Investigating the interaction of linguistic and

mathematical reasoning in language models using

multilingual number puzzles

Antara Raaghavi Bhattacharya
Harvard University
Cambridge, MA, USA
antara@alumni.harvard.edu

Kathryn Davidson
Harvard University
Cambridge, MA, USA

Isabel Papadimitriou
University of British Columbia
Vancouver, Canada
isabel.papadimitriou@ubc.ca

David Alvarez-Melis
Harvard University
Cambridge, MA, USA

kathryndavidson@fas.harvard.edu dam@seas.harvard.edu

Abstract

Across languages, numeral systems vary widely in how they construct and combine
numbers. While humans consistently learn to navigate this diversity, large language
models (LLMs) struggle with linguistic-mathematical puzzles involving cross-
linguistic numeral systems, which humans can learn to solve successfully. We
investigate why this task is difficult for LLMs through a series of experiments
that untangle the linguistic and mathematical aspects of numbers in language.
Our experiments establish that models cannot consistently solve such problems
unless the mathematical operations in the problems are explicitly marked using
known symbols (4, X, etc, as in “twenty + three”). In further ablation studies,
we probe how individual parameters of numeral construction and combination
affect performance. While humans use their linguistic understanding of numbers
to make inferences about the implicit compositional structure of numerals, LLMs
seem to lack this notion of implicit numeral structure. We conclude that the ability
to flexibly infer compositional rules from implicit patterns in human-scale data
remains an open challenge for current reasoning models.

1 Introduction

Language models reason and solve problems using language. What is the connection (and the
integration) between their linguistic systems and their impressive reasoning abilities? To investigate
this question, we run a suite of experiments to analyze how language models solve puzzles about
diverse linguistic number systems. People represent numbers through language, using rule-based
systems that are simultaneously linguistic and mathematical [Ifrah| 2000, [Dehaene} |2011} (Carey,
2004, [Le Corre and Careyl 2007} lonin and Matushansky| [2006} |[Hammarstroml, 2010, \Comrie, 2011]].
Unlike most mathematical reasoning problems, where the mathematical operators are explicit, a
numeral system contains implicit operations for describing numerals, and there is considerable variety
in how this is done across the world’s languages. For example, French vingt-neuf (20 + 9), Bengali
untirish (30 — 1), Tamil irupatti onpatu (2 x 10 + (10 - 1)), and Birom bakiira biba nd ve tiugin (2
X 12 4 5) all evaluate to the Hindu-Arabic numeral 29.

We investigate the capabilities of language models to solve puzzles about linguistic number systems,
drawn from linguistics competitions (Linguistics Olympiads) where high-school students have to

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

Variable Operator Example
Explicitness Familiarity Type

Single character Implicit - - AB
Explicit Familiar Symbol A + B
Explicit Unfamiliar Symbol A a B
Explicit Unfamiliar Word A xebrut B
Multi-character Implicit - - gbaifi pagig
Explicit Familiar Symbol gbaifi + pagig

Table 1: A demonstration of the experimental conditions for our explicit operators experiment.
We add explicit operators to our base IMPLICIT problems, using both familiar symbols for addi-
tion/multiplication/subtraction and unfamiliar symbols and words to symbolize the operation.

reason through data about unknown languages and explain the linguistic rules governing the data
[Derzhanski and Paynel 2010]]. While language models approach human performance on several
language-based benchmarks [Hendrycks et al., 2020, |[Kojima et al.l 2022, |Begus et al.| [2023],
and recent reasoning models deliberately optimized for logical and mathematical reasoning show
remarkable performance improvements for many structured mathematical reasoning tasks [Zhong
et al.| 2024} Jaech et al., [2024]], LLMs perform extremely poorly at solving linguistic-mathematical
puzzles about systems of numbers in different languages [Derzhanski and Veneval 2018 [Bean et al.,
2024]).

Why do language models fail to solve these problems at the intersection of language and math —
what specifically causes this failure? And how much of this failure is due to the linguistic vs. the
mathematical aspects of the problem?

