
NOISE-AWARE ALGORITHM FOR HETEROGENEOUS DIF-
FERENTIALLY PRIVATE FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a useful paradigm for learning models from the data
distributed among some clients. High utility and rigorous data privacy guaranties
are among the main goals of an FL system. Previous works have tried to achieve
the latter by ensuring differential privacy (DP) while performing federated training.
In real systems, there is often heterogeneity in the privacy requirements of various
clients, and the existing DPFL works either assume uniform requirements or pro-
pose methods relying on a trusted server. Furthermore, in real FL systems, there
is also heterogeneity in memory/computing power across clients’ devices, which
has not been addressed in existing DPFL algorithms. Having these two sources of
heterogeneity, straightforward solutions, e.g., meeting the privacy requirements of
the most privacy-sensitive client or removing the clients with low memory budgets
will lead to lower utility and fairness problems, due to high DP noise and/or data
loss. In this work, we propose Robust-HDP to achieve high utility in the presence
of an untrusted server, while addressing both the privacy and memory heterogeneity
across clients. Our main idea is to efficiently estimate the noise in each client model
update and assign their aggregation weights accordingly. Noise-aware aggregation
of Robust-HDP without sharing clients privacy preferences with the server, results
in the improvement of utility, privacy and convergence speed, while meeting the
heterogeneous privacy/memory requirements of all clients. Extensive experimental
results on multiple benchmark datasets and our convergence analysis confirm the
effectiveness of Robust-HDP in improving system utility and convergence speed.

1 INTRODUCTION

Federated Learning (FL) [1] enables a set of clients to collaboratively train a machine learning (ML)
model on their distributed data without data sharing. FL algorithms must be able to deal efficiently
with clients’ heterogeneous data and computational budgets to achieve high utility. Also, in the
presence of sensitive information in the train data, FL algorithms must be able to provide rigorous
data privacy guarantees against a potentially curious server or any third party [2–7]. Differential
Privacy (DP) [8–11] provides such formal privacy guarantees. When there is a trusted server in
the system, central differential privacy (CDP) [12, 13], which is operated by the trusted server by
adding controlled noise to the aggregation of clients updates, has been proposed as a solution for
achieving official data privacy in FL. Also, when there is no trusted server, which is more common,
Local Differential Privacy (LDP), where each client runs the DPSGD [14] algorithm locally is a
solution. However, LDP is limited in the sense that achieving privacy while preserving model utility
is challenging, due to clients independent noise additions. Some solutions have been proposed for
this, e.g., using a trusted shuffler system between clients and the untrusted server [15, 16], which may
be difficult to establish if the server itself is untrsuted.

On the clients side, there are often heterogeneous privacy preferences, which can stem from their
varying privacy policies. Also, depending on their computational budgets, some clients may not be
capable of meeting high memory requirements of DPSGD algorithm [14], which needs to compute
gradient vectors for each data sample in a batch of data separately. Such clients choose to use
smaller batch sizes locally to meet their memory budgets, which we show analytically results in a
fast increment of the noise level in their model updates. Existing heterogeneous DPFL works mostly
depend on a trusted server [17, 18] or share clients sensitive information, e.g., privacy preferences,
with an untrusted server [19]. While there are some works that are not related to DPFL [20–23]

1

and address the heterogeneous computational budgets across clients, there is no DPFL algorithm
in the literature considering memory size (batch size) heterogeneity, which might be inevitable in
DPFL systems. We consider heterogeneous DPFL systems with an untrusted server and propose an
efficient algorithm with more focus on the client updates that are indeed less noisy. We propose to
employ Robust PCA (RPCA) algorithm [24] by the untrusted server to estimate the amount of noise
existing in the clients’ model updates, which we show depends strongly on multiple factors (e.g.,
their privacy preference, their memory size budget (batch size) and dataset size), and assign their
aggregation weights accordingly. The use of this efficient strategy on the server improves both the
model utility and convergence speed. We confirm our understandings with both experimental results
and theoretical analysis. The highlights of our contributions are summarized in the following:

• We show the considerable effect of batch size on the noise level in clients’ model updates.
• We propose the efficient noise-aware “Robust-HDP” algorithm for heterogeneous DPFL

with untrusted servers, which focuses on clients with less noisy model updates.
• As the first work assuming heterogeneous dataset sizes, heterogeneous batch sizes, non-

uniform and varying aggregation weights and partial participation of clients simultaneously,
we prove convergence of our proposed algorithm under mild assumptions on loss functions.

• We show the superiority of Robust-HDP in terms of higher utility, fast convergence and
respecting clients’ privacy compared to the existing heterogeneous DPFL algorithms.

2 RELATED WORK

In this work, we use the following as our main definition of DP:
Definition 1 ((ϵ, δ)-DP [9]). A randomized mechanismM : D → R with domain D and range R
satisfies (ϵ, δ)-DP if for any two adjacent inputs d, d′ ∈ D, which differ in only one element, and for
any measureable subset of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eϵPr[M(d′) ∈ S] + δ.

This definition captures the privacy guarantees of the Gaussian mechanism, which randomizes the
output of a query f on a dataset d, as: Gσf(d) ≜ f(d) + N (0, σ2). The randomized output of
the Gaussian mechanism satisfies (ϵ, δ)-DP for a continuum of pairs (ϵ, δ): it is (ϵ, δ)-DP for all

combinations of ϵ < 1 and σ >

√
2 ln(1.25/δ)

ϵ ∆2f , where ∆2f ≜ maxd∼d′ ∥ f(d) − f(d′) ∥2 is
the l2-sensitivity of the query f , computed on neighboring datasets d and d′. As an extension of
(ϵ, δ)-DP, personalized DP (PDP), which specifies the privacy parameters for each sample in a dataset
separately, was proposed for centralized settings [25–29]. Another similar work in [30] proposed
“Utility Aware Exponential Mechanism” (UPEM) to pursue higher utility while achieving PDP. In the
same direction of improving utility, Shi et al. [31] proposed “Selective DP” for improving utility by
leveraging the fact that private information in natural language is sparse. Hence, providing rigorous
privacy guarantees on the sensitive portion of data is enough and improves model utility.

