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ABSTRACT

Recurrent Neural Networks (RNN) are ubiquitous computing systems for sequences
and multivariate time series data. They can be viewed as non-autonomous dy-
namical systems which can be analyzed using dynamical systems tools, such as
Lyapunov Exponents. In this work, we derive and analyze the components of
RNNs’ Finite Time Lyapunov Exponents (FTLE) which measure directions (vec-
tors Q) and factors (scalars R) with which the distance between nearby trajectories
expands or contracts over finite-time horizons. We derive an expression for RNN
gradients in terms of Q vectors and R values and demonstrate a direct connection
between these quantities and the loss. We find that the dominant directions of the
gradient extracted by singular value decomposition become increasingly aligned
with the dominant Q vectors as training proceeds. Furthermore, we show that the
task outcome of an RNN is maximally affected by input perturbations at moments
where high state space expansion is taking place (as measured by FTLEs). Our
results showcase deep links between computations, loss gradients, and dynamical
systems stability theory for RNNs. This opens the way to design adaptive methods
that take into account state-space dynamics to improve computations.

1 INTRODUCTION

Sequential inputs comes in a wide variety of forms, from natural speech or text, to electrical signals
in the brain, financial markers, audio input and music, and more broadly, multivariate time series
data (Pang et al., 2019; Mikolov et al., 2010; Das & Olurotimi, 1998; Tino et al., 2001; Su et al.,
2020). Recurrent Neural Networks (RNN) specialize in processing such data by iteratively updating
their hidden states ht+1 based on previous states ht modulated by recurrent connectivity weights,
and input xt via input weights. The compounding effect of signal amplification and dampening
across many RNN iterations can lead to high sensitivity in some ht directions and very little in others,
making training RNN over long sequential inputs challenging (Bengio et al., 1994). RNN form
non-autonomous dynamical systems and thus, the evolution of the hidden states and memory of
RNNs can be understood through the lens of dynamical systems theory and analysis. While RNN
have been extensively studied, the relationship between state space dynamics — especially localized
sensitivity to perturbations — and task performance remains relatively misunderstood. In this work,
we explore this link and reveal new properties of RNN state space flows that inform, and can help
guide, computations.

An important method for characterization of dynamical systems is Lyapunov Exponents (LE) (Ruelle,
1979; Oseledets, 2008) which measure the average separation/contraction rates of infinitesimally
close trajectories. Recent work identifying RNN as dynamical systems has extended LE calculation
and analysis to these systems (Engelken et al., 2020). Specifically of interest is the relation between
Lyapunov exponent spectra and RNN performance as measured by network post-training accuracy,
either by calculating the correlation between direct LE statistics and loss (Vogt et al., 2022a), or by
training networks to capture a latent representation which separates networks according to accuracy
(Vogt et al., 2022b). A limitation of this approach takes root in the fact that LEs are defined as
asymptotic quantities, averaged as time approaches infinity and therefore, only capture averaged
effects of space expansion and contraction. As a result, some more localized phenomena that may
influence specific computations on particular input features are missed.
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Here, we build on these previous works and derive connections between the gradient of the recurrent
weight matrix and the finite-time intermediate values involved in LE computations over the course
of a sequence. To do so, we leverage Finite Time Lyapunov Exponents (FTLE), quantities that
have been initially derived to characterize fluid flows and the formation of Lagrangian Coherent
Structures (Shadden et al., 2005; Haller, 2015; GREEN et al., 2007), time-dependent regions of state
space that show high sensitivity to perturbations and act as dynamic separatrices. These methods
are especially relevant in light of a recent resurgence in RNN-like methods to model long-term
temporal structure called State Space Models, which have been demonstrated to exceed the capability
of transformers while performing faster generation (Gu et al., 2022; Gupta et al., 2022a;b; Smith
et al., 2023). Ongoing work translates these advances to new RNN structures which exhibit similarly
impressive performance for very long sequences (Orvieto et al., 2023). Moreover, RNNs are often
used to model neural circuits in neuroscience systems (Kaushik et al., 2022), for which measuring
temporal and spatial patterns of activity simultaneously is necessary to fully understand modes of
behavior (Barak, 2017). The lessons drawn from our work contribute to computational neuroscience
by linking localized dynamic stability to task outcome.