We present a method to systematically isolate individual parameters of number construction and
combination and investigate how they affect language model performance. We establish that most
individual mathematical features (like base) do not hinder the ability of sufficiently advanced language
models to solve such problems. However, unless the mathematical operations in a problem are
made explicit through familiar symbols (+, x, etc.), models cannot consistently solve the problem.
This indicates that, at least within the domain of linguistic-mathematical problems, models cannot
infer the compositional structure of numerals like humans can, or sufficiently abstract notions like
operators. We discuss our findings in the broader context of human language, concluding that flexible,
adaptive use of language across domains appears to remain challenging for LLMs.

2 Background

2.1 Linguistic and cognitive connections

People acquire systems of number representation as part of learning language, and are consequently
able to construct arbitrary numerals using the rules that they learn. Although the system of rules
may be language-specific, the general framework of numeral construction and combination is a
fundamental cognitive ability [Hurford,|1987, Feigenson et al., [2004]]. Performing mathematics in a
symbolic sense requires explicit instruction (e.g. a child would not inherently know what + connotes),
but once this symbolic meaning has been learned, people can generalize it to apply to any numbers
[Sarnecka et al.l 2015]].

Numeral operations in language can be marked both explicitly (e.g. und in German einundzwanzig)
and implicitly (as in English twenty-one), with larger numerals often using a combination of implicit
and explicit operations (five hundred and one =5 [x] 100 + 1). Even when operations are implicit,
people can understand and infer the cross-linguistic compositional structure of numerals [[lonin and
Matushansky, 2006]. In a linguistics contest, a high-school student would not need to know any
mathematical concepts beyond basic arithmetic to reason through number system problems and infer
the rules needed to solve them. The challenge lies instead in whether models can learn and infer such
rules from limited data — a characteristic capacity of humans acquiring language.

2.2 Mathematical ability in language models

Recent language models seem to display strong numerical understanding and processing abilities if
presented with purely mathematical problems in standard formats [[Yang et al., [2024]], particularly for
small numbers and simple mathematical operations (of the kinds used in linguistics contest problems).
Current reasoning models appear to perform well at arithmetic and algebra, math word problems
[Ahn et al.| 2024], and difficult mathematical contest questions equivalent to advanced college-level
math problems [Fang et al., 2024, [Chervonyi et al., 2025]], although their problem-solving ability is
sometimes inconsistent [McCoy et al., 2023 [Shojaee et al.,[2025]. If such models are unable to solve
linguistic-mathematical problems involving much simpler mathematics, and introducing linguistic
structure into the problem causes their reasoning ability to break down, this indicates limitations
in the scope of their reasoning — models may be unable to apply their reasoning flexibly across
domains in the ways that humans do.

3 Methods

Models. We used OpenAl ol-mini [Jaech et al., [2024]] and DeepSeek-R1-distill-Qwen-7B [Guo
et al., 2025] reasoning models to conduct our experiments, querying ol-mini via the API and
running DeepSeek locally. All code and data used for our experiments are available at https:
//github.com/antara-raaghavi/multilingual-number-puzzles,

We additionally queried an instruction-tuned model (qwen-2-7b-vl-instruct) and a base model (llama-
3.1-8B), both of which had an accuracy of 0 across all conditions that we test. These models almost
always generated longer text answers without numbers rather than the simple numerical answer
required, and were hence excluded from our analyses.

Data. We obtained data for linguistics olympiad problems from two publicly available datasets:
LingOly [Bean et al.,|2024] and Linguini [Sanchez et al., 2024]], filtering both datasets for problems
tagged as “number systems”. After filtering, we had 15 problems from the LingOly and 8 problems
from the Linguini dataset. Not every problem in the dataset could be standardized in the ways that
our experiments required. The entire dataset was thus manually evaluated for suitable problems, and
10 problems were chosen for evaluation, all in distinct languages (see[Appendix G). These problems
spanned a range of difficulty from the first round of the UK Linguistics Olympiad to the International
Linguistics Olympiad (most challenging).

