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ABSTRACT

Selective state space models (SSMs), such as Mamba (Gu & Dao, 2023), highly
excel at capturing long-range dependencies in 1D sequential data, while their appli-
cations to 2D vision tasks still face challenges. Current visual SSMs often convert
images into 1D sequences and employ various scanning patterns to incorporate
local spatial dependencies. However, these methods are limited in effectively
capturing the complex image spatial structures and the increased computational
cost caused by the lengthened scanning paths. To address these limitations, we
propose Spatial-Mamba, a novel approach that establishes neighborhood con-
nectivity directly in the state space. Instead of relying solely on sequential state
transitions, we introduce a structure-aware state fusion equation, which leverages
dilated convolutions to capture image spatial structural dependencies, significantly
enhancing the flow of visual contextual information. Spatial-Mamba proceeds
in three stages: initial state computation in a unidirectional scan, spatial context
acquisition through structure-aware state fusion, and final state computation us-
ing the observation equation. Our theoretical analysis shows that Spatial-Mamba
unifies the original Mamba and linear attention under the same matrix multiplica-
tion framework, providing a deeper understanding of our method. Experimental
results demonstrate that Spatial-Mamba, even with a single scan, attains or sur-
passes the state-of-the-art SSM-based models in image classification, detection and
segmentation. Source codes and trained models will be made publicly available.

1 INTRODUCTION

State space models (SSMs) are powerful tools for analyzing dynamic systems with hidden states, and
they have long been utilized in fields like control theory, signal processing, and economics (Friston
et al., 2003; Hafner et al., 2019; Gu et al., 2020). SSMs have been recently introduced into deep
learning (Gu et al., 2021a), especially in natural language processing (NLP) (Gu & Dao, 2023), thanks
to their use of specially parameterized matrices. A major advancement is the introduction of selective
mechanisms and hardware-aware optimizations for parallel computing, as demonstrated by Mamba
(Gu & Dao, 2023), which selectively retains or discards information based on the relevance of each
element in a sequence, efficiently modeling long-distance dependencies with linear complexity.

The significant success of Mamba in NLP inspires researchers to investigate how SSMs can be
applied to visual tasks. Unlike 1D sequences, visual data are typically characterized by 2D spatial
structures. Therefore, it is crucial to maintain the spatial dependencies within images while adapting
the information selection and propagation mechanisms in Mamba. Existing visual SSMs (Zhu et al.,
2024; Liu et al., 2024; Yang et al., 2024; Huang et al., 2024; He et al., 2024a; Xiao et al., 2024)
often use some scanning strategies to flatten 2D visual data into several 1D sequences from different
directions, and then process the flattened 1D sequences using the original Mamba. These scanning
strategies can be broadly categorized into three types: sweeping scan, continuous scan and local scan,
as shown in Figs. 1(a)-1(c), respectively.

Vim (Zhu et al., 2024) and VMamba (Liu et al., 2024) employ sweeping bidirectional scan and
four-way scan, which are illustrated in Fig. 1(a). These strategies aim to reduce spatial direction
sensitivity and adapt the network architecture for visual tasks. Yang et al. (2024) argued that sweeping
scans neglect the importance of spatial continuity, and they introduced a continuous scanning order,
as shown in Fig. 1(b), to better integrate the inductive biases from visual data. Huang et al. (2024)
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(a) Sweeping Scan (b) Continuous Scan (c) Local Scan

(d) Structure-aware state fusion with unidirectional scan

Figure 1: Illustration of the scanning patterns of existing visual SSMs (from sub-figures (a) to (c))
and our proposed Spatial-Mamba with structure-aware state fusion (sub-figure (d)).

argued that scanning the entire image may not effectively capture local spatial relationships. Instead,
they presented LocalMamba by using several local scanning modes, as shown in Fig. 1(c), which
divides an image into distinct windows to capture local dependencies. Beyond the above mentioned
scanning patterns, other scanning methods such as Hilbert scanning (He et al., 2024a) and dynamic
tree scanning (Xiao et al., 2024) have also been proposed to adapt SSMs to visual tasks.

While the existing scanning strategies partially address the issue of aligning spatial structures with
sequential SSMs, they are limited in model effectiveness and efficiency. On one hand, directional
scanning inevitably alters the spatial relationships between pixels, disrupting the inherent spatial
context in an image. For example, in the sweeping scan (Fig. 1(a)), the distance between a pixel and
its left or right neighbor is 1, while its distance to the top or bottom neighbor equals to the image
width. This distortion can hinder the models to understand the spatial relationships in the original
visual data. On the other hand, the fixed scanning paths, such as the commonly used four-directional
scan (Figs. 1(a) and 1(b)), are not effective enough to capture the complex and varying spatial
relationships in an image, while introducing more scanning directions would also result in excessive
computations. Therefore, it is imperative to explore how to design more effective and structure-aware
SSMs for visual tasks.

