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ABSTRACT

Large Language Models (LLMs) have achieved impressive results across numer-
ous NLP tasks but still encounter difficulties in machine translation. Traditional
methods to improve translation have typically involved fine-tuning LLMs using
parallel corpora. However, vanilla fine-tuning often leads to catastrophic forget-
ting of the instruction-following capabilities and alignment with human prefer-
ences, compromising their broad general abilities and introducing potential se-
curity risks. These abilities, which are developed using proprietary and unavail-
able training data, make existing continual instruction tuning methods ineffective.
To overcome this issue, we propose a novel approach called RaDis (Rationale
Distillation). RaDis harnesses the strong generative capabilities of LLMs to create
rationales for training data, which are then “replayed” to prevent forgetting. These
rationales connect prior knowledge with new tasks, acting as self-distillation tar-
gets to regulate the training process. By jointly training on reference translations
and self-generated rationales, the model can learn new translation skills while pre-
serving its general abilities. Extensive experiments demonstrate that our method
enhances machine translation performance while maintaining the broader capabil-
ities of LLMs across other tasks. This work presents a pathway for creating more
versatile LLMs that excel in specialized tasks without compromising generality or
safety and provides a fresh angle for utilizing rationales in the CL field.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated exceptional performance across diverse Natural
Language Processing (NLP) tasks. However, in the realm of Machine Translation (MT), they still
fall short compared to conventional supervised encoder-decoder models (Xu et al., 2024a). Recent
studies have sought to enhance the translation performance of LLMs through continual instruction-
tuning with parallel corpora (Yang et al., 2023; Xu et al., 2024a). While this approach effectively
boosts translation performance, it often comes at the cost of the inherent general ability and safety
alignment of LLMs. As illustrated in Figure 1, fine-tuning LLaMA-2-Chat and Mistral-v0.2-Instruct
results in a significant decline in these models’ performance on MT-Bench (Zheng et al., 2023). This
phenomenon is known as Catastrophic Forgetting (CF) (French, 1993), which remains the major
obstacle to developing models that seamlessly integrate strong translation performance with broader
general-purpose utility.

Various Continual Learning (CL) approaches have been proposed to mitigate CF (Chen & Liu,
2018). In the context of LLMs, replay-based methods (Scialom et al., 2022; Yin et al., 2022; Mok
et al., 2023; He et al., 2024), which store small subsets of previous data for rehearsal, are often
favored for their simplicity and effectiveness. However, a critical limitation of replay-based methods
is their reliance on access to the original training data, which is frequently unavailable in real-
world applications. This limitation greatly reduces their feasibility in scenarios like the one in this
paper, where the goal is to boost translation skills while preserving the general abilities of open-
sourced LLMs, which are gained from proprietary, in-house data. Some studies have incorporated
open-source general instruction-following data as a substitute (Jiao et al., 2023; Zhang et al., 2023).
However, the limited quality of these open-source datasets results in performance that significantly
falls short of instruction-tuned LLMs.
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Figure 1: Translation performance (COMET) and
general conversational and instruction-following
ability (MT-Bench). While both Fine-tuning (blue
triangle) and RaDis (red star) greatly enhance
the translation performance, RaDis helps preserve
most of the models’ general ability.

To address this problem, this paper explores
leveraging the strong generative ability of
LLMs to synthesize their own replay data.
However, given the vast task space of LLMs
and the limited data we could use, generating
high-quality synthesis data that encapsulates di-
verse general knowledge remains a non-trivial
question. We draw inspiration from an obser-
vation that instruction-tuned LLMs are capable
of generating detailed rationales when tasked
with translation requests (see Section 3.1 and
Appendix E for more details). Previous stud-
ies in the reasoning field suggest that rationales
generated by LLMs contain valuable knowl-
edge and can be used to distill reasoning abil-
ities (Wadhwa et al., 2024; Xu et al., 2024b).
In line with these findings, we show that self-
generated rationales encapsulate the internal
general knowledge leveraged during translation
that connect prior knowledge with new tasks,
acting as self-distillation targets to alleviate forgetting.