4 Experiments

4.1 The effect of explicit operators in problems

Since so many of the mathematical operators in numeral structure are implicit (eg, in English we
say ‘twenty three’ to mean ‘twenty + three’), our first experiment investigates how this implicit
structure affects how models solve the problems. To do this, we standardize and convert the 10
existing linguistic number system problems to mathematical problems, and vary how explicit the

operators are, as shown in|lable 1

First, we standardize all problems to control for model tokenization and task-external knowledge
effects: we identify all meaningful morphemes, standardize all phonological changes, and replace
them with dummy words as described in detail in [Appendix B This standardized version of each
problem is what we call the IMPLICIT setting, since the mathematical operations are largely implicit,
as they are in language. Taking these IMPLICIT problems as our baselines, we then make the operators
explicit in three ways: 1) as the familiar mathematical operator symbols that perform the operation
(eg, ‘+’ for addition), 2) as symbols that are unfamiliar for performing that operation, and 3) as whole
words sampled from the tokenizer. A full example prompt with a puzzle in four variations is provided
in

We present our results in In all cases, the presence of explicit operations with familiar
symbols yields significant improvements over the default IMPLICIT condition (ol-mini performs
at ceiling). In the multi-character setting (more linguistic), models perform better on average in

the IMPLICIT condition than in the case with an explicit operator as an unfamiliar random word
(vid. [Figure 4). It is likely harder to differentiate between function words (operators) and number

https://github.com/antara-raaghavi/multilingual-number-puzzles
https://github.com/antara-raaghavi/multilingual-number-puzzles

100

ol-mini
/7. deepseek-r1

40

Accuracy (%)

\\\»

W

implicit operator explicit operator, explicit operator, explicit operator,
familiar symbol unfamiliar single symbol unfamiliar random word
Operator type

Figure 1: Making operators explicit significantly improves performance. Results for explicit
operator experiments, for the single-character variable case (see [Appendix C|[Figure 4] for multi-
character variables). Making operators explicit shows performance improvement over the IMPLICIT
condition, but this is only substantially and reliably the case when the operator is made explicit with a
familiar symbol like “+”. Error bars = standard error of the mean. 10 problems, 5 iterations / problem.

A detailed error analysis is provided in

words (numerals) in this setting — a finding consistent with work that shows human solvers also
find a problem to be more difficult when the operator word is explicit but unfamiliar [Derzhanski
and Veneval, 2018|]. Overall, our results demonstrate that it is difficult for models to reason about
the abstract idea that linguistic quantities might contain operators, if the operators are not explicitly
provided using familiar symbols.

4.2 Providing contextual information

Our first experiment showed that in the absence of problem-specific instructions, when given a
linguistic-mathematical problem directly, LLMs struggle to solve it unless the operations are both
explicit and familiar. This leaves open the question of whether providing additional problem-specific
information would affect the model performance. We thus modulate the context of the problem in
three different ways. We query the same four problem variants as described in additionally
providing the following contextual information:

Language: “Here is a puzzle based on numbers in the {language} language."
Base: “Here is a puzzle based on numbers in a language that uses a base-{n} numeral system."

Implicit operations: “Here is a puzzle based on numbers in a language. In this language, numbers
may be constructed through implicit operations like addition (twenty-nine = 20 + 9) or multiplication
(five hundred = 5 x 100)." [only for IMPLICIT condition]

We compare these to the baseline results from for o1-mini, presenting our results in
In cases other than the implicit operator condition, the model seems to recognize the
problem as requiring a more mathematical kind of reasoning, so providing linguistic information
seems to confuse the model and average performance is worse. However, in the implicit operator (A
B) condition, model performance improves significantly, perhaps because the setting of the problem
is less overtly mathematical. In[Figure 2b| we show that providing information about the implicit
reasoning needed is not as significant a boost as activating knowledge about the specific language.