To achieve this goal, we make an important attempt in this paper and present Spatial-Mamba, which
is designed to capture the spatial dependencies of neighboring features in the latent state space. The
processing flow of Spatial-Mamba consists of three stages. First, as shown in the left of Fig. 1(d),
visual data are converted into sequential data using unidirectional sweeping scan. The state variables
are computed based on the state transition equations of the original SSMs and then reshaped back
into the visual format. Second, the state variables are processed through a structure-aware state
fusion (SASF) equation, which employs dilated convolutions to re-weight and merge nearby state
variables, as shown in the left of Fig. 1(d). Finally, these structure-aware state variables are fed
into the observation equation to produce the final output variables. The SASF equation not only
enables efficient skip connections between non-sequential elements in sequences but also enhances
the model ability to capture spatial relationships, leading to more accurate representations of the
underlying visual structure. Furthermore, we show that Spatial-Mamba, original Mamba and linear
attention can all be represented under the same framework using structured matrices, which offers a
more coherent understanding of our proposed method. We validate the superiority of Spatial-Mamba
across fundamental vision tasks such as image classification, detection, and segmentation. The results
demonstrate that Spatial-Mamba, even with a single scan, achieves or surpasses the performance of
recent state-of-the-arts using different scanning strategies.
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2 RELATED WORK

State space models (SSMs). Gu et al. (2021b) firstly introduced the linear state space layer (LSSL)
into the HiPPO framework (Gu et al., 2020) to efficiently handle the long-range dependencies in long
sequences. Gu et al. (2021a) then significantly improved the efficiency of SSMs by representing the
parameters as diagonal plus low-rank matrix. The so-called S4 model triggers a wave of structured
SSMs (Smith et al., 2022; Fu et al., 2022; Gupta et al., 2022; Gu & Dao, 2023). Smith et al. (2022)
proposed S5 by introducing parallel scans to S4 layer while maintaining the computational efficiency
of S4. Recently, Gu & Dao (2023) developed Mamba, which incorporates a data-dependent selection
mechanism into S4 layer and simplifies the computation and architecture in a hardware-friendly way,
achieving Transformer-like modeling capability with linear complexity. Building on that, Dao & Gu
(2024) presented Mamba2, which reveals the connections between SSMs and attention with specific
structured matrix. This framework simplifies the parameter matrix to a scalar representation, making
it feasible to explore larger and more expressive state spaces without sacrificing efficiency.

Visual SSMs. Although traditional SSMs perform well in processing NLP sequential data and
capturing temporal dependencies, they struggle in handling multi-dimensional spatial structure
inherent in visual data. This limitation poses a challenge for developing effective visual SSMs.
S4ND (Nguyen et al., 2022) is among the first SSM-based models for multi-dimensional data, which
separates each dimension with an independent 1D SSM. Baron et al. (2023) generalized S4ND as a
discrete multi-axial system and proposed the 2D-SSM spatial layer, successfully extending the 1D
SSMs to 2D SSMs. More recent visual SSMs prefer to design multiple scanning orders or patterns
to maintain the spatial consistency, including bidirectional (Liu et al., 2024), four-way (Zhu et al.,
2024), continuous (Yang et al., 2024), zigzag (Hu et al., 2024), window-based (Huang et al., 2024),
and topology-based scanning (He et al., 2024a; Xiao et al., 2024). These visual SSMs have been
used in multimodal foundation models (Qiao et al., 2024; Mo & Tian, 2024), image restoration (Guo
et al., 2024; Shi et al., 2024), medical image analysis (Yue & Li, 2024; Ma et al., 2024; He et al.,
2024b; Liao et al., 2024) and other visual tasks (Chen et al., 2024; Li et al., 2024; Yao et al., 2024),
demonstrating the potential of SSMs in visual data understanding.

3 PRELIMINARIES

SSMs are commonly used for analyzing sequential data and modeling continuous linear time-invariant
(LTI) systems (Williams & Lawrence, 2007). An input sequence u(t) ∈ R is transformed into an
output sequence y(t) ∈ R through a state variable x(t) ∈ CN . Here, t > 0 represents the time index,
and N indicates the dimension of the state variable. This dynamic system can be described by the
linear state transition and observation equations (Kalman, 1960): x′(t) = Ax(t) +Bu(t), y(t) =
Cx(t) +Du(t), where A ∈ CN×N is the state transition matrix, B, C ∈ CN and D ∈ C1 control
the dynamics of the system. The state transition and observation equations describe how the system
evolves over time and how the state variables relate to the observed outputs.

To effectively integrate continuous-time SSMs into the deep learning framework, it is essential
to discretize the continuous-time models. One commonly employed technique is the Zero-Order
Hold (ZOH) discretization (Gu & Dao, 2023). The ZOH method approximates the continuous-time
system by holding the input constant over each discrete time interval. Specifically, given a timescale
∆, which represents the interval between discrete time steps, and defining A and B as discrete
parameters, the ZOH rule is applied as A = e∆A and B = (∆A)−1(e∆A − I)∆B.

