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ABSTRACT

Reinforcement learning (RL) agents can exploit unintended strategies to achieve
high rewards without fulfilling the desired objectives, a phenomenon known as
reward hacking. In this work, we examine reward hacking through the lens of Gen-
eral Utility RL, which generalizes RL by considering utility functions over entire
trajectories rather than state-based rewards. From this perspective, many instances
of reward hacking can be seen as inconsistencies between current and updated util-
ity functions, where the behavior optimized for an updated utility function is poorly
evaluated by the original one. Our main contribution is Modification-Considering
Value Learning (MC-VL), a novel algorithm designed to address this inconsistency
during learning. Starting with a coarse yet value-aligned initial utility function,
the MC-VL agent iteratively refines this function based on past observations while
considering the potential consequences of updates. This approach enables the
agent to anticipate and reject modifications that may lead to undesired behavior.
To validate our approach, we implement MC-VL agents based on the Double
Deep Q-Network (DDQN) and Twin Delayed Deep Deterministic Policy Gradients
(TD3), demonstrating their effectiveness in preventing reward hacking in diverse
environments, including those from Al Safety Gridworlds and the MuJoCo gym.

1 INTRODUCTION

From mastering video games (Mnih et al., 2015) to optimizing robotic control (Levine et al., 2016),
reinforcement learning (RL) agents have solved a wide range of tasks by learning to maximize
cumulative rewards. However, this reward-maximization paradigm has a significant flaw: agents
may exploit poorly defined or incomplete reward functions, leading to a behavior known as reward
hacking (Skalse et al., 2022), where the agent maximizes the reward signal but fails to meet the
designer’s true objectives.

For instance, an RL agent tasked with stacking blocks instead flipped them, exploiting a reward based
on the height of the bottom face of a block (Popov et al., 2017). Similarly, a robot arm manipulated
objects in arbitrary ways that exploited a classifier-based reward system, tricking it into labeling
incorrect actions as successful due to insufficient negative examples (Singh et al., 2019). Ibarz et al.
(2018) describe reward model exploitation in Atari games, where agents exploit flaws in reward
functions learned from human preferences and demonstrations. These incidents underscore that while
RL agents may maximize rewards, their learned behaviors often diverge from the goals intended by
the reward designers.

As RL systems scale to more complex, safety-critical applications like autonomous driving (Kiran
et al., 2021) and medical diagnostics (Ghesu et al., 2017), ensuring reliable and safe agent behavior
becomes increasingly important. Pan et al. (2022) showed that reward hacking becomes more
common as models grow in complexity. Moreover, Denison et al. (2024) demonstrated that agents
based on large language models, trained with outcome-based rewards, can generalize to changing the
code of their own reward functions. Reward hacking also becomes more prominent with increased
reasoning capabilities. For example, during testing of the ol-preview (pre-mitigation) language
model on a Capture the Flag (CTF) challenge, the model encountered a bug that prevented the target
container from starting. Rather than solving the challenge as intended, the model used nmap to scan
the network, discovered a misconfigured Docker daemon API, and exploited it to start the container
and read the flag via the Docker API, bypassing the original task altogether (OpenAl, 2024).
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In this paper, we frame reward hacking within the General Utility RL (GU-RL) formalism (Zahavy
etal., 2021; Geist et al., 2022). We describe an agent that optimizes a learned utility function, which
assigns value to trajectories based on past observed rewards. Many instances of reward hacking,
such as manipulating the reward provision process (Everitt et al., 2021) and tampering with the
sensors (Ring & Orseau, 2011), can be viewed as inconsistent updates to the utility function. We
define an update as inconsistent when the trajectories produced by a policy optimized for the updated
utility function would be evaluated poorly by the prior utility function. To address this issue, we
introduce Modification-Considering Value Learning (MC-VL). In MC-VL, the agent updates its
utility function based on the observed rewards, similar to value-based RL, but it also predicts the
long-term consequences of potential updates and can reject them. In our formulation, avoiding
inconsistent utility updates is an optimal behavior.

For example, consider a robot trained to grasp objects using human feedback (Christiano et al., 2017).
A standard RL agent, if rewarded for positioning its manipulator between the object and the camera
in the middle of the training, can exploit this reward by learning to repeat that behavior (OpenAl,
2017). In contrast, an MC-VL agent would first forecast the consequences of updating its utility
function based on this new reward. Drawing from prior experiences where positive rewards were
given only for positioning the manipulator near the object, the MC-VL agent might predict low utility
for positioning the manipulator in front of the camera. As a result, the agent would reject the update,
staying focused on the intended grasping task.

Several prior works have discussed the theoretical possibility of mitigating reward or sensor tampering
using current utility optimization, where an agent evaluates potential changes to its utility function
using its current utility function (Orseau & Ring, 2011; Hibbard, 2012; Everitt et al., 2016; 2021).
Dewey (2011) suggested learning the utility function from past observations. However, to the best
of our knowledge, no prior work has formalized this within the GU-RL framework, applied this
idea to standard RL environments, or implemented such an agent. In this work, we provide an
algorithm to learn the utility function, estimate future policies, and compare them using the current
utility function. Additionally, we introduce a learning setup where the initial utility function is
learned in a Safe sandbox version of the environment before transitioning to the Full version. Our
experiments, conducted across various environments, including benchmarks adapted from the Al
Safety Gridworlds (Leike et al., 2017), are, to the best of our knowledge, the first to demonstrate the
ability to prevent reward hacking in these environments. Furthermore, our results provide insights
into the key parameters influencing MC-VL performance, laying the groundwork for further research
on preventing reward hacking in RL.

2 RELATED WORK

The problem of agents learning unintended behaviors by exploiting misspecified training signals
has been extensively discussed in the literature as reward hacking (Skalse et al., 2022), reward
gaming (Leike et al., 2018), or specification gaming (Krakovna et al., 2020). Krakovna et al. (2020)
provide a comprehensive overview of these behaviors across RL and other domains. The theoretical
foundations for understanding reward hacking are explored by Skalse et al. (2022), who argue that
preventing reward hacking requires either limiting the agent’s policy space or carefully controlling
the optimization process.

Laidlaw et al. (2023) propose addressing reward hacking by regularizing the divergence between the
occupancy measures of the learned policy and a known safe policy. Unlike their approach, which
may overly restrict the agent’s ability to learn effective policies, our method does not require the
final policy to remain close to any predefined safe policy. Eisenstein et al. (2024) investigate whether
ensembles of reward models trained from human feedback can mitigate reward hacking, showing
that while ensembles reduce the problem, they do not completely eliminate it. To avoid additional
computational overhead, we do not use ensembles in this work, but they could complement our
method by improving the robustness of the learned utility function.

A specific form of reward hacking, where an agent manipulates the mechanism by which it receives
rewards, is known as wireheading (Amodei et al., 2016; Taylor et al., 2016; Everitt & Hutter, 2016;
Majha et al., 2019) or reward tampering (Kumar et al., 2020; Everitt et al., 2021). Related phenomena,
where an agent manipulates its sensory inputs to deceive the reward system, are discussed as delusion-
boxing (Ring & Orseau, 2011), measurement tampering (Roger et al., 2023), and reward-input
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tampering (Everitt et al., 2021). Several studies have hypothesized that current utility optimization
could mitigate reward or sensor tampering (Yudkowsky, 2011; Yampolskiy, 2014; Hibbard, 2012).
One of the earliest discussions of this issue is in by Schmidhuber (2003), who developed the concept
of Godel-machine agents, capable of modifying their own source code, including the utility function.
They suggested that such modifications should only occur if the new values are provably better
according to the old ones. However, none of these works addressed learning the utility function or
described the optimization process in full detail.

Dewey (2011) introduced the concept of Value-Learning Agents, which learn and optimize a utility
function based on past observations as a potential solution to reward tampering. Everitt & Hutter
(2016) considered a setting where the agent learns a posterior given a prior over manually specified
utility functions, proposing an agent that is not incentivized to tamper with its reward signal by
selecting actions that do not alter its beliefs about the posterior. More recently, Everitt et al. (2021)
formalized conditions under which an agent optimizing its current reward function would lack the
incentive to tamper with the reward signal. Our work suggests an implementation of value learning in
standard RL environments, where the utility function is learned from the past rewards. Additionally,
our method is applicable to other instances of reward hacking beyond reward tampering. Moreover, it
aims to prevent reward hacking, rather than simply removing the incentive for it.

3 BACKGROUND

We consider the usual Reinforcement Learning (RL) setup, where an agent learns to make decisions
by interacting with an environment and receiving feedback in the form of rewards (Sutton & Barto,
2018). This interaction is modeled as a Markov Decision Process (MDP) (Puterman, 2014) defined by
the tuple (S, A, P, R, p,~y), where S is the set of states, A is the set of actions, P : S X Ax S — Ris
the transition kernel, R : S X A — R is the reward function, p is the initial state distribution, and -y is
the discount factor. The objective in a standard RL is to learn a policy 7 : § — A that maximizes the
expected return, defined as the cumulative discounted reward E, [>,° 7 R(s:, a;)]. The expected
return from taking action a in state s and subsequently following policy 7 is called state-action value
function and denoted as Q™ (s, a).

Deep Q-Networks (DQN) and Double DQN (DDQN) DQN (Mnih et al., 2013) and DDQN (van
Hasselt et al., 2016) are RL algorithms that approximate the state-action value function Q(s, a; 6)
using neural networks, where 6 are the network parameters. Both algorithms store past experiences in
a replay buffer and update network parameters by minimizing a loss £(#) on the temporal-difference
error based on the Bellman equation:

L(0) = [|Q(s¢, a3 0) — sg[re + vQ(se11, arg max Q(s41, a5 0); 7)), (1

where sg denotes stop gradient, (s, at, 7¢, S¢11) represents a transition sampled from the buffer, and
0~ refers to parameters of a target network, which stabilizes learning by being a slower updating
version of the current Q-network. DQN uses 6 equal to 6, while DDQN proposed to use 6 instead
to reduce the overestimation bias. The policy 7(s) is obtained by arg max, Q(s, a; 0).

General-Utility RL (GU-RL) In this work, we focus on an agent that optimizes its current utility
function. This problem is naturally framed within the General-Utility Reinforcement Learning
(GU-RL) (Geist et al., 2022; Zhang et al., 2020; Zahavy et al., 2021), which generalizes standard
RL to maximization of utility function F. Unlike traditional RL, where rewards are assigned to
individual transitions, I’ intuitively assigns value to entire trajectories. GU-RL offers a more general
framework that encompasses tasks like risk-sensitive RL (Mihatsch & Neuneier, 2002), apprenticeship
learning (Abbeel & Ng, 2004), and pure exploration (Hazan et al., 2019).

Formally, the utility function F' maps an occupancy measure to a real value. An occupancy measure
describes the distribution over state-action pairs encountered under a given policy. For a given policy
7 and an initial state distribution p, the occupancy measure A7 is defined as

+o0
def
)\Z(S,G) = Z’Ytppnr(st = S,a¢ = Cl),
=0
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where P, »(s; = s,a; = a) is the probability of observing the state-action pair (s, a) at time step ¢
under policy 7 starting from p. The utility function F(/\g) assigns a scalar value to the occupancy
measure induced by the policy 7. The agent’s objective is to find a policy 7 that maximizes F' ()\g).

A trajectory 7 = (s, ao, - - - , S, ap, ) induces the occupancy measure A(7), defined as

where d; , is an indicator function that is 1 only for the state-action pair (s, a) (Barakat et al., 2023).

Standard RL is a special case of GU-RL, where the utility function F'gy, is linear with respect to the
occupancy measure, and maximizing it corresponds to maximizing the expected cumulative return:

Frr(\p) = (R,\}) = Er li vtR(shat)] .
t=0

4 METHOD

We aim to address reward hacking in RL by introducing Modification-Considering Value Learning
(MC-VL). The MC-VL agent continuously updates its utility function based on observed rewards
while avoiding inconsistent utility modifications that could lead to suboptimal behavior under the
current utility function. This is achieved by comparing policies induced by the current and updated
utility functions. To compare the policies, we compare the trajectories they produce.