4.3 Ablations: constructed minimal-pair problems

In order to ensure that it is the difference in operators (as opposed to other features of the numeral
system) that explains the models’ inability to solve these problems, we performed an ablation study
to test whether models could handle other aspects of numeral construction and combination. Our
experiment is inspired by the notion of a linguistic minimal pair, a pair of linguistic items that differ
in exactly one meaningful element. We construct minimal pairs of simple, synthetic number system
problems, where every element is the same except for one specific parameter that differs between two
paired problems.

implicit (A B), o1-mini

Accuracy (%)

Information given to o1-mini

30{ mmm Language

Numeral base 351

20 30 4
10 254

204
-10
=20

explicit operator, explicit operator, explicit operator, implicit operator
familiar symbol unfamiliar single symbol unfamiliar word

o T T .
Operator type Language Numeral base Implicit context Baseline
Context condition

A accuracy (from baseline) %

(a) Language and base information only helps in

the IMPLICIT case. Effect of adding language or nu- (b) Extra information improves performance on IM-
meral base information, plotted as a difference from the PLICIT problems (A B). Information about implicit-
baseline values in|[Figure 1|for ol-mini. In cases with ness is helpful, but not as much as more direct informa-
explicit operators, conflating overtly mathematical and tion like the problem language. Error bars = standard
linguistic information appears to confuse the models. error of the mean. 5 iterations / problem.

We tested five major parameters of numeral systems: numeral representation (symbolic numeral
glyphs vs. numeral words), ordering (right-to-left vs. left-to-right), and combination (additive vs.
subtractive). As the degenerate case, we compare whether the system is a numeral system or not (i.e.
is just a regular linguistic system). We detail our specific test setup and results in

In all cases, GPT-4 and o1-mini could solve the template problems. It thus appears that most basic
“building blocks" of number systems (e.g. the base of the system, the order of numerals, etc.) did not
affect model performance in isolation, but the models consistently fail to solve number problems that
involve constructing and combining complex numerals.

5 Discussion and Conclusions

We study the entanglement between linguistic and numeric knowledge in language models, focusing
on the ability of models to use mathematical reasoning in problems that display the implicit numerical
structure in language. In the setting of these linguistic-mathematical puzzles, we show that the overt-
ness and familiarity of operators affects the performance of language models, although many humans
are able to understand how numeral systems work and hence solve the problems without needing spec-
ified operators. However, a broader study with different controls and parameter settings remains open
for future work. Since all our evaluation was standardized and closed-form, we welcome research on
open-ended evaluation of reasoning task responses. Current language models seem to display some
level of emergent modular structure [Teehan et al., 2022} [Lepori et al},[2023]] — perhaps linguistic and
mathematical tasks activate separate circuits or subspaces in models, and understanding the ways in
which reasoning fine-tuning and reinforcement learning interacts with linguistic pretraining is another
promising avenue for future research. Investigating such questions enriches our understanding of both
computational and human approaches to representing numbers in language. The ability to understand
language and abstract rule-governed systems is a fascinating aspect of human intelligence, and we
hope that our research provides some insight into the understanding of this remarkable human trait.

Acknowledgments and Disclosure of Funding

The authors gratefully thank Tom McCoy and Kaden Holladay for helpful discussions in the initial
stages of this project. This work has been made possible in part by a gift from the Chan Zuckerberg
Initiative Foundation to establish the Kempner Institute for the Study of Natural and Artificial
Intelligence at Harvard University.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Technical
Report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large Language Models
for Mathematical Reasoning: Progresses and Challenges. arXiv preprint arXiv:2402.00157, 2024.

Andrew M Bean, Simi Hellsten, Harry Mayne, Jabez Magomere, Ethan A Chi, Ryan Chi, Scott A
Hale, and Hannah Rose Kirk. Lingoly: A benchmark of olympiad-level linguistic reasoning
puzzles in low-resource and extinct languages. arXiv preprint arXiv:2406.06196, 2024.

Gasper Begu§, Maksymilian Dabkowski, and Ryan Rhodes. Large linguistic models: Analyzing
theoretical linguistic abilities of LLMs. arXiv preprint arXiv:2305.00948, 2023.

Susan Carey. Bootstrapping & the origin of concepts. Daedalus, 133(1):59-68, 2004.