Our contribution can be outlined as follows. We derive a novel expression of loss gradients in
RNNs explicitly in terms of the components extracted in FTLE calculations, and we explore the
evolution of both the FTLEs and their associated vectors to analyze their correlation and influence on
performance and confidence on classification tasks. We demonstrate that the vectors associated with
the maximal FTLEs of an RNN become further aligned over the course of an input sequence with
the dominant modes of the gradient matrix as defined by the singular vectors. As a consequence of
this, we show that the step-wise expansion and contraction of FTLE subspaces during Jacobian QR
decomposition steps involved in LE computations can serve as indicators of input sensitivity. We
show that selection of moments of high state space expansion are indicative of instabilities such that
subtle input perturbations impact network output in significant adversarial ways. Through this work,
we can develop a deeper understanding of information and gradient propagation in recurrent systems.

2 BACKGROUND AND MOTIVATION

COMPUTATION OF LYAPUNOV EXPONENTS

Lyapunov Exponents can be computed by adopting the well-established algorithm (Benettin et al.,
1980; Dieci & Van Vleck, 1995) and following the implementation of (Engelken et al., 2020), which
principally relies on the QR matrix decomposition method. By definition, Lyapunov Exponents are
an asymptotic quantity, but they can be estimated over very long iterates. A batch of input sequences
x is sampled from a set of fixed-length sequences of the same distribution. For each input sequence
in a batch, a matrix of Q vectors, Q, is initialized as the identity to represent an orthogonal set of
nearby initial states. The hidden states ht are initialized as zeros.

The partial derivatives of the RNN hidden states at time t, ht, with respect to the hidden states at time
at t− 1, ht−1 form the Jacobian at time step t, Jt.

[Jt]ij =
∂hj

t

∂hi
t−1

. (1)

Jt is calculated and then multiplied by the vectors of Qt to track the expansion and the contraction of
the Q vectors.

The QR decomposition of the Jacobian-Q matrix product is then used to retrieve an updated Qt+1

and expansion factors Rt+1 at each time step:

Qt+1,Rt+1 = QR(JtQt). (2)

rkt represents the expansion factor of the kth Q vector at time step t – corresponding to the kth

diagonal element of Rt in the QR decomposition. Then, the kth Lyapunov Exponent λk of the system
with an input signal of length T (T ≫ 1) is given by

λk =
1

T

T∑
t=1

log(rkt ). (3)
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FINITE-TIME LYAPUNOV EXPONENTS

In order to adapt the above algorithm for FTLE, equation 3 is changed to:

λFT
k,tf

=
1

tf

tf∑
t=1

log(rkt ) (4)

Note that, in comparison to the Lyapunov Exponents (LE) in equation 3, the FTLE that we find in
equation 4 are also a function of the intermediate time, tf , as opposed to a fixed long sequence length
T . This means that FTLEs are a sequence of values over time. Notably, this sequence is determined
by the component parts of the QR decomposition used at each step in equation 2, Qt and Rt (see
Algorithm 1). We denote the columns of Qt as the Q vectors, where the kth column of Qt is the
vector associated with λFT

k,t . The FTLE calculated in equation 4 are ordered in dimension k, meaning
that the first Q vector at time t corresponds to the largest FTLE, the second Q vector corresponds to
the second largest, and so on. We denote the diagonal elements of Rt as the R values, where Rkk

t
represents the expansion or contraction factor in the kth dimension at time t, respectively.