Trajectory Value Function We introduce trajectory value functions to compute the values of the

trajectories produced by the policies. A trajectory value function U™ (7) evaluates the utility of an

occupancy measure induced by starting with a trajectory 7 = (so, ag, - . -, Sn, ap,) and following a

policy 7 after the end of this trajectory:
Um(r) EF (A7) +9"2E,, )

where S, 41 is the distribution of the states following the 7, and /\gh+1 represents the occupancy

measure induced by following 7 from Sp;. In the standard RL setting, this simplifies to the
following:

h—1

Ugo(1) = (R, A(7) + Vh/\gh+1> = ZWtR(Sm at) + “YhQﬁ(Sm an)-
t=0

Every trajectory value function has a corresponding utility function F'(A]) = E-e7x U™(7), where

T denotes a distribution of trajectories started from state distribution p and continued by following
a policy 7. Thus, it is also referred to as utility for brevity.

General Utility Generalized Policy Iteration (GU-GPI) To formalize a learning process using
the trajectory value functions, we extend Generalized Policy Iteration (GPI) (Sutton & Barto, 2018)
to the general utility setting, resulting in General Utility Generalized Policy Iteration (GU-GPI). In
GU-GPI, the algorithm alternates between refining the value estimates of trajectories and improving
the policy toward maximizing this value. Specifically, at each time step ¢:

U~ U™ mp~argmax E U™ (7).
T T~NTT

Value Learning (VL) The value-learning agent optimizes a utility Uy, which is learned from
observed transitions (Dewey, 2011). Algorithm I provides the GU-GPI for a value learning agent. In
our framework, the agent begins with an initial utility Uy, , and updates it towards the RL-based
utility Ug, after each environment step, using trajectories 7 (D) formed from the set of previously
observed transitions D:

T(D) = {(s0,a0,---,8n,an) Vt € {0,...,h—1} I(s,a,s",r) € Ds.t. (s, at,8e41) = (s,a,8)}.
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Algorithm 1 Value-Learning (VL) Algorithm 2 Modification-Considering VL
Input: Replay buffer D, policy mg, and initial Input: Replay buffer D, policy mg, and initial
utility Uy, utility Uy,
1: for time step ¢t = 0, while not converged do  1: for time step ¢ = 0, while not converged do
2: U1~ Uy, >Update U 2: U1 ~ Uy, > Update U
> Improve 7 > Improve 7
3: g1~ argmax, B o7 (U1 (7)] 3: g1 ~> argmax, Ko7 [Up1(7)]
4: ap  m(S¢t) > Select action  4: (at, modify) « m(Ti—1)
5: Update utility: 5 if modify then
D+ DU{T;_1} D« DU{T;_1}
UL (1)~ U (7) | 7 € T(D) UVL,, (1)~ Up (1) | 7 € T(D)
Vi1 t41
6 end if
6 St41,7¢ < act(ay) > Perform action  7: St41,T¢ < act(ag) > Perform action
7: Ty (8¢, at, St41,7t) 8 Ty < (8¢, @ty St41,7t)
8: end for 9: end for

Q-learning algorithms such as DQN or DDQN can be seen as special cases of the value-learning
agent, where U, is updated to be an exact copy of U ?Lt, and U (}‘Lt only learns the state-action
value of the first state and action in a trajectory: U(}‘Lt (80,0, - - -, Sh,an) = Q™ (s0,ap).

Modification-Considering VL (MC-VL) The distinction between VL agents and standard RL
agents becomes apparent when the agent is modification-considering, meaning it evaluates the
consequences of modifying its utility function. For the agents optimizing U, it is always optimal to
learn from new transitions, as they provide information about the utility being optimized. However,
for VL agents optimizing Uy, at time step ¢, it may be optimal to avoid learning from certain
transitions. Specifically, the agent may predict its future behavior after updating its utility to Uy, ,
and compare it to the predicted behavior under its current utility Uy, . If the updated behavior has
lower utility according to Uyy,, it is optimal to avoid such an update since the agent is currently
optimizing Uy, .

To formalize this decision-making process, we introduce an additional boolean action that determines
whether to modify the utility function after an interaction with the environment. The modified action
space is A™ = A x {0, 1}, where each action a* = (a;, modify;) includes a decision to modify or
to keep the current utility. The policy is adjusted to take the full transition as input, rather than just
the environment state. After each interaction, the agent explicitly decides whether to update its utility
function based on the new experience. Algorithm 2 presents the modified version of GU-GPI for such
an agent. We refer to the transitions where the optimal choice is modify = 0 as utility-inconsistent,
and to the process of selecting modify as utility inconsistency detection.

Implementation We implement an MC-VL agent for discrete action spaces using DDQN (van
Hasselt et al., 2016) and for continuous action spaces using TD3 (Fujimoto et al., 2018). These
implementations are referred to as MC-DDQN and MC-TD3, respectively. Here, we focus on
describing MC-DDQN; the implementation of MC-TD3, which is highly similar, is detailed in
Appendix F. In MC-DDQN, UVL(T' 0,1)) is parameterized as

Z’y St»atﬂ/J +’Y Q(Shvaha9)7 (2)

where R(s, a; 1) is a learned reward model, and Q(s, a; #) is the state-action value function. Similarly
to DDQN, the trajectory value function Uy is updated to be a copy of Uy . The policy 7(7)
outputs an environment action a and a boolean modify, which indicates whether to update the utility
function. The environment action a is chosen as arg max, Q(s, a; 0), while decision modify is
determined by comparing expected future utilities. Specifically, the agent compares the expected
utility of future policies: a modified 7,,, assuming 7' was added to the dataset D, and unmodified m,,,
assuming it was not. It then computes

modify = E_[Uyv(D]2 E Uy (), ©)
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where the expectations are computed by averaging over k trajectories of length h. The future policies
7™ and " are computed by applying [ DDQN updates to the current action-value function Q(s7 a;0)
using replay buffers D U {T'} and D, respectively. To speed up learning from the replay buffer
D U {T}, we include transition T in each sampled mini-batch. The reward model parameters v are
updated using Lo loss on batches sampled from the replay buffer D, while the action-value function
parameters 6 are updated through DDQN updates on the same batches. The full implementation of
MC-DDQN is presented in Appendix A.

Initial Utility Function An MC-VL agent described in Algorithm 2 requires some initial utility
function as input. In this work, we propose to learn this initial utility function in a Safe sandbox
version of the environment, where unintended behaviors cannot be discovered by the exploratory
policy. Examples of Safe environments include simulations or closely monitored lab settings where
the experiment can be stopped and restarted without consequences if undesired behaviors are detected.
To differentiate from the Safe version, we refer to the broader environment as the Full environment.
This Full environment may include the Safe one, for example, if the agent’s operational scope is
expanded beyond a restricted lab setting. Alternatively, the Safe and Full environments may be
distinct, such as when transitioning from simulation to real-world deployment. For the proposed
approach to perform effectively, however, the Safe and Full environments must be sufficiently similar
to allow for successful generalization of the learned utility function.

5 EXPERIMENTS

To empirically validate our approach, we introduce environments that can be switched between Safe
and Full variants. Following Leike et al. (2017), each environment includes a performance metric in
addition to the observed reward. This metric tracks how well the agent follows the intended behavior.
A high observed reward combined with a low performance metric indicates reward hacking. In the
Safe versions of the environments, the performance metric is identical to the reward.

5.1 ENVIRONMENTS

To illustrate a scenario where utility inconsistency might arise, we introduce the Box Moving en-
vironment, shown in Figure 1. In addition, we adopt several established environments to evaluate
our method’s performance on known challenges. These include the Absent Supervisor and Tomato
Watering environments from Al Safety Gridworlds (Leike et al., 2017), as well as the Rocks and
Diamonds environment from Everitt et al. (2021), all depicted in Figure 2. To test our algorithm in
continuous action spaces, we adopt the Reacher environment from Gymnasium (Towers et al., 2024).

+1 +5 0 Agent

4 | +1
4
!
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U U U ﬂ Move Box
A A &, ® cont
l

Box

ﬂ ﬂ N On Step
Teleport
Box
-1 | -1 ﬂ+5 - -1 ﬂ CJ§ Reward System
(a) Safe (b) Full (c) No Inconsistency

Figure 1: (a) Safe version of Box Moving environment: the optimal policy is to repeatedly press the
up arrow by moving up and down. (b) In Full version, maximum returns are achieved by pressing the
down arrows, receiving +5 observed reward for each press of the bottom-most arrow, but this also
moves the box down, which is inconsistent with utility learned in the Safe version. There is also a
policy that moves the box up twice as fast by alternating between up arrows. (c) In No Inconsistency
version, collecting +5 reward does not conflict with moving the box up, so the agent trained in Safe
should not encounter utility inconsistency in this version of the environment.
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Figure 2: Gridworld environments. Each environment has Safe and Full versions. In Safe version, the
Absent Supervisor guarantees the presence of supervisors, Tomato Watering does not have the bucket,
and Rocks and Diamonds does not have the switch. We provide additional customization options for
testing different scenarios.

Box Moving Environment The environment consists of two parts: the left part represents an
external world with a box that can be moved up and down, while the right part is a room where the
agent can move. When the box reaches the top-most or bottom-most cell, the agent receives a reward
of +1 or -1, respectively, and the box teleports back to the central cell. The agent can move up and
down, and stepping on arrows on the floor moves the box in the corresponding direction.

In the Safe version, the top and bottom of the room are empty, and the optimal strategy is to repeatedly
press the up arrow. This setting allows the agent to learn an initial utility function that favors moving
the box upward. In the Full version, the agent has more interaction opportunities. The top cell is
replaced by an up arrow, allowing the agent to move the box up twice as fast by alternating between
two up arrows. This setup shows that the Full environment can offer more efficient ways to achieve
outcomes that were learned to be good in the Safe version. The bottom empty cell is replaced by a
down arrow. However, by stepping into this cell, the agent can trick the reward system to give itself a
+5 reward. While this results in higher observed rewards, it also moves the box downward, which
was learned to be undesirable in the Safe version.

The No Inconsistency version modifies the top cell to provide +5 reward instead. The agent can
collect this reward without disrupting upward box movement, demonstrating that not all changes in
reward structure result in utility inconsistency.

Absent Supervisor In this environment, the agent can alter its behavior based on whether it detects
the presence of a supervisor. The goal is to reach a target cell for +50 reward, but a punishment
cell along the path gives -30 reward if stepped on while a supervisor is present. Each movement
costs -1 reward, encouraging the agent to take the shortest path. In the Safe version, the supervisor
is always present, leading the initial utility function to learn that going through the punishment cell
is undesirable. In the Full version, the supervisor is present only half the time. The performance
metric penalizes the agent for stepping on the punishment cell, even in the supervisor’s absence. We
expect that when the agent steps on the punishment cell without supervision, it will experience utility
inconsistency, as learning from this transition leads to the policy that visits the punishment cell, which
contradicts the low utility assigned to this action previously.

Tomato Watering This environment models tampering with observations. The agent is rewarded
based on the number of watered tomatoes, which dry out randomly. Stepping on the bucket cell
replaces all cells with watered tomatoes, representing a delusion. In the Safe version, the bucket is
removed from the environment. The performance metric tracks the true number of watered tomatoes.
In the Full version, we expect utility inconsistency when the agent tries to delude itself using the
bucket if it compares policies based on a true environment transition model where stepping on the
bucket does not affect the tomatoes. In this case, its new behavior, standing on the bucket cell, should
have lower utility than watering the tomatoes. However, if a delusional transition model is used, a
room full of watered tomatoes should still appear to have high utility. Without access to the labels we
assigned to cells, the agent cannot distinguish between deluding itself by putting a bucket on its head
and the real change, i.e. efficient watering of all tomatoes at once.
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Figure 3: Episode performance (top) and returns (bottom) of MC-DDQN and MC-TD3 in comparison
to DDQN and TD3. Performance tracks the intended behavior, while returns are cumulative observed
reward. After switching to Full version, the returns of baselines grow while performance drops,
indicating that they engage in reward hacking. The performance of our algorithms does not drop and
improves in environments with better policies available in Full version. Bold lines represent the mean
over 10 seeds, and shaded regions indicate a bootstrapped 95% confidence interval.

