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ABSTRACT

The strong performance of multi-view self-supervised learning (SSL) prompted
the development of many different approaches (e.g. SimCLR, BYOL, and DINO).
A unified understanding of how each of these methods achieves its performance
has been limited by apparent differences across objectives and algorithmic details.
Through the lens of information theory, we show that many of these approaches
maximise an approximate lower bound on the mutual information between the
representations of multiple views of the same datum. Further, we observe that this
bound decomposes into a “reconstruction” term, treated identically by all SSL
methods, and an “entropy” term, where existing SSL methods differ in their treat-
ment. We prove that an exact optimisation of both terms of this lower bound
encompasses and unifies current theoretical properties such as recovering the true
latent variables of the underlying generative process (Zimmermann et al., 2021) or
or isolating content from style in such true latent variables (Von Kügelgen et al.,
2021). This theoretical analysis motivates a naive but principled objective (En-
tRec), that directly optimises both the reconstruction and entropy terms, thus ben-
efiting from said theoretical properties unlike other SSL frameworks. Finally, we
show EntRec achieves a downstream performance on-par with existing SSL meth-
ods on ImageNet (69.7% after 400 epochs) and on an array of transfer tasks when
pre-trained on ImageNet. Furthermore, EntRec is more robust to modifying the
batch size, a sensitive hyperparameter in other SSL methods.

1 INTRODUCTION

Representation learning commonly tackles the problem of learning compressed representations of
data which capture their semantic information. A necessary, but not sufficient, property of a good
representation is thus that it is highly informative of said data. For this reason, many represen-
tation learning methods aim to maximise the mutual information between the input data and the
representations, while including some biases in the model that steer that information to be semantic,
e.g. (Agakov, 2004; Alemi et al., 2017; Hjelm et al., 2018; Oord et al., 2018; Velickovic et al., 2019).
Moreover, mutual information has been the central object to understand the performance of many of
these algorithms (Saxe et al., 2019; Rodrı́guez Gálvez et al., 2020; Goldfeld & Polyanskiy, 2020).

A subfield of representation learning is self-supervised learning (SSL), which consists of algorithms
that learn representations by means of solving an artificial task with self-generated labels. A par-
ticularly successful approach to SSL is multi-view SSL, where different views of the input data are
generated and the self-generated task is to make sure that representations of one view are predictive
of the representations of the other views c.f. (Jing & Tian, 2020; Liu et al., 2022).

Multi-view SSL algorithms based on the InfoNCE (Oord et al., 2018) like (Bachman et al., 2019;
Federici et al., 2020; Tian et al., 2020a) focus on maximising the mutual information between the
representations and the input data by maximising the mutual information between the representa-
tions of different views (Poole et al., 2019). Similarly, Shwartz-Ziv et al. showed that (Bardes et al.,
2022, VICReg) also maximises this information, even though it was not designed for this purpose.
Moreover, Tian et al. (2020b); Tsai et al. (2020) provide perspectives on why maximising this mu-
tual information is attractive and discuss some of its properties. However, Tschannen et al. (2019);
McAllester & Stratos (2020) warn about the caveats of this maximisation (e.g. that it is not sufficient
for good representations). Here, we complement these efforts from multiple fronts and contribute:
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• Showing that maximising the lower bound (1) on the mutual information between repre-
sentations of different views has desirable properties in good representations (Section 2).
More precisely, we show that this maximisation unifies current theories on learning the true
explanatory factors of the input (Zimmermann et al., 2021) and separating semantic from
irrelevant information (Von Kügelgen et al., 2021).

• Showing how many existing multi-view SSL algorithms also maximise this mutual infor-
mation, although not exactly maximising the lower bound (1). This completes the picture
of contrastive methods with an analysis of (Chen et al., 2020a, SimCLR), where such a
result was only known for (Tian et al., 2020a, CMC)-like methods (Poole et al., 2019; Wu
et al., 2020) under the InfoNCE (Oord et al., 2018) assumptions requiring i.i.d. nega-
tive samples. It also provides a unifying framework with other projections’ reconstruction
methods such as (Chen & He, 2021, SimSiam), (Grill et al., 2020, BYOL), (Caron et al.,
2018; 2020, DeepCluster and SwAV), and (Caron et al., 2021, DINO).

• Demonstrating how a proposed naive method that directly maximises the aforementioned
bound (1) on this mutual information (EntRec) has comparable performance to current
state-of-the-art methods and is more robust to changes in training hyperparameters such as
the batch size (Section 4 and Section 5).

This paper is a recognition of the importance of maximising the mutual information between the rep-
resentations of different views of the input data, as doing so by maximising (1) has desirable prop-
erties (Section 2), and many methods that maximise it (Section 3), including naive ones (Section 4),
have good empirical performance (Section 5). However, since maximising mutual information is not
sufficient for good representations (Tschannen et al., 2019), this paper is also a call to include more
biases in the model and the optimisation enforcing the representations to learn semantic information.
Appendix A completes the positioning of the paper with respect to related work.

Notation Upper-case letters X represent random objects, lower-case letters x their realisations,
calligraphic letters X their outcome space, and PX their distribution. Random objects X are as-
sumed to have a density pX with respect to some measure µ,1 and the expectation of a function f
of X is written as E[f(X)] := Ex∼pX [f(x)]. When two random objects X,Y are considered, the
conditional density of X given Y is written as pX|Y , and for each realisation y of Y it describes the
density pX|Y=y . Sometimes, the notation is abused to write a “variational” density qX|Y ofX given
Y . Formally, this amounts to considering a different random object X̂ such that pX̂|Y = qX|Y .
The mutual information between two random objects X and Y is written as I(X;Y ), and their con-
ditional mutual information given the random object Z as I(X;Y |Z). The Shannon entropy and
differential entropy of a random object X are both written as H(X), and are clear from the context.
The Jensen-Shannon divergence between two distributions P and Q is written as DJS(P∥Q). A set of
k elements x(1), . . . , x(k) is denoted as x(1:k), a (possibly unordered) subsequence x(a), . . . , x(b) of
those elements is denoted as x(a:b), and all the elements in x(1:k) except of x(i) is denoted as x(−i).

2 MULTI-VIEW SSL AND MUTUAL INFORMATION

In multi-view SSL, two (or more) views (potentially generated using augmentations) of the same
data sample X are generated (Bachman et al., 2019; Tian et al., 2020a;b; Chen et al., 2020a; Caron
et al., 2020; Zbontar et al., 2021). Views V1, V2 are engineered such that most of the semantic
information S of the data is preserved (Tian et al., 2020b). This process generates two branches
where the views are processed to generate representations R1, R2 which are later projected into
a lower dimensional space Z1, Z2. Finally, the model’s parameters θ are optimised so that the
projected representations (projections) from one branch, say Z1, are predictive of the representations
of the other branch Z2 (see Figure 1). In particular, as shown in Section 3, many mutli-view SSL
methods aim to maximise the mutual information between the projections I(Z1;Z2).

Consider the following decomposition of the mutual information (Agakov, 2004; Rodrı́guez Gálvez
et al., 2020)

I(Z1;Z2) = H(Z2)− H(Z2|Z1) ≥
Entropy︷ ︸︸ ︷
H(Z2)+

Reconstruction︷ ︸︸ ︷
E
[
log qZ2|Z1

(Z2)] . (1)

1Here, this measure will either be the Lebesgue measure and pX will denote the standard probability density
function (pdf) or the counting measure and pX will denote the standard probability mass function (pmf).
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The role of both terms from (1) in SSL is distinct: the entropy term determines how much infor-
mation from one projection can be learnt, while the reconstruction term determines how much of
this available information is learnt. For instance, imagine the projections lay on the sphere: the
more spread out (higher entropy) the projections of different images are, the more revealing (higher
mutual information) it is if projections from different views of the same image are close (lower re-
construction error). On the other hand, if all images of one branch are projected to the same point
(lowest entropy, also known as collapse), the projections from the other branch can’t reveal any
information about them, because their location is always the same.

Although large mutual information does not necessarily imply good downstream perfor-
mance (Tschannen et al., 2019), maximising this lower bound is a sensitive objective since it pro-
motes learning the semantic information and discarding irrelevant information.

To gain intuition, assume the data can be separated into some semantic S and some irrelevant vari-
ables U such that X = φ(S,U) and S ⊥⊥ U . Further assume that the views can be written as
V1 = φ(S,U1) and V2 = φ(S,U2), where U1 and U2 independent. Since the mutual information
between the views contains only semantic information, maximising I(Z1, Z2) encourages the projec-
tions to learn only semantic information. Indeed, imagine the projections contain integrally the irrel-
evant variables, i.e. Z1 = (ψ1(S), U1), Z2 = (ψ2(S), U2), then their mutual information would be
the same as if they did not contain them at all: I(ψ1(S), U1;ψ2(S), U2) = I(ψ1(S);ψ2(S)). Further-
more, assume the projections lay in a compact set Z ⊆ Rd and the reconstruction density is defined
with a semi-metric ρ such that qZ2|Z1=z1(z2) ∝ e−ρ(z1,z2). Then, maximising the reconstruction
term minimises E[ρ(Z1, Z2)], thus pulling together the non linear mappings πθ ◦ fθ ◦ φ(S,U1) and
πξ ◦ fξ ◦φ(S,U2) (see also Figure 1). Therefore, if the reconstruction is maximised, on average, the
irrelevant variables U1, U2 are not contributing to Z1 and Z2, therefore promoting the discarding of
irrelevant information.

Remark 1. SSL promotes learning semantic information and discarding irrelevant information.
This highlights the importance of the selection of the views of the input data. This is not the object
of this paper, and it has been previously studied by Tian et al. (2020b). A similar insight can be
obtained with Tsai et al. (2020)’s framework.

Importantly, such benefits can be formalised when directly maximising the lower bound (1), as this
maximisation unifies the theory from Zimmermann et al. (2021) and Von Kügelgen et al. (2021).

Theorem 1 (Informal. Details in Appendix B). Assume there is a true data generating process
X = g(Z̃), where g is invertible and V1 and V2 can be understood as g(Z̃1) and g(Z̃2). Then,

1. Under Zimmermann et al. (2021)’s conditions, maximising (1) ensures the projections Z
equate the true latent variables Z̃ up to affine transformations.

2. Assume also the true latent variables are separated into semantic (or content) S and irrel-
evant (or style) U variables, such that Z̃ = [S,U ], where [·] is the concatenation operator.
Then, under Von Kügelgen et al. (2021)’s conditions, maximising (1) ensures that the pro-
jections isolate semantic information, in the sense that there is a bijection from Z to S.