Algorithm 1: Finite-Time Lyapunov Exponents Calculation

for xj in Batch do
initialize h, Q0

for t = 1→ T do
h← f(h, xj

t )
J← df

dh
Q← J·Qt−1

Qt, Rt← qr(Q)
γi ← γi + log(Rii)[
λFT
t

]j
i
= γj

i /t

end
end

JACOBIAN RELATION TO GRADIENT

We present the problem of spectral constraints for robust gradient propagation, following the derivation
introduced in (Vogt et al., 2022a). For transparent exposition, in this section we will consider the
vanilla RNN, while the derivation is applicable to more complex RNN:

ot = Wht, ht = ϕ(at), at = Vht−1 +Uxt + b , (5)

where V is the recurrent weight matrix, ht ∈ RN is the hidden state vector, U is the input weight
matrix, xt is the input into the network, b is a constant bias vector, ϕ is the non-linearity, and W is
the output weight. The loss over T iterates is the cumulative loss over each iterate 1 ≤ t ≤ T . The
loss at time t is given by Lt = f(yt, ŷt), with f some scalar loss function (e.g. Cross Entropy Loss),
ŷt the prediction, and yt is a target vector. The gradient of the loss in the space of recurrent weights
V, is given by

∇VL =

T∑
t=1

N∑
i=1

∂L

∂ht,i
∇Vht,i =

T∑
t=1

diag(ϕ′(at))∇ht
L h⊤

t−1 , (6)

Here

∇htL =

T∑
s=t

(
s∏

r=t+1

J⊤
r

)
W⊤∇osL , (7)

where ∇os
L is an expression depending on the loss type (e.g. ŷ − yt for cross-entropy loss) and

Jt =
∂ht

∂ht−1
is the Jacobian of the hidden state dynamics,

Jt = diag (ϕ′(at))V . (8)

Jt varies in time with xt and ht−1 via at and so is treated as a random matrix with ensemble
properties arising from the specified input statistics and the emergent hidden state statistics.
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3 GRADIENT MATRIX REPRESENTATION AND LINK TO FTLES

In previous sections, we described how FTLEs are computed. We present our derivation linking the
components of FTLEs to RNN loss gradients, and ultimately to the loss.

FTLE-GRADIENT RELATION

We derive the gradient of the RNN recurrent weight given by equation 7 in terms of the Q vectors and
R values used in the calculation of FTLE. Given the algorithm for calculating FTLEs and Q-vectors
requires multiplying the Q vectors by the Jacobian J and then performing the QR decomposition, we
can write the expression for the Q and R at time step t in the following way:

QtRt = J⊤
t Qt−1 (9)

equation 9 can be used to solve for Jt, allowing equation 7 to be recast by replacing the product of of
Jacobians:

s∏
r=t+1

J⊤
r =

s∏
r=t+1

QrRrQ
−1
r−1 (10)

= Qs

(
s∏

r=t+1

Rr

)
Q⊤

t , (11)

using Q−1 = Q⊤ on the first (r = t+1) Q vectors with index r− 1 = (t+1)− 1 = t. When t = 0,
the logarithm of the diagonals of the product of R’s is equivalent to the FTLEs up to time s before
we divide by the time, s.

This gives the following expression for the full gradient with respect to the hidden state ht:

∇ht
L =

T∑
s=t

Qs

(
s∏

r=t+1

Rr

)
Q⊤

t W
⊤∇os

L , (12)

Notably, this novel derivation allows the use of the Q vectors and R values which emerge from the
FTLE computation as a basis for the loss gradient of the hidden state (and by extension, the hidden
weight matrix).

LOSS GRADIENT MATRIX FOR V, ∆V

Let us consider the gradient of a loss function L,∇L. We are interested in comparing the updates to
the hidden-state connection weights V. We reshape the loss vector ∇V L as a Tensor with the same
shape as V, such that the gradient vector has the shape N ×H ×H , where N is the batch size, and H
is the hidden size. We will call this recast version ∆V. Finally, the subscript t denotes the time step
at which it was calculated.

After reshaping the gradient of the recurrent weights as ∆V, both ∆V and the Jacobian Jt have
the same shape. Over the course of training using Stochastic Gradient Descent with learning rate
η, the ith update to the recurrent weight V takes the form Vi+1 = Vi − η∆Vi. In this form, the
∆Voperate in the same space as Jt, and thus the Q vectors (see Appendix A for more details).