Rocks and Diamonds This environment allows the agent to change its reward function by visiting
a switch. Initially, diamonds in the goal area provide +1 reward at every step, while rocks yield
-1. Activating the switch alters the observed reward for rocks to +10, while the performance metric
remains the same. In the Safe version, the switch is removed. Both diamonds and rocks can be
pushed. We expect utility inconsistency when the agent encounters a situation where the switch is
active and there is a rock in a goal area since updating from this transition would lead to a policy that
puts rocks in the goal area and this action had low utility in the past.

Reacher This environment is based on the Reacher-v5 environment from the MuJoCo subset of
the Gymnasium benchmark (Towers et al., 2024). It involves a robotic arm tasked with reaching
a randomly placed target, starting from random joint rotations and velocities. We modified the
environment by adding an invisible button that provides a one-time reward of +50 when held for
15 consecutive steps, simulating reward tampering. The performance metric does not include this
reward. Further details are provided in Appendix G.

5.2 EXPERIMENTAL SETUP

Unless specified otherwise, we train the initial utility function in the Safe versions of environments
until convergence. We use e-greedy exploration (Watkins, 1989) and linearly decay e. We compare
our MC-DDQN approach with standard DDQN, both initialized with weights and replay buffer
obtained in the Safe version and trained with the same hyperparameters. In the Reacher environment,
we compare our MC-TD3 to TD3. The only difference of MC-DDQN and MC-TD3 compared to
the baselines is considering the potential utility modifications. To accelerate training, we check
for utility inconsistency only when observed rewards deviate significantly from predicted rewards.
Section 5.4 confirms that ignoring all such transitions prevents learning the optimal non-hacking
policy, while checking for inconsistencies at each timestep behaves empirically the same as checking
only transitions with significant deviation. Full hyperparameter details are provided in Appendix E.

5.3 RESULTS

The main results are shown in Figure 3. Our algorithm follows the intended task and can improve
performance in the Full version after learning the initial utility function in the Safe version of each
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Figure 4: Additional experiments in Box Moving environment. (a) Comparison of the different
training schemes: Check all corresponds to checking all transitions for utility inconsistency; Check
by reward checks only transitions for which predicted reward significantly differs from the observed;
Discard by reward discards all transitions where predicted reward sufficiently differs from the
observed; Each step evaluates policies before and after each gradient step without forecasting the
future policies; Punishment replaces utility-inconsistent transitions’ rewards with a punishment
reward. (b) Effect of different amounts of initial utility function training in Safe environment.

environment, while DDQN and TD3 baselines learn unintended behaviors, as indicated by drops in
the performance metric.

Our approach relies on the generalization of the initial utility function from Safe to Full version of
the environment. For the results in Figure 3b, we set the number of supervisors to one to minimize
the distribution shift. We examine performance under greater distribution shift in Appendix B.
Forecasting modified future policies from a single transition was particularly challenging and required
careful hyperparameter tuning. In one out of 10 runs in the Rocks and Diamonds environment, utility
inconsistency went undetected due to incorrect policy forecasting. Further qualitative analysis of
such failures and how we addressed them are presented in Appendix C.

In the Tomato Watering experiment, we provided MC-DDQN with a non-delusional transition model
for policy comparisons. This model did not include rewards, and the agent still encountered delusional
transitions in the environment. This scenario simulates a situation where the agent can tamper with
observations while retaining an accurate world model, akin to a human using a VR headset. In this
setting our algorithm correctly identifies the inconsistent transitions. However, as expected, when the
delusional model was used for policy comparisons, no utility inconsistencies were detected and the
behavior of MC-DDQN was identical to DDQN.

5.4 ABLATIONS AND SENSITIVITY ANALYSIS

We tested several alternative schemes for utility inconsistency detection and mitigation. As shown
in Figure 4a, checking all transitions for utility inconsistency yields similar results to checking
only those where the predicted reward significantly differs from the observed reward. However,
discarding all such transitions prevents the algorithm from learning an optimal non-hacking policy.
Comparing policies before and after each gradient step without forecasting future policies also fails
to prevent reward hacking. Replacing the reward of inconsistent transitions with large negative values
is less effective at preventing reward hacking than not adding them to the replay buffer. Having such
transitions in the replay buffer prevents the algorithm from forecasting the correct future policy when
checking for inconsistency, and over time the replay buffer gets populated with both transitions with
positive and negative rewards, destabilizing training.

Figure 4b illustrates the performance with varying amounts of initial utility function training in the
Safe version. Remarkably, one run avoided reward hacking after just 100 steps of such training.
After 300 steps, all seeds converged to the optimal non-hacking policy, even though most had not
discovered the optimal policy within the Safe version by that point. This result suggests that future
systems might avoid reward hacking with only moderate training in a Safe environment. Additionally,
this experiment shows that without any training in Safe environment (0 steps) our algorithm behaves
identical to the baseline. Additional experiments are reported in Appendix B.
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6 LIMITATIONS

While our method effectively mitigates reward hacking in several environments, it comes with
computational costs, which are detailed in Appendix D. Checking for utility inconsistency requires
forecasting two future policies by training the corresponding action-value functions until convergence.
In the worst case, where each transition is checked for potential utility inconsistency, this process
can lead to a runtime slowdown proportional to the number of iterations used to update the action-
value functions. A potential optimization discussed in this paper involves only checking transitions
where the predicted reward significantly deviates from the observed reward. However, this approach
introduces an additional hyperparameter for the threshold of predicted reward deviation. Balancing
computational efficiency with effectiveness is a key area for future research. Promising avenues
include leveraging Meta-RL (Schmidhuber, 1987) to accelerate policy forecasting. A particularly
promising direction is in-context RL (Laskin et al., 2022) which can learn new behaviors in-context
during inference, quickly and without costly training (Bauer et al., 2023).

Another limitation is that our approach addresses only a subset of reward hacking scenarios. Specifi-
cally, it depends on the reward model and value function generalizing correctly to novel trajectories.
This approach may not address reward hacking issues caused by incorrect reward shaping, like in
the CoastRunners problem (OpenAl, 2023). In this case, if the agent already learned about a small
positive reward (e.g., knocking over a target), the agent’s current utility function may assign high
utility to behaviors that exploit this reward, even if they fail to achieve the final goal (completing the
loop). Alternative methods, such as potential-based reward shaping (Ng et al., 1999), may be more
appropriate for addressing such issues.

Finally, our current implementation assumes access to rollouts from the true environment transition
model, while only the reward model is learned. Extending our approach to work with learned latent
transition models represents a promising direction for future research. Additionally, using a learned
world model to predict utility-inconsistent transitions before they occur could further enhance the
method’s applicability and efficiency. Improvements to computational efficiency and the integration
of learned transition models would also enable testing our method in more complex environments,
which is an important direction of future work.

7 CONCLUSION

In this work, we introduced Modification-Considering Value Learning, an algorithm that allows an
agent to optimize its current utility function, learned from observed transitions, while considering
the future consequences of utility updates. Using the General Utility RL framework, we formalized
the concept of current utility optimization. Our implementations, MC-DDQN and MC-TD3, demon-
strated the ability to avoid reward hacking in several previously unsolved environments. Furthermore,
we experimentally showed that our algorithm can improve the policy performance while remaining
aligned with the initial objectives.

To the best of our knowledge, this is the first implementation of an agent that optimizes its utility
function while considering the potential consequences of modifying it. We believe that studying such
agents is an important direction for future research in Al safety, especially as Al systems become
more general and aware of their environments and training processes (Berglund et al., 2023; Denison
et al., 2024). One of the key contributions of this work is providing tools to model such agents using
contemporary RL algorithms.

Our empirical results also identify best practices for modeling these agents, including the importance
of forecasting future policies and excluding utility-inconsistent transitions from the training process.
Additionally, we introduced a set of modified environments designed for evaluating reward hacking,
where agents first learn what to value in Safe environments before continuing their training in Full
environments. We believe this evaluation protocol offers a valuable framework for studying reward
hacking and scaling solutions to real-world applications.

REPRODUCIBILITY STATEMENT

The code for the MC-DDQN and MC-TD3 agents, along with the environments used in this paper,
will be made publicly available upon acceptance. Details of the MC-DDQN implementation can
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be found in Section 4 and Appendix A. The details of MC-TD3 implementation are provided in
Appendix F. All hyperparameters are provided in Appendix E.
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A IMPLEMENTATION DETAILS OF MC-DDQN

Algorithm 3 Policy Forecasting

Input: Set of transitions 7', replay buffer D, current Q-network parameters 6, training steps [
Output: Forecasted policy ¢

1: 85 < CoprY(0) > Copy current Q-network parameters
2: for training stept = 1 to ! do

3: Sample random mini-batch B of transitions from D

4 8 < TRAINDDQN(0y, BUT) > Update using Equation 1
5: end for )

6: return 7;(s) = arg max, Q(s, a;6y) > Return forecasted policy

Algorithm 4 Utility Estimation

Input: Policy 7, environment transition model P, utility parameters 6 and 1/, initial states p,
rollout steps h, number of rollouts &k
Output: Estimated utility of policy 7

1: for rollout r = 1 to k£ do
2 Uy <0 > Initialize utility for this rollout
3 So~p > Sample an initial state
4: ag + 7(s0) > Get action from policy
5: for stept =0toh —1do
6: Up < Uy + R(s¢, a8 1) > Accumulate predicted reward
7 St41 ~ P(sg,ay) > Sample next state from transition model
8: Ay < 7T(St+1)
9: end for ]
10: Up < Uy + Q(s¢,at;0) > Add final Q-value
11: end for
12: return % Zle Uy > Return average utility over rollouts

Algorithm 5 Modification-Considering Double Deep Q-learning (MC-DDQN)

Input: Initial utility parameters 6 and v, replay buffer D, environment transition model P, initial
states p, rollout horizon i, number of rollouts k, forecasting trainig steps [, number of time steps n.
Output: Trained Q-network and reward model

1: for time stept = 1 to n do

2: at <— €-GREEDY(arg max, Q(st, a;0))
3: T < POLICYFORECASTING({T;-1}, D, 6, 1) > Forecast modified policy
4: 7y  POLICYFORECASTING({}, D, 0, 1) > Forecast unmodified policy
5: F,, < UTILITYESTIMATION(7,,, P, 0, %, p, h, k) > Utility of modified policy
6: F, < UTILITYESTIMATION(7,,, P, 0,0, p, h, k) > Utility of unmodified policy
7: modify < (F,, > F,) > Check that modified policy isn’t worse according to current utility
8: if modify then
9: Store transition 7;_1 in D
10: Sample random mini-batch B of transitions from D
11: 0 < TRAINDDQN(#, B) > Update Q-network Equation 1
12: 1) <~ TRAIN(¢, B) > Update reward model using Lo loss
13: else
14: Reset environment > No modification, environment reset
15: end if
16: Execute action a;, observe reward r, and transition to state ;11
17: Ty = (S¢,at, Ser1,7t)
18: end for
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B ADDITIONAL EXPERIMENTS

episode perforrrllance episode return . episode perfornllance episode return .
200 | 200 i 250 i 250 i
150 I 150 I i i
i ! 200 i 200 :

100 | 100 L 150 | 150 |

50 = 50 L 100 \ 100 \

0 ! Ev\x‘b 0 : 50 ‘” 50 ‘U
50 ! , 50 ! . 044 1" Coo .
0 1000 2000 0 1000 2000 0 1000 2000 0 1000 2000
— 0 —— 300 ---- Switchto Full ---- No Inconsistency MC-DDQN (ours)
— 100 500 Training in Safe —— DDQN Training in Safe
(a) Inconsistency check training steps (b) Box Moving No Inconsistency
50 i 50 i 50 i 50 —
25 25 25 25
0 0 0 0
=25 i 25 i =25 i 25 i
1 1 1 1
=50 ! 1 =50 ! ! =50 ! 1 =50 ! !
0 10000 20000 O 10000 20000 0 10000 20000 O 10000 20000
steps steps steps steps
1 supervisor ---- Switch to Full = DDQN ---- Switch to Full

= 10 supervisors Training in Safe

(c) Number of supervisors

MC-DDQN (ours) = Training in Safe

(d) Removing walls in Absent Supervisor

Figure 5: Additional experiments.

