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Abstract

In volume-to-volume translations in medical im-
ages, existing models often struggle to capture the
inherent volumetric distribution using 3D voxel-
space representations, due to high computational
dataset demands. We present Score-Fusion, a
novel volumetric translation model that effec-
tively learns 3D representations by ensembling
perpendicularly trained 2D diffusion models in
score function space. By carefully initializing
our model to start with an average of 2D mod-
els as in existing models, we reduce 3D train-
ing to a fine-tuning process, mitigating compu-
tational and data demands. Furthermore, we ex-
plicitly design the 3D model’s hierarchical lay-
ers to learn ensembles of 2D features, further en-
hancing efficiency and performance. Moreover,
Score-Fusion naturally extends to multi-modality
settings by fusing diffusion models conditioned
on different inputs for flexible, accurate integra-
tion. We demonstrate that 3D representation is
essential for better performance in downstream
recognition tasks, such as tumor segmentation,
where most segmentation models are based on
3D representation. Extensive experiments demon-
strate that Score-Fusion achieves superior accu-
racy and volumetric fidelity in 3D medical image
super-resolution and modality translation. Addi-
tionally, we extend Score-Fusion to video super-
resolution by integrating 2D diffusion models on
time-space slices with a spatial-temporal video
diffusion backbone, highlighting its potential for
general-purpose volume translation and providing
broader insight into learning-based approaches
for score function fusion.
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Figure 1: Comparison between TPDM (left) and Score-
Fusion (right). Score-Fusion learns to ensemble pre-trained
diffusion models with a 3D model, effectively utilizing 3D
representations. Our model thus shows better 3D realism
and demonstrates superior accuracy and realism metrics.

1. Introduction
Dense volume-to-volume translation is critical for vol-
umetric medical imaging, such as magnetic resonance
imaging (MRI) and X-ray computed tomography (CT). It
addresses various inverse problems of image reconstruc-
tion (Hai-Miao Zhang, 2020; Liang et al., 2020; Wang
et al., 2020), handling sparse (Kerstin et al.; Mardani et al.,
2019), limited (Chung et al., 2023b; Lyu et al., 2020), and/or
noisy (Chung et al., 2023b; Yang et al., 2019) imaging data.
It also supports image synthesis, such as multi-contrast
MRI (Zhang et al., 2022; Dar et al., 2018; Shi et al., 2021;
Wolterink et al., 2017), CT-ultrasound (Vedula et al., 2017),
and MR-histopathology (Leroy et al., 2021). In addition,
by using the time axis as the third axis, video data can be
considered as dense volumes. Therefore, dense volumetric
translation can be useful in video data. Potential applica-
tions include video super-resolution (Li et al., 2023a; Zhou
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et al., 2024; Li et al., 2025), video denoising (Zhang et al.,
2023b; Fu et al., 2024), and video editing (Chai et al., 2023;
Feng et al., 2024).

3D voxel-space representation has great potential to play
a critical role in volume-to-volume translation tasks for
various reasons. Firstly, medical images are inherently 3D-
dense volumes. Using a 3D representation enables us to di-
rectly model the entire 3D distribution. Additionally, the 3D
latent diffusion model (LDM) is a common technique to ac-
celerate diffusion models. However, compared to LDMs, the
3D voxel-space diffusion model maintains better features in
high-frequency details, which are essential in inverse prob-
lems that require highly accurate prediction, such as super-
resolution. Moreover, volumetric translation models enable
numerous downstream image processing tasks, ranging from
image reconstruction (Meng et al., 2021) to analysis (Akrout
et al., 2023; Fernandez et al., 2022)). Most models in anal-
ysis tasks, such as tumor segmentation(Hatamizadeh et al.,
2022), are trained with 3D volumes using voxel-space 3D
representations. Therefore, volume translation models using
3D representation may generate images that are more accu-
rate when processed with such downstream task models.

However, previous works (Dorjsembe et al., 2024; Lee et al.,
2023) highlight substantial challenges to utilize 3D repre-
sentation in volumetric translation model for their increased
demands for computational resources and large datasets that
are costly to acquire in medical imaging. To the best of
our knowledge, within the domain of 3D medical image
inverse problems, no fully 3D models have demonstrated su-
perior accuracy over 2D-based models due to these practical
limitations. Weight inflation (Liu et al., 2023b) proposes de-
signing a 3D network of the same size as 2D models, which
is a promising approach given the rich 3D context and strong
pre-trained 2D models. However, this is generally infeasi-
ble with existing 2D diffusion models (Saharia et al., 2022),
which require around 500 GB of GPU memory for batch size
1 training and potentially an extremely long training time.
As a result, current 3D diffusion models (Dorjsembe et al.,
2024) are designed to be much smaller with insufficient
capacity to demonstrate competitive performance in inverse
problems. Recent advances in volume-to-volume transla-
tion have introduced methods that combine perpendicular
2D diffusion models (Lee et al., 2023; Chen et al., 2024),
achieving improved accuracy and volumetric consistency.
However, these methods cannot model the distribution of the
entire volume since the generated images are produced by
an averaging of the 2D networks without 3D representations,
resulting in limited realism in 3D.

To effectively introduce 3D representations into volumetric
translation, we present Score-Fusion, a pioneering model
for volumetric translation that directly and effectively cap-
tures the distribution of 3D volumes. Score-Fusion adopts a

two-stage training strategy: (1) It first trains multiple 2D dif-
fusion models (Saharia et al., 2021) in perpendicular planes.
(2) It then utilizes a 3D fusion network to produce the final
translation in each diffusion step. Meanwhile, the Score-
Fusion model is designed to start with a weighted average
of 2D models following TPDM(Lee et al., 2023), which
reduces 3D training to a fine-tuning process. The hierarchi-
cal layers of the 3D model are also reformulated to learn
the ensemble of 2D features, further enhancing training
efficiency and performance. Additionally, by ensembling
diffusion models conditioned on various input modalities,
Score-Fusion seamlessly supports multi-modality fusion.

Similarly, we find that time-space planes, i.e. x-t and y-t
planes, can be crucial in video modeling, as demonstrated
in previous works (Al-Sumaidaee et al., 2023; Otroshi-
Shahreza et al., 2022). However, they remain underexplored
in current video diffusion models. By extending Score-
Fusion to video super-resolution, we trained additional 2D
diffusion models on time-space planes and successfully
demonstrated that introducing representations learned from
time-space planes can enhance video super-resolution.

The mathematical intuition of Score-Fusion lies in the prop-
erties of diffusion models and their associated score func-
tions (Song et al., 2021). As the score function models the
gradient of the probability distribution, it is inherently suit-
able for an ensemble. Previous works (Chen et al., 2024;
Chung et al., 2022) have also demonstrated this by showing
strong performance with a straightforward weighted averag-
ing of score functions. Consequently, Score-Fusion replaces
the weighted averaging process with a 3D network, effec-
tively incorporating 3D representations. To the best of our
knowledge, Score-Fusion performs diffusion model fusion
in the score function space, which provides new insights for
diffusion model ensembling. Score-Fusion can also func-
tion as a plug-and-play mechanism compatible with various
combinations of 2D models from previous studies (Chung
et al., 2022; Chen et al., 2024; Li et al., 2024), consistently
delivering performance improvements across various 2D
backbones.

Score-Fusion has been evaluated in various MRI image pro-
cessing tasks on the BraTS (Baid et al., 2021) and HCP (DC
et al., 2013) datasets, including image super-resolution and
modality translation. Our experimental results demonstrate
that Score-Fusion performs superior volume translation over
current state-of-the-art (SoTA) models in accuracy, realism,
and downstream task performance. By learning to ensem-
ble perpendicular 2D models conditioned on different input
modalities, Score-Fusion shows strong performance with-
out retraining new 2D models. Moreover, Score-Fusion
has been extended to video super-resolution on the vide-
oLQ dataset (Chan et al., 2022). Score-Fusion demonstrates
the importance of time-space plane representation in video
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super-resolution by showing improvement in temporal con-
sistency and realism.