4 EXPERIMENTS

In the previous section, we derived quantities that show the FTLEs and loss gradients are related in
fundamental ways. We now set out to verify and exploit these links to show that state space dynamics
have an impact on computations. Namely, we aim to show that the Q vectors indicate the geometry of
the gradient, aligning with the dominant modes of ∆V, and that the R values represent the temporal
contributions to the loss gradient, indicating the network’s input sensitivity.

For our experiments, we consider a vanilla RNN (equation 5) trained on the sequential MNIST task.
For such a task, the MNIST dataset of handwritten numbers is fed to the RNN the image as a sequence
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of one or more pixels at a time, and the RNN must predict the number that was written at the end.
In its standard form, the MNIST dataset images are 28 × 28 pixels, for a total of 784 pixels. We
consider two different setups for this task.

1) Analysis of ∆V and the geometric alignment with Q vectors: We compute the cosine similarity
(alignment) between singular vectors of ∆V and the Q vectors and demonstrate the evolution of
this alignment over the course of training and sequence index as the confidence of the network’s
predictions increases. We consider a smaller network (128 hidden units) trained on shorter sequences,
given the significant computational cost of calculating the gradient at each step. For this experiment,
we consider the row-wise SMNIST task (Deng, 2012), in which the network receives a full row of
the image (28 pixels). Since there are 28 rows in each image, the sequence length for this setup is 28.

2) Analysis of R values and input sensitivity: We identify input locations to perturb based on times
at which the greatest degree of expansion in state space occurs. We demonstrate the impact these
perturbations have on network output is greater than that of perturbations at randomly-selected input
locations. We use a larger RNN (512 units) trained on MNIST dataset with permuted pixel-wise
input, giving an input length of 784. This size of network is necessary to achieve good performance
on sequences of this length. Furthermore, by reducing the dimension of the input, we are able to
isolate the individual input pixels which correspond to the R values at that point in the sequence.

ALIGNMENT OF GRADIENT WITH Q VECTORS

When computing the singular value decomposition (SVD) of ∆V, the first singular vectors capture
the dominant modes of the gradient. We assume these first vectors correspond to the directions in
parameter space which correspond to the greatest loss increase, with later vectors capturing less
of this effect. Meanwhile, the Q vectors are also ordered at each time step to reflect the direction
of decreasing expansion/increasing contraction as the index increases. In effect, for high-index
Q-vectors, the rate of contraction is higher, meaning that information stored along that direction is
rapidly forgotten, whereas earlier indices have a greater degree of information preservation, and even
extra sensitivity if expansion is pronounced.

To test the degree of alignment between the Q vectors (qt) and the singular vectors of ∆V (eVt),
we take the inner product of all pairs of vectors between each set. As both of these sets of vectors
are respectively orthonormal, this inner product yields the cosine similarity, a value between -1 and
1 indicating the degree to which the vectors are parallel/aligned. 1 indicates parallel, 0 indicates
orthogonal, and −1 indicates antiparallel. We store these alignment values in a matrix At.

[At]ij = q⊤ti (eVt
)j (13)

Since the number of hidden states of the RNN under consideration is 128, the Q vectors and gradient
singular vectors are each 128-dimensional. In this high-dimensional space, the probability of two
randomly-selected variables being effectively orthogonal is very high, due to concentration of measure
on the sphere (Talagrand, 1996). Thus, most vectors in this high-dimensional space are expected to
have alignment values close to 0.

The Q vectors are calculated for twenty five different initializations of h0 sampled from a standard
normal distribution, along with the loss and gradient associated with this initial hidden state. Eq
equation 13 is then used to find the alignment across all combinations of Q-vectors and gradient
singular values.

We begin by analyzing the dominant directions of ∆V measured by the first five singular vectors. To
study the level of alignment with the Q-vectors, we show histograms of the alignment values between
these first five singular vectors and the first ten, the last ten, and ten randomly-selected Q-vectors
across all time steps in Figure 1.