In Figure 5a, we investigated the necessary number of inconsistency check training steps [ to
effectively avoid undesired behavior in the Box Moving environment. We observed that with an
insufficient number of training steps, certain undesired transitions are not recognized as utility
inconsistent, yet our algorithm still slows down the learning of reward hacking behavior.

In Figure 5b, we examine the behavior of MC-DDQN in the No Inconsistency version of the Box
Moving environment. In this version, the agent receives a +5 reward on the top cell, allowing it to
move the box upward while collecting this reward. As anticipated, in this scenario, our agent does
not detect utility inconsistency for any transitions and successfully learns the optimal policy.

We also conducted experiments in the Absent Supervisor environment, varying the number of
supervisors. In Figure 5c, it can be observed that increasing the number of supervisors from 1 to 10
leads to unstable utility inconsistency detection, despite the change being purely visual. Qualitative
analysis revealed that our neural networks struggled to adapt to this distribution shift, resulting in
predicted rewards deviating significantly from the ground truth.

Furthermore, we explored the impact of removing two walls from the Absent Supervisor environment
after training in the Safe version. Without these two walls, a shorter path to the goal is available
that bypasses the Punishment cell, although going through the Punishment cell remains faster. In
Figure 5d, it is evident that while our algorithm can learn a better policy that avoids the Punishment
cell, the inconsistency detection becomes unreliable. This decline in reliability is attributed to the
increased distribution shift between the Safe and Full versions of the environment.

C QUALITATIVE OBSERVATIONS

During our preliminary experiments, we encountered several instances where our algorithm failed
to detect utility inconsistencies, leading to reward hacking behaviors. Here, we describe these
occurrences and how we addressed them.

Utility Inconsistency Check Rollout Steps When using smaller inconsistency check rollout steps
h, we noticed that during the evaluation of future trajectories, the non-hacking policy sometimes
needed to traverse several states with low rewards to reach a high reward region. In such cases,
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the reward hacking policy, which remained stationary, had a higher estimated utility. Increasing h
resolved this issue.

Predicting Policy Changes without Additional Data Initially, we forecasted only one future
policy by training with the checked transition added to each mini-batch, and compared the resulting
policy to the current one. We didn’t train a second policy without adding anything to mini-batches.
However, in some cases, this led to situations where the copy learned better non-hacking behaviors
than the current policy because it was trained for longer, and thus performed better in evaluations on
average even if in some cases it expressed the reward-hacking behavior. The solution was to forecast
two policies, one with the checked transition added to each mini-batch and one without.

Sensitivity to Stochasticity Evaluations in stochastic environments were found to be noisy. To
mitigate this noise, we compared the two policies starting from the same set of states and using the
same random seeds of the environment transition model. We also ensured consistency of the updates
by keeping the random seeds the same while sampling mini-batches.

Handling Inconsistent Transitions We observed that if a utility-inconsistent transition was re-
moved from the replay buffer and another utility-inconsistent transition occurred in the same episode,
the algorithm sometimes failed to detect the inconsistency the second time because there was no
set of transitions in the replay buffer connecting this second utility-inconsistent transition to the
starting state. To resolve this issue, we reset the environment every time the agent detected utility
inconsistency. In practical applications, it would be reasonable to assume that after detecting potential
reward hacking, the agent would be returned to a safe state instead of continuing exploration.

Irreversible Changes In the Rocks and Diamonds environment, when comparing policies starting
from the current state after the rock was pushed into the goal area, the comparison results were always
the same, as it was impossible to move the rock out of the goal area. We addressed this by evaluating
not only from the current state but also from the initial state of the environment. This underscores
the importance of future research into detecting utility inconsistency before it occurs or avoiding
irreversible changes in general.

Small Inconsistent Rewards In the Rocks and Diamonds environment, the agent sometimes failed
to detect the utility inconsistency if the switch changed the reward of the stone to +1. Qualitative
analysis revealed that during inconsistency checks, our agent didn’t always learn the optimal policy
of pushing both the diamond and the rock into the goal area since the reward model didn’t learn
to add together those rewards. With just a rock in a goal area, and switch on, the reward was not
higher than just pushing the diamond in, so the agent didn’t learn to do that either. Thus, both the
policy learned with inconsistent transition and the policy learned without it behaved identically and
the inconsistency was not detected. After updating from such a transition, the agent’s current utility
no longer assigned negative utility to trajectories pushing the rock when the lever was pressed. We
sidestepped this issue by changing the reward for the rock to +10. This issue would also be resolved
if the reward model generalized better to add the rewards from different sources.

D COMPUTATIONAL REQUIREMENTS

All experiments were conducted on workstations equipped with Intel® Core™i9-13900K processors
and NVIDIA® GeForce RTX™4090 GPUs. The experiments in the Absent Supervisor, Tomato
Watering, and Reacher environments each required 2 GPU-days, running 10 seeds in parallel. In
the Rocks and Diamonds environment, experiments took 3 GPU-days, while in the Box Moving
environment, they required 2 hours each. In total, all the experiments described in this paper took
approximately 12 GPU-days, including around 1 GPU-day for training the baseline.
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E HYPERPARAMETERS

Table 1: Hyperparameters used for the experiments.

Hyperparameter Name Value
Q and R hidden layers 2

@ and R hidden layer size 128

Q@ and R activation function ReLu
@ and R optimizer Adam
@ learning rate 0.0001
R learning rate 0.01
Q loss SmoothL.1
R loss Lo
Batch Size 32
Discount factor ~y 0.95
Training steps on Safe 10000
Training steps on Full 10000
Replay buffer size 10000
Exploration steps 1000
Exploration €g,¢ 1.0
Exploration €,y 0.05
Target network EMA coefficient 0.005
Inconsistency check training steps [ 5000
Inconsistency check rollout steps h 30
Number of inconsistency check rollouts & 20
Predicted reward difference threshold 0.05
Add transitions from transition model False

Our algorithm introduces several additional hyperparameters beyond those typically used by standard
RL algorithms:

Reward Model Architecture and Learning Rate Hyperparameters specify the architecture and
learning rate of the reward model R. Since learning a reward model is a supervised learning task,
these hyperparameters can be tuned on a dataset of transitions collected by any policy, using standard
methods such as cross-validation. The reward model architecture may be chosen to match the
Q-function Q

Inconsistency check training steps ! This parameter describes the number of updates to the
Q-function needed to predict the future policy based on a new transition. As shown in Figure 5a,
this value must be sufficiently large to update the learned values and corresponding policy. It can be
selected by artificially adding a transition that alters the optimal policy and observing the number of
training steps required to learn the new policy.

Inconsistency check rollout steps 7 This parameter controls the length of the trajectories used
to compare two predicted policies. The trajectory length must be adequate to reveal behavioral
differences between the policies. In this paper, we used a fixed, sufficiently large number. In episodic
tasks, a safe choice is the maximum episode length; in continuing tasks, a truncation horizon typically
used in training may be suitable. Computational costs can be reduced by choosing a smaller value
based on domain knowledge.

Number of inconsistency check rollouts £ This parameter specifies the number of trajectories
obtained by rolling out each predicted policy for comparison. The required number depends on the
stochasticity of the environment and policies. If both the policy and environment are deterministic, k&
can be set to 1. Otherwise, k can be selected using domain knowledge or replaced by employing a
statistical significance test.
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Predicted reward difference threshold This threshold defines the minimum difference between
the predicted and observed rewards for a transition to trigger an inconsistency check. As discussed in
Section 5.4, this parameter does not impact the algorithm’s performance and can be set to 0. However,
it can be adjusted based on domain knowledge to speed up training by minimizing unnecessary
checks. The key requirement is that any reward hacking behavior must increase the reward by more
than this threshold relative to the reward predicted by the reward model.

E.1 ENVIRONMENT-SPECIFIC PARAMETERS

Table 2: Environment-specific hyperparameters overrides.

Hyperparameter Name Value
Box Moving

Training steps on Safe 1000

Training steps on Full 1000

Replay buffer size 1000

Exploration steps 100

Inconsistency check training steps [ 500

Absent Supervisor

Number of supervisors 1
Remove walls False

Tomato Watering

Number of inconsistency check rollouts k 100

Rocks and Diamonds

Training steps on Safe 15000
Training steps on Full 15000
Inconsistency check training steps [ 10000
Add transitions from transition model True

We reduced the training steps in the Box Moving environment to speed up the training process. Tomato
Watering has many stochastic transitions because each tomato has a chance of drying out at each step.
To increase the robustness of evaluations, we increased the number of inconsistency check rollouts
k. Rocks and Diamonds required more steps to converge to the optimal policy. Additionally, we
observed that using the transition model to collect fresh data while checking for utility inconsistency
in Rocks and Diamonds makes inconsistency detection much more reliable. Each environment’s
rewards were scaled to be in the range [-1, 1].

E.2 HYPERPARAMETERS OF MC-TD3

We didn’t perform extensive hyperparameter tuning, most hyperparameters are inherited from the
implementation provided by Huang et al. (2022).
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Table 3: Hyperparameters used for the MC-TD3 experiment.

Hyperparameter Name Value
Actor, critic, and reward model hidden layers 2
Actor, critic, and reward model hidden layer size 256
Actor, critic, and reward model activation function ReLu

Actor, critic, and reward model optimizer Adam
Actor and critic learning rate 0.0003
R learning rate 0.003
Batch Size 256
Discount factor ~y 0.99
Training steps 200000
Replay buffer size 200000
Exploration steps 30000
Target networks EMA coefficient 0.005
Policy noise 0.01
Exploration noise 0.1
Policy update frequency 2
Inconsistency check training steps [ 10000
Inconsistency check rollout steps h 50
Number of inconsistency check rollouts k 100
Predicted reward difference threshold 0.05

F IMPLEMENTATION DETAILS OF MC-TD3

Our implementation is based on the implementation provided by Huang et al. (2022). The overall
structure of the algorithm is consistent with MC-DDQN, described in Appendix A, with key differ-
ences outlined below. TD3 is an actor-critic algorithm, meaning that the parameters 6 define both a
policy (actor) and a Q-function (critic). In Algorithm 3 and Algorithm 5, calls to TRAINDDQN are
replaced with TRAINTD?3, which updates the actor and critic parameters 6 as specified by Fujimoto
et al. (2018). Furthermore, in Algorithm 3, the returned policy 7 f(s) corresponds to the actor rather

than arg max, Q(s, a; f5) and in Appendix A the action executed in the environment is also selected
by the actor.

G DETAILS OF THE EXPERIMENT IN THE REACHER ENVIRONMENT

The rewards in the original Reacher-v5 environment are calculated as the sum of the negative distance
to the target and the negative joint actuation strength. This reward structure encourages the robotic
arm to reach the target while minimizing large, energy-intensive actions. The target’s position is
randomized at the start of each episode, and random noise is added to the joint rotations and velocities.
Observations include the angles and angular velocities of each joint, the target’s coordinates, and the
difference between the target’s coordinates and the coordinates of the arm’s end. Actions consist of
torques applied to the joints, and each episode is truncated after 50 steps.

We modified the environment by introducing a +50 reward when the arm’s end remains within a small,
fixed region for 15 consecutive steps. This region remains unchanged across episodes, simulating a
scenario where the robot can tamper with its reward function, but such behavior is difficult to discover.
In our setup, a reward-tampering policy is highly unlikely to emerge through random actions and is
typically discovered only when the target happens to be near the reward-tampering region.