Heterogeneous Privacy Preference and Memory Size in FL: The notion of heterogeneous DP has
been extended to the FL setting as well, in which each client has its own desired privacy parameters
(ϵi, δi). A naive approach to this problem is to design a uniform DPFL system to satisfy (ϵmin, δmin)-
DP, where (ϵmin, δmin) comes from the most privacy sensitive client. However, this naive approach
leads to a large amount of utility loss [12]. Assuming the existence of a trusted server, Chathoth
et al. [17] proposed cohort-level privacy with privacy and data heterogeneity across cohorts using
ϵ-DP definition. Recently, the work in [18], adapted the non-uniform sampling idea of [26] to the FL
settings with a trusted server to get client-level DP in FL for protection against membership inference
attacks [3, 5]. In contrast, we are interested in the heterogeneous DPFL settings with an untrusted
server, as it is more applicable.

Previous works [32–34] have found that stochastic gradients stay in a low-dimensional space during
training process with Stochastic Gradient Descent (SGD) algorithm . Inspired by this observation,
Zhou et al. [35] proposed projection-based variant of the DPSGD [14] algorithm (projected DPSGD)
to achieve higher utility. Liu et al. [19] adapted the projection-based approach to the heterogeneous
DPFL setting in order to reduce the noise in the model updates of privacy sensitive clients and

2

improve utility. It also used a naive aggregation strategy to assign aggregation weights proportional to
privacy parameter ϵ of clients. Although [19] works with an untrusted server, it is limited to cross-silo
settings and relies on the assumption that the server knows the clients’ privacy preferences {ϵi} and
uses them to cluster clients to “public” (those with largest privacy budgets) and “private.” As (ϵi, δi)
generally represent the data sensitivity of client i, it might not always be possible to share them
with an untrusted server. Furthermore, as we will show, even if the server knows clients’ privacy
parameters, this information is not necessarily indicative of the noise level in their model updates,
especially when clients have different batch/dataset sizes,

To address the potential heterogeneity between clients’ computational budgets [20, 36], some works
have considered using different model sizes for clients, depending on their computational budgets,
and used knowledge distillation techniques [37] to exchange knowledge between their heterogeneous
models [20–22]. However these works are not proposed for DPFL settings. In contrast, we consider
the same common model structure for all clients, but depending on their memory budgets, they use
different batch sizes for their local training with the memory-consuming DPSGD algorithm [14].

The current state of the art calls for a heterogeneous DPFL algorithm that takes both privacy preference
heterogeneity and batch size heterogeneity into account for achieving utility and data privacy.

Notations We consider an FL setting with n clients. Let x ∈ X ⊆ Rd and y ∈ Y = {1, . . . , C}
denote an input data point and its target label. Client i holds dataset Di with Ni samples from
distribution Pi(x, y). Let h : X × θ → RC be the predictor function, which is parameterized by
θ ∈ Rp shared among all clients. Also, let ℓ : RC ×Y → R+ be the loss function used (cross entropy
loss). Following [1], many existing FL algorithms fall into the natural formulation that minimizes the
(arithmetic) average loss f(θ) :=

∑n
i=1 λifi(θ), where fi(θ) =

1
Ni

∑
(x,y)∈Di

[ℓ(h(x,θ), y)], with
minimum value f∗

i . The weights λ = (λ1, . . . , λn) are nonnegative and sum to 1. At gradient update
t, client i uses a data batch Bti with size bi = |Bti |. Let qi = bi

Ni
be batch size ratio of client i. There

are E global communication rounds indexed by e, and in each of them, client i runs Ki local epochs.

3 THE Robust-HDP ALGORITHM FOR HETEROGENEOUS DPFL

In this section, we focus on devising a new heterogeneous DPFL algorithm and explain the motivations
behind it. At the t-th gradient update step on a current model θ, client i computes the following noisy
batch gradient:

g̃i(θ) =
1

bi

[(∑
j∈Bt

i

ḡij(θ)
)
+N (0, σ2

i,dpIp)

]
, (1)

where ḡij(θ) = clip(∇ℓ(h(xij ,θ), yij), c), c is a clipping threshold while clip(v, c) =
min{∥v∥, c} × v

∥v∥), σi,dp = c × z(ϵi, δi, qi,Ki, E), and z is the noise scale needed for achiev-
ing (ϵi, δi)−DP by client i, which can be determined with a privacy accountant, e.g., the moments
accountant [14] used in this work. The question that we answer in this section is that what is the
aggregation strategy that minimizes the noise in the aggregated model update on the server. To this
end, we first analyze the effect of batch size on clients’ batch gradients.