Thus, we propose a novel training method named RaDis (Rationale Distillation). It prompts the
LLM to generate rationales for the reference translations in original training data, and then concate-
nates references and rationales, forming an enriched dataset for subsequent training. By incorpo-
rating both the rationales and the references into the training, RaDis builds an underlying reasoning
framework that ties previous knowledge with new tasks and introduces a self-distillation loss on the
rationale, thereby mitigating the forgetting issue.

Comprehensive experiments using two widely adopted LLMs, LLaMA-2-7B-Chat (Touvron et al.,
2023) and Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) validates the effectiveness of RaDis. As de-
picted in Figure 1, RaDis enhances translation performance by 5.6 and 8.9 COMET points, which
is comparable to vanilla fine-tuning, while preserving the models’ original performance on general
ability benchmarks. Further analysis reveals that distilling self-generated rationales not only out-
performs distilling from external rationales generated by a much stronger model but also avoids the
conflict between learning new tasks and consolidating the original ability. Together, these findings
offer additional insights into RaDis’ effectiveness and future study.

In summary, this work makes the following contributions:

• It addresses the problem of CL for instruction-tuned LLMs and discovers that LLMs can
generate rationales that tie previous knowledge with new tasks without explicit prompting.
Replaying these rationales effectively mitigates forgetting in a self-distillation manner.

• It proposes RaDis, a novel training approach that enhances LLMs’ translation proficiency
while preserving their generality by distilling self-generated rationales. Compared to the
existing multi-task training approach, RaDis can inherit strong general capabilities while
achieving comparable translation performance.

• Our findings provide valuable insights for developing more flexible and powerful LLMs
that excel in specialized tasks without compromising their generality or safety. Addition-
ally, the utilization of rationales to alleviate forgetting in RaDis provides a fresh angel in
the field of CL.

2 RELATED WORKS

2.1 FINE-TUNING LLMS FOR MT

Previous studies have primarily fine-tuned LLMs using parallel corpora to enhance their translation
proficiency. BigTrans (Yang et al., 2023) and ALMA (Xu et al., 2024a) propose to first continual
pre-train on monolingual data and then progresses to fine-tuning on parallel data. Although these
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methods enhance the translation proficiency of LLMs, they often compromise the models’ gen-
eral ability, turning them into specialized translation models. To address this issue, several studies
have sought to preserve the general ability of LLMs while fine-tuning them for MT. For example,
ParroT (Jiao et al., 2023), BayLing (Zhang et al., 2023) and TowerInstruct (Alves et al., 2024) in-
corporates general instruction-following data to maintain general capability. However, limited by
the quality of the data, their performance in both translation and general abilities remains relatively
low. In contrast to these efforts, our approach solely utilizes machine translation data and preserves
the general ability by distillation of self-generated rationales.

2.2 CONTINUAL INSTRUCTION TUNING

Continual instruction tuning (CIT) seeks to mitigate CF during the instruction tuning of LLMs by
employing CL approaches (Wu et al., 2024; Shi et al., 2024). Traditional CL methods are typically
divided into replay-based, regularization-based, and architecture-based methods. However, in the
context of LLMs, the vast parameter and task space reduces the feasibility of regularization-based
and architecture-based methods (Wang et al., 2024). As a result, current research has predominantly
relied on focused on replay-based techniques and their variants (Scialom et al., 2022; Yin et al.,
2022; Mok et al., 2023; He et al., 2024; Wang et al., 2024) While these approaches are promising,
they are subject to the reliance on access to the original training data. Consequently, they cannot
be applied to mitigate the forgetting of instruction-tuned LLMs’ general abilities gained from in-
house training data. SDFT (Yang et al., 2024) is the first work designed for preserving the general
instruction-following abilities of LLMs. It proposes to paraphrase the original train dataset with the
LLM itself to bridge the distribution gap. However, the quality of the paraphrased data is limited by
the capabilities of the prompt and the model itself, which may diminish the performance of the task
to be learned. In contrast, RaDis argues the original data with self-generated rationales and avoids
loss of performance on new tasks.