Yuri Chervonyi, Trieu H Trinh, Miroslav Ol$dk, Xiaomeng Yang, Hoang Nguyen, Marcelo Menegali,
Junehyuk Jung, Vikas Verma, Quoc V Le, and Thang Luong. Gold-medalist Performance in
Solving Olympiad Geometry with AlphaGeometry2. arXiv preprint arXiv:2502.03544, 2025.

Bernard Comrie. Typology of numeral systems. Numeral types and changes worldwide. Trends in
Linguistics. Studies and monographs, 118, 2011.

Stanislas Dehaene. The number sense: How the mind creates mathematics. Oxford University Press
USA, 2011.

Ivan Derzhanski and Thomas Payne. The Linguistics Olympiads: Academic competitions in linguis-
tics for secondary school students. Linguistics at school: language awareness in primary and
secondary education, pages 213-26, 2010.

Ivan Derzhanski and Milena Veneva. Linguistic Problems on Number Names. In Proceedings of
the Third International Conference on Computational Linguistics in Bulgaria (CLIB 2018), pages
169-176, 2018.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. MathOdyssey: Benchmarking
Mathematical Problem-solving Skills in Large Language Models using Odyssey Math Data. arXiv
preprint arXiv:2406.18321, 2024.

Lisa Feigenson, Stanislas Dehaene, and Elizabeth Spelke. Core systems of number. Trends in
cognitive sciences, 8(7):307-314, 2004.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Harald Hammarstrom. Rarities in numeral systems. Rethinking universals: How rarities affect
linguistic theory, 45:11-53, 2010.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

James R Hurford. Language and number: The emergence of a cognitive system. B. Blackwell, 1987.
Georges Ifrah. The Universal History of Numbers. Harvill London, 2000.

Tania Ionin and Ora Matushansky. The composition of complex cardinals. Journal of semantics, 23
(4):315-360, 2006.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAl ol System Card. arXiv
preprint arXiv:2412.16720, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
Language Models are Zero-Shot Reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Mathieu Le Corre and Susan Carey. One, two, three, four, nothing more: An investigation of the
conceptual sources of the verbal counting principles. Cognition, 105(2):395-438, 2007.

Michael Lepori, Thomas Serre, and Ellie Pavlick. Break it down: Evidence for structural composition-
ality in neural networks. Advances in Neural Information Processing Systems, 36:42623-42660,
2023.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers of
Autoregression: Understanding Large Language Models Through the Problem They are Trained to
Solve. arXiv preprint arXiv:2309.13638, 2023.

Eduardo Sanchez, Belen Alastruey, Christophe Ropers, Pontus Stenetorp, Mikel Artetxe, and Marta R
Costa-jussa. Linguini: A benchmark for language-agnostic linguistic reasoning. arXiv preprint
arXiv:2409.12126, 2024.

Barbara W Sarnecka, Meghan C Goldman, and Emily B Slusser. How counting leads to children’s
first representations of exact, large numbers. Oxford University Press, 2015.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh, Maxwell Horton, Samy Bengio, and Mehrdad
Farajtabar. The illusion of thinking: Understanding the strengths and limitations of reasoning
models via the lens of problem complexity. arXiv preprint arXiv:2506.06941, 2025.

Ryan Teehan, Miruna Clinciu, Oleg Serikov, Eliza Szczechla, Natasha Seelam, Shachar Mirkin, and
Aaron Gokaslan. Emergent Structures and Training Dynamics in Large Language Models. In
Angela Fan, Suzana Ilic, Thomas Wolf, and Matthias Gallé, editors, Proceedings of BigScience
Episode #5 — Workshop on Challenges & Perspectives in Creating Large Language Models, pages
146-159. Association for Computational Linguistics, 2022. doi: 10.18653/v1/2022.bigscience- 1.
11.

Haotong Yang, Yi Hu, Shijia Kang, Zhouchen Lin, and Muhan Zhang. Number Cookbook: Number
Understanding of Language Models and How to Improve It. arXiv preprint arXiv:2411.03766,
2024.