3.1 EFFECT OF BATCH SIZE ON CLIENTS’ DP NOISY BATCH GRADIENTS

In this section, all the computations are conditioned on θ. Depending on the value of the used clipping
threshold c at the t-th gradient update step, we consider two general indicative cases:

1. Effective clipping threshold: when the clipping is indeed effective for all samples, we have:

E[g̃i(θ)] =
1

bi

∑
j∈Bt

i

E[ḡij(θ)] =
1

bi

∑
j∈Bt

i

Gi(θ) = Gi(θ), (2)

where the expectation is with respect to the stochasticity of gradients and we have assumed that
E[ḡij(θ)] is the same for all j and is denoted by Gi(θ). Also, the variance of the noisy stochastic

3

gradient in Equation (1) can be computed as (see Appendix B.1):

σ2
i,g̃ := Var(g̃i(θ)) =

c2 −
∥∥Gi(θ)

∥∥2
bi

+
pc2z2(ϵi, δi, qi,Ki, E)

b2i
≈ pc2z2(ϵi, δi, qi,Ki, E)

b2i
. (3)

2. Ineffective clipping threshold: when the clipping is ineffective for all samples, we have a noisy
version of the batch gradient gi(θ) = 1

bi

∑
j∈Bt

i
gij(θ), which is unbiased with variance bounded by

σ2
i,g (see Assumption 1). Hence:

E[g̃i(θ)] = E[gi(θ)] = ∇fi(θ), (4)

σ2
i,g̃ = Var(g̃i(θ)) = Var(gi(θ)) +

pσ2
i,dp

b2i
≤ σ2

i,g +
pc2z2(ϵi, δi, qi,Ki, E)

b2i
. (5)

Hence, we observe that, as z grows with bi sub-linearly (see Figure 6 in the appendix), Var(g̃i(θ))
is a decreasing function of bi. This means that the lower the batch size of a client (which represents
its device memory size), the larger the noise it adds to its batch gradients for achieving the same level
of privacy. Also, the lower the privacy budget (ϵ, δ) of a client, the larger the noise it adds.

3.2 EFFECT OF BATCH SIZE ON CLIENTS’ NOISY MODEL UPDATES

Figure 1: 3D plot of noise variance
(eq. (7) and eq. (3) with K = 1, N =
2400, ηl = 0.01, c = 3, p = 28939)
based on batch size ratio q and the pri-
vacy budget ϵ.

We now investigate the effect of batch size on the noise
level in clients’ model updates. During each global
communication round, a participating client i performs
Ei = Ki × ⌈Ni

bi
⌉ = Ki × ⌈ 1

qi
⌉ batch gradient updates

locally with step size ηl:

∆θ̃e
i = θe

i,Ei
− θe

i,0,

θe
i,k = θe

i,k−1 − ηlg̃i(θ
e
i,k−1), k = 1, . . . , Ei. (6)

In each update, it adds a Gaussian noise from
N (0, c2z2(ϵi,δi,qi,Ki,E)

b2i
Ip) to its batch gradients indepen-

dently (see Equation (1)). Hence:

σ2
i := Var(∆θ̃e

i |θe) = Ki × ⌈
1

qi
⌉ × η2l × σ2

i,g̃, (7)

where σ2
i,g̃, for two general indicative cases, was com-

puted in Equation (3) and Equation (5). This means that
σ2
i heavily depends on bi (e.g. when clipping is effective,

bi appears with power 3 in denominator (recall 1
qi

= Ni

bi
).

Hence, σ2
i decreases quickly when bi increases. Equiva-

lently, as the memory size of a client’s device decreases, its model updates get noisier quickly. Note
that, this scenario repeats when all clients use the same batch size but they have different dataset
sizes, which results in different batch size ratios ({qi}ni=1). Generally, a client with small privacy
parameter and small batch size ratio (qi) sends more noisy updates, compared to other clients (see
Figure 1).

Assuming that the set of clients Se are participating in round e, and at the end of this round, the
server assigns an aggregation weight wi to client i’s update ∆θ̃e

i , in order to minimize the total noise
in the aggregated model update, we solve the following problem:

min
wi≥0

Var
(∑
i∈Se

wi∆θ̃e
i

∣∣θe
)
=

∑
i∈Se

wi
2σ2

i , s.t.
∑
i∈Se

wi = 1, (8)

which has a unique solution w∗
i ∝ 1

σ2
i

, i.e. w∗
i =

1/σ2
i∑

j∈Se 1/σ2
j

. Hence, the optimum aggregation

strategy to minimize noise on the server, weights clients directly based on {σ2
i }ni=1, which in turn,

not only depends on {ϵi}ni=1, but it also depends on {bi}ni=1 and {Ni}ni=1 too. Therefore, assigning
the aggregation weights we

i = ϵi∑
j ϵj

(as in [19] for PFA and WeiAvg algorithms), may be suboptimal

4

Table 1: Features of different heterogeneous DPFL algorithms. ×: needed at server, ✓: not needed.

algorithm aggregation strategy {ϵi}ni=1 clustering projection of clients updates
WeiAvg [19] wi ∝ ϵi × × ✓
PFA [19] wi ∝ ϵi × × ×
DPFedAvg [38] wi ∝ Ni ✓ ✓ ✓
minimum ϵ wi ∝ Ni × ✓ ✓

Robust-HDP wi ∝ 1
σ2
i

✓ ✓ ✓

and inefficient. On the other hand, when the server is not to be trusted, it usually does not have any
idea of the clients noise addition mechanisms, their σ2

i or even their corresponding privacy parameters
(ϵi, δi), as they are kept private by clients. For instance, a small (ϵi, δi) indicates greater willingness
to sccrifice utility and may reveal the sensitivity of this client’s data to a curious server, prompting
unwanted attention. This is an important point that limits the applicability of the algorithms in [19],
which heavily rely on the server knowing {(ϵi, δi)}ni=1, let alone their extra computational cost of
clustering and denoising clients’ updates using PCA (see Table 1). In the next section, we propose
our idea for estimating {σ2

i }ni=1 and {w∗
i }ni=1, without knowing {(ϵi, δi)}ni=1 on the server side.