2.3 DISTILLING RATIONALES

Since the advent of LLMs, researchers have recognized their ability to generate rationales and have
sought to distill knowledge from them. Initial studies have predominately focused on distilling the
Chain of Thought (CoT) reasoning capabilities from intermediate rationales (Wang et al., 2023;
Hsieh et al., 2023; Fu et al., 2023). These studies emphasize pre-rationalization, where the model
first generates a rationale before predicting the answer based on that rationale. Here, the rationale re-
flects the reasoning path leading to the final answer, providing valuable insights for student models.
Recent research has proposed post-rationalization, where the rationale is generated after the answer
is predicted. In this context, the rationale serves as an explanation, supplementing the ground truth
label. Wadhwa et al. (2024) demonstrate that CoT-augmented distillation is more effective when ra-
tionales are provided after labels. Additionally, Chen et al. (2024) suggests that post-rationalization
mitigates rationale sensitivity issues and enhances focus on learning challenging samples. Ratio-
naleCL (Xiong et al., 2023) introduce rationales generated by GPT-3.5-turbo to distill relation ex-
traction knowledge into T5 model in a continual learning setting. Unlike previous works that distill
knowledge from LLMs to smaller student models, RaDis focuses on self-distillation to maintain
general abilities and prevent forgetting.

3 METHOD

We begin by presenting a key observation: when tasked with translation requests, instruction-
tuned LLMs can generate detailed rationales that encapsulate the internal general knowledge lever-
aged during translation (Section 3.1). Building on this insight, we introduce Rationale Distillation
(RaDis), which leverages these self-generated rationales as replay data to help the model retain its
broad general capabilities (Section 3.2). Finally, we demonstrate that the RaDis training objective
can be decomposed into a conventional MT loss and a self-distillation loss on rationale tokens, which
helps prevent excessive deviation of model parameters (Section 3.3).

3.1 OBSERVATION: SELF-GENERATED RATIONALES

3
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“China's 'Belt and Road' Initiative' has become 

the largest international cooperation platform.“

Explanation:

The Chinese term "一带一路" (Yīdài Yīlù) can 

be translated to English as "Belt and Road." The 

Belt and Road Initiative (BRI) is a development 

strategy and infrastructure development project 

proposed by China in 2013. It aims to enhance 

connectivity and cooperation between countries 

in Asia, Europe and Africa …

中国提出的“一带一路”倡议，已成为规模最大
的国际合作平台。
Translate this sentence to English.

Figure 2: An example of LLM’s response to trans-
lation instruction. In this case, the LLM pro-
vides a rationale with additional factual informa-
tion about the term ‘Belt and Road’ after the trans-
lation result.

Instruction-tuned LLMs exhibit a strong abil-
ity to follow instructions and engage in con-
versational interactions, delivering helpful re-
sponses across a wide range of tasks. Unlike
conventional models that simply output the an-
swer, instruction-tuned LLMs are known to be
able to generate rationales (Wei et al., 2022).
As illustrated in Figure 2, when presented with
a translation request, instruction-tuned LLMs
not only generate the translation but also pro-
vide an accompanying rationale. For 139 out
of 200 randomly sampled translation instruc-
tions, LLaMA-2-7B-Chat provided a transla-
tion along with a rationale. In line with findings
in CoT-augmented distillation (Wadhwa et al.,
2024; Xu et al., 2024b), we found these ra-
tionales encompass a wealth of diverse infor-
mation leveraged during translation, including
word or phrase translations, sentence structure
analysis, factual information about the sentence, explanations of the overall sentence meaning, and
other details.