Tianyang Zhong, Zhengliang Liu, Yi Pan, Yutong Zhang, Yifan Zhou, Shizhe Liang, Zihao Wu,
Yanjun Lyu, Peng Shu, Xiaowei Yu, et al. Evaluation of OpenAl ol: Opportunities and challenges
of AGI. arXiv preprint arXiv:2409.18486, 2024.

Appendices

A Limitations

We acknowledge the possibility that our results are explained by limitations in the training data and
the small size of our dataset, as language models often equal human performance on benchmarks
for which they have large quantities of similar-enough training data [Achiam et al.,[2023]]. Perhaps
an LLM trained on a massive corpus of linguistic number system problems would be able to solve
new, previously unseen number system problems. But the data today are far too limited for such
an approach, and crucially, a human solver who is familiar with existing number system problems
can generalize to unseen problems extremely well! Even a human solver who is unfamiliar with
existing number system problems can in theory solve any problem they are provided just by logically
reasoning. Importantly, we note that although this may not be true of the average human, when
comparing the top end of humans with the top-performing current language models, it is clear that
intuiting rules from human-scale data is still challenging for LLMs.

B Randomization strategies for task-external knowledge and tokenization
handling

In this section, we address the specific changes we make across linguistic number system problems to
convert them into templates suitable for our dataset. In order to truly test whether the model is solving
a problem, it should not be affected by factors external to the problem, such as flawed tokenization or
the usage of memorized knowledge external to the provided task[]

In order to remediate this, in the single-letter token setting, we separated all characters by whitespaces
to ensure correct tokenization. In the multi-token setting, we identified all meaningful morphemes in
the problems and standardized them to remove any phonological changes, such that every morpheme
had exactly one surface representation. We separated every meaningful morpheme with whitespaces,
and mapped each morpheme to a randomly generated multi-token “dummy word" for each iteration
of each experiment. We created each of these “dummy words" by randomly sampling short tokens
(Iength < 3) from the language models’ respective tokenizer vocabularies, and concatenating tokens
together to create unfamiliar words.

For tokenizers which use schemes like byte-pair encoding, any input string will get mapped to some
sequence of tokens that are present in the vocabulary, so there is no situation in which the model
will see an unknown token. Since the dummy words themselves have no meaning, the model cannot
directly draw on task-external linguistic information to solve the presented problems. For simplicity
we restricted the random draw to those containing only romanized (Latin alphabet) characters. We
also excluded tokens that contained any numeral symbols from 0-9, to ensure that the mathematical
correctness of the problems was not affected.

"Memorized knowledge would also help a human solver, but people are much less likely to know the number
systems of different (particularly low-resource) languages. Although linguistics olympiad contestants might
know more number systems than the average person, there are over 7,000 human languages, so the probability
of knowing a specific system is low. Moreover, since LLM training corpora scrape large portions of the internet,
the breadth of their memorized knowledge far exceeds that of an average human.

C Multi-character-variable results from Exp 1

We provide an example of our four variations of the puzzle in[Table 2] To query all four variants, we
used the same prompt “Here is a puzzle. Can you solve it? Please output only the answer (in place of
the ?7) and nothing else!".

Explicit 4+ familiar
(masaad x pagig) + masaad + opbob = 31
(masaad X pagig) + masaad + buylen = 26

(ajssci x pagig) + (ajssci x kould) = 50
(innops X pagig) + innops + opbob = ?7

Implicit
masaad pagig nge masaad opbob = 31
masaad pagig nge masaad buylen = 26

ajssci pagig nge ajssci kould = 50
innops pagig nge innops opbob = 7?7

Explicit 4+ unfamiliar (Greek)

(masaad 3 pagig) a masaad « opbob = 31
(masaad S pagig) @ masaad « buylen = 26

(ajssci B pagig) a (ajssci B kould) = 50
(innops 3 pagig) « innops o opbob = 77

Explicit 4+ unfamiliar (random)
(masaad hibcat pagig) xebrut masaad xebrut opbob = 31
(masaad hibcat pagig) xebrut masaad xebrut buylen = 26

(ajssci hibcat pagig) xebrut (ajssci hibcat kould) = 50
(innops hibcat pagig) xebrut innops xebrut opbob = ??