2. Related Work
3D medical image generation and translation. Attempts
have been made to generate dense 3D volumes for medical
imaging. Direct 3D-based diffusion models (Dorjsembe
et al., 2024; Liu et al., 2023b) face difficulties due to high
computational and dataset demands, resulting in moderate
accuracy in tasks like super-resolution. Patch-wise, slice-
wise, or cascaded generation strategies have been utilized to
accommodate high-dimensional data(Uzunova et al., 2020).
However, in such models, initial inaccuracies in the low-
resolution base are propagated during the refinement stages
and the patch-based refinement often struggles with main-
taining global consistency across the image. Latent 3D
models (Dorjsembe et al., 2024; Zhu et al., 2023a; Khader
et al., 2023) have been exploited to compress the 3D data
into a low-dimensional latent space and train diffusion mod-
els with this compressed latent space. However, the process
of reducing dimensionality also has high computational and
dataset demands and can lead to substantial reconstruction
errors. Sequential slice generation from autoregressive mod-
els (Peng et al., 2023; Zhu et al., 2024) or simultaneous
multiple slice generation may mitigate this issue of error
accumulation over slices. Yet, these approaches suffer from
challenges in maintaining coherence for long-range struc-
tures. More related to our approach, integrating multiple 2D
models trained along perpendicular directions is a promis-
ing approach. TPDM (Lee et al., 2023) first proposes to
combine two perpendicular 2D diffusion models to improve
3D imaging, where the weighted average of scores from
pre-trained 2D models estimates the score function of a 3D
model. Building on this concept,TOSM (Li et al., 2024)
and MADM (Chen et al., 2024) further improve the model
performance by including 2D models in all three directions
and using multiple consecutive 2D slices in 2D models.
These models generate highly accurate results by effectively
leveraging the high-resolution information in each 2D plane.

Model ensembling. Ensemble techniques, which include
bagging, boosting, and stacking, have been further devel-
oped through specialized algorithms like Random Forest,
AdaBoost, XGBoost, and Mixture of Experts (MoE). These
techniques also demonstrated remarkable efficacy in medi-
cal image analysis, particularly in brain tumor segmentation
(Hatamizadeh et al., 2022; Zhou et al., 2019), hypertension
detection (Fitriyani et al., 2019), and kidney stone identifica-
tion (Kazemi & Mirroshandel, 2018). More recent research
underscores the potential of ensembles as an effective strat-
egy for scaling up large models(Jiang et al., 2024).

Diffusion model ensembling. Recently, diffusion models
have shown great success. The ensembling methods for

diffusion models have become a useful research topic. Most
current works use weighted averages to ensemble different
branches of diffusion models (Cheng et al., 2023; Lee et al.,
2023). Collaborative Diffusion (Huang et al., 2023) is a
learning-based ensembling method for diffusion; it trains an
auxiliary model to estimate the confidence score for each
branch of diffusion and ensemble based on the score. In this
work, our approach uses information across all branches of
diffusion models. This under-explored approach provides
new insights for advancing diffusion model ensembling.

3. Score Fusion in 3D
Problem formulation. We formulate volume-to-volume
translation as a conditional sampling problem. Specifically,
let x ∈ Rb1×b2×b3 be an input medical image volume, and
let y ∈ Rb1×b2×b3 be the corresponding target volume to
be generated, where b1, b2, and b3 denote the spatial dimen-
sions of the volume. Our objective is to learn a conditional
distribution p(y | x) that accurately captures the volumetric
structure in three dimensions. The input volume x may
consist of low-resolution data and/or a different imaging
modality.

3.1. Overall Framework of Score-Fusion

We designed the Score-Fusion as a conditional dif-
fusion model. Following DDPM and Palette (Ho
et al., 2020; Saharia et al., 2022), our model gradually
adds Gaussian noise to the target image in the train-
ing dataset during the forward or diffusion process as:
q (yt|yt−1) = N

(
yt;
√
1− βtyt−1, βtI

)
; q(yT |y0) =

q(y0)
∏T

t=1 q(yt|yt−1), where y0 ∼ q(y) is the target im-
age and βt is the variance of noise added at timestep t.
The forward process produces a sequence of increasingly
noisy variables y1, ...,yT , after sufficient noising steps, the
process reaches a pure Gaussian noise, i.e., yT ∼ N (0, I).

During training, our denoising diffusion model,
ϵθ(yt,x, t), is trained to predict the noise added
into y, given yt. Demonstrated effective in existing
work (Saharia et al., 2021), the sampling process
can be guided by concatenating the noisy image
yt with condition x. The loss used to optimize
ϵθ(yt,x, t) is:

∥∥ϵθ(√αty0+
√
1− αtϵ,x, t)−ϵ

∥∥2
2
, where

αt :=
∏t

i=1 (1− βi), and we sample y0,x ∼ p(y0,x),
ϵ ∼ N (0, I).

During sampling in the reverse or generative process, we
also follow Palette (Saharia et al., 2022) to generate im-
ages by iteratively removing the added noise in the se-
quence yT−1, ...,y1,y0, from a standard Gaussian prior
yT ∼ N (0, I). In addition, inspired by (Song et al.,
2022; Chung et al., 2023a; Song et al., 2024), we ex-
plore self-consistency for solving inverse problems. More
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Figure 2: Overview of the Score-Fusion. At each denoising step, two pre-trained 2D models provide initial estimations of
the scores in a slice-wise manner. Subsequently, a 3D network learns to integrate these estimations via 3D representation
extracted from 3D input and aggregated 2D scores. In addition, the 3D model is initialized to output an average of 2D scores.
Moreover, The 3D network layers are also reformulated to learn an ensemble of aggregated and aligned 2D features. These
designs accelerate and stabilize the 3D training process.

specifically, in each diffusion sampling step, we estimate
noise with our denoising model ϵθ(yt,x, t). Therefore,
we have the estimated ŷ0(t) at the t-th denoising step as
ŷ0(t) := (yt−

√
1− αtϵθ(yt,x, t))/

√
αt. In inverse prob-

lems, conditional input x is obtained through a known linear
degradation process x = Ay. At each diffusion step, we
project the estimated ŷ0(t) to a plausible ŷ0(t), such that
x = Aŷ0, by ŷ0(t)← ŷ0(t)−AT (AAT )

−1
(Aŷ0(t)− x).

We provide more details in Sec. H. After the consistency
projection, we obtain yt−1 by adding noise back: yt−1 =√
αt−1ŷ0(t) +

√
1− αt−1ϵ.

Score-Fusion Models. The key component of this work
lies in our denoising network ϵθ(yt,x, t). In particular, our
model ϵθ consists of two 2D diffusion denoising models,
ϵ
2D(a)
θa and ϵ

2D(b)
θb , and a 3D diffusion denoising model,

ϵ3Dθ3D , with θa, θb, and θ3D being their trainable parameters,
respectively. The 3D network is conditioned on two 2D
diffusion models, trained to capture 2D image distributions
along orthogonal planes to provide complementary views of
the volumetric data. The 3D network is carefully initialized
to start with a weighted average of 2D networks’ estima-
tion, such that Score-Fusion has the same performance with
TPDM(Lee et al., 2023) before any 3D training. This design
effectively constrains the 3D model, reduces the 3D training
to a fine-tuning process, and thus promotes faster and sta-
bilized training convergence. Additionally, the hierarchical
representations from the 2D models are introduced to the
layers in the 3D model with alignment projection layers. In
this way, the 3D model’s layers are reformulated to learn
an ensemble of pre-trained 2D models’ representations, in-
stead of learning representations from scratch. Therefore,
the training of the 3D model is further accelerated and stabi-
lized by using the aligned 2D representation as a reference.
We refer to this hybrid 2D/3D volumetric generative model
as Score-Fusion. Fig. 2 provides a schematic overview of
Score-Fusion.

3.2. 2D Score Models

The 2D diffusion models, ϵ2D(a)
θa and ϵ

2D(b)
θb , are trained on

two perpendicular slices of the volumes using a standard
conditional diffusion framework (Saharia et al., 2021). We
take gradient descent steps on the following objectives for
both 2D diffusion models during training:

∇θa

∥∥ϵ2D(a)
θa (yt[:, i, :],x[:, i, :], t)− ϵ

∥∥2
2

∇θb

∥∥ϵ2D(b)
θb (yt[:, :, j],x[:, :, j], t)− ϵ

∥∥2
2

(1)

Here, i and j are the indices for the slices along two per-
pendicular planes, which are sampled uniformly: i ∼
Uniform{0, ..., b2}, j ∼ Uniform{0, ..., b3}. After proper
training, the high-capacity 2D model can provide a decently
accurate estimation of ϵ for every volume slice.