3.3 Robust-HDP: AN EFFICIENT AGGREGATION STRATEGY FOR HETEROGENEOUS DPFL

We now explain our proposed algorithm for heterogeneous DPFL, Robust-HDP, which has roots
in the Robust Principal Component Analysis (RPCA) [24]. Consider a FL setting with n clients.
Assuming the same δ for all clients for simplicity, client i desires (ϵi, δ)-DP. Based on its local
memory size, each client i determines its local batch size bi. Having determined E number of global
communication rounds and its desired privacy parameter (ϵi), each client computes its required noise
scale zi using e.g. moments accountant [14]. At the end of each global round e, the server gets the
matrix M, as shown below. As all the clients are training the same shared model on more or less
similar data distributions, we expect M to have a low rank, based on the findings in [32–34]. On the
other hand, as M is a low rank matrix with noisy columns, we can use “Robust Principal Component
Analysis (RPCA)” [24] and decompose it as follows:

M := [∆θ̃e
1| . . . |∆θ̃e

n] = L+ S,

where L is a low rank matrix and S is an sparse noise matrix. Based on how RPCA works ([24], see
Algorithm 3 in the appendix), L is a low rank matrix (see Figure 8 in the appendix) estimating the
“true” values of clients’ updates and “S” captures the noises induced by two sources: DP additive
Gaussian noise and batch gradients stochastic noise, which lie outside the low rank subspace of
model updates. Hence, we can use σ̂2

i :=
∥S:,i∥2

2

p (S:,i is the i-th column of S) as an estimate of the

average amount of noise in ∆θ̃e
i . Thus, according to Eq. 8, we assign the aggregation weights as

we
i =

1/σ̂2
i∑

j∈Se 1/σ̂2
j

, where σ̂2
i =

∥S:,i∥2

p . Algorithm 1 summarizes our proposed Robust-HDP.

3.4 RELIABILITY OF Robust-HDP

How reliable is Robust-HDP for returning the optimal weights {w∗
i }? Note that, based on that

w∗
i ∝ 1

σ2
i

, in order for Robust-HDP to assign the optimum aggregation weights {w∗
i }, it suffices to

estimate the set {σ2
i } up to a multiplicative factor. Hence, we have the following lemma.

Lemma 1 (Precision of Robust-HDP). Let si,j in matrix S represent the true value of noise in the
i-th element of ∆θ̃e

j (j ∈ Se). Then, assume that S′ is the matrix computed by Robust-HDP at
the server with bounded elements s′2i,j ≤ U , where E[s′i,j] = rsi,j , for some constant r > 0, and
E[|s′i,j − rsi,j |2] ≤ α2

j (i.e., on average, Robust-HDP is able to estimate the true noise values si,j up
to a multiplicative factor r). Then:

Pr(|σ̂2
j − (r2σ2

j + α2
j)| > ϵ) ≤ 2e

−2pϵ2

U2 . (9)

This means that estimating the elements in the true noise matrix S up to a multiplicative factor r with
a small variance is enough for Robust-HDP to get to a close estimate of the true noise variances {σ2

i }

5

Algorithm 1: Robust-HDP

Input: Initial parameter θ0, batch sizes {b1, . . . , bn}, dataset sizes {N1, . . . , Nn}, noise scales
{z1, . . . , zn}, gradient norm bound c, local epochs {K1, . . . ,Kn}, global round E,
number of model parameters p, privacy accountant PA.

Output: θE , {ϵE1 , . . . , ϵEn }
1 Initialize θ0 randomly
2 for e ∈ [E] do
3 sample a set of clients Se ⊆ {1, . . . , n}
4 for each client i ∈ Se in parallel do
5 ∆θ̃e

i ←DPSGD(θe, bi, Ni,Ki, zi, c)
6 ϵei ← PA(bi

Ni
, zi,Ki, e)

7 M = [∆θ̃e
1| . . . |∆θ̃e

|Se|] ∈ R
p×|Se|

8 L,S = RPCA(M)
9 for i ∈ Se do

10 we
i ←

1/∥S:,i∥2
2∑

j∈Se
1/∥S:,j∥2

2

11 θe+1 ← θe +
∑

i∈Se
we

i∆θ̃e
i

up to a multiplicative factor r2 with high probability. This probability increases with the number of
model parameters p exponentially. Also, note that wj ∝ 1

σ̂2
j

. Hence, as σ2
j ≫ 1 (it is the noise power

in the whole model parameter vector with length p), a small deviation α2
j from r2σ2

j still results in
the Robust-HDP returning aggregation weights close to the optimum weights {w∗

i }.

3.5 SCALABILITY OF Robust-HDP WITH THE NUMBER OF MODEL PARAMETERS p

The computation time (precision) of RPCA algorithm increases (decreases) when the number of model
parameters p grows. For instance, we use a much larger model for CIFAR10, compared to MNIST
and FMNIST. As such, in order to make the Robust-HDP scalable for large models, we perform
the noise estimation mechanism of Robust-HDP on sub-matrices of M (e.g., M[0 : p′, :] = L+ S)
in parallel and use their average noise variance estimate for weight assignment. For instance, for
CIFAR-10, we perform RPCA on sub-matrcies of M with p′ = 200, 000 rows, and average their
noise variance estimates. Experimental results show that this approach still results in assigning
aggregation weights close to the optimum weights {w∗

i } (as observed in Figure 9 in the appendix for
CIFAR-10). This idea makes Robust-HDP scalable to large models with high number of parameters.

3.6 PRIVACY ANALYSIS OF Robust-HDP

We have the following theorem about DP guarantees of our proposed Robust-HDP algorithm.

Theorem 1. For each client i , there exist constants c1 and c2 such that given its number of steps
E ·Ei, for any ϵ < c1q

2
iE ·Ei, the output model of Robust-HDP satisfies (ϵi, δi)−DP with respect to

Di for any δi > 0 if zi > c2
qi
√

E·Ei log
1
δi

ϵi
, where zi is the noise scale used by the client i for DPSGD.