Table 2: Example of four problem variants in the multi-character setting, corresponding to Drehu

(IOL 2010) dataset problem in

Problem #2 (20 points). Given are Drehu numerals in alphabetical order and their values
in ascending order:

caatr nge caako, caatr nge caangémen, caatr nge caaqathano,
ekaatr nge ekengémen, koniatr nge koniko, kéniatr nge kénipi,
koniatr nge koniqaihano, lueatr nge lue, lueatr nge luako, lueatr nge luepi

26, 31, 36, 42, 50, 52, 73, 75, 78, 89
(a) Determine the correct correspondences.
(b) Write in numerals:

koniatr nge eke + caatr nge luepi — ekaatr nge ekako
luengomen + luako — ekeqaihano

(c) Write out in Drehu: 21, 48, 83.

A The Drehu language belongs to the Austronesian language family. It is spoken by approx.
10000 people on Lifu Island to the east of New Caledonia. ¢ = ch in church; ng = ng in
hang; é = French eu or German d; q is a voiceless w (as wh in Scottish or Southern American
which); tr ~ English ¢ in art, uttered with the tip of the tongue turned back.

Ksenia Gilyarova

Figure 3: Drehu (IOL 2010) problem

multi-character

60 1 7
40 / ol-mini

77+ deepseek-rl

A accuracy % (difference from implicit)

explicit operator, explicit operator, explicit operator,
familiar symbol unfamiliar single symbol unfamiliar random word

Operator type

Figure 4: Both ol-mini and DeepSeek struggle with the explicit-unfamiliar condition (o1 shows
negative improvement, DeepSeek shows 0%) in the multi-character setting. Error bars = standard
error of the mean. 5 iterations / problem tested for 10 problems.

D Error analysis

We observe some common patterns of error in the model responses. For the three problems which
involved squares and cubes of numbers, when the operators were not explicit and familiar, o1-mini
almost always responded by pattern-matching (e.g. providing another square/cube number) instead
of solving the problem, as seen in ol-mini also reproduced a number given in the input
question as the answer in several cases (11 for the multi-token condition, and 3 for the single-token
condition, across 150 trials) when the operators were not explicit and familiar.

Condition Single Multi
explicit symbol 8 4
explicit random word 0 8
implicit 14 5

Table 3: Incorrect pattern-matched square / cube answers (out of 15 possible trials)

Further, when o1-mini answered a problem incorrectly, its responses were often inconsistent across
the five trials of that problem. Notably, in 50% of single-character cases lacking explicit and familiar
operators, all five responses were distinct and incorrect. This further shows that performance appears

to depend on the presence of explicit operator cues; in their absence, o1-mini does not reliably solve
the problem.

10

E Ablations: minimal pair experiment details

Parameter GPT-3.5 GPT-4 ol-mini

Numeral system vs. not

AB = fifty one | AB = big bird ¥ v v

Typed vs. glyph

AB = fifty one | AB = 51 v / v
Order L - Rvs. L+ R

AB = 51 | BA = 51 v / v
Additive vs. subtractive

AB =27 | AB =27 X v v

(20 +7) (30-3)
Base of the numeral system* X 4 v

Table 4: Minimal pair results: GPT-4 and ol-mini solve all paradigms, GPT-3.5-turbo struggles with
numeral base and combination. Further data on testing all bases 4-19 linked in|Appendix F|Table 5|

L—-R L+ R
AB=51|BA=51
AC=57|CA=57
DB=41|BD =41
DC=?77|CD=77

Figure 5: Example of full minimal pair template problem, for the Order parameter, where we varied
whether digits are read left-to-right or right-to-left.