However, real-world processes often change over time and cannot be accurately described by a LTI
system. As highlighted in Mamba (Gu & Dao, 2023), time-varying systems can focus more on
relevant information and offer a more accurate and realistic representation of dynamic systems. In
Mamba, the parameters of the SSMs are made context-aware and adaptive through selective functions.
This is achieved by modifying the parameters ∆,B,C as simple functions of the input sequence ut,
resulting in input-dependent parameters ∆t = s∆(ut),Bt = sB(ut) and Ct = sC(ut). Then the
input-dependent discrete parameters At and Bt can be calculated accordingly. Consequently, the
discrete state transition and observation equations can be calculated as follows:

xt = Atxt−1 +Btut, yt = Ctxt +Dut. (1)

A simplified illustration of the above process is shown in Fig. 2(a).
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(a) SSM in Mamba (b) SSM in Spatial-Mamba

Figure 2: Illustrations of the SSM in (a) Mamba and (b) our Spatial-Mamba, where the residual term
D is omitted. In (b), ‘Fusion’ refers to our proposed structure-aware state fusion (SASF) equation.

(a) Input (b) Original state xt (c) Fused state ht (d) Original state xt (e) Fused state ht

Figure 3: Visualization of state variables before and after applying the SASF equation. Sub-figures
(b) and (c) show the mean of state variables across all channels in the first layer of Spatial-Mamba,
while sub-figures (d) and (e) display the state variables for a specific channel in the last layer.

4 SPATIAL-MAMBA

4.1 FORMULATION OF SPATIAL-MAMBA

Spatial-Mamba is designed to capture the spatial dependencies of neighboring features in the latent
state space. To achieve this goal, different from previous methods (Zhu et al., 2024; Liu et al.,
2024; Huang et al., 2024) that commonly employ multiple scanning directions, we introduce a new
structure-aware state fusion (SASF) equation into the original Mamba formulas (refer to Eq. (1)). The
entire process of Spatial-Mamba can be described by three equations: the state transition equation,
the SASF and the observation equation, which are formulated as:

xt = Atxt−1 +Btut, ht =
∑
k∈Ω

αkxρk(t), yt = Ctht +Dut, (2)

where xt is the original state variable, ht is the structure-aware state variable, Ω is the neighbor
set, αk is the learnable weight, and ρk(t) is the index of the k-th neighbor of position t. Fig. 2(b)
illustrates the SSM flow in the proposed Spatial-Mamba. Compared with the original Mamba in
Fig. 2(a), we can see that the original state variable xt is directly influenced by its previous state
xt−1, while the structure-aware state variable ht incorporates additional neighboring state variables
xρ1(t), xρ2(t), . . . , xρK(t) through a fusion mechanism, where K = |Ω| denotes the size of neighbor
set. By considering both the global long-range and the local spatial information, the fused state
variable ht gains a richer context, leading to improved adaptability and a more comprehensive
understanding of the image.

The proposed Spatial-Mamba can be implemented in three steps. As shown in Fig. 1(d), the input
image is first flattened into a 1D sequence ut, with which the state xt is computed using the state
transition equation xt = Atxt−1 +Btut. The computed states are then reshaped back into the 2D
format. To enable each state to be aware of its neighboring states in the 2D space, we introduce
the SASF equation ht =

∑
k∈Ω αkxρk(t). For a state variable xt, we apply linear weighting to its

neighboring states ρk(t) in the neighborhood Ω using weights αk so that we can effectively integrate
local dependency information into a new state ht, resulting in a more contextually informative
representation. Finally, the output is generated from this enriched state ht through the observation
equation yt = Ctht +Dut. This SASF approach helps the model to incorporate the local structural
information in visual learning while retaining the benefits of original Mamba.
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Figure 4: Overall network architecture of Spatial-Mamba.

In practice, we simply employ multi-scale dilated convolutions (Yu, 2015) to linearly weight adja-
cent state variables, enhancing spatial relationship characterizations and enabling skip connections.
Specifically, we use three 3× 3 depth-wise filters with dilation factors d = 1, 3, 5 to construct the
neighbor set Ωd = {(i, j)|i, j ∈ {−d, 0, d}}. The SASF equation in Eq. (2) can be rewritten as:

ht =
∑

d=1,3,5

∑
i,j∈Ωd

kdij · xt+iw+j , (3)

where kdij represents the filter weight for dilation factor d at position (i, j), xt+iw+j denotes the
neighbor of the state xt located at the position (i, j), and w indicates the width of the image.

To gain an intuitive understanding of SASF, we visualize the original state variables and our proposed
structure-aware state variables in Fig. 3. Additional visualizations are provided in Appendix A. One
can see that the original state xt (Fig. 3(b)) struggles to differentiate the foreground from background.
In contrast, the structure-aware state ht (Fig. 3(c)), which has been refined through a SASF process,
effectively separates these regions. Moreover, the original state variable xt in Fig. 3(d) only shows
horizontal attenuation along the scanning direction (gradually darkening from the brightest value in
the upper left corner), while the fused state variable ht in Fig. 3(e) demonstrates decay along the
horizontal, vertical and diagonal directions. This improvement stems from its ability to leverage
spatial relationships within the image, leading to a more accurate and context-aware representation.

4.2 NETWORK ARCHITECTURE

The overall architecture of Spatial-Mamba is depicted in Fig. 4. It consists of four successive stages,
resembling the structure of Swin-Transformer (Liu et al., 2021). We introduce three variants of
Spatial-Mamba model at different scales: Spatial-Mamba-T (tiny), Spatial-Mamba-S (small), and
Spatial-Mamba-B (base). The detailed configurations are provided in Appendix B. Specifically, an
input image I ∈ RH×W×3 is first processed by an overlapped stem layer to generate a 2D feature
map with dimension of H

4 × W
4 × C. This feature map is then fed into four successive stages. Each

stage comprises multiple Spatial-Mamba blocks, followed by a down-sampling layer with a factor of
2 (except for the last stage), resulting in hierarchical features. Finally, a head layer is employed to
process these features to produce corresponding image representations for specific downstream tasks.

The Spatial-Mamba block forms the fundamental building unit of our architecture, which consists of
a Structure-aware SSM and a Feed-Forward Network (FFN) with skip connections, as illustrated in
the bottom left of Fig. 4. Building upon the Mamba block design (Gu & Dao, 2023), the Structure-
aware SSM, illustrated in the bottom right of Fig. 4, is implemented by substituting the original
1D causal convolution with a 3 × 3 depth-wise convolution and replacing the original S6 module
with our proposed SASF module, achieving local neighborhood connectivity in state spaces with
linear complexity. Moreover, a local perception unit (LPU) (Guo et al., 2022) is employed before the
Spatial-Mamba block and FFN to extract local information inside image patches.
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(a) Input (b) Linear attention (c) Mamba (d) Spatial-Mamba

Figure 5: Visualizations of matrices M and the corresponding activation maps for linear attention,
Mamba and Spatial-Mamba. The red arrow indicates specific rows in matrices M , along with the
corresponding image patches (marked with a red star).

4.3 CONNECTION WITH ORIGINAL MAMBA AND LINEAR ATTENTION

We analyze in-depth the similarities and disparities among linear attention (Katharopoulos et al.,
2020), original Mamba (Gu & Dao, 2023) and our Spatial-Mamba, providing a better understanding
of the working mechanism of our proposed method. Detailed derivations are provided in Appendix C.

Linear attention is an improved self-attention (SA) mechanism, reducing the computational com-
plexity of SA to linear by using a kernel function ϕ. For an input sequence ut, the query qt, key
kt, and value vt are computed by projecting ut with different weight matrices. In autoregressive
models, to prevent the model from attending to future tokens, the t-th query is restricted by the
previous keys, i.e., ks, s ≤ t. Thus, if the kernel function ϕ is an identity map, the calculation
of single head linear attention without normalization can be formulated as: yt =

∑
s≤t qt(k

T
s vs).

Letting xt =
∑

s≤t k
T
s vs, then we have xt = xt−1 + kTt vt. The linear attention can be rewritten

as yt = qtxt. This reveals that linear attention is actually a special case of linear recursion. The
hidden state variable xt is updated by the outer-product kTs vs, and the final output yt is observed by
multiplying xt with the query qt. If we define Ct = qt and Bs = kTs , the linear attention can be
expressed in a form similar to that of SSM:

yt =
∑
s≤t

CtBsvs, (4)

where vs is a linear transformation of us, i.e., vs = Linear(us).

Mamba is essentially defined in Eq. (1). By setting the initial state variable x0 to zero, the state
variables can be derived recursively as xt =

∑
s≤t A

×
s:tBsus. Here, A

×
s:t := Πt

i=s+1Ai denotes the
product of the state transition matrices with indices from s+ 1 to t for s < t, and its value is 1 when
s = t. The final output of the observation equation without Dut can be rewritten as:

yt =
∑
s≤t

Ct A
×
s:t Bsus. (5)

Spatial-Mamba. Based on Eq. (2) and Eq. (5), the structure-aware state variables from our proposed
SASF equation can be expressed as ht =

∑
k∈Ω

∑
s≤ρk(t)

αkA
×
s:ρk(t)

Bsus. By omitting Dut for
simplicity of expression, the final output of Spatial-Mamba can be reformulated as follows:

yt =
∑
k∈Ω

∑
s≤ρk(t)

αk Ct A
×
s:ρk(t)

Bsus. (6)