The algorithm also satisfies (ϵmax, δmax)-DP, where (ϵmax, δmax) =
(
max({ϵi}ni=1),max({δi}ni=1)

)
.

Therefore, the model returned by Robust-HDP is (ϵi, δi)-DP with respect to Di, meaning that Robust-
HDP satisfies clients heterogeneous privacy preferences.

3.7 THE OPTIMIZATION SIDE OF Robust-HDP

We assume that f(θ) =
∑

i∈[n] λifi(θ), where λi =
Ni∑
i Ni

, has minimum value f∗ and minimizer
θ∗. We also make some mild assumptions about the loss functions fi (see Assumption 1 and the
notations used therein). We are ready to analyze the convergence of the Robust-HDP algorithm.

6

Theorem 2 (Robust-HDP). Assume that Assumption 1 holds, and for every i, learning rate ηl satisfies:
ηl ≤ 1

6βEi
and ηl ≤ 1

12β

√
(1+

∑n
i=1 Ei)

(∑n
i=1 E4

i

) . Then, we have:

min
0≤e≤E−1

E[∥∇f(θe)∥2] ≤ 12

(11Emin
l − 7)

(
f(θ0)− f∗

Eηl
+

∑E−1
e=0 (Ψ

e
σ +Ψe

p)

E

)
, (10)

where Emin
l = mini Ei and

Ψe
σ = 6β2η2l (1 +

n∑
i=1

Ei)

(
2

n∑
i=1

E4
i σ

2 +
1

3

n∑
i=1

E3
i σ

2
i,g̃

)
+ βηl

n∑
i=1

E2
i σ

2
i,g̃

Ψe
p =

8L2
0

3

(
n

n∑
i=1

E2
i E[(we

i − λi)
2] + ∥λ∥2

n∑
i=1

E[(Ei − µe
w)

2]

)
,where µe

w =

n∑
i=1

we
iEi. (11)

Discussion. Our convergence guarantees are quite general: we allow for partial participation,
heterogeneous number of local steps {Ei}, non-uniform batch sizes {bi}, varying and nonuniform
aggregation weights {we

i }. When {fi} are convex, Robsut-HDP solution converges to a neighborhood
of the optimal solution. The term Ψσ decreases when Ei and variance of mini-batches {σ2

i,g̃} decrease
(e.g., when clients are less privacy sensitive and have larger memory sizes). Similarly, Ψp decreases
when clients participate more often and have similar number of data samples and use similar batch
sizes. Compared to the results in previous DPFL works, we have the most general results with more
realistic assumptions. For instance, [19] (WeiAvg and PFA algorithms) assumes uniform number
of local SGD updates for all clients, or [38] (DPFedAvg algorithm) assumes uniform aggregation
weights and uniform number of local updates. These assumptions may not be practical in real systems.
In a more general view, when we have no DP guarantees, we recover the results for the simple FedAvg
algorithm [39]. When we additionally have σ = 0 (i.e., FedAvg on iid data), our results is the same
as the results of stochastic gradient descent [40], since it reduces to:

min
0≤e≤E−1

E[∥∇f(θe)∥2] ≤ 12

(11Emin
l − 7)

f(θ0)− f∗

Eηl
+O(ηl), (12)

which shows convergence rate 1√
E

with ηl = O(1√
E
).

4 EXPERIMENTS

We now perform comprehensive experiments to evaluate our proposed Robust-HDP algorithm in terms
of test accuracy, its precision in assigning optimum aggregation weights and also its convergence
speed. See appendix A for details of experimental setup and hyperparameter tuning.

4.1 EXPERIMENTAL SETUP

Datasets, models and baseline algorithms: We evaluate our proposed method on three benchamrk
datasets: MNIST [41], FMNIST [42] and CIFAR-10 [43] using CNN-based models (see Appendix A).
Also, we compare four baseline algorithms: 1. WeiAvg [19]: weighted average aggregation based
on privacy parameters {ϵi}ni=1 2. PFA [19]: WeiAvg with PCA projection of noisy model updates 3.
DPFedAvg [38]: FedAvg with DPSGD 4. minimum ϵ: FedAvg with uniform (ϵmin, δmin)-DP

Privacy preference and batch size heterogeneity: We consider an FL setting with 20 clients and
full participation and one local epoch for each client (Ki = 1 for all i). Due to data and batch size
heterogeneity, the number of local steps Ei for each client i varies. We simulate the privacy preference
heterogeneity across clients by sampling {ϵi}ni=1 from different distributions, as shown in Table 4 in
the appendix. We also sample the clients batch sizes {bi}ni=1 uniformly from {16,32,64,128}.

4.2 EXPERIMENTAL RESULTS

In this section, we investigate four main research questions based on our experimental results.

7

RHDP WeiAvg PFA DPFedAvg min ϵ

20

40

60

80

85.13
81.6 80.25

74.02

9.61av
er

ag
e

te
st

ac
cu

ra
cy

MNIST (Dist6)

RHDP WeiAvg PFA DPFedAvg min ϵ

58

60

62

64

66

68
68.32

66.86

60.77

65.87

58.44av
er

ag
e

te
st

ac
cu

ra
cy

FMNIST (Dist8)

RHDP WeiAvg PFA DPFedAvg min ϵ

15

20

25

30
30.6

28.91 29.06

20.09

15.2av
er

ag
e

te
st

ac
cu

ra
cy

CIFAR10 (Dist1)

Figure 2: Utility comparison between Robust-HDP and the baseline algorithms. See Tables 8, 9 and
?? in the appendix for detailed results, including standard deviation over three independent runs.