Whereas the distributions of alignment are similar across these three sets for an untrained network,
once the network has been trained for 5 epochs, the distributions of alignment between the dominant
directions of ∆V and each set of Q vectors differ. The first ten Q vectors, corresponding to the ten
largest FTLEs, have a wider distribution, indicating a greater number of vectors aligned with the first
five singular vectors of ∆V. As a result, the standard deviation of this distribution increased from
0.089 when untrained to 0.200 after 5 epochs. In contrast, the distribution of the alignment between

5



Under review as a conference paper at ICLR 2024

Figure 1: Distribution of alignment values (as stacked histogram) at epoch 0 (top row) and epoch
5 (bottom row) across all time steps between the first 5 Singular Values of ∆V and three sets of
ten Q vectors: The first ten (left column), the last ten (middle column), and ten randomly selected
indices not including the first or last ten (right column). The standard deviation of each cumulative
distribution is indicated in the top-left of each plot.

the last ten Q vectors and first five singular vectors of ∆V becomes narrower, concentrating more
around 0, with its standard deviation decreasing from 0.089 to 0.051. The set of randomly-selected Q
vectors has a slightly narrower and taller peak around zero than it did at epoch 0, causing the standard
deviation to decrease from 0.088 to 0.067.

To study how the alignment of these vectors changes depending on the Q-vector index and the step
in the sequence, we show in Figure 2 the standard deviation of the distribution of alignment values
for the first five and last five singular vectors of the gradient ∆V for each Q vector index over a
sequence.

As the network trains, a clear structure emerges in the standard deviations of the alignment values as
a function of the Q vector index and sequence time step. As seen in Figure 2, before training (Epoch
0), the standard deviation of the alignment with the first and last singular vectors of the gradient at
each Q-vector index fluctuates around a mean value consistent with the standard deviation for the
randomly-selected Q vectors (see red line). This is true both early in the input sequence (purple dots)
and towards the end of the sequence (yellow dots). However, once the network has been trained, the
standard deviation of the alignment between the first five singular vectors of ∆V and the first several
Q-vectors is much greater than the average value for the random indices. Moreover, there is a sharp
decrease in the standard deviation of the alignment as the Q-vector index increases. Both of these
effects become more pronounced later in the sequence, leading to a gradual decreasing curve over
Q vector index at the final step in the sequence. Notably, for Q vectors after index 40, the standard
deviation at the end of the sequence decreases to well below that of the random vectors, indicating
that these directions are increasingly orthogonal to the dominant directions of the gradient.

Meanwhile, the standard deviation of the alignment with last five singular values of the gradient has
a similar but mirrored pattern. Once the network has been trained, the first several Q-vectors are
less aligned and therefore more orthogonal to these singular vectors. Then, the alignment gradually
increases for approximately the first twenty Q vectors until reaching the same average baseline that
the untrained network had.

Through this analysis, we find that the basis of Q vectors reveal the directions in hidden space
which are more aligned with and which are more orthogonal to the dominant modes of the gradient
update. Additionally, we find that the least informative modes of the gradient have effectively random
alignment with all Q vectors except the first few, with which it is more orthogonal. This shows that
state-space dynamics and its sensitivity to inputs is shaped throughout training in a manner that aligns
with directions that are relevant to the task, as measured by the loss’ gradient. We now investigate how
state-space expands or contracts along these directions, and how these transformations are related to
computations.
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Figure 2: Standard deviation of alignment values as a function of Q-vector index and sequence step
number before and after training. Alignment is calculated between each Q-vector and the first five
singular vectors of ∆V (left) as well as the last five singular values of ∆V (right) for each time
step in the sequence. The average standard deviation of the alignment values for randomly selected
vectors is shown as a red horizontal line.

SENSITIVITY ANALYSIS OF R VALUES AND INPUT

For this experiment, we consider the pixel-wise SMNIST task, since we want to analyze the sensitivity
to individual inputs. The input size is 1 pixel, and the input sequence length is 784, with some fixed
permutation of the pixels. We train an RNN with a hidden size of 512 units and initialize the weight
matrices with the Xavier normal initialization. The loss used for this task is cross entropy loss. For
the computation of FTLEs to extract the R values, we use the default PyTorch initialization for the
initial hidden states of the RNN, which is setting h0 to all zeros.