Remarks. From the above analysis, we can see that all the three paradigms — linear attention,
Mamba, and Spatial-Mamba — can be modeled within a unified matrix multiplication framework,
specifically y = Mu. The differences lie in the structure of M . For both linear attention and Mamba,
M takes the form of a lower triangular matrix, whereas for Spatial-Mamba, M is an adjacency
matrix. Fig. 5 provides a visualization of these matrices. In linear attention, the positions of brighter
values remain consistent along the vertical direction, which indicates that the SA mechanism puts its
focus on a small set of image tokens. Mamba, on the other hand, shows a decaying pattern over time,
which is attributed to the influence of its state transition matrix At. This dynamic transition allows
Mamba to shift its focus among previous image tokens. Unlike linear attention and Mamba, our
Spatial-Mamba considers the weighted summation of all states within a broader spatial neighborhood
Ω, allowing for a more comprehensive representation of spatial relationships. The activation maps
on the right side of Fig. 5 further demonstrate that linear attention focuses on a limited region,
while Mamba captures a broader region due to its long-range context modeling. Our Spatial-Mamba
not only largely extends the range of context modeling but also enables spatial structure modeling,
effectively identifying relevant regions even when they are distant from each other.
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5 EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to compare Spatial-Mamba with leading benchmark
models, including those based on Convolutional Neural Networks (CNNs) (Radosavovic et al., 2020;
Liu et al., 2022; Yu & Wang, 2024), Vision Transformers (Dosovitskiy et al., 2020; Liu et al., 2021;
Wang et al., 2022; Hassani et al., 2023), and recent visual SSMs (Nguyen et al., 2022; Zhu et al., 2024;
Liu et al., 2024; Huang et al., 2024). Following previous works (Liu et al., 2021; 2024), we train
three variants of Spatial-Mamba, namely Spatial-Mamba-T, Spatial-Mamba-S and Spatial-Mamba-B.
The detailed configurations are provided in Appendix B. The performance evaluation is conducted on
fundamental visual tasks, including image classification, object detection, and semantic segmentation.

5.1 IMAGE CLASSIFICATION ON IMAGENET-1K

Settings. We first evaluate the representation learning capabilities of Spatial-Mamba in image
classification on ImageNet-1K (Deng et al., 2009). We adopted the experimental configurations
used in previous works (Liu et al., 2021; 2024), which are detailed in Appendix B. We compare our
method with state-of-the-art approaches, including RegNetY (Radosavovic et al., 2020), ConvNeXt
(Liu et al., 2022), ViT (Dosovitskiy et al., 2020), DeiT (Touvron et al., 2021), Swin (Liu et al., 2021),
NAT (Hassani et al., 2023), S4ND (Nguyen et al., 2022), Vim (Zhu et al., 2024), VMamba (Liu et al.,
2024), and LocalVMamba (Huang et al., 2024).

Results. Tab. 1 presents a comprehensive comparison between Spatial-Mamba against state-of-
the-art methods. Notably, Spatial-Mamba-T achieves a top-1 accuracy of 83.5%, outperforming
the CNN-based ConvNext-T by 1.4% with similar amount of parameters and FLOPs. Compared

Table 1: Comparison of classification performance on ImageNet-1K, where ‘Throughput’ is measured
using an A100 GPU with an input resolution of 224× 224.

Arch. Method Im. size #Param. (M) FLOPs (G) Throughput↑ Top-1 acc.↑

C
N

N

RegNetY-4G 2242 21M 4.0G - 80.0
RegNetY-8G 2242 39M 8.0G - 81.7

RegNetY-16G 2242 84M 16.0G - 82.9
ConvNeXt-T 2242 29M 4.5G 1189 82.1
ConvNeXt-S 2242 50M 8.7G 682 83.1
ConvNeXt-B 2242 89M 15.4G 435 83.8

Tr
an

sf
or

m
er

ViT-B/16 3842 86M 55.4G - 77.9
ViT-L/16 3842 307M 190.7G - 76.5
DeiT-S 2242 22M 4.6G 1759 79.8
DeiT-B 2242 86M 17.5G 500 81.8
DeiT-B 3842 86M 55.4G 498 83.1
Swin-T 2242 28M 4.5G 1244 81.3
Swin-S 2242 50M 8.7G 718 83.0
Swin-B 2242 88M 15.4G 458 83.5
NAT-T 2242 28M 4.3G - 83.2
NAT-S 2242 51M 7.8G - 83.0
NAT-B 2242 90M 13.7G - 84.3

SS
M

S4ND-ConvNeXt-T 2242 30M - 683 82.2
S4ND-ViT-B 2242 89M - 397 80.4

ViM-S 2242 26M - 811 80.5
VMamba-T 2242 30M 4.9G 1686 82.6
VMamba-S 2242 50M 8.7G 877 83.6
VMamba-B 2242 89M 15.4G 646 83.9

LocalVMamba-T 2242 26M 5.7G 394 82.7
LocalVMamba-S 2242 50M 11.4G 227 83.7
Spatial-Mamba-T 2242 27M 4.5G 1438 83.5
Spatial-Mamba-S 2242 43M 7.3G 904 84.6
Spatial-Mamba-B 2242 96M 15.8G 665 85.3
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Table 2: Comparison of object detection and instance segmentation performance on COCO with
Mask R-CNN (He et al., 2017) detector. FLOPs are calculated with input resolution of 1280× 800.

Mask R-CNN 1× schedule

Backbone APb ↑ APb
50↑ APb

75↑ APm ↑ APm
50↑ APm

75↑ #Param. FLOPs

ResNet-50 38.2 58.8 41.4 34.7 55.7 37.2 44M 260G
Swin-T 42.7 65.2 46.8 39.3 62.2 42.2 48M 267G

ConvNeXt-T 44.2 66.6 48.3 40.1 63.3 42.8 48M 262G
PVTv2-B2 45.3 66.1 49.6 41.2 64.2 44.4 45M 309G

ViT-Adapter-S 44.7 65.8 48.3 39.9 62.5 42.8 48M 403G
MambaOut-T 45.1 67.3 49.6 41.0 64.1 44.1 43M 262G
VMamba-T 47.3 69.3 52.0 42.7 66.4 45.9 50M 271G

LocalVMamba-T 46.7 68.7 50.8 42.2 65.7 45.5 45M 291G
Spatial-Mamba-T 47.5 69.6 52.2 42.9 66.5 46.2 46M 261G

ResNet-101 38.2 58.8 41.4 34.7 55.7 37.2 63M 336G
Swin-S 44.8 68.6 49.4 40.9 65.3 44.2 69M 354G

ConvNeXt-S 45.4 67.9 50.0 41.8 65.2 45.1 70M 348G
PVTv2-B3 47.0 68.1 51.7 42.5 65.2 45.7 63M 397G

MambaOut-S 47.4 69.1 52.4 42.7 66.1 46.2 65M 354G
VMamba-S 48.7 70.0 53.4 43.7 67.3 47.0 70M 349G

LocalVMamba-S 48.4 69.9 52.7 43.2 66.7 46.5 69M 414G
Spatial-Mamba-S 49.0 70.6 54.0 44.1 67.7 47.7 63M 320G

Swin-B 46.9 - - 42.3 66.3 46.0 88M 496G
ConvNeXt-B 47.0 69.4 51.7 42.7 66.3 46.0 107M 486G
PVTv2-B5 47.4 68.6 51.9 42.5 65.7 46.0 102M 557G

ViT-Adapter-B 47.0 68.2 51.4 41.8 65.1 44.9 102M 557G
MambaOut-B 47.4 69.3 52.2 43.0 66.4 46.3 100M 495G
VMamba-B 49.2 71.4 54.0 44.1 68.3 47.7 108M 485G

Spatial-Mamba-B 50.4 71.8 55.2 45.1 69.1 49.1 115M 494G
Mask R-CNN 3× MS schedule

Backbone APb ↑ APb
50↑ APb

75↑ APm ↑ APm
50↑ APm

75↑ #Param. FLOPs

Swin-T 46.0 68.1 50.3 41.6 65.1 44.9 48M 267G
ConvNeXt-T 46.2 67.9 50.8 41.7 65.0 44.9 48M 262G

NAT-T 47.7 69.0 52.6 42.6 66.1 45.9 48M 258G
VMamba-T 48.8 70.4 53.5 43.7 67.4 47.0 50M 271G

LocalVMamba-T 48.7 70.1 53.0 43.4 67.0 46.4 45M 291G
Spatial-Mamba-T 49.3 70.7 54.3 43.8 67.8 47.2 46M 261G

Swin-S 48.2 69.8 52.8 43.2 67.0 46.1 69M 354G
ConvNeXt-S 47.9 70.0 52.7 42.9 66.9 46.2 70M 348G

NAT-S 48.4 69.8 53.2 43.2 66.9 46.5 70M 330G
VMamba-S 49.9 70.9 54.7 44.2 68.2 47.7 70M 349G

LocalVMamba-S 49.9 70.5 54.4 44.1 67.8 47.4 69M 414G
Spatial-Mamba-S 50.6 71.5 55.4 44.7 68.6 48.2 63M 320G

to Transformer-based methods, Spatial-Mamba-T exceeds Swin-T by 2.2% and NAT-T by 0.3%.
In comparison with SSM-based methods, Spatial-Mamba-T outperforms VMamba-T by 1.0% and
LocalVMamba-T by 0.8%. For other variants, Spatial-Mamba also shows advantages. Specifically,
Spatial-Mamba-S and Spatial-Mamba-B achieve top-1 accuracies of 84.6% and 85.3%, respectively,
surpassing NAT-S and NAT-B by margins of 1.6% and 1.0%, and VMamba-S and VMamba-B by
1.0% and 1.4%. While Spatial-Mamba-T is slightly slower than VMamba-T due to architectural
differences, the Small and Base variants of Spatial-Mamba are faster than their VMamba counterparts.
Moreover, both of them are significantly faster than CNN and Transformer-based methods.

5.2 OBJECT DETECTION AND INSTANCE SEGMENTATION ON COCO

Settings. We evaluate Spatial-Mamba in object detection and instance segmentation tasks using
COCO 2017 dataset (Lin et al., 2014) and MMDetection library (Chen et al., 2019). We adopt Mask
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Table 3: Comparison of semantic segmentation on ADE20K with UPerNet (Xiao et al., 2018)
segmentor. FLOPs are calculated with input resolution of 512 × 2048. ‘SS’ and ‘MS’ represent
single-scale and multi-scale testing, respectively.

Method Crop size mIoU (SS) ↑ mIoU (MS) ↑ #Param. FLOPs

DeiT-S + MLN 5122 43.1 43.8 58M 1217G
Swin-T 5122 44.4 45.8 60M 945G

ConvNeXt-T 5122 46.0 46.7 60M 939G
NAT-T 5122 47.1 48.4 58M 934G

MambaOut-T 5122 47.4 48.6 54M 938G
VMamba-T 5122 48.0 48.8 62M 949G

LocalVMamba-T 5122 47.9 49.1 57M 970G
Spatial-Mamba-T 5122 48.6 49.4 57M 936G

DeiT-B + MLN 5122 45.5 47.2 144M 2007G
Swin-S 5122 47.6 49.5 81M 1039G

ConvNeXt-S 5122 48.7 49.6 82M 1027G
NAT-S 5122 48.0 49.5 82M 1010G

MambaOut-S 5122 49.5 50.6 76M 1032G
VMamba-S 5122 50.6 51.2 82M 1028G

LocalVMamba-S 5122 50.0 51.0 81M 1095G
Spatial-Mamba-S 5122 50.4 51.5 73M 996 G

Swin-B 5122 48.1 49.7 121M 1188G
ConvNeXt-B 5122 49.1 49.9 122M 1170G

NAT-B 5122 48.5 49.7 123M 1137G
MambaOut-B 5122 49.6 51.0 112M 1178G
VMamba-B 5122 51.0 51.6 122M 1170G

Spatial-Mamba-B 5122 51.8 52.6 127M 1176G

(He et al., 2017) and Cascade Mask R-CNN (Cai & Vasconcelos, 2018) as detector heads, apply
Spatial-Mamba-T/S/B pre-trained on ImageNet-1K as backbones. Following common practices (Liu
et al., 2021; 2024), we fine-tune the pre-trained models for 12 epochs (1× schedule) and 36 epochs
with multi-scale inputs (3× schedule). During training, AdamW optimizer is adopted with an initial
learning rate of 0.0001 and a batch size of 16.

Results. The results on COCO with Mask R-CNN are reported in Tab. 2, and the results with
Cascade Mask R-CNN are provided in Appendix D. It can be seen that all variants of Spatial-
Mamba outperform their competitors under different schedules. For 1× schedule, Spatial-Mamba-T
achieves a box mAP of 47.5 and a mask mAP of 42.9, surpassing Swin-T/VMamba-T by 4.8/0.2
in box mAP and 3.6/0.2 in mask mAP with fewer parameters and FLOPs, respectively. Similarly,
Spatial-Mamba-S/B demonstrate superior performance to other methods under the same configuration.
Furthermore, these trends of improved performance hold with the 3× multi-scale training schedule.
Notably, Spatial-Mamba-S achieves the highest box mAP of 50.6 and mask mAP of 44.7, surpassing
VMamba-S with a considerable gain of 0.7 and 0.5, respectively.

5.3 SEMANTIC SEGMENTATION ON ADE20K

Settings. To assess the performance of Spatial-Mamba on semantic segmentation task, we train our
models with the widely used UPerNet segmentor (Xiao et al., 2018) and MMSegmenation toolkit
(Contributors, 2020). Consistent with previous work (Liu et al., 2021; 2024), we pre-train our model
on ImageNet-1K, and use it as the backbone to train UPerNet on ADE20K dataset (Zhou et al., 2019).
This training process encompasses 160K iterations with a batch size of 16. The AdamW is used as
the optimizer with a weight decay of 0.01. The learning rate is set to 6× 10−5 with a linear learning
rate decay. All the input images are cropped into 512× 512.

Results. The results on semantic segmentation are summarized in Tab. 3. Spatial-Mamba variants
consistently achieve impressive performance. For instance, Spatial-Mamba-T attains a single-scale
mIoU of 48.6 and a multi-scale mIoU of 49.4. This signifies an improvement of 1.5 mIoU over NAT-T
and 0.6 mIoU over VMamba-T in single-scale input. This advantage is maintained with multi-scale
input, where Spatial-Mamba-T is 1.0 mIoU higher than NAT-T and 0.6 mIoU higher than VMamba-T.
Furthermore, Spatial-Mamba-B achieves the best performance with a multi-scale mIoU of 52.6.
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Table 4: Ablation studies on Spatial-Mamba-T for neighbor set Ω and other module designs.

Module design #Param. (M) FLOPs (G) Throughput ↑ Top-1 acc.↑
Baseline 25M 4.4G 1706 82.0

Ω = {3× 3} 25M 4.4G 1557 82.3
Ω = {5× 5} 25M 4.5G 1461 82.5
Ω = {Ωd|d = 1, 3, 5} 25M 4.5G 1209 82.7

+ Overlapped Stem 27M 4.5G 1158 82.9
+ LPU 27M 4.5G 1065 83.3
+ Re-Param 27M 4.5G 1438 83.3
+ MESA 27M 4.5G 1438 83.5

Dynamic Conv. 33M 4.8G 907 83.7

5.4 ABLATION STUDIES

In this section, we ablate various key components of Spatial-Mamba-T on ImageNet-1K classification
task in Tab. 4. Based on the configurations of Swin-T (Liu et al., 2021), we construct the baseline
model as Spatial-Mamba-T but without the SASF module. This baseline uses a 4× 4 convolution
with a stride of 4 as stem layer and merges 2× 2 neighboring patches for down-sampling.

Neighbor set. First, adjustments to the neighbor set Ω reveal that increasing the size from a 3× 3
neighborhood to 5× 5 results in a gradual improvement in accuracy, from 82.3% to 82.5%, albeit
with a corresponding decrease in throughput. Furthermore, employing a broader dilated neighbor set
with factors d = 1, 3, 5 increases the accuracy to 82.7%, while reducing throughput to 1158. This
suggests a trade-off between speed and larger neighbor set.

Local enhancement. We replace the original non-overlapped stem and down-sampling layer with
overlapped convolutions (refer to as ‘Overlapped Stem’ in Tab. 4), resulting in a gain of 0.2% in
accuracy. We also incorporate the LPU (Guo et al., 2022), a depth-wise convolution placed at the
top of each block and FFN, further increasing the accuracy by 0.4%. These modifications enrich the
local information available between image patches before processing by the SASF module, enabling
it to better capture structural dependencies.

Optimization. To further enhance the model efficiency, we implement the SASF module using
re-parameterization techniques (Ding et al., 2022) and optimize the CUDA kernels. This accelerates
the model by at least 30% and boosts the throughput from 1065 to 1438. Finally, integrating MESA
(Du et al., 2022) to mitigate overfitting provides an additional 0.2% accuracy improvement.

Fusion operators. While SASF module typically uses depth-wise convolution for state variables
fusion due to its simplicity and efficiency, we further investigate the use of dynamic convolution (Chen
et al., 2020) as an alternative. It can be seen that while dynamic convolution improves performance by
0.2% in accuracy, it significantly reduces the throughput from 1438 to 907. This result suggests the
potential advantages of more flexible fusion operators for SASF, but also highlights the importance
of considering computational cost. For further discussion about SASF, please refer to Appendix F.

In addition, we also provide some qualitative results in Appendix E, and a comparative analysis of the
Effective Receptive Fields (ERF) (Ding et al., 2022) of various models is provided in Appendix G.

6 CONCLUSION

We presented in this paper Spatial-Mamba, a novel state space model designed for visual tasks. The
key of Spatial-Mamba lied in the proposed structure-aware state fusion (SASF) module, which effec-
tively captured image spatial dependencies and hence improved the contextual modeling capability.
We performed extensive experiments on fundamental vision tasks of image classification, detection
and segmentation. The results showed that with SASF, Spatial-Mamba surpassed the state-of-the-art
state space models with only one signal scan, demonstrating its strong visual feature learning capa-
bility. We also analyzed in-depth the relationships of Spatial-Mamba with the original Mamba and
linear attention, and unified them under the same matrix multiplication framework, offering a deeper
understanding of the self-attention mechanism for visual representation learning.
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Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pvt v2: Improved baselines with pyramid vision transformer. Computational
Visual Media, 8(3):415–424, 2022.

Robert L. Williams and Douglas A. Lawrence. Linear state-space control systems —— observability.
10.1002/9780470117873:149–184, 2007.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp.
418–434, 2018.

Yicheng Xiao, Lin Song, Shaoli Huang, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, and Ying
Shan. Grootvl: Tree topology is all you need in state space model. arXiv preprint arXiv:2406.02395,
2024.

Chenhongyi Yang, Zehui Chen, Miguel Espinosa, Linus Ericsson, Zhenyu Wang, Jiaming Liu, and
Elliot J Crowley. Plainmamba: Improving non-hierarchical mamba in visual recognition. arXiv
preprint arXiv:2403.17695, 2024.

Jing Yao, Danfeng Hong, Chenyu Li, and Jocelyn Chanussot. Spectralmamba: Efficient mamba for
hyperspectral image classification. arXiv preprint arXiv:2404.08489, 2024.

F Yu. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122,
2015.

Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? arXiv preprint
arXiv:2405.07992, 2024.

Yubiao Yue and Zhenzhang Li. Medmamba: Vision mamba for medical image classification. arXiv
preprint arXiv:2403.03849, 2024.

Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Semantic understanding of scenes through the ade20k dataset. International Journal of Computer
Vision, 127:302–321, 2019.

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vision
mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint
arXiv:2401.09417, 2024.

13


	Introduction
	Related Work
	Preliminaries
	Spatial-Mamba
	Formulation of Spatial-Mamba
	Network Architecture
	Connection with Original Mamba and Linear Attention

	Experimental Results
	Image Classification on ImageNet-1K
	Object Detection and Instance Segmentation on COCO
	Semantic Segmentation on ADE20K
	Ablation Studies

	Conclusion