3.3. 3D Fusion Model

The 3D ensembling model, ϵ3Dθ3D , is trained to fuse the pre-
trained 2D diffusion models to capture the desired volu-
metric image distributions. In this stage, we first obtain
the inference results, Ŷ 2D(a) and Ŷ 2D(b), from the 2D dif-
fusion models, ϵ2D(a)

θa and ϵ
2D(b)
θb by iterating through the

sliced directions:

Ŷ 2D(a)[:, i, :] = ϵ
2D(a)
θa (yt[:, i, :],x[:, i, :], t) for i ∈ [0, b2)

Ŷ 2D(b)[:, :, j] = ϵ
2D(b)
θb (yt[:, :, j],x[:, :, j], t) for j ∈ [0, b3)

(2)
During training of the 3D diffusion model, both 2D mod-
els return Ŷ ’s, which contains the predicted score and
a hierarchical feature map of the model: Ŷ 2D(a) =
(ϵ̂2D(a),F2D(a)), Ŷ 2D(b) = (ϵ̂2D(b),F2D(b)).

The 3D model is designed to learn an ensemble of multi-
ple 2D models’ score estimation with 3D representation.
Specifically, at each diffusion step, the 3D model takes as
input the original image x, the noisy intermediate state yt,
and the aggregated score estimation ϵ̂ obtained from the 2D
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diffusion models. Furthermore, aggregated feature maps
F from the 2D models are incorporated as supplementary
information as in Fig. 2. Formally speaking, the 3D net-
work is trained to perform the ensembling process using the
following formulation using an L2 loss:

∇θ3D

∥∥ϵ3Dθ3D (yt,x, Ŷ
2D(a), Ŷ 2D(b), t)− ϵ

∥∥2
2

(3)

where y0, x ∼ p(y0,x), and ϵ ∼ N (0, I). Although, the
inference results from 2D models, Ŷ 2D(a) and Ŷ 2D(b), al-
ready help the training of the 3D model, 3D ensemble model
still needs to be trained from scratch. To improve train-
ing speed, we initially pre-train the model on 3D patches,
(y0,x) = crop(y0,x), and then fine-tune it on the full vol-
umes. Due to the translation invariance of our convolution-
based networks, we empirically find that a naively pre-train
on the patches results in a decently good network initializa-
tion, thereby effectively improving the training convergence.
While existing works, such as (Wang et al., 2023), could po-
tentially enhance this patch-wise diffusion training process,
we leave such optimizations for future work.

In this work, the network architecture of the 3D model,
ϵ3Dθ3D , is a 3D Unet-like denoising model with time-step
embeddings, the 3D input x, the noisy target yt, and the
noise estimated by the 2D models ϵ̂2D(a), ϵ̂2D(b) as the in-
put of the 3D model. In the encoder, each downsampling
block is enriched with corresponding feature maps from the
features of both 2D models, F2D(a), and F2D(b). At each
hierarchical level, the feature maps are first processed with
MLP-based alignment layers, which align the 2D features
with the 3D model and map them to an appropriate shape.
The feature maps are then injected into 3D layers, providing
the 3D layer with a reference to fused 2D features. Hence,
the 3D layers are reformulated to learn an ensemble of the
aggregated 2D features, which is easier than learning repre-
sentation from scratch. In addition, using the feature maps
mitigates the risk of information bottlenecks between the 2D
and 3D stages, which could otherwise limit the performance.
Additionally, rather than directly outputting the predicted
noise, our 3D U-Net-like model produces two components:
a weight vector w, used to ensemble the estimations from
the 2D models, and a residual term R, which is directly esti-
mated by the 3D model. These two outputs are combined to
form the final prediction:

ϵ3Dθ3D (...) = (0.5+w)ϵ̂2D(a)+(0.5−w)ϵ̂2D(b)+λR (4)

where λ is a hyperparameter, whereas w and R are of the
same size as the target noise ϵ ∈ Rb1,b2,b3 . This design
enables the model to dynamically select the more reliable
2D estimation based on 3D context and allows the 3D model
to contribute 3D-specific content R. Meanwhile, a tunable
weight parameter, λ, controls the model’s reliance on the 3D
output, R. In addition, inspired by ControlNet (Zhang et al.,

2023a), a zero-initialized convolution layer at the end of
the model smoothly initializes w and R as all-zero vectors.
This makes the 3D training a fine-tuning process starting
with an average weighting strategy, and thereby stabilizing
the 3D model training. The pseudo-code for training and
inference with Score-Fusion is provided in Algorithm 1 and
Algorithm 2.

3.4. Score-Fusion for Video Super-resolution

We extend the Score-Fusion framework to the task of video
super-resolution. Since most existing diffusion-based video
super-resolution methods incorporate both spatial and tem-
poral features, we adopt MGLD-VSR (Yang et al., 2024)
as our 3D model to fuse scores. MGLD-VSR builds upon
a 2D latent diffusion model pretrained on the spatial (x–y)
plane using image datasets and introduces inter-frame guid-
ance to both the diffusion model and decoder, enabling
temporal consistency in the output. However, like other
diffusion-based video super-resolution methods, MGLD-
VSR does not explicitly learn representations in the time-
space planes, despite prior works emphasizing its impor-
tance (Al-Sumaidaee et al., 2023; Otroshi-Shahreza et al.,
2022).

To address this limitation, we train two additional 2D dif-
fusion models directly in the video latent space by slicing
video latent embeddings along time-space planes. The de-
noising outputs from these time-space models are then used
as auxiliary conditions to fine-tune the 3D model. This in-
tegration allows the model to benefit from both time-space
representation learning and cross-plane features.

3.5. Multi-modality Fusion

In volumetric translation for medical imaging, the condi-
tions for translating a new image can be multifaceted. For
instance, DDMM-Synth (Li et al., 2023b) suggested using
both MRI and low-resolution CT scans to produce high-
resolution CT images. Training a separate model for each
possible combination of input conditions would result in
exponential time complexity, making it generally impracti-
cal. On the other hand, training a foundation model to sup-
port various translation tasks also requires larger datasets,
which are hard to acquire in medical imaging. Therefore,
a model that can efficiently integrate pre-trained models
across diverse conditions provides significant advantages.
Score-Fusion achieves this by naturally integrating multiple
diffusion models, each conditioned on individual modalities,
through a 3D network architecture that functions similarly
to fusing two 2D models described in 3.3. This approach
leverages the accelerated 3D training of Score-Fusion. To
further enhance the speed of multi-modality fusion, we em-
ploy a smaller variant of our model, adjusting the number
of channels in each layer.

5



Introducing 3D Representation for Dense Volume-to-Volume Translation via Score Fusion

Algorithm 1 Training of Score Fusion
1: repeat
2: (x,y0) ∼ p(x,y0) ▷ sample from dataset
3: if pretrain then ▷ pretrain on patch
4: (x,y0) = crop(x,y0)
5: end if
6: t ∼ Uniform(0, T ) ; ϵ ∼ N (0, I)
7: for i = 0 to b2 do
8: Ŷ2D(a)[:, i, :]← ϵ

2D(a)
θa (yt[:, i, :],x[:, i, :], t)

9: end for
10: for j = 0 to b3 do
11: Ŷ2D(b)[:, :, j]← ϵ

2D(b)
θa (yt[:, :, j],x[:, :, j], t)

12: end for
13: Take a gradient descent step on

14: ∇θ3D

∥∥∥ϵ3Dθ3D (yt,x, Ŷ
2D(a), Ŷ2D(b), t)− ϵ

∥∥∥2

2
15: until converged

Algorithm 2 Inference of Score Fusion
1: (x) ∼ p(x) ▷ sample from dataset
2: yT ∼ N(0, 1)
3: for t = T,...,1,0 do
4: for i = 0,1,...,b2 do
5: Ŷ 2D(a)[:, i, :]← ϵ

2D(a)
θa (yt[:, i, :],x[:, i, :], t)

6: end for
7: for j = 0,1,...,b3 do
8: Ŷ 2D(b)[:, :, j]← ϵ

2D(b)
θa (yt[:, :, j],x[:, :, j], t)

9: end for
10: ϵ̂3D = ϵ3Dθ (yt,x, Ŷ

2D(a), Ŷ 2D(b), t)

11: ŷ0 ← yt−
√
1−αtϵ

3D
√
αt

▷ get current estimation of y0
12: if Inverse problem then
13: ŷ0 ← ŷ0 −AT (AAT )

−1
(Aŷ0 − x)

14: end if
15: yt−1 ←

√
αt−1ŷ0 +

√
1− αt−1ϵ

16: end for
17: return y0

4. Experiments
4.1. Experimental Setup

Datasets. We conducted experiments using the BraTS 2021
training dataset (Baid et al., 2021), which includes 1,251
volumetric brain scans with tumors across 4 modalities:
FLAIR, T1, T1ce, and T2. We randomly divided the dataset
into a 0.8:0.2 split for training and evaluation purposes, al-
lowing its use for downstream tasks as well. Each scan
was center-cropped to a dimension of 192×192×152 to re-
move the blank background. For training 2D models, we
sliced the 3D volumes in two directions—transverse and
sagittal planes for both TPDM baselines and Score-Fusion.
In the super-resolution experiment, FLAIR images were
downsampled using [4×4×4] average pooling. For modal-
ity translation, T1ce images served as inputs with FLAIR
images as targets. Additionally, we investigated a multi-
condition task, using both low-resolution FLAIR and T1ce
images as input to predict high-resolution FLAIR images.