Figure 3: Convergence speed comparison on MNIST and Dist6.

RQ1: How do various heterogeneous DPFL algorithms affect the utility of an FL system? In
Fig. 2, we have compared our proposed algorithm with others in terms of the average test accuracy
across clients. We observe that Robust-HDP outperforms the baselines (detailed results for all privacy
distributions are reported in tables 8, 9 and ?? in the appendix). Robust-HDP assigns smaller weights
to the noisier updates, and when clients are more privacy sensitive (e.g. in Dist9), this results in a
larger utility gap between Robust-HDP and others. Another point observed from the results is that,
unlike what claimed in [19], projection of noisy clients updates on less noisy ones by PFA algorithm,
did not result in utility improvement compared to WeiAvg in our experiments. We think this is because
neural networks are often sensitive to their model parameters, while projection of model updates
using PCA replaces them with another set of parameters.

RQ2: How does Robust-HDP improve convergence speed during training? We have also compared
different algorithms based on their convergence speed in Figure 3. While the baseline algorithms
suffer from high levels of noise in the aggregated model update

∑
i∈Se we

i∆θ̃e
i (see Table 2; also

Table 10 in the appendix), Robust-HDP enjoys its efficient noise minimization, which performs
very close to the optimum aggregation strategy, and not only results in faster convergence but also
improves utility. In contrast, based on our experiments, the baseline algorithms have to use smaller
learning rates to avoid divergence of their training optimization. Note that Fast convergence of DPFL
algorithms is indeed important, as the privacy budgets of participating clients does not let the server
to run the federated training for more number of communication rounds.

RQ3: How accurate Robust-HDP is in estimating {σ2
i }? Figure 4 compares the noise variance

estimated by Robust-HDP with their true values (computed from Equations 7 and 3) for MNIST
dataset and Dist8. We have also compared the weight assignments in Figure 10 in the appendix.
Figure 4 has sorted the clients based on their privacy parameter ϵ. WeiAvg and PFA assign smaller
weights to more privacy sensitive clients, while Robust-HDP assigns smaller weights to the clients
based on the level of noise in their updates, which not only depends on their privacy parameter ϵ, but
also heavily on their batch size. If a client uses a large batch size (e.g. client 10 with batch size 128
in Figure 10 in the appendix), it is assigned a much larger weight, because of its much smaller noise
variance. The baseline algorithms can not take this very important point into account at aggregation
time, even if they share privacy parameters {ϵi} with an untrusted server.

8

Table 2: The average noise power (eq. (7) and eq. (3)) in each parameter normalized by used
learning rate (

∑n
i=1 we

i
2σ2

i

pη2
l

) in the aggregated model updates for different algorithms (on FMNIST
with E = 200). Due to the projection used in PFA, computing its noise power was not possible.

alg
dist Dist1 Dist2 Dist3 Dist4 Dist5 Dist6 Dist7 Dist8 Dist9

WeiAvg [19] 1.02 1.89 0.92 3.22 4.58 28.29 9.85 48.15 34.91

DPFedAvg [38] 1.27 16.94 16.28 26.87 25.64 70.71 18.50 85.70 43.20

minimum ϵ [19] 4.68 103.91 103.91 127.18 103.91 1868.45 74.41 241.37 87.15

Robust-HDP 0.27 0.47 0.07 0.64 0.39 7.62 2.25 13.86 5.94

Oracle (eq. (8)) 0.27 0.47 0.07 0.64 0.39 7.60 2.25 13.81 5.93

Figure 4: Comparison of {σ2
i } and their estimates {σ̂2

i } from Robust-HDP, for MNIST and Dist8.

Figure 5: Performance comparison on MNIST dataset. Left: effect of clients desired privacy level.
Right: effect of number of existing clients (privacy parameters of clients are sampled from Dist6).
Due to its poor performance, we have not shown the results for “minimum ϵ” for better visibility.

RQ4: Is Robust-HDP indeed Robust? In Fig. 5, we compare the test accuracy obtained from
Robust-HDP with others based on the clients desired level of privacy and number of clients. As clients
become more privacy sensitive, they send more noisy updates to the server, making convergence
to better solutions harder. Robust-HDP shows the highest robustness to the larger noise in clients
updates and achieves the highest utility, especially in more privacy sensitive scenarios, e.g., Dist8.
Also, we observe that it achieves the highest system utility when the number of clients in the system
increase, while performance of WeiAvg and PFA get close to that of DPFedAvg.

5 CONCLUSION

In heterogeneous DPFL systems, heterogeneity in privacy preference and memory size results in large
variations in the noise levels across clients model updates. To address this heterogeneity, we proposed
an efficient heterogeneous DPFL algorithm to perform noise-aware aggregation on an untrusted server
without sharing clients’ privacy parameters. Our theoretical and experimental results confirm that our
algorithm results in better utility and faster convergence, while respecting clients’ privacy.

9

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
“Communication-Efficient Learning of Deep Networks from Decentralized Data”. In: AISTATS.
2017.

[2] Briland Hitaj, Giuseppe Ateniese, and Fernando Pérez-Cruz. “Deep Models Under the GAN:
Information Leakage from Collaborative Deep Learning”. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017).

[3] Maria Rigaki and Sebastián García. “A Survey of Privacy Attacks in Machine Learning”.
ArXiv (2020).

[4] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. “Data Poisoning Attacks
Against Federated Learning Systems”. In: European Symposium on Research in Computer
Security. 2020.

[5] Zhibo Wang et al. “Beyond Inferring Class Representatives: User-Level Privacy Leakage From
Federated Learning”. IEEE INFOCOM (2019).

[6] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep Leakage from Gradients”. In: Neural Informa-
tion Processing Systems. 2019.