We study the expansion and contraction factors, R values (rkt in equation 4), throughout the sequence,
and demonstrate that they can indicate the network’s sensitivity to input. We perform this analysis by
comparing the predictions of the network based on the original input, versus input which has been
perturbed based on a threshold which depends on the ordering of R values.

We observe that ordering pixels according to the value of the first R value at the time where the pixel
was presented (r1t ) has the most negative slope, indicating a greater distinction between successive
indices (see supplemental materials for more details).

Given we know these R values indicate the running contribution to exponential expansion/contraction
up to time t, we hypothesize that the first R value, r1t is a good indicator to predict which input pixels
are most sensitive to perturbations and thus, contain more discriminatory power. Going forward, we
denote R1 = r1t .

Figure 3: Difference in Loss Values between initial input and flipped inputs as a function of the
number of "up" (blue) and "down" (orange) flips. When flipping between 20 and 200 pixels (see
vertical dashed lines), the increase in loss is greater when the flips are based on R values rather than
randomly-selected (see Table 1).

Using this ordering of input indices, we select a number of pixels we wish to perturb to test the
sensitivity of the network. The pixel corresponding to the index of the k largest R1 values over a
sequence are then chosen to be "flipped". If a candidate pixel is chosen to "flip", we do the following:
If the grayscale value of the pixel is non-zero, we set the grayscale value to zero (we call this a "down

7



Under review as a conference paper at ICLR 2024

flip"); If the grayscale value of the pixel is already zero, we instead increase it to the maximum value
of 1 (we call this an "up flip").

For comparison, we also randomly select samples of k pixels from the input to flip. For each choice
of k, we select 50 samples of k random pixels on which to perform flips. To determine the relative
sensitivity of the network to these two choices of perturbation, we calculate the difference in the
network loss between the original input and the perturbed inputs (with k flipped pixels). This is
performed over 15 different original input images.

The difference in network loss (defined as the network’s cross entropy loss on the perturbed input
minus the loss on the original input) as a function of the number of pixels flipped, k, is shown for each
sample as an individual dot in Figure 3. Additionally, the mean loss difference across all samples for
a given k is shown as a line of the same color.

Table 1: Statistics of loss differences between R value-flipped and randomly-flipped inputs

k µR − µrand Variance p-value
1 -0.028 0.009 0.998
5 -0.008 0.084 0.540

10 0.025 0.303 0.468
20 0.313 0.341 0.179
50 0.794 0.523 0.065
75 0.814 0.475 0.043

100 1.050 0.530 0.024
200 1.363 0.824 0.049

For 20 < k < 300, the mean loss difference is greater when flipping according to R values as
opposed to random pixels. We investigate the significance of the difference between these losses by
performing a p-test on the hypothesis for each k that the mean of the R value loss (µR) is greater
than mean of the random-selection loss (µrand). We show the results of this test (µR − µrand > 0) in
Table 1. The smallest p value is achieved for k = 100, at p = 0.024, but we find that k = 75, 100,
and 200 pixels, we get p < 0.05.

To illustrate this sensitivity, we show the result of the network predictions as a result of selecting
100 pixels to flip corresponding to the locations where r1t is the largest. We show in Figure 4 the
input images after these 100 flips are performed according to the largest r1t . The "up flips" lead to
more bright (yellow) pixels which used to be dark (purple), while the "down flips" lead to more dark
pixels which used to be lighter (blue, green, or yellow). Furthermore, we show how the network
predictions resulting from the original input (black), the perturbed input according to R values, and
the randomly-perturbed inputs. As expected, the flipping according to the R values leads to changed
predictions by the network, and to a greater extent than the average across the randomly-perturbed
inputs. We demonstrate in two examples that, even when the network originally predicts the correct
label and consequently has very low loss, flips on these 100 selected pixels can cause the network

Figure 4: Comparison of network output logits between original input and perturbed outputs for
two sample images. The perturbed input has had k = 100 pixels flipped from the original input
image. The bar plots over 10 digit classes show network output logits for each example input for
different perturbation scenarios: unperturbed input (black), theR value-flipped input as shown (blue),
4 examples of 100 randomly-flipped pixels (red, red-orange, orange, yellow).
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to predict a new (and incorrect) label with high confidence. Furthermore, we find the resulting
confidence in this incorrect label is much greater than for random perturbations, which tend to have
lower confidence for incorrect logits.

DISCUSSION

In this work, we demonstrated that the stability of state space dynamics in RNNs is functionally
linked to task computations and can help identify features in dynamics that are crucial for perfor-
mance. Indeed, we show that increments in expansion/contraction rates that are used to estimate
FTLEs, together with the orthogonal directions associated with the linearization of dynamics, are
representative of directions in neural activity space for which loss gradients are highly sensitive. Our
arguments rest on the fact that the Q vectors at some time t indicate the directions associated with
the expansion or contraction factors given by the R values. In analytic derivations, we show that the
gradient of the hidden state can be expressed explicitly using a basis of the Q vectors and R values,
as shown in equation 12.

Through complementary numerical experiments, we validated that the Q vectors can capture hierarchi-
cally the geometry of the gradient. Q vectors associated with the greatest degree of expansion aligned
with the dominant directions of the gradient, as measured by the singular values of ∆V. We further
validated that rate of expansion and contraction in the state space measured by the R values leads
to increased input sensitivity. This manifests in the form of perturbation effects timed at moments
of heightened state space expansion. Indeed, when perturbed at moments corresponding peaks in
aggregate effects of the 100 largest R values, the impact on the network’s loss was significantly more
pronounced than for random perturbations. Beyond loss value, such perturbations lead to reliably
wrong digit classification in sequential MNIST tasks with very high confidence and measured by
logit magnitude, a phenomenon unobserved when randomly perturbing.

In sum, the geometric picture provided by the Q vectors characterizes gradient propagation, and
temporally localized R values link state space expansion to task uncertainty. Since the first Q vectors
become increasingly aligned with the dominant gradient modes as the network confidence increases
(both over training epoch and over an input sequence), it would seem that greater expansion in
state space correspond to more definite network outputs. This means that changes that impact these
moments have the greatest impact on the loss, showing that sensitivity in dynamics translates to a
bigger impact on credit assignment. Thus, these directions can be interpreted as "ridges" along which
the network’s sensitivity is greatest. Such an interpretation is analogous to the ridges found in the
study of Lagrangian Coherent Structures (Shadden et al., 2005), but of the gradient as opposed to the
state space.

Further investigations into how FTLE and related quantities can be leveraged to improve and/or
analyze RNN training are warranted. The decomposition of the gradient into these components parts
seems to be a promising direction for further development, and could lead to novel regularization
strategies. Furthermore, the method presented for analyzing R values to detect points of momentary
sensitivity could be leveraged to design localized (in time) credit assignment. For example, instead
of computing gradients from entire backprogated-through-time trajectories, one could foresee an
adaptive method which focuses on parameter updates that alleviate large expansion/contraction
episodes, which we show correlate with performance.

In addition, beyond the ML/AI applications where RNNs have given way to transformers in many
applications, RNNs are extremely relevant to the field of Neuro-AI where the analysis of neural
circuits (which are recurrent) tries to uncover ways by which brains perform computations. Our
results contribute to a long line of dynamical analyses for neuroscience-relevant models (Lajoie et al.,
2013; Farrell et al., 2022; Sussillo, 2014).

While outside the scope of this work, regularization of the gradient to encourage greater alignment
with the first few Q vectors, analysis of the per-neuron contributions to the gradient directions through
the Q vectors, introducing an attention mechanism that depends on the R values, or generating
adversarial learning examples based on the largest R values, could be interesting extensions.
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