In accordance with standard practice, each training run begins with exploration using random policy.
For this experiment, we do not need a separate Safe environment; instead, the initial utility function is
trained using transitions collected during random exploration. This demonstrates that our algorithm
can function effectively even when a Safe environment is unavailable, provided that the initial utility
function is learned from transitions that do not include reward hacking.
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ABSTRACT

Reinforcement learning (RL) agents can exploit unintended strategies to achieve
high rewards without fulfilling the desired objectives, a phenomenon known as
reward hacking. In this work, we examine reward hacking through the lens of
General Utility RL, which generalizes RL by considering utility functions over
entire trajectories rather than state-based rewards. From this perspective, many
instances of reward hacking can be seen as inconsistencies between current and up-
dated utility functions, where the behavior optimized for an updated utility function
is poorly evaluated by the original one. Our main contribution is Modification-
Considering Value Learning (MC-VL), a novel algorithm designed to address this
inconsistency during learning. Starting with a coarse yet value-aligned initial utility
function, the MC-VL agent iteratively refines this function based on past obser-
vations while considering the potential consequences of updates. This approach
enables the agent to anticipate and reject modifications that may lead to undesired
behavior. To empirieally-validate our approach, we implement an-MC-VL agent
agents based on the Double Deep Q-Network (DDQN) and demonstrate-its-Twin

Delayed Deep Deterministic Policy Gradients (TD3), demonstrating their effec-
tiveness in preventing reward hacking aeress-various-grid-world-tasksinclading
benchmarks—from—the-in diverse environments, including those from AI Safety

Gridworlds suiteand the MuJoCo

1 INTRODUCTION

From mastering video games (Mnih et al., 2015) to optimizing robotic control (Levine et al., 2016),
reinforcement learning (RL) agents have solved a wide range of tasks by learning to maximize
cumulative rewards. However, this reward-maximization paradigm has a significant flaw: agents
may exploit poorly defined or incomplete reward functions, leading to a behavior known as reward
hacking (Skalse et al., 2022), where the agent maximizes the reward signal but fails to meet the
designer’s true objectives.

For instance, an RL agent tasked with stacking blocks instead flipped them, exploiting a reward based
on the height of the bottom face of a block (Popov et al., 2017). Similarly, a robot arm manipulated
objects in arbitrary ways that exploited a classifier-based reward system, tricking it into labeling
incorrect actions as successful due to insufficient negative examples (Singh et al., 2019). Ibarz et al.
(2018) describe reward model exploitation in Atari games, where agents exploit flaws in reward
functions learned from human preferences and demonstrations. These incidents underscore that while
RL agents may maximize rewards, their learned behaviors often diverge from the goals intended by
the reward designers.

As RL systems scale to more complex, safety-critical applications like autonomous driving (Kiran
et al., 2021) and medical diagnostics (Ghesu et al., 2017), ensuring reliable and safe agent behavior
becomes increasingly important. Pan et al. (2022) showed that reward hacking becomes more
common as models grow in complexity. Moreover, Denison et al. (2024) demonstrated that agents
based on large language models, trained with outcome-based rewards, can generalize to changing the
code of their own reward functions. Reward hacking also becomes more prominent with increased
reasoning capabilities. For example, during testing of the ol-preview (pre-mitigation) language
model on a Capture the Flag (CTF) challenge, the model encountered a bug that prevented the target
container from starting. Rather than solving the challenge as intended, the model used nmap to scan
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the network, discovered a misconfigured Docker daemon API, and exploited it to start the container
and read the flag via the Docker API, bypassing the original task altogether (OpenAl, 2024).

In this paper, we frame reward hacking within the General Utility RL (GU-RL) formalism (Zahavy
et al., 2021; Geist et al., 2022). We describe an agent that optimizes a learned utility function, which
assigns value to trajectories based on past observed rewards. Many instances of reward hacking,
such as manipulating the reward provision process (Everitt et al., 2021) and tampering with the
sensors (Ring & Orseau, 2011), can be viewed as inconsistent updates to the utility function. We
define an update as inconsistent when the trajectories produced by a policy optimized for the updated
utility function would be evaluated poorly by the prior utility function. To address this issue, we
introduce Modification-Considering Value Learning (MC-VL). In MC-VL, the agent updates its
utility function based on the observed rewards, similar to value-based RL, but it also predicts the
long-term consequences of potential updates and can reject them. In our formulation, avoiding
inconsistent utility updates is an optimal behavior.

For example, consider a robot trained to grasp objects using human feedback (Christiano et al., 2017).
A standard RL agent, if rewarded for positioning its manipulator between the object and the camera
in the middle of the training, can exploit this reward by learning to repeat that behavior (OpenAl,
2017). In contrast, an MC-VL agent would first forecast the consequences of updating its utility
function based on this new reward. Drawing from prior experiences where positive rewards were
given only for positioning the manipulator near the object, the MC-VL agent might predict low utility
for positioning the manipulator in front of the camera. As a result, the agent would reject the update,
staying focused on the intended grasping task.

Several prior works have discussed the theoretical possibility of mitigating reward or sensor tampering
using current utility optimization, where an agent evaluates potential changes to its utility function
using its current utility function (Orseau & Ring, 2011; Hibbard, 2012; Everitt et al., 2016; 2021).
Dewey (2011) suggested learning the utility function from past observations. However, to the best
of our knowledge, no prior work has formalized this within the GU-RL framework, applied this
idea to standard RL environments, or implemented such an agent. In this work, we provide an
algorithm to learn the utility function, estimate future policies, and compare them using the current
utility function. Additionally, we introduce a learning setup where the initial utility function is
learned in a Safe sandbox version of the environment before transitioning to the Full version. Our
experiments, conducted across various environments, including benchmarks adapted from the Al
Safety Gridworlds (Leike et al., 2017), are, to the best of our knowledge, the first to demonstrate the
ability to prevent reward hacking in these environments. Furthermore, our results provide insights
into the key parameters influencing MC-VL performance, laying the groundwork for further research
on preventing reward hacking in RL.

2 RELATED WORK

The problem of agents learning unintended behaviors by exploiting misspecified training signals
has been extensively discussed in the literature as reward hacking (Skalse et al., 2022), reward
gaming (Leike et al., 2018), or specification gaming (Krakovna et al., 2020). Krakovna et al. (2020)
provide a comprehensive overview of these behaviors across RL and other domains. The theoretical
foundations for understanding reward hacking are explored by Skalse et al. (2022), who argue that
preventing reward hacking requires either limiting the agent’s policy space or carefully controlling
the optimization process.

Laidlaw et al. (2023) propose addressing reward hacking by regularizing the divergence between the
occupancy measures of the learned policy and a known safe policy. Unlike their approach, which
may overly restrict the agent’s ability to learn effective policies, our method does not require the
final policy to remain close to any predefined safe policy. Eisenstein et al. (2024) investigate whether
ensembles of reward models trained from human feedback can mitigate reward hacking, showing
that while ensembles reduce the problem, they do not completely eliminate it. To avoid additional
computational overhead, we do not use ensembles in this work, but they could complement our
method by improving the robustness of the learned utility function.

A specific form of reward hacking, where an agent manipulates the mechanism by which it receives
rewards, is known as wireheading (Amodei et al., 2016; Taylor et al., 2016; Everitt & Hutter, 2016;
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Majha et al., 2019) or reward tampering (Kumar et al., 2020; Everitt et al., 2021). Related phenomena,
where an agent manipulates its sensory inputs to deceive the reward system, are discussed as delusion-
boxing (Ring & Orseau, 2011), measurement tampering (Roger et al., 2023), and reward-input
tampering (Everitt et al., 2021). Several studies have hypothesized that current utility optimization
could mitigate reward or sensor tampering (Yudkowsky, 2011; Yampolskiy, 2014; Hibbard, 2012).
One of the earliest discussions of this issue is in by Schmidhuber (2003), who developed the concept
of Godel-machine agents, capable of modifying their own source code, including the utility function.
They suggested that such modifications should only occur if the new values are provably better
according to the old ones. However, none of these works addressed learning the utility function or
described the optimization process in full detail.

Dewey (2011) introduced the concept of Value-Learning Agents, which learn and optimize a utility
function based on past observations as a potential solution to reward tampering. Everitt & Hutter
(2016) considered a setting where the agent learns a posterior given a prior over manually specified
utility functions, proposing an agent that is not incentivized to tamper with its reward signal by
selecting actions that do not alter its beliefs about the posterior. More recently, Everitt et al. (2021)
formalized conditions under which an agent optimizing its current reward function would lack the
incentive to tamper with the reward signal. Our work suggests an implementation of value learning in
standard RL environments, where the utility function is learned from the past rewards. Additionally,
our method is applicable to other instances of reward hacking beyond reward tampering. Moreover, it
aims to prevent reward hacking, rather than simply removing the incentive for it.

3 BACKGROUND

We consider the usual Reinforcement Learning (RL) setup, where an agent learns to make decisions
by interacting with an environment and receiving feedback in the form of rewards (Sutton & Barto,
2018). This interaction is modeled as a Markov Decision Process (MDP) (Puterman, 2014) defined by
the tuple (S, A, P, R, p,~y), where S is the set of states, A is the set of actions, P : S X Ax S — Ris
the transition kernel, R : S X A — R is the reward function, p is the initial state distribution, and -y is
the discount factor. The objective in a standard RL is to learn a policy 7 : S — A that maximizes the
expected return, defined as the cumulative discounted reward E [Y ;2 7 R(s¢, a;)]. The expected
return from taking action a in state s and subsequently following policy 7 is called state-action value
function and denoted as Q™ (s, a).

Deep Q-Networks (DQN) and Double DQN (DDQN) DQN (Mnih et al., 2013) and DDQN (van
Hasselt et al., 2016) are RL algorithms that approximate the state-action value function Q(s, a; )
using neural networks, where 6§ are the network parameters. Both algorithms store past experiences in
a replay buffer and update network parameters by minimizing a loss £(#) on the temporal-difference
error based on the Bellman equation:

L(0) = [|Q(s¢, ar; 0) — sg[re + ¥Q(se11, arg max Q(sy41, a5 0); 07)]], (H

where sg denotes stop gradient, (s, at, 7, S¢+1) Tepresents a transition sampled from the buffer, and
0~ refers to parameters of a target network, which stabilizes learning by being a slower updating
version of the current Q-network. DQN uses 6 equal to 6, while DDQN proposed to use 6 instead
to reduce the overestimation bias. The policy 7 (s) is obtained by arg max, Q(s, a; ).

General-Utility RL (GU-RL) In this work, we focus on an agent that optimizes its current utility
function. This problem is naturally framed within the General-Utility Reinforcement Learning
(GU-RL) (Geist et al., 2022; Zhang et al., 2020; Zahavy et al., 2021), which generalizes standard
RL to maximization of utility function F'. Unlike traditional RL, where rewards are assigned to
individual transitions, F’ intuitively assigns value to entire trajectories. GU-RL offers a more general
framework that encompasses tasks like risk-sensitive RL (Mihatsch & Neuneier, 2002), apprenticeship
learning (Abbeel & Ng, 2004), and pure exploration (Hazan et al., 2019).

Formally, the utility function F' maps an occupancy measure to a real value. An occupancy measure
describes the distribution over state-action pairs encountered under a given policy. For a given policy
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7 and an initial state distribution p, the occupancy measure A7 is defined as

def =
)‘2(570’) = Z’Ytppnr(st =S,a¢t = a)7
t=0

where P, (s = s, a; = a) is the probability of observing the state-action pair (s, a) at time step ¢
under policy 7 starting from p. The utility function F’ (/\g) assigns a scalar value to the occupancy
measure induced by the policy 7. The agent’s objective is to find a policy 7 that maximizes F'(\7).

A trajectory 7 = (sg, ao, - - - , S, ap, ) induces the occupancy measure A(7), defined as

def — ¢
M) E D6

t=0
where J, , is an indicator function that is 1 only for the state-action pair (s, a) (Barakat et al., 2023).