[7] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. “Inverting Gradi-
ents - How easy is it to break privacy in federated learning?” ArXiv (2020).

[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating Noise to
Sensitivity in Private Data Analysis”. In: Proceedings of the Third Conference on Theory of
Cryptography. Springer-Verlag, 2006.

[9] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
“Our Data, Ourselves: Privacy via Distributed Noise Generation”. In: Proceedings of the 24th
Annual International Conference on The Theory and Applications of Cryptographic Techniques.
2006.

[10] Cynthia Dwork. “A Firm Foundation for Private Data Analysis”. Commun. ACM (2011).
[11] Cynthia Dwork and Aaron Roth. “The Algorithmic Foundations of Differential Privacy”.

Found. Trends Theor. Comput. Sci. (2014).
[12] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. “Learning Differentially

Private Recurrent Language Models”. In: ICLR. 2018.
[13] Robin C. Geyer, Tassilo Klein, and Moin Nabi. “Differentially Private Federated Learning: A

Client Level Perspective”. ArXiv (2017).
[14] Martin Abadi et al. “Deep Learning with Differential Privacy”. In: Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. 2016.
[15] Ruixuan Liu, Y. Cao, Hong Chen, Ruoyang Guo, and M. Yoshikawa. “FLAME: Differentially

Private Federated Learning in the Shuffle Model”. In: AAAI. 2021.
[16] Antonious M. Girgis, Deepesh Data, Suhas N. Diggavi, Peter Kairouz, and Ananda Theertha

Suresh. “Shuffled Model of Differential Privacy in Federated Learning”. In: AISTATS. 2021.
[17] Ajesh Koyatan Chathoth, Clark P Necciai, Abhyuday Jagannatha, and Stephen Lee. “Differen-

tially Private Federated Continual Learning with Heterogeneous Cohort Privacy”. In: 2022
IEEE International Conference on Big Data (Big Data). 2022.

[18] Jinhao Zhou et al. “Personalized Privacy-Preserving Federated Learning: Optimized Trade-off
Between Utility and Privacy”. In: GLOBECOM 2022 - 2022 IEEE Global Communications
Conference. 2022.

[19] Junxu Liu, Jian Lou, Li Xiong, Jinfei Liu, and Xiaofeng Meng. “Projected Federated Averaging
with Heterogeneous Differential Privacy”. Proceedings of VLDB Endowment. (2021).

[20] Chenhao Xu, Youyang Qu, Yong Xiang, and Longxiang Gao. “Asynchronous Federated
Learning on Heterogeneous Devices: A Survey”. ArXiv (2021).

[21] Enmao Diao, Jie Ding, and Vahid Tarokh. “HeteroFL: Computation and Communication
Efficient Federated Learning for Heterogeneous Clients”. ArXiv (2021).

[22] Ruixuan Liu et al. “No One Left Behind: Inclusive Federated Learning over Heterogeneous
Devices”. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (2022).

[23] Daliang Li and Junpu Wang. “FedMD: Heterogenous Federated Learning via Model Distilla-
tion”. ArXiv (2019).

10

http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf
https://api.semanticscholar.org/CorpusID:5051282
https://api.semanticscholar.org/CorpusID:5051282
https://api.semanticscholar.org/CorpusID:220525609
https://api.semanticscholar.org/CorpusID:220546077
https://api.semanticscholar.org/CorpusID:220546077
https://api.semanticscholar.org/CorpusID:54436587
https://api.semanticscholar.org/CorpusID:54436587
https://api.semanticscholar.org/CorpusID:195316471
https://api.semanticscholar.org/CorpusID:214728347
https://api.semanticscholar.org/CorpusID:214728347
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/11761679_29
https://doi.org/10.1145/1866739.1866758
https://dl.acm.org/doi/10.1561/0400000042
https://arxiv.org/pdf/1710.06963.pdf
https://arxiv.org/pdf/1710.06963.pdf
https://arxiv.org/pdf/1712.07557.pdf
https://arxiv.org/pdf/1712.07557.pdf
https://doi.org/10.1145/2976749.2978318
https://www.aaai.org/AAAI21Papers/AAAI-4838.LiuR.pdf
https://www.aaai.org/AAAI21Papers/AAAI-4838.LiuR.pdf
https://proceedings.mlr.press/v130/girgis21a.html
https://ieeexplore.ieee.org/document/10021082
https://ieeexplore.ieee.org/document/10021082
https://ieeexplore.ieee.org/document/10000793
https://ieeexplore.ieee.org/document/10000793
https://www.vldb.org/pvldb/vol15/p828-liu.pdf
https://www.vldb.org/pvldb/vol15/p828-liu.pdf
https://api.semanticscholar.org/CorpusID:237454599
https://api.semanticscholar.org/CorpusID:237454599
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2010.01264
https://api.semanticscholar.org/CorpusID:246867330
https://api.semanticscholar.org/CorpusID:246867330
https://api.semanticscholar.org/CorpusID:203951869
https://api.semanticscholar.org/CorpusID:203951869

[24] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. “Robust principal component
analysis?” J. ACM (2009).

[25] Mohammad Alaggan, Sébastien Gambs, and Anne-Marie Kermarrec. “Heterogeneous Differ-
ential Privacy”. Journal of Privacy and Confidentiality (2017).

[26] Zach Jorgensen, Ting Yu, and Graham Cormode. “Conservative or liberal? Personalized
differential privacy”. In: 2015 IEEE 31st International Conference on Data Engineering. 2015.

[27] Wen Huang et al. “Improving Laplace Mechanism of Differential Privacy by Personalized
Sampling”. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom). 2020.