In addition, we investigate Score-Fusion’s generalizability
to different datasets by applying it, alongside related base-
lines, to a super-resolution task on the FLAIR modality of
the HCP dataset (DC et al., 2013). This demonstrates Score-
Fusion’s potential for broader applicability. We present both
quantitative and qualitative results for the HCP dataset in
Section D.

Baselines. We reproduced diverse baseline methods across
a diverse set of established 2D and 3D translation models
to ensure a comprehensive comparison. For slice-wise 2D
models, we utilized Pix2pix (Isola et al., 2017) as the rep-
resentative GAN-based method, U-Net (Ronneberger et al.,
2015) for supervised regression, Palette (Saharia et al., 2022)
as a diffusion-based approach, and I2SB (Liu et al., 2023a)
for optimal-translation-based modeling. Similarly, for 3D-
based baselines, we used Pix2pix3D (Isola et al., 2017), U-
Net3D (Ronneberger et al., 2015), Med-DDPM (Dorjsembe
et al., 2024) (or Palette3D). As stated in Sec. 1, Med-DDPM
uses a small denoising network and thus demonstrates lim-
ited performance. In addition, we used Palette-2.5D for
another baseline, which uses multiple consecutive 2D slices
as input. Several existing approaches closely related to our
method combine multiple pre-trained 2D diffusion models
in perpendicular orientations, demonstrating enhanced per-
formance over other baselines. For instance, TPDM (Lee
et al., 2023) combines two 2D diffusion models trained
on perpendicular planes. To support modality translation,
we adapted the TPDM’s 2D backbone to Palette (Saharia
et al., 2022) architecture in place for DPS (Chung et al.,
2023a). Furthermore, TOSM (Li et al., 2024) employs
three perpendicularly trained 2D diffusion models, whereas
MADM (Chen et al., 2024) uses three 2.5D diffusion mod-
els. We perform a hyper-parameter search on the super-
resolution task on the BraTS dataset for all baselines.

Model Architecture and Variants. To make a fair compar-
ison, we use pre-trained 2D models from TPDM, TOSM,
and MADM utilizing an existing 3D diffusion model ar-
chitecture, Med-DDPM (Dorjsembe et al., 2024). The
TPDM-based model is our primary model as it achieves
30% faster inference speed and smaller model size relative
to the TOSM-based model, as shown in Tab. 10. Meanwhile,
MADM-based and TOSM-based models are heavier vari-
ants that yield performance gains across all metrics. These
consistent improvements in all three variants demonstrate
that our approach can serve as a plug-in-and-play mecha-
nism for multiple combinations of 2D/2.5D model back-
bones and existing 3D model architectures. We also include
a more detailed model architecture in Sec. F.

Metrics. We used multiple metrics to assess both the accu-
racy and realism of generated MRI images. For accuracy,
we used peak signal-to-noise ratio (PSNR) and the structural
similarity index measure (SSIM), which are widely used in
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Figure 3: Visual comparison of generated samples for three different conditions. The first three rows show axial view slices
from different MRI volumes. Neither Score-Fusion nor TPDM have a 2D model trained in this direction. The last three rows
show slices for the same MRI volume in all three views. Score-Fusion reconstructs more realistic details with smoother
edges and fewer artifacts.

medical imaging. To evaluate perceptual quality and realism,
we used the maximum mean discrepancy (MMD) (Gretton
et al., 2012) and the Fréchet inception distance (FID) met-
rics (Heusel et al., 2017). Lower MMD/FID scores imply
the generated images are more realistic. To evaluate the
FID score, following common practice (Dorjsembe et al.,
2024; Sun et al., 2022), we adopted the same pre-trained
model (Chen et al., 2019) to extract features and calculate
the FID metrics in the feature space. Because diffusion-
based models exhibit inherent stochasticity, we further as-
sess uncertainty by performing inference multiple times with
different noise realizations ϵ. From these runs, we calculate
voxel-wise means and standard deviations, thereby provid-
ing uncertainty-aware metrics. Quantitative and qualitative
results for these metrics can be found in Sec. B.

4.2. Experimental Results for Medical Image

We showcase the performance of Score-Fusion in solving
various translation problems, including 4× super-resolution,
modality translation, and conditioned on both conditions in
Fig. 3. We also include more randomly selected samples for
more variants of our model in Sec. C. Fig. 3 shows the gener-

ation quality under various conditions and provides compar-
isons with other methods. The first two columns show the
performance for super-resolution and modality translation,
and the last columns show the model performance when
using both conditions. Our approach excels in faithfully
recovering intricate high-frequency details, particularly in
tumor-affected areas where such details are complex and
often underrepresented. In the super-resolution task, from
the zoomed-in panel, Score-Fusion clearly distinguishes
tissue boundaries across various tissue types, including tu-
mor and white/grey matter. In the modality translation task,
the distribution of contrast difference between modalities
is also better captured, as stated in Sec. B. Furthermore,
our method demonstrates superior volumetric consistency,
while the baseline model exhibits noticeable artifacts. In the
visualization of Score-Fusion, the fidelity of tissue texture
and sharpness along all three orthogonal directions are well
preserved, even though the 2D diffusion models in Score-
Fusion are trained only on transverse and sagittal planes.
Our model reconstructs tumor regions with clearer margins,
fewer artifacts, and higher resolution for samples containing
tumors, providing superior performance in all three orthogo-
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nal directions. Overall, Score-Fusion generates images with
higher accuracy, realism, and volumetric consistency. Tab. 1
summarizes the quantitative results of each translation task.
Score-Fusion clearly surpasses other baseline models in
most metrics, showing superior fidelity, structure, texture
preservation, and noise suppression performance.

4.3. Downstream Task

We further evaluated the performance of Score-Fusion
on a downstream task: tumor segmentation, where high-
quality input modalities are crucial for accurately seg-
menting complex structures. Using the BraTS 2021 tu-
mor segmentation dataset, we applied a pre-trained Swin-
UNetR (Hatamizadeh et al., 2022) model with four modal-
ities, replacing the ground-truth FLAIR modality with in-
ferences from each model. Segmentation performance was
assessed on Tumor Core (TC), Whole Tumor (WT), and
Enhancing Tumor (ET) regions using two metrics: Dice
score and Recovery rate. The Dice score measures seg-
mentation quality, while the Recovery rate quantifies each
model’s segmentation score recovered from low-quality
FLAIR to the generated FLAIR, with segmentation using
ground truth (GT) FLAIR as the upper bound and down-
sampled FLAIR as the lower bound. The Recovery rate
is defined as: Recovery Rate = (Prediction - Downsample)
/ (Ground-Truth - Downsample), where Prediction refers
to the segmentation performance using predicted FLAIR,
Downsample is the performance with downsampled FLAIR,
and Ground Truth is the performance with ground-truth
FLAIR. As shown in Tab. 2, our methods consistently out-
performed other methods. Our method also qualitatively
results in smoother tumor edges and more accurate struc-
tures demonstrated in Fig. 8 9. (see Sec. I for more details).

4.4. Multi-modality fusion

As discussed in Sec. 3.5, the Score-Fusion not only merges
2D models trained in different directions but also effectively
integrates models pre-trained under various single condi-
tions when faced with new combinations of input modalities
given pre-trained 2D models on every single condition. We
show the model’s performance in Tab. 3. TPDM uses a
weighted average for all 2D models, demonstrating lim-
ited performance. Using a 3D model of the original size,
Score-Fusion learns to fuse scores estimated in two different
conditions, demonstrating competitive performance without
re-training 2D models. Score-Fusion-small further improves
training speed with a marginal performance drop to flexibly
support multi-modality fusion. The models on both condi-
tions (last 2 rows) show the metrics when re-training every
2D model on both conditions using an early fusion strategy,
representing an upper limit of multi-modality fusion perfor-
mance. All training experiments are performed on Nvidia
RTX A100-40G GPUs.

4.5. Training and Inference Speed.

We show Training and Inference Speed in Tab. 5. Previous
3D diffusion method struggles to use 3D representation,
with extremely long training time (120 GPU days) and sub-
optimal accuracy performance as in Tab. 1. In contrast,
Score-Fusion effectively introduced 3D representation in
just 16 days of extra 3D training time on top of TPDM.
Score-Fusion-small further accelerates the 3D training for
4 times, achieving 30x more efficient than 3D diffusion
baselines.

4.6. Video Super-resolution Results

Dataset. We extend Score-Fusion to video super-resolution.
We treat videos as 3D dense volumes composed of 3 axes:
x-axis, y-axis, and t-axis. We adopted a sliding window
strategy on the time axis to get dense volumes of the same
size. Following MGLD-VSR, we train our model on the
REDS (Nah et al., 2019) dataset and evaluate on the Vide-
oLQ (Chan et al., 2022) dataset.

Experiment Setup. Following previous works (Yang et al.,
2024; Li et al., 2023a; 2025), we adopt a latent diffusion
method, composed of a video auto-encoder and a diffusion
model in the latent space. For the video autoencoder, we use
an off-the-shelf spatial-temporal autoencoder from MGLD-
VSR (Yang et al., 2024). We use Score-Fusion in the latent
diffusion model by using a 3D latent model to fuse two
perpendicular 2D latent models. For the 3D model, we also
utilize the pretrained spatial-temporal latent diffusion model
from MGLD-VSR (Yang et al., 2024). Such settings allow
us to make a fair comparison with MGLD-VSR. For 2D
models, we use pretrained models from Stable_SR (Wang
et al., 2024), which share a similar architecture and model
size with MGLD-VSR. During training, the hierarchical
layer of the 3D model learns to incorporate the 2D features.
Following llama-adapter, we use a zero-initialized gate on
the 2D features, such that the model starts with its original
states as in MGLD-VSR.

Method DOVER(↑)
MGLD 0.748

Score-Fusion-MGLD 0.755

Table 4: Quantitative results for Video Super-Resolution.

We present our quantitative results in Tab. 4, using
DOVER (Wu et al., 2023) metrics. DOVER focuses on
video quality assessment by evaluating technical and aes-
thetic perspectives, which proves to be highly aligned with
human preference. Our results show performance improve-
ment, demonstrating the positive impact of time-space plane
representations in video super-resolution.

8



Introducing 3D Representation for Dense Volume-to-Volume Translation via Score Fusion

Method
SR MT both condition

PSNR(↑) SSIM(↑) MMD(↓) FID(1e-4)(↓) PSNR SSIM MMD FID PSNR SSIM MMD FID

Pix2pix(Isola et al., 2017) 28.75 0.889 512.2 25.9 22.25 0.812 8989.0 577.6 31.78 0.923 133.9 11.8
U-net(Ronneberger et al., 2015) 30.32 0.579 917.2 58.9 23.74 0.846 1829.0 320.3 33.58 0.931 83.5 36.6
Palette(Saharia et al., 2022) 29.26 0.894 40.9 13.5 22.68 0.784 284.4 85.9 33.6 0.939 34.9 9.3
I2SB(Liu et al., 2023a) 27.51 0.860 2644.5 47.7 20.75 0.738 35774.5 1343.6 31.3 0.905 1313.6 12.0

Palette-3D(Dorjsembe et al., 2024) 28.48 0.320 4222 88.7 Not Working 24.98 0.297 15926.0 463.1
Pix2pix-3D(Isola et al., 2017) 29.54 0.866 516.5 8.6 22.77 0.784 1974.0 342.2 31.86 0.900 87.81 56.2
U-net-3D(Ronneberger et al., 2015) 31.23 0.892 115.6 59.6 23.43 0.809 487.5 273.8 32.95 0.922 43.3 43.9
Palette-2.5D(Saharia et al., 2022) 29.76 0.834 35.37 12.3 23.04 0.728 1141.19 258.6 25.89 0.819 2858.37 138.92

TPDM(Lee et al., 2023) 32.23 0.922 29.35 17.3 25.35 0.868 176.3 185.5 35.12 0.945 14.5 22.2
Score-Fusion-TPDM 33.24 0.944 13.77 8.31 25.26 0.882 154.9 48.2 36.24 0.961 7.52 5.8

TOSM(Li et al., 2024) 32.76 0.932 24.17 24.87 25.66 0.881 1018.91 209.5 35.44 0.947 8.32 14.53
Score-Fusion-TOSM 33.30 0.945 13.62 6.51 25.24 0.882 138.47 136.06 36.51 0.963 5.926 3.72
MADM(Chen et al., 2024) 33.02 0.945 30.92 35.64 25.47 0.874 1419.4 251.4 35.21 0.946 8.21 13.6
Score-Fusion-MADM 33.31 0.945 13.46 6.57 25.13 0.876 192.51 130.33 36.37 0.964 5.44 3.81

Table 1: Quantitative evaluation of Score-Fusion on BraTS dataset. Best metrics are highlighted in bold. The proposed
model achieves better accuracy (PSNR/SSIM) given more 3D context than their corresponding variant in most tasks.
Moreover, thanks to 3D representation, Score-Fusion achieves significantly better 3D realism (MMD/FID). We demonstrate
the standard deviation and uncertainty metrics in Tab. 6.

Method Dice (%) Recovery (%)

TC WT ET TC WT ET

GT FLAIR 82.71 89.17 81.20 - - -
Downsampled GT 82.30 86.82 80.30 - - -

SR
TPDM 82.49 87.77 80.49 46.27 40.46 20.62
TOSM 82.52 87.21 80.80 54.55 16.51 55.28
Score-Fusion-TPDM 82.69 87.85 80.94 93.71 43.80 71.69
Score-Fusion-TOSM 82.59 87.86 80.87 70.14 44.38 63.94

MT
TPDM 77.28 77.74 78.37 - - -
TOSM 77.94 79.21 78.64 - - -
Score-Fusion-TPDM 77.88 78.51 78.22 - - -
Score-Fusion-TOSM 78.84 78.73 79.52 - - -

both condition
TPDM 82.45 87.69 80.74 36.31 37.25 49.28
TOSM 82.54 87.27 80.82 57.81 19.25 57.79
Score-Fusion-TPDM 82.46 87.91 80.74 38.66 46.67 48.97
Score-Fusion-TOSM 82.61 87.98 80.89 75.35 49.69 65.72

Table 2: Segmentation performance with the FLAIR modal-
ity replaced by model predictions.

Method PSNR SSIM MMD Training Time
(GPU days)

TPDM 32.43 0.929 25.05 0
Score-Fusion-small 35.34 0.956 8.64 4

Score-Fusion 35.6 0.958 8.82 16
TPDM-both_cond 35.12 0.945 14.5 16

Score-Fusion-both_cond 36.24 0.961 7.52 32

Table 3: Multi-modality fusion results for Score-Fusion.

Method 2D Training 3D Training Inference
(GPU days) (GPU days) (minutes/volume)

3D Palette 0 120 0.6
TPDM 16 0 1.72

Score-Fusion 16 16 2.34
Score-Fusion-small 16 4 1.92

Table 5: Training and Inference time results. GPUs are
A100-40G. More complete comparison in Tab. 10

5. Conclusion
3D voxel-space representation can be essential in medical
image translation and generation for both volumetric real-
ism and downstream task performance. However, existing
models struggle to use 3D representation due to computa-
tional challenges and data scarcity. In this work, we have
introduced Score-Fusion to effectively introduce 3D voxel
space representation into 3D medical image translation by
fusing estimations from slice-wise 2D models in the score
function space. Several key designs, including average-
initialization, feature map fusion, patch-wise pre-training.
In addition, our model integrated the strengths of both 2D
and 3D diffusion models. Score-Fusion provides strong
insights for diffusion model ensembling as the first work to
adopt a learning-based fusion in the score function space.
Empirical evaluations on various 3D MRI image translation
tasks, including super-resolution and modality translation,
have shown that Score-Fusion achieves unmatched accu-
racy, volumetric realism, and downstream task performance.
In addition to computational and memory efficiency, the
approach offers considerable flexibility in merging models
conditioned on different domains.
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Impact Statement
This paper presents work that aims to advance the field of
Machine Learning and its application in medical imaging
and video processing. There are several Limitations of our
work. Unlike some other multi-stage models (Zhu et al.,
2023b; Huang et al., 2023), Score-Fusion struggles with
joint end-to-end training due to the substantial computa-
tional demands of simultaneously managing high-capacity
2D models and the volumetric complexities of 3D tasks. In
addition, the model’s dependency on patchwise pre-training
for efficient 3D model learning presents limitations for tasks
requiring the integration of long-range spatial information,
such as large-area inpainting and compressed sensing MRI.
Therefore, Score-Fusion may require longer training for
such tasks. There are also many potential societal conse-
quences of our work. However, direct application of our
method to medical imaging should be approached with cau-
tion.
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Method
SR MT both condition

PSNR(↑) SSIM(↑) MACE(1e-4)(↓) PSNR SSIM MACE PSNR SSIM MACE

TPDM(Lee et al., 2023) 32.23 0.922 53.16 25.35 0.868 279.3 35.12 0.945 48.72± 0.0066 ± 0.000300 ± 0.2363 ± 0.00112 ± 0.0154 ± 0.00056

Ours-TPDM 33.24 0.944 44.63 25.26 0.882 268.3 36.24 0.961 38.49± 0.0298 ± 0.000261 ± 0.664 ± 0.00357 ± 0.0389 ± 0.000249

TOSM(Li et al., 2024) 32.76 0.932 51.68 25.66 0.881 221.7 35.44 0.947 46.32± 0.02157 ± 0.000434 ± 0.2703 ± 0.00132 ± 0.0173 ± 0.00073

Ours-TOSM 33.30 0.945 42.89 25.24 0.882 200.8 36.51 0.963 36.67± 0.0296 ± 0.000240 ± 0.668 ± 0.00317 ± 0.0364 ± 0.000210

MADM(Chen et al., 2024) 33.02 0.946 83.20 25.47 0.874 251.4 35.21 0.946 47.89± 0.0276 ± 0.000436 ± 0.2573 ± 0.00143 ± 0.0165 ± 0.00063

Ours-MADM 33.31 0.945 42.03 25.13 0.876 234.6 36.37 0.964 37.15± 0.0308 ± 0.000278 ± 0.667 ± 0.00342 ± 0.0379 ± 0.00226

Table 6: Quantitative evaluation of Score-Fusion on BraTS dataset with uncertainty metrics. Our models’ performance boost
is significant, given low standard deviations. Our model can also estimate uncertainty better through the standard deviation
obtained by inference multiple times.

A. Overview
In this supplementary material, we first discuss the uncertainty awareness results performed by our model and baselines by
running the inference multiple times in Sec. B. We provide more randomly selected results (We do exclude samples with
low-quality GT) for more baselines and our variants in Sec. C. Then, we provide our super-resolution result in an additional
dataset, HCP dataset (DC et al., 2013) in Sec. D. We provide ablation studies on key techniques in Sec. E. We also provide
more details on training and inference, including a detailed model architecture in Sec. F and training/inference speed in
Sec. G. We finally introduce a more detailed method for self-consistency projection in Sec. H and downstream task results in
Sec. I.

B. Uncertainty Awareness
As with most diffusion-based models, our models and some of our baselines can have uncertainty estimations. To study this
uncertainty, we perform inference five times for each sample in our validation set. This gives us 5 PSNR and SSIM values
for each data sample. We then calculate the standard deviation (std) of the PSNR and SSIM for each sample and include the
mean std across the entire validation set in Tab. 6. This further validates that our performance boost in PSNR and SSIM
is significant. For the main variant, TPDM and Ours-TPDM, in the super-resolution task, we have a 1.01 boost in PSNR,
which is much larger than the std of PSNR for both models (0.0066 and 0.0298). Even for MADM and Ours-MADM, where
we have the most marginal PSNR boost, the boost is still 0.3, around 10 times larger than the std for both models (0.0308
and 0.0276). In contrast, in modality translation, the std is significantly larger since the uncertainty in this task is much
larger than in others, indicating the PSNR drop is not as significant. In fact, previous work (Saharia et al., 2021) argues that
PSNR prefers blurry results, and highly diverse and realistic results typically have low PSNR in tasks with high uncertainty.

In addition, this inference also provides a mean µi and std estimation σi for each voxel. We use Mean Absolute Calibration
Error (MACE) (Kuleshov et al., 2018) to measure the uncertainty awareness of our model and baseline. MACE measures
the absolute difference between the predicted uncertainty and the actual error, as shown in Eq. 5.

MACE =
1

N

N∑
i=1

|σi − |yi − µi|| (5)

As demonstrated in Table 6, all variants of our model exhibit lower MACE values compared to their respective baselines.
This indicates that the standard deviation (std) predicted by our model, derived from multiple inferences, provides a more
accurate estimation of the true error relative to the ground truth. Consequently, our model exhibits improved uncertainty
awareness. For qualitative results in uncertainty awareness, we demonstrate our model’s results with the uncertainty map
and error map across various tasks and variants in Fig. 14 15 16 17 18 19 20 21. As shown in the figures, the uncertainty
map aligns well with the actual error map, demonstrating decent uncertainty awareness for all models. Notably, our model
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usually has a higher uncertainty in modality translation tasks in Fig. 16 and 17. In the modality translation task, the p(y|x)
should have a high variance in overall contrast. Our model outputs samples that are highly diverse in overall contrast,
indicating that Score-Fusion is able to model the target 3D conditional distribution p(y|x) better. In contrast, our baselines
tend to output the mean estimation for overall contrast, demonstrating higher PSNR but limited capability of generating
diverse and realistic results.

C. Additional qualitative result
We show results for the variants that show the best metrics. Namely, we show results for MADM and Ours-MADM in the
super-resolution task in Fig. 14 and 15, and show results for TOSM and Ours-TOSM for the other two tasks in Fig. 18 19 16
and 17. We include more samples in all 3 views in Fig. 20 and Fig. 21 in super-resolution tasks in addition to Fig. 3. Each
figure contains 2 sample volumes, each of which contains visualizations in all three views in three rows. We show all results
with uncertainty and error maps.

Similarly to Fig. 3, we find that both MADM and TOSM demonstrate similar artifacts as TPDM in high-frequency details
due to a direct averaging in the score function. In contrast, Score-Fusion consistently demonstrates better 3D consistency
and realism across all views by introducing pixel-space 3D representation and networks to replace the weighted averaging in
the score function space. For example, in the 6-th row of Fig. 14 16, and 18, the results from baselines are blurry at the top
left part of the brain, whereas Score-Fusion shows more smooth and consistent results.

D. Result on HCP dataset
We present our super-resolution results on the FLAIR modality in the HCP (DC et al., 2013) dataset to show our model
is generalizable across datasets. The HCP dataset consists of 1251 MRI volumes with a resolution of 192x152x152. In
contrast to the BraTs dataset, HCP comprises healthy brains with no brain tumors. Experiments results in Tab. 7 show that
our model shows around 1.5 performance boost in PSNR. We also present the qualitative results in Fig. 4, including all 3
views. Again, Score-Fusion shows better 3D consistency and realism. For example, in the top-right part in the third view,
our baseline demonstrates jittering and artifacts, while our model produces more realistic detail and smoother edges.

Method PSNR SSIM MMD FID(1e-4)

TPDM 28.17 0.890 81.81 35.70
Ours-TPDM 29.62 0.914 67.96 22.12

Table 7: Super-resolution result in HCP dataset.

Figure 4: Qualitative results in HCP dataset. The input is a 4x4x4 downsampled version of the ground truth.

2



Introducing 3D Representation for Dense Volume-to-Volume Translation via Score Fusion

E. Ablation Studies
We provide an ablation study in Tab. 8 on the key design elements for Score-Fusion, which includes: (1) Feature merging:
The 2D models not only contribute their outputs but also pass their feature maps to the 3D model. (2) Finetune: We initially
pre-train the model on 3D patches and then fine-tune it on the full volume to speed up training. (3) Consistency: Inspired by
DPS (Chung et al., 2023a) and score-SDE (Song et al., 2022), we implement self-consistency projections at each denoising
step. All these designs show performance gain in the super-resolution task. In addition, we benchmark the smaller variant in
Sec. 4.4 for comparison, which shows a moderate performance drop compared to our best model.

Smaller model Consistency Finetune Feature PSNR SSIM MMD

– – – – 32.83 0.935 25.45
– ✓ – – 32.88 0.94 18.84
– ✓ ✓ – 32.97 0.941 15.24
– ✓ – ✓ 33.04 0.942 17.76
– ✓ ✓ ✓ 33.24 0.944 13.77
✓ ✓ ✓ – 32.8 0.937 16.78

Table 8: Ablation studies of additional design elements in Score-Fusion.
F. Detailed model architecture
In this section, we show detailed model architecture for 2D, 3D, and the smaller variant of the 3D model in Tab. 11, Tab. 12,
and Tab. 13, respectively. In addition, we show other related hyper-parameters in Tab. 9. We modified the architecture of the
2D diffusion model from Palette (Saharia et al., 2022) and the 3D models from med-ddpm (Dorjsembe et al., 2024).

Given the differences in problem setting and dataset between our work and that of Palette, we conduct a comprehensive
hyper-parameter search based on the super-resolution tasks. This search explores various configurations, including the
number of channels, transformer layers, and learning rate, among others. The hyper-parameter search is conducted to
optimize the performance of our baseline models, Palette2D, Palette3D, and Palette2.5D, in Tab. 1. While such a search could
potentially enhance the performance of our proposed model, we do not perform a hyper-parameter search to optimize the
performance of Score-Fusion, TPDM, TOSM, and MADM. This practice ensures a fair comparison between our model and
their corresponding baselines, TPDM, TOSM, and MADM. Moreover, this shows that our model can be a plug-in-and-play
mechanism for existing pre-trained 2D and 3D model architecture.

Table 9: Other hyper-parameters

Parameter 2D Network 3D Network

Batch size 4 1
Diffusion steps 1000 1000

Inference steps (DDIM) 50 50
Noise scheduler Linear Linear

Learning rate 0.00005 0.0001
Optimizer Adam Adam

G. Training and inference speed
We present training inference speed in Tab. 10. All experiments are done with RTX A100-40GB GPU. Since Score-Fusion
needs to train an additional model on top of the baselines, our training time is inevitably higher. We need 16 GPU days
to train our 3D models, which results in a 16-day increase in training time for most model variants compared to their
corresponding baselines. Our models are also relatively slower in inference since we need to perform inference for an
additional 3D model. However, as mentioned in Sec. 1, the 3D model is naturally limited in size due to computational
challenges in training. Therefore, 3D inference is more efficient than slice-wise 2D inference. As a result, the increase
in inference time is significantly smaller than in training. As shown in Tab. 10, our 3D model is around 30% faster than
one 2D model and, therefore, leads to a 36% increase in inference time for Ours-TPDM and 26% for Ours-MADM and
Ours-MADM.

Moreover, we find that the TPDM-based models are significantly faster than other variants of the models. Given the
advantage of computational efficiency, we use TPDM and Ours-TPDM as our main variables for the model and the baseline.
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Furthermore, to perform a more complete ablation study, the smaller 3D model decreases the inference and training time
of the 3D model by 75% while showing a consistent performance boost over TPDM and a moderate performance drop
compared to Ours-TPDM as shown in Tab. 1. Moreover, compared to 3D Palette baseline, our model effectively decreased
3D training from 120 GPU days to 16/4 days, addressing the computational challenge of 3D diffusion training.

Table 10: Training and Inference time for each model, GPUs are A100 with 40G memory.

Time Training time Inference time
(GPU days) (minutes per volume)

2D Palette 8 0.85
2D I2SB 5 4.58

3D Pix2pix 6 0.0398
3D Unet 6 0.0398

3D Palette 120 0.6
TPDM 16 1.72

Ours-TPDM 32 2.34
Ours-TPDM-small 20 1.92

TOSM 24 2.55
Ours-TOSM 40 3.23

MADM 36 2.76
Ours-MADM 52 3.56

H. Details for consistency projection
In this section, we provide the exact definition and detail for self-consistency projection mentioned in Sec. 3.1. In this work,
we address the inverse problem using a diffusion model with consistency projections. The goal is to recover a high-resolution
image, y, from its low-resolution observation x, which is obtained through a linear degradation process. Specifically, the
degradation process is modeled as: x = Ay.

In the 3D case, the degradation operator A represents a downsampling operation that reduces the resolution of a volume y
by a factor of 4 along each spatial dimension (x, y and z) and resizes it back to the original resolution. This means that
each voxel in the low-resolution volume x corresponds to the average of a [4×4×4] region in the high-resolution volume y.
Specifically, let y,x ∈ Rb1×b2×b3 . The operator matrix A ∈ Rb1×b2×b3,b1×b2×b3 downscales the high-resolution volume y
into the low-resolution volume x by averaging over [4x4x4] blocks of voxel of y. Therefore, A is a sparse matrix where
each non-zero entry corresponds to the average of a block of [4x4x4] voxels in y being averaged to form a block of voxel in
x. Therefore, A is 1

64 for the places where x and y belong to the same block, and A would be 0 elsewhere:

A[(i, j, k), (p, q, r)] =
1

64
if x(i, j, k),y(p, q, r) ∈ block

A[(i, j, k), (p, q, r)] = 0 Otherwise
(6)

Since we are doing average over [4x4x4], x(i, j, k) and y(p, q, r) are in the same block if and only if i//4 == p//4,
j//4 == q//4, and k//4 == r//4.

In our diffusion process, we use ŷ0(t)← ŷ0(t)−AT (AAT )
−1

(Aŷ0(t)− x) to make every of our mean prediction of ŷ0 a
plausible estimation with x = Aŷ0(t)

To compute matrix multiplication more efficiently in a super-resolution setting, we actually use ŷ0(t)← ŷ0(t)−(Aŷ0(t)−x)
in our code. This works in the average pooling downsample because AAy = Ay since A represents the degradation process
composed of average pooling followed by resizing the image back to its original resolution.

I. Details in downstream task
In Section 4.3, we evaluate tumor segmentation performance using three types of FLAIR inputs: the ground truth FLAIR
modality, 4x downsampled FLAIR modality (as described in Section 4.1), and the 4x super-resolution FLAIR prediction
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on the downsampled FLAIR. Accurate tumor segmentation is crucial in medical imaging, and its performance heavily
relies on the quality of the input data. It requires High-quality inputs for precise localization and delineation of tumor
boundaries, while, depending on its degradation level, the degraded inputs could significantly lower segmentation accuracy
and reliability. We use a robust pre-trained segmentation model, SwinUNet (Hatamizadeh et al., 2022), which takes four
modalities (T1, T1ce, T2, and FLAIR) as input. For this downstream task, our objective is to assess how well the models can
recover segmentation performance when working with degraded inputs. Segmentation is performed with other modalities
with ground truth inputs and a FLAIR input from the ground truth FLAIR, downsampled FLAIR, or the model-predicted
FLAIR. Note that because there is no degraded FLAIR modality available in the modality translation task, only dice scores
are reported. For other tasks, including the super-resolution and both condition tasks, performance is measured using two
metrics: (1) Dice Score, the primary metric of the segmentation model, and (2) Recovery Rate, a measure of how well
model predictions improve upon degraded FLAIR inputs. The recovery rate is calculated as:

Recovery Rate =
Prediction− Downsample

Ground Truth− Downsample

where Prediction refers to the segmentation performance using predicted FLAIR, Downsample is the performance with
downsampled FLAIR, and Ground Truth is the performance with ground truth FLAIR.

Fig. 5, 6, 7 illustrate the Dice score and Recovery rate comparisons across tumor categories. Dashed lines represent the lower
and upper bounds. They show that segmentation performance with the predicted FLAIR modality from Score-Fusion-based
models outperforms other methods, as Score-Fusion-based models are constantly positioned higher than others.

We also show qualitative results in the tumor segmentation task, on TPDM, TOSM, and Score-Fusion built based on these
two models. Fig 8 and Fig 9 show the results in super-resolution, Fig 10 and Fig 11 show the results in modality translation,
and Fig 12 and Fig 13 show the results given both conditions. In Fig 8, 13, 12, and 13, in the sagittal plane, we can observe
that our models help segmentation model capture a branch coming out of the whole tumor, indicated by a red bounding box.
This branch is only partially captured or entirely missed in predictions from other models. This shows that our model yields
more precise predictions, allowing the tumor segmentation model to delineate the entire tumor boundary more accurately.
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Figure 5: Comparison of Dice scores and recovery rates for super-resolution. The value on the left represents the Dice score,
while the value on the right represents the recovery rate.
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Figure 6: Comparison of Dice scores and recovery rates for modality translation. The value on the left represents the Dice
score.
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Figure 7: Comparison of Dice scores and recovery rates for both conditions. The value on the left represents the Dice score,
while the value on the right represents the recovery rate.
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Figure 8: Qualitative results for the downstream task, tumor segmentation, in super-resolution task.

Figure 9: Qualitative results for the downstream task, tumor segmentation, in super-resolution task
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Figure 10: Qualitative results for the downstream task, tumor segmentation, in modality translation task

Figure 11: Qualitative results for the downstream task, tumor segmentation, in modality translation task
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Figure 12: Qualitative results for the downstream task, tumor segmentation, in both-condition task

Figure 13: Qualitative results for the downstream task, tumor segmentation, in both-condition task
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Table 11: Architecture for 2D diffusion model. Each ResnetBlock consists of 3 conv2D layers of the same channel and a
skip connection. All ResnetBlocks are used with time embedding.

layers parameters
input Conv3d in_ch: 5, out_ch: 64, kernel: 3x3, stride: 1, pad: 1

Time_Embed
Linear in_ch:64, out_ch: 256

Activateion Swish
Linear in_ch:256, out_ch: 256

Downsample_block_1

ResnetBlock in_ch:64, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Downsample(Conv3d) in_ch:64, out_ch: 64,kernel:3x3, stride:2)

Downsample_block_2
ResnetBlock in_ch:64, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Downsample(Conv3d) in_ch:128, out_ch: 128,kernel:3x3, stride:2

Downsample_block_3
ResnetBlock in_ch:128, out_ch: 256
ResnetBlock in_ch:256, out_ch: 256

Downsample(Conv3d) in_ch:256, out_ch: 256,kernel:3x3, stride:2

Downsample_block_4 ResnetBlock in_ch:256, out_ch: 512
ResnetBlock in_ch:512, out_ch: 512

Middle
ResnetBlock in_ch:512, out_ch: 512
ResnetBlock in_ch:512, out_ch: 512

Upsample_block_1
ResnetBlock in_ch:512, out_ch: 512
ResnetBlock in_ch:512, out_ch: 512

Upsample Conv3d and F.interpolate

Upsample_block_2
ResnetBlock in_ch:512, out_ch: 256
ResnetBlock in_ch:256, out_ch: 256

Upsample Conv3d and F.interpolate

Upsample_block_3
ResnetBlock in_ch:256, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Upsample Conv3d and F.interpolate

Upsample_block_4 ResnetBlock in_ch:128, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Out
Normalize 64
Activation nn.SiLU

Conv3d in_ch:64, out_ch: 1, kernel: 3x3, stride: 1, pad: 1
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Table 12: Architecture for 3D diffusion model. Each ResnetBlock consists of 2 conv3D layers of the same channel and a
skip connection. All ResnetBlocks are used with time embed with an embedding layer, as well as gradient checkpoint

layers parameters
input Conv3d in_ch: 5, out_ch: 64, kernel: 3x3, stride: 1, pad: 1

Time_Embed
Linear in_ch:64, out_ch: 256

Activateion nn.SiLU
Linear in_ch:256, out_ch: 256

Downsample_block_1

ResnetBlock in_ch:64, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Feature_injetced_from_2D in_ch:64, out_ch: 64)
Downsample(Conv3d) in_ch:64, out_ch: 64,kernel:3x3, stride:2)

Downsample_block_2
ResnetBlock in_ch:64, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Feature_injetced_from_2D in_ch:128, out_ch: 128)
Downsample(Conv3d) in_ch:128, out_ch: 128,kernel:3x3, stride:2

Downsample_block_3
ResnetBlock in_ch:128, out_ch: 192
ResnetBlock in_ch:192, out_ch: 192

Feature_injetced_from_2D in_ch:192, out_ch: 192)
Downsample(Conv3d) in_ch:192, out_ch: 192,kernel:3x3, stride:2

Downsample_block_4 ResnetBlock in_ch:192, out_ch: 256
ResnetBlock in_ch:256, out_ch: 256

Feature_injetced_from_2D in_ch:256, out_ch: 256)

Middle
ResnetBlock in_ch:256, out_ch: 256
ResnetBlock in_ch:256, out_ch: 256

Upsample_block_1
ResnetBlock in_ch:256, out_ch: 256
ResnetBlock in_ch:256, out_ch: 256

Upsample Conv3d and F.interpolate

Upsample_block_2
ResnetBlock in_ch:256, out_ch: 192
ResnetBlock in_ch:192, out_ch: 192

Upsample Conv3d and F.interpolate

Upsample_block_3
ResnetBlock in_ch:192, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Upsample Conv3d and F.interpolate

Upsample_block_4 ResnetBlock in_ch:128, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Out
Normalize 64
Activation nn.SiLU

Conv3d in_ch:64, out_ch: 2, kernel: 3x3, stride: 1, pad: 1
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Table 13: Architecture for the smaller variant of 3D diffusion model. Again, each ResnetBlock consists of 2 conv3D layers
of the same channel and a skip connection. All ResnetBlocks are used with time embedding with an embedding layer, as
well as a gradient checkpoint. We used a smaller number of channels for each layer and omitted the feature injection from
2D

layers parameters
input Conv3d in_ch: 5, out_ch: 32, kernel: 3x3, stride: 1, pad: 1

Time_Embed
Linear in_ch:32, out_ch: 128

Activateion nn.SiLU
Linear in_ch:128, out_ch: 128

Downsample_block_1

ResnetBlock in_ch:32, out_ch: 32
ResnetBlock in_ch:32, out_ch: 32

Downsample(Conv3d) in_ch:32, out_ch: 32,kernel:3x3, stride:2)

Downsample_block_2
ResnetBlock in_ch:32, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Downsample(Conv3d) in_ch:64, out_ch: 64,kernel:3x3, stride:2

Downsample_block_3
ResnetBlock in_ch:64, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Downsample(Conv3d) in_ch:64, out_ch: 64,kernel:3x3, stride:2

Downsample_block_4 ResnetBlock in_ch:63, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Middle
ResnetBlock in_ch:128, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Upsample_block_1
ResnetBlock in_ch:128, out_ch: 128
ResnetBlock in_ch:128, out_ch: 128

Upsample Conv3d and F.interpolate

Upsample_block_2
ResnetBlock in_ch:128, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Upsample Conv3d and F.interpolate

Upsample_block_3
ResnetBlock in_ch:64, out_ch: 64
ResnetBlock in_ch:64, out_ch: 64

Upsample Conv3d and F.interpolate

Upsample_block_4 ResnetBlock in_ch:64, out_ch: 32
ResnetBlock in_ch:32, out_ch: 32

Out
Normalize 64
Activation nn.SiLU

Conv3d in_ch:32, out_ch: 2, kernel: 3x3, stride: 1, pad: 1
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Figure 14: Uncertainty awareness results on super-resolution task
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Figure 15: Uncertainty awareness results on super-resolution task
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Figure 16: Uncertainty awareness results on modality translation task

17



Introducing 3D Representation for Dense Volume-to-Volume Translation via Score Fusion

Ground
Truth

Input
TOSM

Result Uncertainty Error

Ours-TOSM

Result Uncertainty Error

Figure 17: Uncertainty awareness results on modality translation task
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Figure 18: Uncertainty awareness results given both conditions
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Figure 19: Uncertainty awareness results given both conditions
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Figure 20: Uncertainty awareness results on super-resolution for TPDM and Ours-TPDM
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Figure 21: Uncertainty awareness results on super-resolution for TPDM and Ours-TPDM
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