Standard RL is a special case of GU-RL, where the utility function F'gy, is linear with respect to the
occupancy measure, and maximizing it corresponds to maximizing the expected cumulative return:

Fr(A\}) = (R,\}) = Eq lz th(shat)] .
t=0

4 METHOD

We aim to address reward hacking in RL by introducing Modification-Considering Value Learning
(MC-VL). The MC-VL agent continuously updates its utility function based on observed rewards
while avoiding inconsistent utility modifications that could lead to suboptimal behavior under the
current utility function. This is achieved by comparing policies induced by the current and updated
utility functions. To compare the policies, we compare the trajectories they produce.

Trajectory Value Function We introduce trajectory value functions to compute the values of the
trajectories produced by the policies. A trajectory value function U™ (7) evaluates the utility of an
occupancy measure induced by starting with a trajectory 7 = (s, ag, - . - , Sx, ap) and following a
policy 7 after the end of this trajectory:
UT(r) L (A7) + 4, ) -

where S, 1 is the distribution of the states following the 7, and /\grh+1 represents the occupancy
measure induced by following 7 from S;,;. In the standard RL setting, this simplifies to the
following:

h—1

Upp(r) = (RA(T) +9"A5, ) = Y _ 7' R(st,a1) + 7" Q" (sn, an).-
t=0

Every trajectory value function has a corresponding utility function F'(A]) = E-c7x U™(7), where
T, denotes a distribution of trajectories started from state distribution p and continued by following
a policy 7. Thus, it is also referred to as utility for brevity.

General Utility Generalized Policy Iteration (GU-GPI) To formalize a learning process using
the trajectory value functions, we extend Generalized Policy Iteration (GPI) (Sutton & Barto, 2018)
to the general utility setting, resulting in General Utility Generalized Policy Iteration (GU-GPI). In
GU-GPI, the algorithm alternates between refining the value estimates of trajectories and improving
the policy toward maximizing this value. Specifically, at each time step ¢:

Uy~ U™1 m ~> arg maxETeleTwT’TU”(T).
T A
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Value Learning (VL) The value-learning agent optimizes a utility Uy, which is learned from
observed transitions (Dewey, 2011). Algorithm 1 provides the GU-GPI for a value learning agent.
In our framework, the agent begins with an initial utility Uyr,,, and updates it towards the RL-based
utility U, after each environment step, using trajectories 7 (D) formed from the set of previously

observed transitions D—provides-the-GU-GPHoer-a-value learning-agent—

T(D) = {(s0,a0,---,8n,an) ¥Vt € {0,...,h— 1} 3(s,a,s',r) € Ds.t. (s¢,ar,8:41) = (s,a,5")}
Algorithm 1 Value-Learning (VL) Algorithm 2 Modification-Considering VL
Input: Replay buffer D, policy 7, and initial Input: Replay buffer D, policy 7, and initial
utility Uy, utility Uy,
1: for time step ¢ = 0, while not converged do 1: for time step ¢ = 0, while not converged do
2: Ut+1 ~ Ugth > Update U 2: Ut+1 ~ Ugvth > Update U
g " T argmax Urertr-
> Improve 7 > Improve 7
3 mpaccargmax, Beogx [Una (1)) 30 meacc argmax, B (U (7))
4: at + m(8t) > Select action 4: (at, modify) + m¢(Ty—1)
5: Update utility: 5 if modify then
D+ DU{Ti—1} D+ D UiTt_li
vt ™4 (1) ~ U™ (1) | 7 € T(D) Ui (1) = Upn T2 (r) | 7 € T(D)
6 end if
6: St41,7¢ < act(ay) > Perform action 7: St41,7¢ < act(ay) > Perform action
E Ty < (8¢, a1, St41,7t) 8 Ty < (st a1, St41,7t)
8: end for 9: end for

Q-learning algorithms such as DQN or DDQN can be seen as special cases of the value-learning
agent, where Uy 1 is updated to be an exact copy of U7, vL,> and U (}’fo only learns the state-action

value of the first state and action in a trajectory: UVLt (80,a0, - - -, Shy dh) = Q™ (sp,a0p)-

Modification-Considering VL (MC-VL) The distinction between VL agents and standard RL
agents becomes apparent when the agent is modification-considering, meaning it evaluates the
consequences of modifying its utility function. For the agents optimizing Ugy, it is always optimal to
learn from new transitions, as they provide information about the utility being optimized. However,
for VL agents optimizing Uy, at time step ¢, it may be optimal to avoid learning from certain
transitions. Specifically, the agent may predict its future behavior after updating its utility to Uy, ,
and compare it to the predicted behavior under its current utility Uy, . If the updated behavior has
lower utility according to Uy, , it is optimal to avoid such an update since the agent is currently
optimizing Uy, .

To formalize this decision-making process, we introduce an additional boolean action that determines
whether to modify the utility function after an interaction with the environment. The modified action
space is A™ = A x {0, 1}, where each action a!* = (a;, modify;) includes a decision to modify or
to keep the current utility. The M&m&ﬁh&@meﬁwﬁeﬁdﬂd&wmthe full

transition as input, rather than just the environment state. After each interaction, the agent explicitly
decides whether to update its utility function based on the new experience. Algorithm 2 presents the

modified version of GU-GPI for such an agent. We refer to the transitions where the optimal choice
is modify = 0 as utility-inconsistent, and to the process of selecting modify as utility inconsistency
detection.

Implementation We implement an MC-VL agent based-on—for discrete action spaces using
DDQN (van Hasselt et al., 2016) —which—we—refer—and for continuous action spaces using
TD3 (Fujimoto et al., 2018). These implementations are referred to as MC-DDQN and MC-TD3,

respectively. Here, we focus on describing MC-DDQN; the implementation of MC-TD3, which is
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highly similar, is detailed in Appendix F. In MC-DDQN, Uy, (7; 6, ) is parameterized as

h—1
> A R(se, ai0) + 7" Q(sn, an3 0), 2
t=0

where R(s, a; 1) is a learned reward model, and Q(s, a; 0) is the state-action value function. Similarly
to DDQN, the trajectory value function Uy ; is updated to be a copy of Uy, . The policy 7(T)
outputs an environment action a and a boolean modify, which indicates whether to update the utility
function. The environment action a is chosen as arg max, Q(s, a; 0), while decision modify is
determined by comparing expected future utilities. Specifically, the agent compares the expected
utility of future policies: a modified 7,,, assuming 7' was added to the dataset D, and unmodified 7,
assuming it was not. It then computes

modify = E_[Uyr,(r)] > E_[Uvr,(7)], A3)

TET, ™ TET,

where the expectations are computed by averaging over k trajectories of length h. The future policies
7™ and 7 are computed by applying [ DDQN updates to the current action-value function Q(s, a;0)
using replay buffers D U {T'} and D, respectively. To speed up learning from the replay buffer
D U {T}, we include transition 7" in each sampled mini-batch. The reward model parameters 1) are
updated using Lo loss on batches sampled from the replay buffer D, while the action-value function
parameters 6 are updated through DDQN updates on the same batches. The full implementation of
MC-DDQN is presented in Appendix A.

Initial Utility Function An MC-VL agent described in Algorithm 2 requires some initial utility
function as input. In this work, we propose to learn this initial utility function in a Safe sandbox
version of the environment, where unintended behaviors cannot be discovered by the exploratory
policy. Examples of Safe environments include simulations or closely monitored lab settings where
the experiment can be stopped and restarted without consequences if undesired behaviors are detected.
To differentiate from the Safe version, we refer to the broader environment as the Full environment.
This Full environment may include the Safe one, for example, if the agent’s operational scope is
expanded beyond a restricted lab setting. Alternatively, the Safe and Full environments may be
distinct, such as when transitioning from simulation to real-world deployment. For the proposed
approach to perform effectively, however, the Safe and Full environments must be sufficiently similar
to allow for successful generalization of the learned utility function.

5 EXPERIMENTS

To empirically validate our approach, we introduce environments that can be switched between Safe
and Full variants. Following Leike et al. (2017), each environment includes a performance metric in
addition to the observed reward. This metric tracks how well the agent follows the intended behavior.
A high observed reward combined with a low performance metric indicates reward hacking. In the
Safe versions of the environments, the performance metric is identical to the reward.

5.1 ENVIRONMENTS

To illustrate a scenario where utility inconsistency might arise, we introduce the Box Moving en-
vironment, shown in Figure 1. In addition, we adopt several established environments to evaluate
our method’s performance on known challenges. These include the Absent Supervisor and Tomato
Watering environments from Al Safety Gridworlds (Leike et al., 2017), as well as the Rocks and
Diamonds environment from Everitt et al. (2021), all depicted in Figure 2. To test our algorithm in

continuous action spaces, we adopt the Reacher environment from Gymnasium (Towers et al., 2024

~

Box Moving Environment The environment consists of two parts: the left part represents an
external world with a box that can be moved up and down, while the right part is a room where the
agent can move. When the box reaches the top-most or bottom-most cell, the agent receives a reward
of +1 or -1, respectively, and the box teleports back to the central cell. The agent can move up and
down, and stepping on arrows on the floor moves the box in the corresponding direction.
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In the Safe version, the top and bottom of the room are empty, and the optimal strategy is to repeatedly
press the up arrow. This setting allows the agent to learn an initial utility function that favors moving
the box upward.

In the Full version, the agent has more interaction opportunities. The top cell is replaced by an up
arrow, allowing the agent to move the box up twice as fast by alternating between two up arrows.
This setup shows that the Full environment can offer more efficient ways to achieve outcomes that
were learned to be good in the Safe version. The bottom empty cell is replaced by a down arrow.
However, by stepping into this cell, the agent can trick the reward system to give itself a +5 reward.
While this results in higher observed rewards, it also moves the box downward, which was learned to
be undesirable in the Safe version.

The No Inconsistency version modifies the top cell to provide +5 reward instead. The agent can
collect this reward without disrupting upward box movement, demonstrating that not all changes in
reward structure result in utility inconsistency.

Absent Supervisor In this environment, the agent can alter its behavior based on whether it detects
the presence of a supervisor. The goal is to reach a target cell for +50 reward, but a punishment
cell along the path gives -30 reward if stepped on while a supervisor is present. Each movement
costs -1 reward, encouraging the agent to take the shortest path. In the Safe version, the supervisor
is always present, leading the initial utility function to learn that going through the punishment cell
is undesirable. In the Full version, the supervisor is present only half the time. The performance
metric penalizes the agent for stepping on the punishment cell, even in the supervisor’s absence. We
expect that when the agent steps on the punishment cell without supervision, it will experience utility
inconsistency, as learning from this transition leads to the policy that visits the punishment cell, which
contradicts the low utility assigned to this action previously.

Tomato Watering This environment models tampering with observations. The agent is rewarded
based on the number of watered tomatoes, which dry out randomly. Stepping on the bucket cell
replaces all cells with watered tomatoes, representing a delusion. In the Safe version, the bucket is
removed from the environment. The performance metric tracks the true number of watered tomatoes.
In the Full version, we expect utility inconsistency when the agent tries to delude itself using the
bucket if it compares policies based on a true environment transition model where stepping on the
bucket does not affect the tomatoes. In this case, its new behavior, standing on the bucket cell, should
have lower utility than watering the tomatoes. However, if a delusional transition model is used, a
room full of watered tomatoes should still appear to have high utility. Without access to the labels we
assigned to cells, the agent cannot distinguish between deluding itself by putting a bucket on its head
and the real change, i.e. efficient watering of all tomatoes at once.

+1 +5 0 Agent
s

|

U U E Move B
va— VA v Uﬂ On S(iepOX
E’ 0 E’ 0 E’ o Reward

l

+1 | +1

Box

ﬂ ﬂ £N On Step
Teleport
Box
-1 | -1 ﬂ+5 G -1 ﬂ CJ§ Reward System

(a) Safe (b) Full (c) No Inconsistency

Figure 1: (a) Safe version of Box Moving environment: the optimal policy is to repeatedly press the
up arrow by moving up and down. (b) In Full version, maximum returns are achieved by pressing the
down arrows, receiving +5 observed reward for each press of the bottom-most arrow, but this also
moves the box down, which is inconsistent with utility learned in the Safe version. There is also a
policy that moves the box up twice as fast by alternating between up arrows. (c) In No Inconsistency
version, collecting +5 reward does not conflict with moving the box up, so the agent trained in Safe
should not encounter utility inconsistency in this version of the environment.
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Figure 2: Gridworld environments. Each environment has Safe and Full versions. In Safe version, the
Absent Supervisor guarantees the presence of supervisors, Tomato Watering does not have the bucket,
and Rocks and Diamonds does not have the switch. We provide additional customization options for
testing different scenarios.

Rocks and Diamonds This environment allows the agent to change its reward function by visiting
a switch. Initially, diamonds in the goal area provide +1 reward at every step, while rocks yield
-1. Activating the switch alters the observed reward for rocks to +10, while the performance metric
remains the same. In the Safe version, the switch is removed. Both diamonds and rocks can be
pushed. We expect utility inconsistency when the agent encounters a situation where the switch is
active and there is a rock in a goal area since updating from this transition would lead to a policy that
puts rocks in the goal area and this action had low utility in the past.

Reacher This environment is based on the Reacher-v3 environment from the MuJoCo subset of

the Gymnasium benchmark (Towers et al., 2024). It involves a robotic arm tasked with reaching
a randomly placed target, starting from random joint rotations and velocities. We modified the
environment by adding an invisible button that provides a one-time reward of +50 when held for
15 consecutive steps, simulating reward tampering. The performance metric does not include this
reward, Further details are provided in Appendix G

5.2 EXPERIMENTAL SETUP

Unless specified otherwise, we train the initial utility function in the Safe versions of environments
until convergence. We use e-greedy exploration (Watkins, 1989) and linearly decay e. We compare
our MC-DDQN approach with standard DDQN, both initialized with weights and replay buffer

obtained in the Safe version and trained with the same hyperparameters. In the Reacher environment,

we compare our MC-TD3 to TD3. The only difference of MC-DDQN and MC-TD3 compared to
the baselines is considering the potential utility modifications. To accelerate training, we check

for utility inconsistency only when observed rewards deviate significantly from predicted rewards.
Section 5.4 confirms that ignoring all such transitions prevents learning the optimal non-hacking
policy, while checking for inconsistencies at each timestep behaves empirically the same as checking
only transitions with significant deviation. Full hyperparameter details are provided in Appendix E.

5.3 RESULTS

The main results are shown in Figure 3. Our algorithm follows the intended task and can improve
performance in the Full version after learning the initial utility function in the Safe version of each

environment, while the-standard DPDQNearns-DDQN and TD3 baselines learn unintended behaviors,

as indicated by drops in the performance metric.

Our approach relies on the generalization of the initial utility function from Safe to Full version of
the environment. For the results in Figure 3b, we set the number of supervisors to one to minimize
the distribution shift. We examine performance under greater distribution shift in Appendix B.
Forecasting modified future policies from a single transition was particularly challenging and required
careful hyperparameter tuning. In one out of 10 runs in the Rocks and Diamonds environment, utility
inconsistency went undetected due to incorrect policy forecasting. Further qualitative analysis of
such failures and how we addressed them are presented in Appendix C.
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Figure 3: Episode performance (top) and returns (bottom) of MC-DDQN and MC-TD3 in comparison
to DDQN and TD3. Performance tracks the intended behavior, while returns are cumulative observed
reward. After switching to Full version, the returns of BBQN-baselines grow while performance
drops, indicating that it-engages-they engage in reward hacking. ME-DBQN-The performance of
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version. Bold lines represent the mean over 10 seeds, and shaded regions indicate a bootstrapped

95% confidence interval.
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Figure 4: Additional experiments in Box Moving environment. (a) Comparison of the different
training schemes: Check all corresponds to checking all transitions for utility inconsistency; Check
by reward checks only transitions for which predicted reward significantly differs from the observed;
Discard by reward discards all transitions where predicted reward sufficiently differs from the
observed; Each step evaluates policies before and after each gradient step without forecasting the
future policies; Punishment replaces utility-inconsistent transitions’ rewards with a punishment
reward. (b) Effect of different amounts of initial utility function training in Safe environment.

In the Tomato Watering experiment, we provided MC-DDQN with a non-delusional transition model
for policy comparisons. This model did not include rewards, and the agent still encountered delusional
transitions in the environment. This scenario simulates a situation where the agent can tamper with
observations while retaining an accurate world model, akin to a human using a VR headset. In this
setting our algorithm correctly identifies the inconsistent transitions. However, as expected, when the
delusional model was used for policy comparisons, no utility inconsistencies were detected and the
behavior of MC-DDQN was identical to DDQN.

5.4 ABLATIONS AND SENSITIVITY ANALYSIS

We tested several alternative schemes for utility inconsistency detection and mitigation. As shown
in Figure 4a, checking all transitions for utility inconsistency yields similar results to checking
only those where the predicted reward significantly differs from the observed reward. However,
discarding all such transitions prevents the algorithm from learning an optimal non-hacking policy.
Comparing policies before and after each gradient step without forecasting future policies also fails
to prevent reward hacking. Replacing the reward of inconsistent transitions with large negative values
is less effective at preventing reward hacking than not adding them to the replay buffer. Having such
transitions in the replay buffer prevents the algorithm from forecasting the correct future policy when
checking for inconsistency, and over time the replay buffer gets populated with both transitions with
positive and negative rewards, destabilizing training.

Figure 4b illustrates the performance with varying amounts of initial utility function training in the
Safe version. Remarkably, one run avoided reward hacking after just 100 steps of such training.
After 300 steps, all seeds converged to the optimal non-hacking policy, even though most had not
discovered the optimal policy within the Safe version by that point. This result suggests that future
systems might avoid reward hacking with only moderate training in a Safe environment. Additionally,
this experiment shows that without any training in Safe environment (0 steps) our algorithm behaves
tike-aregutar DBONidentical to the baseline. Additional experiments are reported in Appendix B.

6 LIMITATIONS

While our method effectively mitigates reward hacking in several environments, it comes with compu-
tational costs, which are detailed in Appendix D. Checking for utility inconsistency requires forecast-
ing two future policies by training the corresponding action-value functions until convergence. In the
worst case, where each transition is checked for potential utility inconsistency, this process can lead to
a runtime slowdown proportional to the number of iterations used to update the action-value functions.
A potential optimization discussed in this paper involves only checking transitions where the pre-
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dicted reward significantly deviates from the observed reward. However, this approach introduces an
additional hyperparameter for the threshold of predicted reward deviation. Balancing computational
efficiency with effectiveness is a key area for future research. Promising avenues include leveraging

Meta—RL (Schmldhuber 1987) to accelerate pohcy forecastmgeieemp}eymgteehmqﬁes%rke%efe-ﬂwt

A artlcularly romisin

feresﬂmafe—fufw&behaw&s—wﬁheu%&he*eed—fe&eﬁa&sw&ﬁ%&m&g
direction is in-context RL (Laskin et al., 2022) which can learn new behaviors in-context durin
inference, quickly and without costly training (Bauer et al., 2023).

Another limitation is that our approach addresses only a subset of reward hacking scenarios. Specifi-
cally, it depends on the reward model and value function generalizing correctly to novel trajectories.
This approach may not address reward hacking issues caused by incorrect reward shaping, like in
the CoastRunners problem (OpenAl, 2023). In this case, if the agent already learned about a small
positive reward (e.g., knocking over a target), the agent’s current utility function may assign high
utility to behaviors that exploit this reward, even if they fail to achieve the final goal (completing the
loop). Alternative methods, such as potential-based reward shaping (Ng et al., 1999), may be more
appropriate for addressing such issues.

Finally, our current implementation assumes access to rollouts from the true environment transition
model, while only the reward model is learned. Extending our approach to work with learned latent
transition models represents a promising direction for future research. Additionally, using a learned
world model to predict utility-inconsistent transitions before they occur could further enhance the
method’s applicability and efficiency. Improvements to computational efficiency and the integration
of learned transition models would also enable testing our method in more complex environments,
which is an important direction of future work.

7 CONCLUSION

In this work, we introduced Modification-Considering Value Learning, an algorithm that allows an
agent to optimize its current utility function, learned from observed transitions, while considering
the future consequences of utility updates. Using the General Utility RL framework, we formalized
the concept of current utility optimization. Our implementationimplementations, MC-DDQN -
demenstrated-its-and MC-TD3, demonstrated the ability to avoid reward hacking in several previously
unsolved environments. Furthermore, we experimentally showed that our algorithm can improve the

policy performance while remaining aligned with the initial objectives.

To the best of our knowledge, this is the first implementation of an agent that optimizes its utility
function while considering the potential consequences of modifying it. We believe that studying such
agents is an important direction for future research in Al safety, especially as Al systems become
more general and aware of their environments and training processes (Berglund et al., 2023; Denison
et al., 2024). One of the key contributions of this work is providing tools to model such agents using
contemporary RL algorithms.

Our empirical results also identify best practices for modeling these agents, including the importance
of forecasting future policies and excluding utility-inconsistent transitions from the training process.
Additionally, we introduced a set of modified environments designed for evaluating reward hacking,
where agents first learn what to value in Safe environments before continuing their training in Full
environments. We believe this evaluation protocol offers a valuable framework for studying reward
hacking and scaling solutions to real-world applications.

REPRODUCIBILITY STATEMENT

The code for the MC-DDQN agentand MC-TD3 agents, along with the environments used in this
paper, will be made publicly available upon acceptance. Details of the MC-DDQN implementation
can be found in Section 4 and Appendix As-while-all-. The details of MC-TD3 implementation are
provided in Appendix F. All hyperparameters are provided in Appendix E.
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A  IMPLEMENTATION DETAILS OF MC-DDQN

Algorithm 3 Policy Forecasting

Input: Set of transitions 7', replay buffer D, current Q-network parameters 6, training steps [
Output: Forecasted policy 7

1: 6y + CoprY(h) > Copy current Q-network parameters
2: for training step ¢ = 1 to [ do

3: Sample random mini-batch B of transitions from D

4: 0 < TRAINDDQN(6;, BUT) > Update using Equation 1
5: end for )

6: return 7 (s) = arg max, Q(s,a;6y) > Return forecasted policy

Algorithm 4 Utility Estimation

Input: Policy 7, environment transition model P, utility parameters 6 and 1), initial states p,
rollout steps h, number of rollouts &

Output: Estimated utility of policy 7

1: for rollout r = 1 to k do
2 Uy <0 > Initialize utility for this rollout
3 So ~ p > Sample an initial state
4 ag + 7(s0) > Get action from policy
5: for stept =0toh — 1do
6: Uy — Uy + R(st, ag; ) > Accumulate predicted reward
7 St41 ~ P(sg,ay) > Sample next state from transition model
8: Ay 7T(St+1)
9: end for )
10: Uy — up + Q(8¢t, at; 6) > Add final Q-value
11: end for
12: return % Zle Uy > Return average utility over rollouts

Algorithm 5 Modification-Considering Double Deep Q-learning (MC-DDQN)

Input: Initial utility parameters ¢ and v, replay buffer D, environment transition model P, initial
states p, rollout horizon h, number of rollouts k, forecasting trainig steps [, number of time steps n.
Output: Trained Q-network and reward model

1: for time stept = 1 ton do

2 a; < e-GREEDY(arg max, Q (s, a;6))
3 Tm — POLICYFORECASTING({T;-1}, D, 0, 1) > Forecast modified policy
4: 7y < POLICYFORECASTING({}, D, 0, 1) > Forecast unmodified policy
5: F,, < UTILITYESTIMATION(7,y,, P, 0, %, p, h, k) > Utility of modified policy
6: F,, + UTILITYESTIMATION(7,,, P, 0,4, p, h, k) > Utility of unmodified policy
7 modify < (F,, > F,) > Check that modified policy isn’t worse according to current utility
8: if modify then
9: Store transition 7;_1 in D
10: Sample random mini-batch B of transitions from D
11: 0 < TRAINDDQN(#, B) > Update Q-network Equation 1
12: 1) < TRAIN(¢), B) > Update reward model using Lo loss
13: else
14: Reset environment > No modification, environment reset
15: end if
16: Execute action a;, observe reward r, and transition to state ;11
17: Tt = (st,at,st+1,rt)
18: end for
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Figure 5: Additional experiments.