[28] Ios Kotsogiannis, Stelios Doudalis, Sam Haney, Ashwin Machanavajjhala, and Sharad Mehro-
tra. “One-sided Differential Privacy”. In: 2020 IEEE 36th International Conference on Data
Engineering (ICDE). 2020.

[29] Da Yu et al. “Individual Privacy Accounting for Differentially Private Stochastic Gradient
Descent”. ArXiv (2023).

[30] Ben Niu, Yahong Chen, Boyang Wang, Jin Cao, and Fenghua Li. “Utility-aware Exponential
Mechanism for Personalized Differential Privacy”. In: 2020 IEEE Wireless Communications
and Networking Conference (WCNC). 2020.

[31] Weiyan Shi, Aiqi Cui, Evan Li, R. Jia, and Zhou Yu. “Selective Differential Privacy for
Language Modeling”. ArXiv (2021).

[32] Guy Gur-Ari, Daniel A. Roberts, and Ethan Dyer. “Gradient Descent Happens in a Tiny
Subspace”. ArXiv (2018).

[33] Carlotta Demeniconi and Nitesh Chawla. “Hessian based analysis of SGD for Deep Nets:
Dynamics and Generalization”. In: Proceedings of the 2020 SIAM International Conference
on Data Mining (SDM). 2020.

[34] Vardan Papyan. “Measurements of Three-Level Hierarchical Structure in the Outliers in the
Spectrum of Deepnet Hessians”. In: International Conference on Machine Learning. 2019.

[35] Yingxue Zhou, Steven Wu, and Arindam Banerjee. “Bypassing the Ambient Dimension:
Private SGD with Gradient Subspace Identification”. In: 9th International Conference on
Learning Representations, ICLR. 2021.

[36] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick, and Dimitrios S. Nikolopou-
los. “Challenges and Opportunities in Edge Computing”. 2016 IEEE International Conference
on Smart Cloud (SmartCloud) (2016).

[37] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. “Distilling the Knowledge in a Neural
Network”. ArXiv (2015).

[38] Maxence Noble, Aurélien Bellet, and Aymeric Dieuleveut. “Differentially Private Federated
Learning on Heterogeneous Data”. In: International Conference on Artificial Intelligence and
Statistics. 2021.

[39] Guojun Zhang, Saber Malekmohammadi, Xi Chen, and Yaoliang Yu. “Proportional Fairness
in Federated Learning”. Transactions on Machine Learning Research (2023).

[40] Saeed Ghadimi and Guanghui Lan. “Stochastic First- and Zeroth-Order Methods for Noncon-
vex Stochastic Programming”. SIAM Journal on Optimization (2013).

[41] Li Deng. “The MNIST Database of Handwritten Digit Images for Machine Learning Research
[Best of the Web]”. IEEE Signal Processing Magazine (2012).

[42] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms”. CoRR (2017).

[43] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: 2009.
[44] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual Learning for Image

Recognition”. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
2015.

[45] Lei Yu, Ling Liu, Calton Pu, Mehmet Emre Gursoy, and Stacey Truex. “Differentially Private
Model Publishing for Deep Learning”. 2019 IEEE Symposium on Security and Privacy (SP)
(2019).

11

https://arxiv.org/abs/0912.3599
https://arxiv.org/abs/0912.3599
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/652
https://journalprivacyconfidentiality.org/index.php/jpc/article/view/652
https://ieeexplore.ieee.org/document/7113353
https://ieeexplore.ieee.org/document/7113353
https://ieeexplore.ieee.org/document/9343130
https://ieeexplore.ieee.org/document/9343130
https://ieeexplore.ieee.org/document/9101725
https://arxiv.org/abs/2206.02617
https://arxiv.org/abs/2206.02617
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9120532
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9120532
https://arxiv.org/pdf/2108.12944.pdf
https://arxiv.org/pdf/2108.12944.pdf
https://api.semanticscholar.org/CorpusID:54480858
https://api.semanticscholar.org/CorpusID:54480858
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236
https://epubs.siam.org/doi/abs/10.1137/1.9781611976236
http://proceedings.mlr.press/v97/papyan19a/papyan19a.pdf
http://proceedings.mlr.press/v97/papyan19a/papyan19a.pdf
https://openreview.net/forum?id=7dpmlkBuJFC
https://openreview.net/forum?id=7dpmlkBuJFC
https://api.semanticscholar.org/CorpusID:17046469
https://api.semanticscholar.org/CorpusID:7200347
https://api.semanticscholar.org/CorpusID:7200347
https://proceedings.mlr.press/v151/noble22a/noble22a.pdf
https://proceedings.mlr.press/v151/noble22a/noble22a.pdf
https://openreview.net/forum?id=ryUHgEdWCQ
https://openreview.net/forum?id=ryUHgEdWCQ
https://doi.org/10.1137/120880811
https://doi.org/10.1137/120880811
https://ieeexplore.ieee.org/document/6296535
https://ieeexplore.ieee.org/document/6296535
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8835283
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8835283

	Introduction
	related work
	The mydarkred0.90plus0.90minus0.90100.90Robust-HDP algorithm for heterogeneous DPFL
	Effect of batch size on clients' DP noisy batch gradients
	Effect of batch size on clients' noisy model updates
	mydarkred0.90plus0.90minus0.90100.90Robust-HDP: an efficient aggregation strategy for heterogeneous DPFL
	Reliability of mydarkred0.90plus0.90minus0.90100.90Robust-HDP
	Scalability of mydarkred0.90plus0.90minus0.90100.90Robust-HDP with the number of model parameters p
	Privacy analysis of mydarkred0.90plus0.90minus0.90100.90Robust-HDP
	The optimization side of mydarkred0.90plus0.90minus0.90100.90Robust-HDP

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion

