoff
Redundancy collapse Guaranteed Not guaranteed Not guaranteed Not guaranteed

Table 17: Comparison of MCIR with related attribution and dependence measures.

Proof. If f; = g(f;) and j € ®, then f; is measurable with respect to o(fs). By definition of conditional
independence,

p(Y' | fi, fa) =p(Y" | fa).

Thus Dxr,(p(Y' | fi, fo) | p(Y" | fo)) = 0 implying I(Y"; f; | fo) = 0. Plugging this into the MCIR formula
yields C; = 0. O

Lemma 3 (MCIR Vanishes Under Conditional Independence). If Y’ L f; | fo, then

IY';fi | f&) =0 and hence C; =0.

Proof. Conditional independence implies p(Y” | fi, fo) = p(Y”' | fo) almost surely. The conditional mutual
information is the Kullback—Leibler divergence between these two conditional densities, which is zero under
equality. Substituting into the MCIR formula yields C; = 0. O
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F.1 Comparison Against Other Attribution Methods

Table [17 summarises how MCIR, differs from PCIR, mutual-information ranking, and SHAP-based explainers.
This comparison highlights that MCIR occupies a unique middle ground between statistical association
measures and fully model-based attribution methods.
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