In Figure 5a, we investigated the necessary number of inconsistency check training steps [ to
effectively avoid undesired behavior in the Box Moving environment. We observed that with an
insufficient number of training steps, certain undesired transitions are not recognized as utility
inconsistent, yet our algorithm still slows down the learning of reward hacking behavior.

In Figure 5b, we examine the behavior of MC-DDQN in the No Inconsistency version of the Box
Moving environment. In this version, the agent receives a +5 reward on the top cell, allowing it to
move the box upward while collecting this reward. As anticipated, in this scenario, our agent does
not detect utility inconsistency for any transitions and successfully learns the optimal policy.

We also conducted experiments in the Absent Supervisor environment, varying the number of
supervisors. In Figure 5c, it can be observed that increasing the number of supervisors from 1 to 10
leads to unstable utility inconsistency detection, despite the change being purely visual. Qualitative
analysis revealed that our neural networks struggled to adapt to this distribution shift, resulting in
predicted rewards deviating significantly from the ground truth.

Furthermore, we explored the impact of removing two walls from the Absent Supervisor environment
after training in the Safe version. Without these two walls, a shorter path to the goal is available
that bypasses the Punishment cell, although going through the Punishment cell remains faster. In
Figure 5d, it is evident that while our algorithm can learn a better policy that avoids the Punishment
cell, the inconsistency detection becomes unreliable. This decline in reliability is attributed to the
increased distribution shift between the Safe and Full versions of the environment.

C QUALITATIVE OBSERVATIONS

During our preliminary experiments, we encountered several instances where our algorithm failed
to detect utility inconsistencies, leading to reward hacking behaviors. Here, we describe these
occurrences and how we addressed them.

Utility Inconsistency Check Rollout Steps When using smaller inconsistency check rollout steps
h, we noticed that during the evaluation of future trajectories, the non-hacking policy sometimes
needed to traverse several states with low rewards to reach a high reward region. In such cases,
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the reward hacking policy, which remained stationary, had a higher estimated utility. Increasing h
resolved this issue.

Predicting Policy Changes without Additional Data Initially, we forecasted only one future
policy by training with the checked transition added to each mini-batch, and compared the resulting
policy to the current one. We didn’t train a second policy without adding anything to mini-batches.
However, in some cases, this led to situations where the copy learned better non-hacking behaviors
than the current policy because it was trained for longer, and thus performed better in evaluations on
average even if in some cases it expressed the reward-hacking behavior. The solution was to forecast
two policies, one with the checked transition added to each mini-batch and one without.

Sensitivity to Stochasticity Evaluations in stochastic environments were found to be noisy. To
mitigate this noise, we compared the two policies starting from the same set of states and using the
same random seeds of the environment transition model. We also ensured consistency of the updates
by keeping the random seeds the same while sampling mini-batches.

Handling Inconsistent Transitions We observed that if a utility-inconsistent transition was re-
moved from the replay buffer and another utility-inconsistent transition occurred in the same episode,
the algorithm sometimes failed to detect the inconsistency the second time because there was no
set of transitions in the replay buffer connecting this second utility-inconsistent transition to the
starting state. To resolve this issue, we reset the environment every time the agent detected utility
inconsistency. In practical applications, it would be reasonable to assume that after detecting potential
reward hacking, the agent would be returned to a safe state instead of continuing exploration.

Irreversible Changes In the Rocks and Diamonds environment, when comparing policies starting
from the current state after the rock was pushed into the goal area, the comparison results were always
the same, as it was impossible to move the rock out of the goal area. We addressed this by evaluating
not only from the current state but also from the initial state of the environment. This underscores
the importance of future research into detecting utility inconsistency before it occurs or avoiding
irreversible changes in general.

Small Inconsistent Rewards In the Rocks and Diamonds environment, the agent sometimes failed
to detect the utility inconsistency if the switch changed the reward of the stone to +1. Qualitative
analysis revealed that during inconsistency checks, our agent didn’t always learn the optimal policy
of pushing both the diamond and the rock into the goal area since the reward model didn’t learn
to add together those rewards. With just a rock in a goal area, and switch on, the reward was not
higher than just pushing the diamond in, so the agent didn’t learn to do that either. Thus, both the
policy learned with inconsistent transition and the policy learned without it behaved identically and
the inconsistency was not detected. After updating from such a transition, the agent’s current utility
no longer assigned negative utility to trajectories pushing the rock when the lever was pressed. We
sidestepped this issue by changing the reward for the rock to +10. This issue would also be resolved
if the reward model generalized better to add the rewards from different sources.

D COMPUTATIONAL REQUIREMENTS

All experiments were conducted on workstations equipped with Intel® Core™i9-13900K processors
and NVIDIA® GeForce RTX™4090 GPUs. The experiments in the Absent Supervisorand-, Tomato
Watering, and Reacher environments each required 2 GPU-days, running 10 seeds in parallel. In
the Rocks and Diamonds environment, experiments took 3 GPU-days, while in the Box Moving
environment, they required 2 hours each. In total, all the experiments described in this paper took
approximately +6-12 GPU-days, including around 1 GPU-day for training the baseline.
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E HYPERPARAMETERS

Table 1: Hyperparameters used for the experiments.

Hyperparameter Name Value
Q and R hidden layers 2

@ and R hidden layer size 128

Q and R activation function ReLu
Qand R optimizer Adam
@ learning rate 0.0001
R learning rate 0.01
Q loss SmoothL.1
R loss Lo
Batch Size 32
Discount factor ~y 0.95
Training steps on Safe 10000
Training steps on Full 10000
Replay buffer size 10000
Exploration steps 1000
Exploration €,y 1.0
Exploration €,y 0.05
Target network EMA coefficient 0.005
Inconsistency check training steps [ 5000
Inconsistency check rollout steps A 30
Number of inconsistency check rollouts & 20
Predicted reward difference threshold 0.05
Add transitions from transition model False

Our algorithm introduces several additional hyperparameters beyond those typically used b
standard RL algorithms:

Reward Model Architecture and Learning Rate Hyperparameters specify the architecture and

learning rate of the reward model R. Since learning a reward model is a supervised learning task
these hyperparameters can be tuned on a dataset of transitions collected by any policy, using standard
methods such as cross-validation. The reward model architecture may be chosen to match the

Inconsistency check training steps [ This parameter describes the number of updates to the
Q-function needed to predict the future policy based on a new transition. As shown in Figure Sa,
this value must be sufficiently large to update the learned values and corresponding policy. It can be
selected by artificially adding a transition that alters the optimal policy and observing the number of
training steps required to learn the new policy.

Inconsistency check rollout steps i This parameter controls the length of the trajectories used
to_compare two predicted policies. The trajectory length must be adequate to reveal behavioral
differences between the policies. In this paper, we used a fixed, sufficiently large number. In
episodic tasks, a safe choice is the maximum episode length; in continuing tasks, a truncation
horizon typically used in training may be suitable. Computational costs can be reduced by choosing
a smaller value based on domain knowledge.

Number of inconsistency check rollouts & This parameter specifies the number of trajectories
obtained by rolling out each predicted policy for comparison. The required number depends on the
stochasticity of the environment and policies. If both the policy and environment are deterministic,
k can be set to 1. Otherwise, k can be selected using domain knowledge or replaced by employing
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Predicted reward difference threshold This threshold defines the minimum difference between

the predicted and observed rewards for a transition to trigger an inconsistency check. As discussed
in Section 5.4, this parameter does not impact the algorithm’s performance and can be set to 0.
However, it can be adjusted based on domain knowledge to speed up training by minimizing
unnecessary checks. The key requirement is that any reward hacking behavior must increase the
reward by more than this threshold relative to the reward predicted by the reward model.

E.1 ENVIRONMENT-SPECIFIC PARAMETERS

Table 2: Environment-specific hyperparameters overrides.

Hyperparameter Name Value
Box Moving

Training steps on Safe 1000

Training steps on Full 1000

Replay buffer size 1000

Exploration steps 100

Inconsistency check training steps [ 500

Absent Supervisor

Number of supervisors 1
Remove walls False

Tomato Watering

Number of inconsistency check rollouts k 100

Rocks and Diamonds

Training steps on Safe 15000
Training steps on Full 15000
Inconsistency check training steps [ 10000
Add transitions from transition model True

We reduced the training steps in the Box Moving environment to speed up the training process. Tomato
Watering has many stochastic transitions because each tomato has a chance of drying out at each step.
To increase the robustness of evaluations, we increased the number of inconsistency check rollouts
k. Rocks and Diamonds required more steps to converge to the optimal policy. Additionally, we
observed that using the transition model to collect fresh data while checking for utility inconsistency
in Rocks and Diamonds makes inconsistency detection much more reliable. Each environment’s
rewards were scaled to be in the range [-1, 1]._

E.2  HYPERPARAMETERS OF MC-TD3

We didn’t perform extensive hyperparameter tuning, most hyperparameters are inherited from the
implementation provided by Huang et al. (2022).
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Table 3: Hyperparameters used for the MC-TD3 experiment.

Hyperparameter Name Value
Actor, critic, and reward model hidden layers 2

Actor, critic, and reward model hidden layer size 256

Actor, critic, and reward model activation function  ReLu.

Actor, critic, and reward model optimizer Adam
Actor and critic learning rate 0.0003
R learning rate 0.003.
Batch Size. 256
Discount factor y 0.99.
Training steps_ 200000
Replay buffer size. 200000
Exploration steps 30000
Target networks EMA coefficient 0.005.
Policy noise 0.01.
Exploration noise 0.1

Policy update frequency 2

Inconsistency check training steps [ 10000
Inconsistency check rollout steps /. _ 30

Number of inconsistency check rollouts & 100
Predicted reward difference threshold 0.05.

F  IMPLEMENTATION DETAILS OF MC-TD3.

Our implementation is based on the implementation provided by Huang et al. (2022). The overall
structure of the algorithm is consistent with MC-DDQN, described in Appendix A, with key
differences outlined below. TD3 is an actor-critic algorithm, meaning that the parameters ¢
define both a policy (actor) and a Q-function (critic). In Algorithm 3 and Algorithm 3, calls
to TRAINDDON are replaced with TRAINTD3, which updates the actor and critic parameters
9 as specified by Fujimoto et al. (2018). Furthermore, in Algorithm 3, the returned policy 7s(s).

corresponds to the actor rather than arg max, Q(s, a:0) and in Appendix A the action executed in
the environment is also selected by the actor.

G DETAILS OF THE EXPERIMENT IN THE REACHER ENVIRONMENT

The rewards in the original Reacher-v5 environment are calculated as the sum of the negative
distance to the target and the negative joint actuation strength. This reward structure encourages
the robotic arm to reach the target while minimizing large, energy-intensive actions. The target’s
position is randomized at the start of each episode, and random noise is added to the joint rotations
and velocities. Observations include the angles and angular velocities of each joint, the target’s
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coordinates, and the difference between the target’s coordinates and the coordinates of the arm’s
end. Actions consist of torques applied to the joints, and each episode is truncated after 50 steps.

We modified the environment by introducing a +50 reward when the arm’s end remains within
a small, fixed region for 15 consecutive steps. This region remains unchanged across episodes,
simulating a scenario where the robot can tamper with its reward function, but such behavior
is_difficult to discover. In our setup, a reward-tampering policy is highly unlikely to emerge
through random actions and is typically discovered only when the target happens to be near the
reward-tampering region.

In accordance with standard practice, each training run begins with exploration using random policy.
For this experiment, we do not need a separate Safe environment; instead, the initial utility function is
trained using transitions collected during random exploration, This demonstrates that our algorithm
can function effectively even when a Safe environment is unavailable, provided that the initial utility
function is learned from transitions that do not include reward hacking.
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