F Base experiment

In order to understand whether sufficiently advanced language models would show performance that
was invariant to changes in the base, we conducted a more fine-grained minimal pair experiment into
the effect of numeral base on problem performance. Here, the solver would see the Hindu-Arabic
numerals corresponding to the English base-10 representation of the numbers, because the problem
was presented in English. But the unknown symbols corresponded to the numbers as expressed in a

different base, as shown in || 6

We conducted two different versions of this experiment. First, we mapped the unknown symbols to
the single-character whitespaced A, B, C, and D tokens, as in[Figure 6] In the second version, each of
the four unknown symbols (A, B, C, D) was instead represented by a corresponding random token

drawn from the tokenizer vocabulary, to ensure that the context of the specific tokens A, B, C, and D
was not influencing our results.

We tested four increasingly sophisticated GPT models (GPT-3.5-turbo, GPT-4, GPT-40, and 01-mini)
on both versions of the experiment and provide results in GPT-40 and ol-mini solved all
problems in both conditions, displaying performance that was robust to the base of the problem.

11

Non-decimal (base b)

Solver sees Solver infers
AB =(b+ X)m = 1><b
A =(b+y), |= 1y,
B = (2b + ><)lO = X,
DC =7 = .
Solver answers

Figure 6: Setup for base experiment

Base \ GPT-3.5-turbo GPT-4 GPT-40 ol-mini
ABCD Random ABCD Random ABCD Random ABCD Random

4 X v v v v v v v
5 X X v v v v v v
6 v X v v v v v v
7 v v v v v v v v
8 X X v v v v v v
9 v v v v v v v v
11 v v v v v v v v
12 X v X v v v v v
13 X X v v v v v v
14 X X v v v v v Ve
15 X v v v v v v v
16 v X X v v v v Ve

X X v v v v v v

v v v v v v v v

v X v v v v v v

Table 5: Base experiment results: GPT-40 / 01-mini solve every problem, regardless of randomization

G Table of languages

Language 1ISO code Base Level

Drehu dhv 20 IOL
Georgian kat 20 UKLORI1
Gumatj gnn 5 UKLORI

Ndom ngm 6 IOL

Ngkolmpu ked 6 UKLORI
Northern Pame pmgq 8 UKLORI
Umbu-Ungu ubu 24 IOL

Waorani auc 5 UKLORI
Yoruba yor 20 UKLOR2
Yup’ik esu 20 UKLOR2

Table 6: Languages and problem features in final dataset (after removing/standardizing phenomena)

12

We detail the 10 problems that we used for our analyses. The problems range in difficulty from the
first and second rounds of the UK Linguistics Olympiad (UKLO R1 and R2) to the International
Linguistics Olympiad, which typically has the most challenging problems.

H Performance breakdown per language

W explicit + familiar

ol-mini
e explicit + unfamiliar Greek

single-letter, per language = explicit + untamiliar randorm 7 7 deepseek-rl
e implicit
100 1
80 1
*
o
> 60
O
©
[
=1
g
<
201
o
gnhn ngm ked pmqg dhv kat ubu yor esu auc
Language
= ol-mini N explicit + familiar
multi-character words, per language 7 doopsvckrl W explicit + unfamiliar Greck
. explicit + unfamiliar randem
100 4 e implicit
80
X
T 60
>
O
©
.
3
g
<
204
0- T T
kat auc ngm kcd yor pmq ubu dhv esu gnn

Language

Figure 7: Results per language, (a) single-character (b) multi-character: performance varies
significantly by problem and operator type. Note that Georgian (kat) and Drehu (dhv) are the
two easiest problems in our controlled dataset, as we standardize away the phonological change and
randomized numeral ordering (which human solvers find most difficult), leaving straightforward
vigesimal-decimal systems like French, which models have likely had exposure to.

13

	Introduction
	Background
	Linguistic and cognitive connections
	Mathematical ability in language models

	Methods
	Experiments
	The effect of explicit operators in problems
	Providing contextual information
	Ablations: constructed minimal-pair problems

	Discussion and Conclusions
	Limitations
	Randomization strategies for task-external knowledge and tokenization handling
	Multi-character-variable results from Exp 1
	Error analysis
	Ablations: minimal pair experiment details
	Base experiment
	Table of languages
	Performance breakdown per language