3 MUTLI-VIEW SSL METHODS MAXIMISE MUTUAL INFORMATION

In this section, we demonstrate how many different multi-view SSL methods aim to maximise the
mutual information I(Z1, Z2). In Figure 1, we schematically highlight the four prototypes that all
main multi-view SSL methods that we are aware of can be partitioned into.

In the following, we exhibit how under the lens of the decomposition (1), the different methods
employ different reconstruction densities, qZ2|Z1

or qW2|Z1
, and different ways to maximise or

control the entropy, H(Z2) or H(W2), which is empirically shown to be controlled in Appendix H.
Importantly, none of them directly maximises the lower bound (1) of I(Z1, Z2), preventing them
from the theoretical benefits highlighted in Theorem 1.

First, in Section 3.1, we study contrastive methods (Tian et al., 2020a;b; Bachman et al., 2019;
Chen et al., 2020a) and later, in Section 3.2, pure latent variables’ (or projections’) reconstruction
methods (Grill et al., 2020; Chen & He, 2021; Caron et al., 2018; 2020; 2021).
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Figure 1: Graphical representation of main multi-view SSL prototypes. Solid lines describe the
main variable flow: an image X is transformed with augmentations t1, t2 to generate two views
V1, V2 that are encoded into representationsR1, R2 and projected intoZ1, Z2 (and potentially further
processed intoW1,W2). Dashed lines describe method objectives, and dotted lines indicate optional
relationships between variables. Top row: the parameters of the encoder f and projector π are
shared for the processing of both views and the projections are manipulated so projections of one
view are predictive of the other, and vice-versa. Bottom row: the parameters of the processing of V2
are distinct and the projections are manipulated so that projections of V1 are predictive of projections
of V2. Left column: the projections are not further processed. Right column: the projections
are further processed into a surrogate variable W1,W2 (potentially using another variable C), and
then are manipulated so that projections of one view are predictive of the surrogate variable of the
other. For example, (a) is followed by SimCLR and EntRecCont, (b) is followed by SwAV and
EntRecDisc, (c) is followed by BYOL, and (d) is followed by DINO.

3.1 CONTRASTIVE LEARNING METHODS

Contrastive learning methods (Wu et al., 2018; Bachman et al., 2019; Tian et al., 2020a;b; Chen
et al., 2020a;b; He et al., 2020; Ramapuram et al., 2021) have the InfoNCE loss (Oord et al., 2018)
at their core and usually have a symmetric structure (Figure 1a).

Consider a batch of k data samples X(1:k). For each projection of each view of a sample X(i), say
Z

(i)
1 , these methods consider the projection of the other view of that image Z(i)

2 its positive pair and
try to identify such a pair among a set of other projections (or negative pairs) by minimising a cross-
entropy loss based on a similarity score. This similarity score is usually defined as the temperature
normalised cosine similarity sim(·, ·)/τ . Then, the different methods are essentially distinguished
by the projections they consider negative pairs.

In what follows, we introduce two representatives of these methods and their relationship with max-
imising I(Z1, Z2). In Appendix C, we give the details and caveats of the analyses and discuss further
contrastive methods, such as (He et al., 2020, MoCo), that inherit the analyses below.

Contrastive Multiview Coding In contrastive multiview coding (Tian et al., 2020a;b, CMC), the
negative pairs of a projection from one branch, say Z

(i)
1 , are all the other projections from the

opposite branch Z(−i)
2 . That is, for a batch of size k the optimised loss is

LCMC(θ) :=
1

k

2∑
b=1

k∑
i=1

log

(
exp

(
sim(Z

(i)
b , Z

(i)

b̄
)/τ
)∑k

j=1 exp
(
sim(Z

(i)
b , Z

(j)

b̄
)/τ
)), (2)

where b̄ is the opposite branch of b. This loss benefits from all the properties of the InfoNCE (Oord
et al., 2018; Poole et al., 2019). For example, if both sets of projections Z(i)

1 as well as Z(j)
2 are

i.i.d., then minimising LCMC maximises a lower bound on the mutual information; more precisely
I(Z1;Z2) ≥ log k − LCMC(θ)/2. However, minimising (2) does not directly maximise the lower
bound (1). Looking at (10) in Appendix C, we can see how the numerator of the logarithm in (2) is
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recovered by considering the reconstruction density qZ2|Z1=z1 to be von Mises–Fisher density with
mean direction z1 and parameter 1/τ and symmetrising with the reconstruction of the other branch.
However, the denominator of the logarithm is not a Joe (1989)’s kernel density estimator (KDE)
approximation of the entropy H(Z2) since the average of the logarithm of the kernel is taken over
samples of PZ1 and not PZ2 . Hence, it only maximises an estimation of the entropy if Z1 and Z2

have the same (or approximately the same) marginals, i.e. PZ1 ≊ PZ2 .

SimCLR In SimCLR (Chen et al., 2020a), the negative pairs of a projection from one branch, say
Z

(i)
1 , are all the other projections Z(−i)

1 , Z
(1:k)
2 . That is, for a batch of size k the optimised loss is

LSimCLR(θ) :=
1

2k

2∑
b=1

k∑
i=1

log

(
exp

(
sim(Z

(i)
b , Z

(i)

b̄
)/τ
)∑2

b′=1

∑k
j=1 I

(
(i, b) ̸= (j, b′)

)
exp

(
sim(Z

(i)
b , Z

(j)
b′ )/τ

)). (3)

This loss does not directly inherit the InfoNCE properties as the CMC loss (see Appendix C.2.1).
However, (3) can be approximately rewritten according to the decomposition (1), as is demonstrated
in (13) in Appendix C.2.2. The numerator of the logarithm in (3) is then recovered using a von
Mises–Fisher reconstruction density, but the denominator is not an approximation of the entropy
since the average of the logarithm of the kernel is taken, this time, over samples of both PZ1

and
PZ2

. Nonetheless, this difference allows us to consider that the samples come from the mixture
PZ = 0.5PZ1

+ 0.5PZ2
, and thereby recover the KDE estimator from Joe (1989) of H(Z) with

a von Mises–Fisher density kernel.2 Therefore, taking into account the relationship between the
Jensen–Shannon’s divergence and the entropies of two random variables results in the approximate
inequality

I(Z1;Z2) ⪆ log k − LSimCLR(θ)− DJS(PZ1∥PZ2),

which reveals that minimising (3) approximately maximises I(Z1;Z2) when PZ1
and PZ2

are equal.

3.2 PROJECTIONS’ RECONSTRUCTION METHODS

The projections’ reconstruction methods (Grill et al., 2020; Chen & He, 2021; Caron et al., 2020;
2021) focus on making sure that predictions from one branch are informative of those from the other
branch. To achieve this goal, their loss functions consist of a term that can be understood as the
reconstruction term in (1) with the appropriate density.

To avoid collapse in the absence of negative pairs, they have to employ different engineering tech-
niques that as we show can help to maintain a high entropy term in (1) in different ways. Below
we analyse the self-distillation methods (Grill et al., 2020, BYOL) and (Caron et al., 2021, DINO)
from our information-theoretic viewpoint based on (1). In Appendix D, we further analyse other
(non self-distillation) projections’ reconstruction methods such as (Chen & He, 2021, SimSiam)
and (Caron et al., 2018; 2020, DeepCluster and SwAV). While DeepCluster always keeps a
certain level of entropy and SwAV maximises it, the other methods rely on parameters to maintain it.

BYOL In Bootstrap Your Own Latent (Grill et al., 2020, BYOL), they consider an asymmetric
structure (Figure 1c) and try to predict the projections from the bottom branch Z2 using the predic-
tions of the top branch Z1 and a small predictor network gθ. For this purpose, they try to minimise
the ℓ2 normalised mean squared error,

LBYOL(θ) :=
1

k

k∑
i=1

∥∥∥∥gθ(Z(i)
1 )− Z(i)

2

∥∥∥∥2 = 2

(
1− 1

k

k∑
i=1

sim
(
gθ(Z

(i)
1 ), Z

(i)
2

))
using gradient descent, where a := a/∥a∥. Note that this is equivalent, up to constants that do
not affect the optimisation, to maximising the reconstruction term in the decomposition (1) with a
von Mises–Fisher reconstruction density with mean direction gθ(Z1) and concentration parameter 1,
i.e., qZ2|Z1=z1(z2) ∝ exp

(
sim(gθ(z1), z2)

)
. Note that the parameters of the branch that outputs the

predicted projections Z2 are parameterised with different parameters ξ. Hence, if these parameters
were fixed or modified so that H(Z2) is increasing or maintained constant, then minimising LBYOL

2In fact, the density is Gaussian, but it essentially turns into an unnormalised von Mises–Fisher after noting
all samples employed in the estimation have norm 1.
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would indeed maximise the mutual information I(Z1;Z2). Finding a way to fix or modify them in
such a way is however challenging. For example, fixing ξ to random values ensures constant entropy
H(Z2), but also means that the then random projection Z2 contains very little information about X .
Thus, in this case, while minimising LBYOL would maximise I(Z1;Z2), the information learned is
still little as by the data processing inequality I(Z1;Z2) ≤ I(X;Z2). On the other hand, if ξ depends
on θ, there is the risk of collapse: for example, in the extreme case of ξ = θ, minimising LBYOL will
maximise −H(Z2|Z1), and an optimal solution θ⋆ could be a highly concentrated or degenerate Z1

and Z2 around one point z, under which H(Z2)→ −∞, which clearly does not maximise I(Z1;Z2).

In BYOL, they circumvent these issues by updating the parameters ξ during the optimisation with
the moving average ξ ← λξ + (1 − λ)θ for some λ ∈ (0, 1) close to 1. The idea (hypothesis) is
two-fold: on the one hand, while ξ does depend on θ, the dependence is weak enough so that H(Z2)
is not degrading to values yielding trivial bounds; and on the other hand, the dependence of ξ on θ,
while weak, still makes sure that the representations Z2 capture information about the data. This
hypothesis is backed up by the results sweeping the parameter λ in (Grill et al., 2020). In fact, it has
later been seen (Caron et al., 2021) that this dependence resembles a Polyak-Ruppert averaging with
exponential decay (Polyak & Juditsky, 1992; Ruppert, 1988), which is standard practice to improve
the performance of the model, e.g. (Jean et al., 2014).

DINO Caron et al. (2021, DINO) also consider an asymmetric structure (Figure 1d) and, simi-
larly to DeepCluster and SwAV, generate a discrete surrogate variable W2 = ϕ(Z2) and try to
minimise a cross entropy term. More precisely, they minimise

LDINO(θ) :=
1

k

k∑
i=1

s
(
(Z

(i)
2 − C)/τ2

)⊺
log s

(
Z

(i)
1 /τ1

)
,

whereC is some centring variable, τ1,τ2 are temperature hyperparameters, and s is the softmax oper-
ator. Letting pW2|Z2=z2 = s

(
(z2−C)/τ2

)
and qW2|Z1=z1 = s(z1/τ1) shows that minimising LDINO

directly maximises the reconstruction term in the decomposition (1) of I(Z1,W2) ≤ I(Z1, Z2).

DINO does not directly maximise the entropy H(W2) to avoid collapse. However, they promote
a high conditional entropy H(W2|Z2) through the centring before the softmax operation defining
pW2|Z2

. To be precise, the centre C is updated with a moving average of the previous projections,
that is, C ← µC+ (1−µ)

k

∑k
i=1 Z2 for some µ ∈ (0, 1). Then, the right balance between the moving

average and temperature parameters µ and τ2 adjusts how uniform the conditional density pW2|Z2

should be. Hence, since H(W2|Z2) ≤ H(W2), controlling the conditional entropy controls H(W2).

Finally, similarly to BYOL, DINO faces the potential problem of obtaining useless representations
due to uninformative targets if the parameters ξ do not ensure that the projections Z2 capture enough
information about the dataX . They solve this issue as in BYOL updating them with a moving average
ξ ← λξ + (1 − λ)θ for some λ ∈ (0, 1). As previously mentioned, with the appropriate selection
of λ, this resembles a Polyak-Ruppert averaging with exponential decay (Polyak & Juditsky, 1992;
Ruppert, 1988) and makes sure that Z2 captures information about the data X (Caron et al., 2021).

4 THE ENTREC METHOD

Previously, we established how many multi-view SSL methods aim to maximise the mutual infor-
mation between the projections on both branches I(Z1;Z2), and that they can be understood by
decomposing the mutual information into an entropy and a reconstruction term as in (1). However,
none of these methods takes such a decomposition and tries to maximise these two terms directly.

In this section, we present the EntRec method which does exactly that, and naively maximises both
entropy and reconstruction terms. The method comes in two variants: (i) EntRecCont, a direct
maximisation of I(Z1, Z2), where the entropy is estimated with a KDE, that follows Figure 1a’s
structure; or (ii) EntRecDisc, a generation of a discrete surrogate random variable Wb = ϕ(Zb)
and posterior maximisation of

(
I(Z1;W2) + I(W1;Z2)

)
/2 ≤ I(Z1;Z2), where the entropy of Wb

can be easily estimated with a plug-in estimator, that follows Figure 1c’s structure. EntRecCont,
unlike all of the methods described previously, directly maximises the lower bound (1) on the mu-
tual information I(Z1;Z2), and therefore enjoys the theoretical properties from Theorem 1, such
as recovering true latent variables and separating semantic from irrelevant information. However,
the KDE requires a large number of samples to properly estimate the entropy. EntRecDisc ad-
dresses this potential drawback by estimating the entropy of a discrete (surrogate) random variable

6



Under review as a conference paper at ICLR 2023

instead, although at the price of maximising a lower bound on I(W1;Z2) only. Hence, it maximises
a looser bound on I(Z1, Z2) and does not benefit from the theoretical properties of Theorem 1. The
pseudocode of the algorithm is given in Appendix E.

4.1 ENTRECCONT

EntRecCont considers the mutual information decomposition from (1) and directly maximises an
estimate of the lower bound by maximising the loss function

LEntRecCont(θ) := −
1

2

2∑
b=1

(
Ĥ(Zb, Z

(1:k)
b ) +

1

k

k∑
i=1

log
(
q
Zb|Zb̄=Z

(i)

b̄

(Z
(i)
b )
))

, (4)

where Ĥ(Zb;Z
(1:k)
b ) is an estimate of the entropy and qZb|Zb̄

is a parameterised reconstruction den-
sity. Multiple potential estimates of the entropy H(Zb) exist, but this paper considers those generated
with Joe (1989)’s KDE, which comes with the same caveats mentioned for the analysis of contrastive
methods in Appendix C.3. More precisely, the estimator takes the form

Ĥ(Zb, Z
(1:k)
b ) = −1

k

k∑
i=1

log
( 1

khd

k∑
j=1

q
(Z(i)

b − Z
(j)
b

h

))
,

where q is some kernel density and h ∈ R+ is its bandwidth.

The loss (4) recovers Wang & Isola (2020)’s alignment-uniformity loss up to constants independent
of the parameters θ when the reconstruction density is qZb|Zb̄=zb̄

(zb) ∝ exp
(
− ∥zb − zb̄∥α

)
and

the kernel density is Gaussian. Applying the log-sum inequality to the entropy estimation term fully
recovers that loss, revealing it is an estimation of a looser bound of the mutual information I(Z1, Z2).

Moreover, EntRecCont enjoys the following theoretical benefits on its asymptotic behaviour.
Theorem 2 (The EntRec loss (4) tends to a proper bound on I(Z1;Z2)). If Xi are i.i.d. for all
i ∈ [k] and f and π do not use batch normalisation, then, for a constant bandwidth h > 0

lim
k→∞

LEntRecCont(θ)−CKDE(h, k) = −
1

2

2∑
b=1

(
H(Zb)+E

[
log
(
qZb|Zb̄

(Zb)
)])
≥ −I(Z1;Z2), (5)

where CKDE ∈ O(h4) and the convergence rate is detailed in Appendix F.1. Moreover, if h ∈
O(k−

1
d+ε ) for some small ε > 0 and d > 4, then (5) still holds and CKDE(h, k)→ 0.

This theorem reveals that as the batch size increases, EntRecCont maximises exactly the lower
bound (1) and therefore it enjoys the theoretical properties highlighted in Section 2 (details in Ap-
pendix B): (i) if there exists a true generative process that generates the data X from some true
latent variables, maximising (4) may recover these latent variables; and (ii) if these latent variables
are separated into some semantic (or content) variables and some irrelevant (or style) variables,
maximising (4) may isolate and recover the content latent variables.

4.2 ENTRECDISC

The KDE of the entropy converges slowly for high dimensions (c.f. Theorem 2), which requires
large batch sizes. It is also computationally costly (requires O(k2d) operations like other con-
strastive methods such as CMC or SimCLR, as seen comparing (10) and (13) with (4)) for large
batch sizes. Therefore, it is suitable to have an alternative to (4) that does not involve KDEs, for
example considering discrete random variables instead of continuous ones.

EntRecDisc considers a discrete surrogate random variable Wb = ϕ(Zb) and maximises a lower
bound of

(
I(Z1;W2) + I(Z2;W1)

)
/2. This way, (i) considering the lower bound from (1) to each

of the terms allows us to deal with the entropy of a discrete random variable and avoid KDEs, and
(ii) by the data processing inequality, we are still maximising a lower bound on I(Z1, Z2). To be
precise, this version of EntRec minimises the loss function

LEntRecDisc(θ) := −
1

2

2∑
b=1

(
Ĥ(Wb;W

(1:k)
b ) +

1

k

k∑
i=1

E
[
log
(
q
Wb|Zb̄=Z

(i)

b̄

(W
(i)
b )
)])

. (6)
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At first sight, both (4) and (6) seem indistinguishable except from the fact that now Wb is replacing
Zb and that the loss is a looser bound on I(Z1;Z2). However, this extra processing of the projections
allows us to estimate the entropy better and to calculate the reconstruction term (cross-entropy)
exactly. For instance, let pWb|Zb=zb = s(zb), where s is the softmax operator. Then, Wb is a discrete
random variable in [d] and H(Wb) may be estimated with the plug-in estimator using the empirical
estimate of the marginal, i.e. p̂Wb

= 1
k

∑k
i=1 pWb|Zb=Z

(i)
b

. Finally, letting the reconstruction density
be qWb|Zb̄=zb̄

= s(zb̄) results in the following loss function

LEntRecDisc(θ) = −
1

2k

2∑
b=1

k∑
i=1

(
− s(Z

(i)
b )⊺ log

(1
k

k∑
j=1

s(Z
(j)
b )
)
+ s(Z

(i)
b )⊺ log

(
s(Z

(i)

b̄
)
))

. (7)

As opposed to the KDE of the entropy, the plug-in estimate only requires O(kd) operations and
converges faster than the KDE (Appendix F.2). Thus equation (7) has a better asymptotic behaviour
than (4). This is formalised in the following theorem.
Theorem 3 (The EntRec loss (7) tends to a proper bound on I(Z1;Z2)). If Xi are i.i.d. for all
i ∈ [k] and f and π do not use batch normalisation, then

lim
k→∞

LEntRecDisc(θ) = −
1

2

2∑
b=1

(
H(Wb) + E

[
log
(
qWb|Zb̄

(Wb)
)])
≥ −I(Z1;Z2), (8)

where the convergence rate is detailed in Appendix F.2.

5 EXPERIMENTS

While EntRec has a principled derivation that allows for direct maximisation of the lower bound
in (1) and as a result is equipped with desirable theoretic properties, its practical use has yet to
be investigated. We do this in a series of experiments, in all of which we use ImageNet (Deng
et al., 2009) for pre-training. We compare both variants of EntRec with all methods analysed in
Section 3. All experimental details can be found in Appendix G.

In the main part of the paper, we analyse how EntRec compares to the other methods in terms
of top-1 classification accuracy on the ImageNet test set under the linear evaluation protocol, and
further study how changes in individual training hyperparameters affect this metric for each method
if no other training or model hyperparameter is changed. In Appendix H, we further include a
comparison in terms of transfer learning performance (fine-tuned top-1 classification accuracy on
10 natural image data sets that differ from ImageNet) and a qualitative analysis of the behaviour
of the entropy term during training for EntRecDisc and DINO (for which the entropy can be
estimated accurately as they use discrete surrogate variables).

As can be seen from the first column of Table 1 and Table 2, EntRec’s performance on the Im-
ageNet test set is comparable to that of the contrastive methods. The same can be observed with
respect to its transfer learning performance in the additional experiments that are included in Ap-
pendix H. 3

The projections’ reconstruction methods (DINO, BYOL) perform better on their optimised settings,
but can struggle under changes in hyperparameters (without further adjustments). Here, we see that
EntRec compares overall favourably in terms of robustness to changes in training hyperparemeters:

• Batch size. It is known that lowering the batch size can adversely affect the performance of
SSL methods (Chen et al., 2020a). In Table 1 we see this is also true for EntRec, however
to a lesser extent than for all other methods. Importantly, the projections’ reconstruction
methods (DINO, BYOL) which rely on engineering techniques to maintain high entropy can
be very severely affected by lower batch sizes, which potentially call for further hyperpa-
rameter adjustments to recover performance. 4

3All results are obtained with our implementation of the algorithms. The hyperparameters have been op-
timised by us to obtain the best performance of each of the SSL methods. For EntRec, we just used the
parameters from SimCLR without any further optimisation.

4For example, Grill et al. (2020) use gradient accumulation so BYOL can cope with lower batch sizes.
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• Epochs. Furthermore, SSL methods typically need a very high number of total training
epochs to achieve their strongest performances (Grill et al., 2020). In Table 2 we see this
is also true for EntRec. However, this time another method, DINO, seems to be the least
affected by a lower number of total training epochs. Still, EntRec performs comparably
to the remaining SSL methods and is notably more stable than BYOL again.

Altogether, these experimental results showcase that EntRec can indeed have practical use as a
good objective for multi-view SSL beyond its theoretical benefits highlighted in the previous sec-
tions.

Table 1: Performance of the different methods across batch sizes after 400 epochs of training.

Accuracy ∆Accuracy wrt. 4096

4096 2048 1024 512

SimCLR 69.5 -3.1 -2.5 -4.5
CMC 69.1 -1.1 -2.9 -4.8
BYOL 73.8 -2.1 -22.0 -42.5
DINO 71.6 +0.5 -15.0 -67.0

EntRecCont 69.7 -0.7 -2.3 -4.2
EntRecDisc 66.9 -1.0 -2.2 -3.9

Table 2: Performance of the different methods across epochs with batch size of 4096.

Accuracy ∆Accuracy wrt. 400

400 300 200 100

SimCLR 69.5 -1.0 -2.2 -5.4
CMC 69.1 -0.6 -1.8 -5.6
BYOL 73.8 -1.8 -5.0 -13.4
DINO 71.6 +0.2 +0.3 -1.2

EntRecCont 69.7 -0.8 -2.1 -5.9
EntRecDisc 66.9 -0.2 -1.1 -4.1

6 CONCLUSION

We provided a unifying information theoretic analysis of common SSL methods, showing how they
partially or approximately maximise a lower bound to the mutual information between the learned
representations of distinct views of the same datum. Based on this analysis, we introduced EntRec,
a simple SSL method that directly maximises this lower bound. We showed that it possesses a range
of desirable theoretical properties, such as recovering the true latent variables of the underlying gen-
erative process or isolating content from style in such true latent variables. Furthermore, we demon-
strated empirically that its classification performance is comparable to the existing SSL methods and
most notably robust to changes in individual training hyperparameters such as the batch size or the
number of training epochs.

Limitations and future directions Maximising mutual information is not enough to learn good
representations, and strong inductive biases are important. For instance, the usage of certain recon-
struction densities or projection spaces when maximising the lower bound (1) grants the theoretical
properties highlighted in Theorem 1 and deepened in Appendix B. Now that we know these meth-
ods maximise the mutual information between the representations of different views, the next step is
to (i) understand which inductive biases they possess to justify their difference in performance (e.g.
why DINO performs better when properly tuned), and (ii) design methods from first principles that
both maximise this mutual information and have these inductive biases.

9
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Reproducibility statement Regarding our theoretical results, we made an effort to give clear
explanations of any assumptions and complete proofs of all claims in the main part of the paper
in Appendices B, C, D, and F. Regarding our experimental results, we included a section in the
Appendix G that clearly states the experimental protocol used to obtain these results. Furthermore,
we are working to release the code used in this paper as soon as possible.
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Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in neural information processing systems, 34:16451–16467,
2021.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929–9939. PMLR, 2020.

Mike Wu, Milan Mosse, Chengxu Zhuang, Daniel Yamins, and Noah Goodman. Conditional neg-
ative sampling for contrastive learning of visual representations. In International Conference on
Learning Representations, 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

12



Under review as a conference paper at ICLR 2023

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
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Appendix

A RELATED WORK

This section of the Appendix puts into perspective this paper with respect to the relevant work closest
to ours. First, it does so with other works that study (multi-view) SSL around mutual information,
namely (Tian et al., 2020a; Tsai et al., 2020; Federici et al., 2020). Then, it continues with other
works (Poole et al., 2019; Shwartz-Ziv et al.) that analysed the mutual information that particular
SSL algorithms, InfoNCE-based and (Bardes et al., 2022, VICReg), is maximising. It finalises
describing how the relationship between Zimmermann et al. (2021) and Von Kügelgen et al. (2021)
is expanded in this work.

A.1 MUTUAL INFORMATION-BASED FRAMEWORKS FOR MULTI-VIEW SSL

Tian et al. (2020b) focus their study on how to generate the views in multi-view SSL so that the
learned representations have good downstream performance. They focus their analysis assuming a
contrastive learning algorithm that maximises the InfoNCE (Oord et al., 2018) lower bound on the
mutual information between the views (and more precisely on the projections of said views). They
conclude that the views should share the information of a desired downstream task and nothing else,
and provide with an algorithm to enforce that. Then, Tsai et al. (2020) consider multi-view SSL
algorithms where one view is always the unperturbed input and show that, under certain conditions,
these methods can keep task-relevant and discard task-irrelevant information for some downstream
task. This is similar to (Federici et al., 2020), where they show a similar conclusion for a multi-view
version of the information bottleneck (Tishby et al., 2000).

Instead, in Section 2 of this paper, we assume a perfect view selection to gain intuition on how
maximising the mutual information between the representations of the different views of the input
data encourages the learning of semantic information and the discarding of irrelevant information.
After that, we show that under the conditions of Zimmermann et al. (2021) and Von Kügelgen et al.
(2021), their theory is unified when maximising the lower bound (1) on this mutual information.
More precisely, saying that the maximisation of the mutual information between the representations
of different views of the same input datum can recover the true explanatory factors of the input data
and separate semantic from irrelevant information.

A.2 STUDY OF SPECIFIC ALGORITHMS

Poole et al. (2019) showed that InfoNCE maximised a lower-bound on the mutual information,
which includes InfoNCE-based methods such as the CMC. This analysis was complemented by Wu
et al. (2020) that showed that as long as the negative samples are i.i.d., they may come from a diffrent
distribution than the positive samples. Shwartz-Ziv et al. show that (Bardes et al., 2022, VICReg)
maximises the mutual information between the representations of one view and the other views.
Similarly, we show how many multi-view SSL methods maximise the mutual information between
the representations of different views of the input data. More precisely, we lift the i.i.d. assumption
for contrastive methods and include an analysis of (Chen et al., 2020a, SimCLR), completing the
picture of contrastive learning methods, as well as analysis for other and latent variables’ reconstruc-
tion methods like (Chen & He, 2021, SimSiam), (Grill et al., 2020, BYOL), (Caron et al., 2018;
2020, DeepCluster and SwAV), and (Caron et al., 2021, DINO).

A.3 RELATIONSHIP BETWEEN RECOVERING TRUE LATENT VARIABLES AND SEPARATING
CONTENT FROM STYLE

Von Kügelgen et al. (2021) already discussed some connections of their work and (Zimmermann
et al., 2021). In particular, they mentioned that their equation (1) could be interpreted as an alignment
(numerator) and uniformity (denominator) terms, and that the latter constituted a nonparametric
estimator of the entropy as the batch size grew to infinity. Therefore, they related their work with
(Wang & Isola, 2020) and by proxy to (Zimmermann et al., 2021).

However, this relationship is not direct. The practical implementation of the uniformity term
in (Zimmermann et al., 2021) is equivalent to a KDE estimation of the entropy, and tends to the
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entropy at the rate stated in our Theorem 2. In Von Kügelgen et al. (2021), they consider the real
entropy for their theorem, and not an approximation. So the connection in (Von Kügelgen et al.,
2021) with (Zimmermann et al., 2021) only holds in the asymptotic regime.

Conversely, we prove that both results hold when maximising the lower bound (1) on the mutual
information, without using the uniformity loss but the entropy directly. That is, both results are
unified through mutual information maximisation. Therefore, the connection in our analysis holds
without the need of employing neither the uniformity loss nor a KDE estimation of the entropy.

B MAXIMISING MUTUAL INFORMATION PROPERTIES

This section of the Appendix formalises and contextualises Theorem 1’s statement.

B.1 RECOVERING THE TRUE LATENT VARIABLES

Let us consider the standard assumption in independent components analysis (ICA), namely that the
data X is generated by a nonlinear, invertible generative process X = g(Z̃) from some original
latent variables Z̃. Assume further that the different views from the image can be understood as
V1 = g(Z̃1) and V2 = g(Z̃2), where there is some joint density of the latent variables pZ̃1,Z̃2

. The
next theorem shows how Zimmermann et al. (2021) theory can be adapted to prove that mutli-view
SSL methods that maximise the mutual information between their projections I(Z1;Z2) can obtain
projections equivalent to the true latent variables up to affine transformations.

Theorem 4. Assume that the latent variables and the network’s projections lay on a convex body
Z ∈ Rd. Further assume that the latent variables’ marginal distribution is uniform and that the
conditional density is described by a semi-metric ρ as pZ̃2|Z̃1=z̃1

(z̃2) = C(z̃1)e
−ρ(z̃1,z̃2). Now let the

reconstruction density match the conditional density up to a constant scaling factor qZ2|Z1=z1(z2) =

Ch(z̃1)e
−αρ(z1,z2). If the generative process g and the parameterised network functions π ◦ f are

invertible and differentiable, and the parameters θ maximise the lower bound (1) of the mutual
information I(Z1;Z2), then the projections are equivalent to the true latent variables up to affine
transformations.

Proof. As in (Zimmermann et al., 2021), let h = π ◦ f ◦ g be a helper function that brings the true
latent variables to the projections so that Z1 = h(Z̃1) and Z2 = h(Z̃2).

Disregard for a moment the entropy term H(Z2). From (Zimmermann et al., 2021, Proposition 4) we
know that if the reconstruction term is maximised (the cross entropy is minimised) then ρ(z̃1, z̃2) =
αρ(h(z̃1), h(z̃2)) and C(z̃1) = Ch(z̃1). Moreover, from (Zimmermann et al., 2021, Theorem 4) we
further know that h is an invertible affine transformation; i.e. Z2 = AZ̃2 + b for some A ∈ Rd×d

and some b ∈ Rd.

Now note that

H(Z2) = −E
[
logE

[
Ch(Z̃1)e

−αρ(h(Z̃1),h(Z̃2)
]]

= −E
[
logE

[
C(Z̃1)e

−ρ(Z̃1,Z̃2)
]]

= H(Z̃2).

Then, since the latent variables’ are uniformly distributed, their entropy is maximal H(Z̃) = log |Z|.
Therefore, the unique family of maximisers of the reconstruction term recover the latent variables
up to affine transformations are maximisers of the entropy, and hence are the unique family of
maximisers of the mutual information. Indeed, take some other maximiser of the entropy, if it is
not from this family, it is not a maximiser of the reconstruction and therefore the resulting mutual
information is lower.

Remark 2. Following the same reasoning and supporting on Zimmermann et al. (2021)’s theory,
we may note that in the particular case that the semi-metric ρ is described by an Lp norm, then
the projections are equivalent to the true latent variables up to generalised permutations; that is,
Z = AZ̃ for some A ∈ Rd×d such that (Az)i = αβizσ(i), where α ∈ R, βi ∈ {1,−1}, and σ is a
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permutation. Similarly, in the more restrictive case that the projections are in the sphere Z = Sd−1

and the conditional densities are von Mises–Fisher densities, then the projections are equivalent to
the true latent variables up to linear transformations; that is, Z = AZ̃ for some A ∈ Rd×d such
that A⊺A = αI for some α ∈ R.

B.2 ISOLATING SEMANTIC FROM IRRELEVANT INFORMATION

Similarly to Appendix B.1, let us consider that the data X is generated by a nonlinear, invertible
generative process X = g(Z̃) from some original latent variables Z and that the different views
can be understood as V1 = g(Z̃1) and V2 = g(Z̃2), where there is some joint density of the latent
variables pZ̃1,Z̃2

.

Assume that the latent variables can be written as Z̃ = [S,U ], where S ∈ Rd is some semantic
(or content) variable, U ∈ Rdu is some irrelevant (or style) variable, and [·] denotes the concatenta-
tion operation. Furthermore, let us adopt the assumptions from Von Kügelgen et al. (2021) for the
content-preserving conditional density pZ̃2|Z̃1

.

Assumption 1 (Content-invariance). The conditional density pZ̃2|Z̃1
of the latent variables of dif-

ferent views has the form

pZ̃2|Z̃1=z̃1
(z̃2) = δ(s2 − s1)pU2|U1=u1

(u2),

for all z̃1 = [s1, u1] and z̃2 = [s2, u2] in Z and where pU2|U1=u1
is continuous for all u1 ∈ Rdu .

Assumption 2 (Style changes). Let A be the set of subsets of irrelevant variables A ⊆ {1, . . . , du}
and let pA be a density on A. Then, the conditional density pU2|U1

is obtained via

a ∼ pA, pU2|U1,A=u1,a(u2) = δ(u2,ac , u1,ac)pU2,a|U1,a=u1,a
(u2,a)

where pU2,a|U1,a=u1,a
is a continuous density for all u1,a ∈ R|a|, and where u2,a is an abuse of

notation to refer to the elements of u2 indexed by a, and analogously for u1 and for ac.

Then, the next theorem shows how Von Kügelgen et al. (2021) can be adapted to prove that multi-
view SSL methods that maximise the mutual information between the projections I(Z1;Z2) can
obtain projections that capture and isolate the semantic information of the true latent variables.
Theorem 5. Consider Assumption 1 and Assumption 2 and further assume that

1. the generative process g is smooth, invertible and with a smooth inverse (i.e. a diffeomor-
phism);

2. pZ̃ is a smooth, continuous density on Z with pZ̃ > 0 a.e., and

3. for any j ∈ {1, . . . , nu}, there is an a ⊆ {1, . . . , nu} such that j ∈ a, pA(a) > 0,
pU2,a|U1,a=u1,a

(u2,a) is smooth with respect to both u1,a and u2,a, and for any u1,a it holds
that pU2,a|U1,a=u1,a

(u2,a) > 0 for all u2,a in some open, non-empty subset containing u1,a.

If the parameterised network function π ◦ f is smooth, the projections space is (0, 1)d ⊆ Rd, and
the parameters θ are found to maximise the mutual information I(Z1;Z2) lower bound (1) with the
reconstruction density qZ2|Z1=z1(z2) = Cgauss(1)e

−∥z2−z2∥2
2 , then there is a bijection between the

projections Z and the true semantic variables S.

Proof. The proof follows directly by Von Kügelgen et al. (2021, Theorem 4.4) by noting that the
minimising the mutual information lower bound (1) with the reconstruction density qZ2|Z1=z1(z2) =

Cgauss(1)e
−∥z2−z2∥2

2 coincides with the minimisation of their theorem.

C CONTRASTIVE LEARNING METHODS AND MUTUAL INFORMATION

As mentioned in the main text, contrastive learning methods are inspired by the contrastive loss in
the InfoNCE Oord et al. (2018). The objective in Oord et al. (2018) is to maximise the mutual
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information between the representationsR and the dataX . To do so, they consider a batch of k i.i.d.
samples X(1:k) and try to ensure that the representation R(i) of sample X(i) can correctly predict
which sample generated it among all other samples from the batch. More precisely, they minimise

LNCE(θ) := −
1

k

k∑
i=1

E
[
log

(
s(X(i), R(i))∑k
j=1 s(X

(i), R(j))

)]
(9)

using gradient descent, where s is some score or similarity function. Then, it is proven that minimis-
ing (9) maximises lower bound on the mutual information between the data and the representations,
namely I(X;R) ≥ log k − LNCE (Poole et al., 2019).

C.1 CONTRASTIVE MULTIVIEW CODING

Consider the InfoNCE loss and substitute X by Z2 and R by Z1 to maximise I(Z1;Z2). This
results in

−1

k

k∑
i=1

E
[
log

(
s(Z

(i)
2 , Z

(i)
1 )∑k

j=1 s(Z
(i)
2 , Z

(j)
1 )

)]
,

and further considering the symmetric loss (i.e., the InfoNCE loss substituting X by Z1 and R
by Z2) recovers LCMC. Hence, the CMC loss is exactly an InfoNCE loss with the temperature nor-
malised cosine similarity as the score function, s(·, ·) = exp

(
sim(·, ·)/τ

)
, and therefore minimising

it maximises a lower bound on 2I(Z1;Z2).

For the analysis based on the mutual information decomposition (1), consider the re-writing of the
LCMC loss as follows

LCMC(θ) =

2∑
b=1

(
1

k

k∑
i=1

sim(Z
(i)
b , Z

(i)

b̄
)/τ − 1

k

k∑
i=1

log
( k∑

j=1

exp
(
sim(Z

(i)
b , Z

(j)

b̄
)/τ
)))

. (10)

Consider the term when b = 2 and focus inside the parenthesis, since the analysis is analogous when
b = 1. In the reconstruction term from (1), letting the reconstruction density qZ2|Z1=z1 be a von
Mises–Fisher density with mean direction z1 and parameter 1/τ , that is

qZ2|Z1=z1(z2) = C−1
vmf(τ)e

sim(z2,z1)/τ ,

recovers the first term in the parenthesis up to additive constants that do not affect the optimisation.

For the second term, consider Joe (1989)’s KDE estimator with a standard Gaussian kernel density
q. Here, we may note that the restriction of the Gaussian density to elements of norm 1 is indeed a
von Mises–Fisher density and that therefore have that for all z, z̃ ∈ Sd−1

q
(z − z̃√

τ

)
= C−1

gauss(1)e
− ∥z−z̃∥2

2τ = C−1
gauss(1)e

−1/τesim(z,z̃)/τ

when choosing a bandwidth
√
τ .

Then, if Z(i)
1 and Z(j)

2 were to come from the same distribution, Joe (1989) estimator with the above
kernel density would recover the second term up to additive constants that do not affect the optimi-
sation. This would be the case if 2k augmentations’ transformations were sampled randomly from
a set T and applied independently to each data sample and 2 of them were applied independently to
each data sample X(i) to generate the views V (i)

1 , V
(i)
2 . However, this is often not the case and only

2 augmentations are sampled and applied to the whole batch of samples to generate the views (Chen
et al., 2020a) or one branch is dedicated to generate only global views, while the other also generates
local views (Caron et al., 2020).

C.2 SIMCLR

C.2.1 SIMCLR AND THE INFONCE

Contrary to CMC, the SimCLR loss is not directly an InfoNCE loss, since there are terms in the
denominator of the logarithm that are neither independent nor identically distributed. Indeed, Z(j)

1
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and Z(j)
2 are generally not identically distributed due to differences in the transformations from each

branch, and they are not independent since they are both obtained from X(j).

In fact, Poole et al. (2019)’s proof techniques cannot be directly modified to ensure that it is, even
under the assumptions that the samples of each batch X(1:k) are i.i.d. and both the encoder fθ and
projector πθ networks are deterministic and do not employ batch normalisation, which effectively
ensures that Z(1:k)

1 and Z(1:k)
2 are i.i.d. and that X(i) ⊥⊥ Z

(j)
1 and X(i) ⊥⊥ Z

(j)
2 for all i ̸= j. To

see this, note that I(Z(1:k)
1 , Z

(1)
2 ;Z

(1:k)
2 ) = I(Z

(1)
1 ;Z

(1)
2 ) since Z(1)

1 only depends on Z(1)
2 via X1

and is independent of all other projections. Then, similarly to (Poole et al., 2019), one may employ
Donsker-Varadhan’s variational bound on the relative entropy (Gray, 2011, Theorem 2.2.1) and see
that

I(Z
(1:k)
1 , Z

(1)
2 ;Z

(1:k)
2 ) ≥ E

[
c(Z

(1:k)
1 , Z

(1:k)
2 )

]
− logE

[
exp

(
c(Z

(1:k)
1 , Z

′(1)
2 , Z

(1:k)
2 )

)]
, (11)

where c is a critic function such that the above expectations are defined and Z ′(1)
2 is identically

distributed to Z(1)
1 but independent of all other random variables. Then, choosing the critic

c(z
(1:k)
1 , z

(1:k)
2 ) = log

(
s(z

(1)
2 , z

(1)
1 )∑2

b′=1

∑k
j=1 I

(
(1, 2) ̸= (j, b′)

)
s(z

(i)
2 , z

(j)
b′ )

)
,

ensures that the lower bound on I(Z
(1:k)
1 , Z

(1)
2 ;Z

(1:k)
2 ) is tight (an equality) if

log
(
p
Z

(1:k)
1 ,Z

(2:k)
2 |Z(1)

2 =z
(1)
2

(z
(1:k)
1 , z

(2:k)
2 )

)
= c(z

(1:k)
1 , z

(1:k)
2 ) + ϕ(z

(1:k)
1 , z

(1:k)
2 )

for any function ϕ. Then, after averaging over all pairs (Z(i)
1 , Z

(j)
2 ), the first term in (11) becomes the

SimCLR loss for a score function s(·, ·) = exp
(
sim(·, ·)/τ

)
. However, the second term becomes

1

2k

k∑
b=1

k∑
i=1

log

(
E
[

s(Z
′(i)
b , Z

(i)

b̄
)∑2

b′=1

∑k
j=1 I

(
(i, b) ̸= (j, b′)

)
s(Z

(i)
b , Z

(j)
b′ )

])
,

where again Z ′(i)
b is identically distributed to Z(i)

b but independent of all other random objects. Let
us focus on the term (i, b) = (1, 2) as in the beginning of this note, that is

log

(
E
[

s(Z
′(1)
2 , Z

(i)

b̄
)∑2

b′=1

∑k
j=1 I

(
(1, 2) ̸= (j, b′)

)
s(Z

(1)
2 , Z

(j)
b′ )

])
.

To eliminate this term, one could use the fact that Z(i)
1 are i.i.d. and take the average of these terms

as in (Poole et al., 2019) in order to end up with the desired log k term. However, this is not possible
since in the denominator there are additional terms associated with Z(j)

2 for j ̸= 2. Moreover, it is
also not possible to include the termsZ(j)

2 in this fictional average and end up with a term log(2k−1)
since Z(j)

2 and Z(j)
1 are not i.i.d. as previously discussed.

However, consider again the assumption that the samples of each batch X(1:k) are i.i.d. and both
the encoder fθ and projector πθ networks are deterministic and do not employ batch normalisation.
Further consider the score function

s(x, z1) =

{
exp

(
sim(πθ ◦ fθ ◦ t2(x), z1)/τ

)
if πθ ◦ fθ ◦ t1(x) = z1∑2

b=1 exp
(
sim(πθ ◦ fθ ◦ tb(x), z1)/τ

)
otherwise

,

where t1 and t2 are the known transformations of each branch. Then, as in the InfoNCEwe observe
that

I(X;Z1|A = (t1, t2)) ≥

log k +
1

k

k∑
i=1

E
[
log

(
exp

(
sim(Z

(i)
2 , Z

(i)
1 )/τ

)∑2
b′=1

∑k
j=1 I

(
(i, 1) ̸= (j, b′)

)
exp

(
sim(Z

(j)
b′ , Z

(i)
1 )/τ

))∣∣∣∣A = (t1, t2)

]
,
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where A denotes the augmentation random transformations. Taking the expectation in both sides
with respect to the augmentations leads to the same inequality on I(X : Z1|A). Then,

I(X;Z1|A) = I(X;Z1, A)− I(X;A)

= I(X;Z1, A)

= I(X;Z1) + I(X;A|Z1) = I(X;Z1)

where the second equality holds since the augmentations are drawn independently from the data,
and the last one holds from the Markov chain X → Z ← A.

Note that here the assumptions are heavily employed: first, they are needed for the usual requirement
in the InfoNCE that I(X(1:k);Z

(i)
1 |A = (t1, t2)) = I(X(i);Z

(i)
1 |A = (t1, t2)), and second, they

are needed to perform the comparison πθ ◦ fθ ◦ t1(x) = z1. Taking the expectation with respect to
the augmentations A and averaging with the same observation on I(X;Z2|A) reveals that

1

2

(
I(X;Z1) + I(X;Z2)

)
≥ log k − LSimCLR(θ). (12)

From (12), we can see how minimising the SimCLR loss does not only minimises the information
between the projections I(Z1;Z2), but also the information that each projection has about the data
that is not shared by the other projection. Namely,

I(Z1;Z2) +
1

2

(
I(X;Z1|Z2) + I(X;Z2|Z1)

)
≥ log k − LSimCLR(θ),

where we used the equality I(X;Z1) = I(X,Z2;Z1) = I(Z1;Z2) + I(X;Z1|Z2) and its analogous
for I(X;Z2). Therefore, the above bound gives no guarantee that SimCLR learns projections that
capture the semantic information, since I(X;Z1|Z2) could be made arbitrarily large capturing all
the information not shared by the views. As shown in the approximate analysis with KDEs, this
bound is crude.

C.2.2 SIMCLR AND KDE

As with CMC, the SimCLR loss may be re-written for an analysis based on the mutual information
decomposition from (1). Namely, LSimCLR(θ) is

1

2

2∑
b=1

(
1

k

k∑
i=1

sim(Z
(i)
b , Z

(i)

b̄
)/τ − 1

k

k∑
i=1

log
( 2∑

b′=1

k∑
j=1

I
(
(i, b) ̸= (j, b′)

)
exp

(
sim(Z

(i)
b , Z

(j)

b̄
)/τ
)))

.

(13)

Similarly to before, considering a von Mises-Fisher reconstruction density with parameter 1/τ re-
covers the first term of the parenthesis for both b = 1 and b = 2. Also, considering the second term
in the parenthesis individually for b = 1 and b = 2 introduces similar problems to those in CMC

since Z(i)
1 and Z(i)

2 are not identically distributed and, even if they were, they are not independent.

Consider now the second term with the whole sum, i.e.

1

2k

2∑
b=1

k∑
i=1

log
( 2∑

b′=1

k∑
j=1

I
(
(i, b) ̸= (j, b′)

)
exp

(
sim(Z

(i)
b , Z

(j)

b̄
)/τ
)))

,

and model the samples as coming from the distribution PZ = PZ1 + PZ2 . Then, this term is
approximately Joe (1989)’s estimator of H(Z), with the exemption that some pairs of the elements
in the average are not independent of each other, which may harm its performance. However, the
bias of this dependence is to balance the number of samples from each distribution of the mixture,
and thus is not severe. Considering this estimator, disregarding the constants that do not affect the
optimisation, and using the we obtain that

I(Z1;Z2) ⪆ log k − LSimCLR(θ)− DJS(PZ1
∥PZ2

).

This equation also indicates that when both projections have similar marginals minimising the
SimCLR loss approximately maximises the mutual information I(Z1;Z2).
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C.3 CAVEATS OF THE ANALYSIS AND RELATED WORK.

Caveats of the analysis. Entropy estimation in high dimensions performs poorly: the rate of con-
vergence decreases exponentially with the increasing dimensions (Joe, 1989). However, the highest
entropy distribution on a finite, convex set Z is precisely the uniform distribution on that volume.
Hence, these KDE estimators are good proxy’s for the objective of maximising the entropy of the
projections, since they force the samples to be maximally separated in Z , and therefore are a good
proxy for entropy maximisation and therefore mutual information maximisation. A similar obser-
vation is also done in (Wang & Isola, 2020; Zimmermann et al., 2021), where they assess that
maximising the uniformity of the samples on the projections’ space Z results in good performance.
Moreover, these analyses require that the projections of different images on each branch are i.i.d.,
which is usually not the case due to the use of batch normalisation. The breaking of the i.i.d. as-
sumption can be important in the InfoNCE lower bound on the mutual information, nonetheless, it
does not discredit that the result of the KDE is a good proxy to maximise the entropy.

Related work. The following methods are variants of CMC or SimCLR and they inherit the anal-
ysis above either fully or partially. A whole new analysis is not written in the interest of space
and repetition. In (Bachman et al., 2019), they adapt the Deep InfoMax (Hjelm et al., 2018, DIM)
method to CMC and include the maximisation of local features and several level (layers of the net-
work) features to the standard contrastive multi-view coding. In (Tian et al., 2020a), they consider
CMC with multiple views instead of only two, and in (Tian et al., 2020b), they intend to learn the
augmentations that best suit the information maximisation. Then, (Wu et al., 2018) and MoCo (He
et al., 2020; Chen et al., 2020b) adopt the CMC setting without the symmetrisation (Figure 1c) and
use additional negative pairs from the batches in previous iterations of training. Finally, in (Rama-
puram et al., 2021), they adopt the SimCLR setting, where one of the two branches is modified to
generate stochastic latent variables. More precisely, the representation R2 = fθ(X) is stochasti-
cally transformed to a latent variable U ∼ PU |R which is later decoded into the representation space
R′

2 = ρθ(U). The contrastive learning proceeds as usual with this reconstructed representation.

D FURTHER PROJECTIONS’ RECONSTRUCTION METHODS

In this section of the Appendix, we continue the analysis started in Section 3.2 on how different
projections’ reconstruction methods maximise the mutual information between the projections of
different views.

SimSiam Chen & He (2021, SimSiam) consider a symmetric structure (Figure 1a) and, as BYOL,
try to predict the projections from one branch using the predictions from the other branch and a small
predictor network gθ. With this purpose, they try to minimise the negative cosine similarity

LSimSiam(θ) := −
1

k

2∑
b=1

k∑
i=1

sim
(
gθ(Zb), Zb

)
,

which, as for BYOL, is equivalent to maximise the reconstruction term in (1) with a von Mises–Fisher
reconstruction density after symmetrising with the reconstruction from the other branch.

Basically, SimSiam is BYOL in the extreme case where ξ = θ. The realisation from Chen et al.
(2020b) is that collapse can be avoided by making sure that in the optimisation of LSimSiam(θ) the
parameters θ are only updated so that gθ(Zb) gets closer to Zb and not so that Zb also gets closer
to gθ(Zb). They ensure that using a stop-gradient operator to Zb. However, this is sensitive
to the employed parameters as seen in the experiments in BYOL when ξ = θ (Grill et al., 2020)
and even in (Chen & He, 2021), where they see that the method collapses or is unstable without a
predictor network and depending on where in the network batch normalisation is employed.

Similarly, SimSiam also considers a variant with a cross-entropy loss. Practically, they try to make
sure that the predictions from one branch generate a similar distribution on [d] as the projections
from the other branch. That is, they try to minimise the cross entropy

LSimSiam(θ) :=
1

k

2∑
b=1

k∑
i=1

s
(
gθ(Zb)

)⊺
log s

(
Zb

)
,
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where s is the softmax function. Theoretically, this amounts to generating a surrogate variable
Wb = ϕ(Zb) and trying to maximise I(Z1;W2)+ I(W1;Z2), thus maximising 2I(Z1;Z2) due to the
data processing inequality (c.f. Figure 1b). Focus on b = 2 and the decomposition of I(Z2;W2)
using (1). Then, letting the reconstruction density be qW2|Z1=z1 = s

(
gθ(z1)

)
recovers LSimSiam(θ).

Finally, the same analysis as before holds for the study entropy terms H(Z1) and H(Z2) (or collapse
prevention).

DeepCluster and SWAV Both (Caron et al., 2018; Asano et al., 2019, DeepCluster)
and (Caron et al., 2020, SwAV) generate discrete surrogate variablesWb = ϕ(Zb) based on a cluster-
ing approach and try to minimise a cross-entropy term similar to that in LSimSiam. Then, they ensure
that the entropy is large by engineering the clustering so that it is balanced (i.e., there are enough
projections assigned to each cluster). For the rest of the section let Z ⊆ Rd andW = [m].

DeepCluster has an asymmetric setting (Figure 1d) but with ξ = θ. First, the cluster assignments
W

(i)
2 = ϕ(Z

(i)
2 ) of all the data points are obtained solving the problem5

C⋆ = arg inf
C∈Rd×m

1

n

n∑
i=1

∥Z(i)
2 − Cp

(i)
2 ∥2 s.t. ∥p(i)2 ∥∞ = 1, p

(i)
2 ∈ {0, 1}m,

where C⋆ represent the m centroids of the clusters in Z and p
(i)
2 is the p.m.f. of W (i)

2 given Z(i)
2 .

Then, the parameters θ are optimised by minimising the cross entropy

LDeepCluster(θ) :=
1

k

k∑
i=1

(
p
(i)
2

)⊺
log s

(
gθ(Z

(i)
1 )
)
,

where gθ : Z → Rm is a small predictor network and clearly qW2|Z1=z1 = s ◦ gθ(z1). This
optimisation amounts to maximising the reconstruction term in (1) for I(Z1;W2) ≤ I(Z1;Z2).
However, without accounting for the entropy term H(W2) the loss LDeepCluster is trivially min-
imised by assigning all projections to a single cluster and always predicting such a cluster (i.e.
H(W2) = 0 =⇒ I(Z2;W2) = 0). Caron et al. (2020) circumvent this issue by randomly reas-
signing points from full clusters to empty clusters and sampling the images of each batch based on
a uniform distribution on the clusters’ labels. Hence, effectively keeping a high entropy H(W2).

SwAV has a symmetric setting (Figure 1b). Let us focus on one branch (b = 2), since the analysis
of the method then follows by symmetrisation. Here, the cluster assignments W (i)

2 = ϕ(Z
(i)
2 ) are

obtained solving the following optimisation problem

P2 = argmax
P∈P

{
Tr
(
Z

(1:k)
2 C⊺P ⊺

)
+ ϵH(P )

}
using the Sinkhorn-Knopp algorithm (Sinkhorn, 1974; Cuturi, 2013), where Z(1:k)

2 ∈ Rk×d, C ∈
Rm×d are the m centroids (or prototypes) in Rd, P = {P ∈ Rk×m

+ : P ⊺1k = 1m/m and P1m =

1k/k} is the transportation polytope, and 1k is the all ones vector in Rk. LetC(i) and P (i)
2 denote the

i-th row of C and P2, respectively. In SwAV, both the projections and the prototypes lay in the unit
hypersphere, i.e. Z(i), C(i) ∈ Sd−1, and as seen in BYOL maximising the dot product is equivalent
to minimising the squared ℓ2 norm distance. Hence, the optimisation problem above is equivalent
to the otpimal transport problem of moving the k samples Z(1:k)

2 ∈ Rd to the positions of the m
prototypes C with the minimum ℓ2 distance cost. Moreover, to aid the optimisation calculations,
an entropic regularisation is included and solved using the Sinkhorn-Knopp algorithm (Sinkhorn,

1974; Cuturi, 2013)6, where H(P2) :=
∑k

i=1

(
P

(i)
2

)⊺
logP

(i)
2 .

Note that the j-th element of P (i)
2 can be understood as the probability of assigning Z(i)

2 to the
cluster W (i)

2 = j. The optimisation aims to have P2 ∈ P and therefore P ⊺
2 1k ≈ 1m/m, which

by this interpretation would mean that pW2
≈ 1m/m, thus maximising the desired entropy H(W2)

5In (Asano et al., 2019), the clusters are obtained solving an optimal transport problem similar to SwAV.
6Actually, SwAV only approximately solves the problem, since the algorithm is run for only three steps.
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in (1). Then similarly to DeepCluster, the reconstruction term in (1) for I(Z1;W2) is maximised
minimising the SwAV loss

LSwAV(θ) :=
1

k

2∑
b=1

k∑
i=1

(
p
(i)
2

)⊺
log s

(
CZ

(i)

b

)
,

for b = 2, where p
(i)
2 = P

(i)
2 /(1⊺

mP
(i)
2 ) and qW2|Z1=z1 = s(Cz1), hence maximising the mutual

information I(Z1;W2). An analogous analysis for the branch b = 1 reveals that minimising LSwAV
with the entropic regularisation assignment maximises the mutual information I(Z2;W1). In SwAV
(and hence in this analysis), the prototypes are treated as parameters of the network (i.e., C ∈ θ) and
are updated using stochastic gradient descent to minimise LSwAV.

E ENTREC ALGORITHM

Below, we sketch EntRec’s main algorithm.

Algorithm 1 EntRec’s main learning algorithm.

Input: Dataset D = {x(i)}ni=1, batch size k, reconstruction density qRec, kernel density
qKDE, encoder and projector networks fθ and πθ, augmentation set T , and number of iterations
iterations.

1: Set iteration = 1
2: while iteration ≤ iterations do
3: Draw a batch x(1:k) uniformly at random from the dataset D.
4: Draw two augmentation functions t1 and 2 uniformly at random from T .
5: for all i ∈ {1, . . . , k} do
6: Calculate z(i)1 = πθ ◦ fθ ◦ t1(x(i)) and z(i)2 = πθ ◦ fθ ◦ t2(x(i)).
7: end for
8: if EntRecDisc then
9: Calculate p1 = 1

k

∑k
i=1 s(z

(i)
1 ) and p2 = 1

k

∑k
i=1 s(z

(i)
2 ).

10: end if
11: for all i ∈ {1, . . . , k} do
12: if EntRecCont then
13: for all j ∈ {1, . . . , k} do
14: Calculate ℓ(i,j)Ent,1(θ) = qKDE

(
z
(i)
1 −z

(j)
2

h

)
and ℓ(i,j)Ent,2(θ) = qKDE

(
z
(i)
2 −z

(j)
1

h

)
.

15: end for
16: Calculate ℓ(i)Ent(θ) = − 1

2

(
log
(

1
khd

∑k
j=1 ℓ

(i,j)
Ent,1

)
+ log

(
1

khd

∑k
j=1 ℓ

(i,j)
Ent,2

))
.

17: Calculate ℓ(i)Rec(θ) =
1
2

(
log
(
qRec(z

(i)
2 |z

(i)
1 )
)
+ log

(
qRec(z

(i)
1 |z

(i)
2 )
))

.
18: else if EntRecDisc
19: Calculate ℓ(i)Ent(θ) = − 1

2

(
p⊺1 log

(
p1
)
+ p⊺2 log

(
p2
))

.

20: Calculate ℓ(i)Rec(θ) =
1
2

(
s(z

(i)
1 )⊺ log

(
s(z

(i)
2 )
)
+ s(z

(i)
2 )⊺ log

(
s(z

(i)
1

)
.

21: end if
22: end for
23: Calculate LEntRec(θ) = − 1

k

∑k
i=1

(
ℓ
(i)
Ent(θ) + ℓ

(i)
Rec(θ)

)
.

24: Update encoder fθ and projector πθ to minimise LEntRec(θ).
25: end while
26: return encoder network fθ, and throw away πθ.

F ENTREC CONVERGENCE

In Theorem 2 and Theorem 3 we state the bias and variance properties of the EntRec estima-
tors, which in turn describe their convergence in mean squared error (MSE). In this section of the
Appendix, we formalise and complement these statements.
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F.1 ENTRECCONT CONVERGENCE

F.1.1 ENTROPY ESTIMATION AND SELECTION OF THE BANDWIDTH PARAMETER

The bias and variance of Joe (1989)’s KDE estimator ĤKDE of the entropy H(Zb) are (Joe, 1989,
Section 4, page 695)

B[ĤKDE] ∈ O(k−1h4−d) +O(k−2h−2d) +O(h4) and

V[ĤKDE] ∈ O(k−1) +O(k−2h8−d) +O(k−2h−d) +O(k−1h8−d) +O(k−2h4−2d) +O(h8).

Hence, as long as h ∈ O(k−1/(d+ε)) for some small ε > 0 both the bias and the variance vanish,
and the estimator convergences in MSE, even if it does so at a slow rate. Then, a sensible choice of
the bandwidth is h ≈ 1 since k−1/(d+ε) → 1 as d increases.

Under the further assumption that the distribution of Zb is β-smooth (i.e., it belongs to the Hölder
or Sobolev classes) then the bias and variance of the estimator are (Krishnamurthy & Wang, 2015)

B[ĤKDE] ∈ O(hβ) and

V[ĤKDE] ∈ O(k−1h−d).

As previously, the bias and the variance of the estimator only vanish if h ∈ O(k−1/(d+ε)) for some
small ε > 0, with the optimal choice h = k−1/(d+2β). Nonetheless, having a bias term independent
of the parameter of the optimisation is not harmful in itself. Hence, when the KDE estimator is
employed only for optimisation purposes both h ∈ O(k−1/(d+ε)) and h ∈ O(1) may work. For
instance, for the experiments using the von Mises–Fisher distribution we set h = 0.1 to match the
temperature employed by (Tian et al., 2020a, CMC) and (Chen et al., 2020a, SimCLR).

F.1.2 CROSS ENTROPY ESTIMATION

Note that log q
Zb|Z(i)

b̄

(Z
(i)
b ) are independent and identically distributed random variables with ex-

pectation E[log qZb|Zb̄
(Zb)]. Hence, the empirical estimator is unbiased. Similarly, the variance of

the estimator is V[ 1k
∑k

i=1 log qZb|Z(i)

b̄

(Z
(i)
b )] = σ2

q/k, where σ2
q = V[log qZb|Zb̄

(Zb)].

Consider now that a reconstruction density is of the form qZb|Zb̄=zb̄
(zb) = Ce−ρ(zb,zb̄) and that

the projections lay in a convex body Z ∈ Rd. Then, we know that log qZb|Zb̄=zb̄
(zb) ∈ [logC −

ρ(Z), logC], where ρ(Z) is the diameter of Z with respect to ρ. Therefore, by the Popoviciu’s
inequality on variances we have that σ2

q ≤ ρ(Z)2/4, which implies that for ρ(Z) <∞ the estimator
converges in MSE. This holds for the two cases considered in this paper:

• Von Mises–Fisher distribution in Z = Sd−1: Here the diameter with respect to ρ(z1, z2) =
κsim(z1, z2) is ρ(Z) = κ2 and hence the estimator converges in MSE at a κ2/(4k) rate.

• Gaussian distribution inZ = [−1, 1]d: Here the diameter with respect to ρ(z1, z2) = ∥z1−
z2∥2/(2σ2) is ρ(Z) = 2d/σ2 and hence the estimator converges in MSE at a d/(2kσ2)
rate.

F.2 ENTRECDISC CONVERGENCE

F.2.1 ENTROPY ESTIMATION

The plug-in estimator Ĥplug-in of the entropy H(Wb) is known to have the following bias and variance
terms (see e.g. (Girsanov, 1959, Equations (3) and (4)) or (Antos & Kontoyiannis, 2001, Introduc-
tion)):

B[Ĥplug-in] ∈ O
(d− 1

2k

)
+O

( 1

k2

)
and

V[Ĥplug-in] ∈ O
(σ2

p

k

)
+O

( 1

k2

)
,
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where σ2
p = V[− log pWb

(Wb)]. The bias and the variance vanish as long as d is fixed and σ2
p <∞,

meaning that the estimator converges in MSE.

Note that pWb
= E[s(Zb)], where s is the softmax operator. Hence, we have that

V[− log pWb
(Wb)] ≤ E[log2 pWb

(Wb)]

≤ E
[(
Zb,Wb

− log
( k∑

i=1

eZb,i

))2]
≤ E

[
(log d+ Zb,max − Zb,min)

2
]
,

where the first inequality follows from the fact that V[X] ≤ E[X2]; the second from Jensen’s
inequality and the formula of the softmax; and the last one from the log-sum-exp trick. Here, Zb,i

denotes the i-th element of the random vector Zb.

In the particular case where the projections lie in the sphere Sd−1 we have that σ2
p ≤ (log d + 1)2.

Similarly, if they lay in the cube [−1, 1]d, we have that σ2
p ≤ (log d + 2)2. Therefore, under these

standard conditions the variance vanishes at a rate in O(log2(d)/k) +O(1/k2).

F.2.2 CROSS ENTROPY ESTIMATION

As in Appendix F.1.2, note that log q
Wb|Z(i)

b̄

(W
(i)
b ) are independent and identically distributed

random variables with expectation E[log qWb|Zb̄
(Wb)]. Hence, the empirical estimator is unbi-

ased. Similarly, the variance of the estimator is V[ 1k
∑k

i=1 log qWb|Z(i)

b̄

(W
(i)
b )] = σ2

q/k, where

σ2
q = V[log qWb|Zb̄

(Wb)]. Hence, the variance vanishes as long as σ2
q < ∞, meaning that the

estimator converges in MSE.

As for the entropy estimation, note that qWb|Zb̄
(Wb) = s(Zb̄). Hence, repeating the analysis above

in Appendix F.2.1 we obtain that σ2
q ≤ E

[
(log d+ Zb̄,max − Zb̄,min)

2
]

and therefore for projections
in the sphere Sd−1 or the cube [−1, 1]d the variance vanishes at a rate in O(log2(d)/k) +O(1/k2).

G EXPERIMENT PROTOCOL DETAILS

G.1 PRE-TRAINING

We do unsupervised pre-training on the 1000-class ImageNet training set (Deng et al., 2009) without
using labels. Unless specified, our explorations use the following settings for unsupervised pre-
training:7

• Optimizer. We use LARS for pre-training (You et al., 2017) and apply a scaling of lr ×
Batchsize / 256 (linear scaling (Goyal et al., 2017)). The base lr = 0.1, except for BYOL
and DINO (lr = 0.3). The learning rate has a cosine decay schedule (Loshchilov & Hutter,
2016; Chen et al., 2020a) with an initial linear warm-up for 10 epochs. The weight decay
is 1e-4, except for BYOL and DINO (1e-6). We use batch normalization (BN) (Ioffe &
Szegedy, 2015) synchronized across devices, following Chen et al. (2020a).

• Backbone. We use ResNet-50 (He et al., 2016) as the default backbone.
• Projection MLP. The projection MLP has 3 layers. The hidden fc is 2048-d, except for
BYOL when it is 4096-d. The output size is 128-d, except for BYOL (256-d) and DINO
(60000-d).

• Temperature. The temperature τ for SimCLR and CMC is 0.1. For DINO, the student
temperature is 0.1, while the teacher temperature is 0.07.

• Augmentations. We use DINO augmentations (Caron et al., 2021) for all methods with 2
global crops (cropping scale [0.4, 1.0]) and 8 local crops (cropping scale [0.05, 0.4]).

7These hyperparameters have been optimised by us to obtain the best performance of each of the SSL
methods with our implementation. For EntRec, we just used the parameters from SimCLR without any
further optimisation.
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• EntRecCont reconstruction density. In Section 4.1 we intentionally left the reconstruc-
tion density q

Zb|Zb̄=Z
(i)

b̄

of EntRecCont unspecified to highlight the generality of our
theoretical results. In the experiments, we choose this to be a von Mises–Fisher density
with mean direction Z(i)

b̄
and parameter 10, so that they match the one used by SimCLR

and CMC. Nonetheless, in Appendix H.3 we give the results of EntRecCont with a Gaus-
sian distribution with mean Z(i)

b̄
and variance 0.99,89 where we can see they are of the same

order than those obtained with the von Mises–Fisher distribution.

• Float precision. We use half precision for all methods and experiments, except for DINO
where full precision was found to be needed.

G.2 EVALUATION

On ImageNet, the evaluation of the learned representations is done by training a supervised linear
classifier on frozen representations for one epoch in the training set, and then testing it in the test
set. For transfer learning, the evaluation of the learned representations is done by supervised fine-
tuning of the learned representation together with a linear classifier on the respective training set for
200000 steps with a batch size of 256, following Chen et al. (2020a). We fine-tune using the RM-
SProp (Hinton et al., 2012) with a learning rate of 0.0003 and a cosine decay schedule with initial
linear warm-up for 5 epochs. As augmentations during fine-tuning, we use standard ImageNet aug-
mentations (random cropping followed by random horizontal flips and normalisation, Krizhevsky
et al. (2017). Testing is done on the respective test sets.

H ADDITIONAL EXPERIMENTS

H.1 TRANSFER LEARNING

Below analyse the transfer learning performance on a series of transfer tasks. Results can be found
in Table 3. Again, we see a performance of EntRec that is comparable with the performance of
other multi-view SSL methods. Note that BYOL and DINO results were not finished at the time of
submission, but will be added later.

Table 3: Fine-tuning transfer learning results. Pre-training on ImageNet for 400 epochs with batch
size 4096. Numbers are top-1 accuracy.

Accuracy % Flowers CIFAR10 CIFAR100 Caltech-
101

Aircraft Cars Food SUN397 DTD Mean

SimCLR 85.2 96.1 82.1 78.7 67.3 87.1 87.1 54.1 57.6 77.2
CMC 82.2 96.0 81.9 79.5 68.5 88.4 86.6 54.0 57.6 77.2

EntRecCont 81.8 96.4 80.7 77.1 68.3 88.2 86.3 54.4 57.1 76.7
EntRecDisc 81.5 95.0 82.0 79.5 66.4 88.2 86.9 54.7 57.7 76.9

H.2 THE EFFECT OF DIRECT ENTROPY MAXIMISATION ON ENTROPY

For the two methods that use discrete surrogate random variables (DINO, EntRecDisc), we can
get accurate finite samples estimations of the entropy term in (1). This allows us to analyse how
including this term into the training objective with EntRecDisc affects the behaviour of this term
during training in comparison to what happens when engineering techniques are used to maintain
high entropy. Figure 2 confirms that this indeed helps to maintain higher entropy: EntRecDisc
maintains a non-decreasing level of entropy, while DINO slowly lowers the entropy term, however
not totally collapsing.

For the methods that do not employ discrete surrogate variables, we cannot quantify how much of
the potential entropy they capture, but we can observe qualitatively how this entropy is controlled
during training through a KDE proxy (see Figure 3). We see that for BYOL, it is dropping at some
point, but then stabilising and not collapsing either. We think it would be interesting to explore the

8This variance is selected to comply with the kernel bandwidth requirements of Theorem 2.
9To fulfil the theoretical requirements of Theorem 4, we restrict the projections to the box Z = [−1, 1]d.
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Figure 2: Entropy dynamics during training for DINO and EntRecDisc, which allow for accurate
entropy estimation through their discrete probability distributions. The entropy is shown as a per-
centage of the total potential entropy log(|W|).

Figure 3: Entropy dynamics during training for SimCLR, CMC, BYOL, and EntRecCont. The y-
axis is a proxy of the entropy obtained with a KDE, and has been normalised for each method based
on the range obtained during the trajectory in order to have them all in one single plot. Note that
this means that the curves can only be interpreted qualitatively and we are interested in the trend.
For example, BYOL does not collapse to 0 entropy but simply stabilises at a level of entropy that is
lower than where it started from.

performance levels BYOL could reach if a more direct way of maintaining or maximising the entropy
term can be found for this method.

H.3 RESULTS ON OTHER ENTREC RECONSTRUCTION DENSITIES

As mentioned above, we used a von Mises-Fisher density for the reconstruction density of
EntRecCont in the experiments in the main part of this paper. However, EntRecCont and
its theoretical properties are more general than this special case, and thus below we also include
the results obtained for varying batch sizes and epochs on ImageNet with a Gaussian reconstruction
density below in Table 4 and Table 5. We see that the results are still comparable to the remaining
methods and to EntRecCont with a von Mises-Fisher reconstruction density (compare to Table 1
and Table 2).

Table 4: Performance on the ImageNet test set of EntRecCont with Gaussian reconstruction
density across batch sizes after 400 epochs of training.

Accuracy ∆Accuracy wrt. 4096

4096 2048 1024 512

EntRecCont (Gauss) 69.4 -1.2 -2.5 -4.7
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Table 5: Performance on the ImageNet test set of EntRecCont with Gaussian reconstruction
density across epochs with batch size of 4096.

Accuracy ∆Accuracy wrt. 400

400 300 200 100

EntRecCont (Gauss) 69.4 -0.8 -2.5 -5.6
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