3.2 RADIS: DISTILLING RATIONALES TO ALLEVIATE FORGETTING

### Response:

The Sphinx is set as 

the backdrop and 

the narrator of a 

long story.

Explanation:

The Sphinx is a mythical 

creature with the body of a 

lion and the head of a human. 

In ancient Greek …

Explanation:

The Sphinx is a mythical 

creature with the body of a 

lion and the head of a human. 

In ancient Greek …

Rationale 

Generation

LLM

### Instruction: 

Translate this sentence 

from Chinese to English. 

背景幕布上是狮身人面像，
它也是长篇故事的讲述者。

LLM

### Instruction: 

Translate this sentence from 

Chinese to English. 

背景幕布上是狮身人面像，
它也是长篇故事的讲述者。

### Response:

The Sphinx is set as 

the backdrop and 

the narrator of a 

long story.

Translation 
Loss

Rationale Self-
distillation Loss

Continue
Generation

Rationale 

Disillation

Generality
Capability

Translation 
Capability

Figure 3: Overview of the RaDis approach. Rationale Generating (Left): Given a translation
instruction-response pair as an input, the LLM extends the response by generating a rationale. Fine-
tuning with Rationale Distillation (Right): RaDis utilizes this self-generated rationale to enrich
the original response and fine-tunes the LLM with the enriched data. The CLM loss computed on the
rationale serves as a self-distillation regularization term, preventing excessive parameter divergence.

The forgetting issue can be attributed to an unsuitable training approach. In conventional fine-tuning,
the supervision signal comes from the reference sentence solely, which contains knowledge specific
to the translation task. Thus, the model parameter is biased to a translation-specific distribution.
Previous studies have sought to address this issue by replay-based CL methods. However, due to the
absence of original training data and the poor quality of open-sourced instruction-following data,
their effectiveness is limited. To this end, we propose RaDis.

The core idea of RaDis is similar to pseudo-replay. In traditional CL, pseudo-replay methods employ
an additional data generator to synthesize replay data (Shi et al., 2024). However, the superior
generative abilities of LLMs now allow us to leverage the model itself to synthesize this replay data.
As depicted in Figure 3, RaDis starts from an instruction-tuned LLM as the backbone. It utilizes a
prompt template I to format the translation sentence pair (x, y) and sends them into the backbone
LLM parameterized as θ. As shown in Section 3.1, an instruction-tuned model has the inherent
ability to continue generating a rationale using the translation instruction-response pair as the prefix.

r ∼ P (y,x, I; θ) (1)

4
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These rationales encapsulate the internal general knowledge leveraged during translation, build-
ing a reasoning framework that ties previous knowledge with new tasks. Specifically, the self-
generated rationale r is concatenated with the translation sentence y, creating an enriched response
ŷ = CONCAT(y, r). The enriched instruction-response pair is subsequently used to train the back-
bone LLM using a standard causal language model (CLM) loss, defined as:

L(x, ŷ; θ) = − logP (ŷ|x, I; θ) (2)

The enriched response now incorporates both the task-specific knowledge for translation and the
diverse, original knowledge embedded within the self-generated rationale. As a result, fine-tuning
the model with it can learn the translation task and consolidate the original general ability simulta-
neously.

3.3 WHY RADIS WORKS: A KNOWLEDGE DISTILLATION PERSPECTIVE

In previous sections, we discovered that self-generated rationales are effective substitutes for replay
data. However, since they are neither traditional replay data nor pseudo-replay data, a natural ques-
tion arises: why do they work? Here, we demonstrate that RaDis can be understood as a form of
knowledge distillation, a technique proven to mitigate forgetting. To explain this, we paraphrase
Equation 2 as:

L(x, ŷ; θ) = − logP (ŷ|x, I; θ)

= −
T+R∑
t=1

logP (ŷt|ŷ<t,x, I; θ)
(3)

where R is the length of the rationale r. The properties of the CLM loss allow us to split and
reassemble the loss across each token. By separating the loss of the reference translation from the
self-generated rationale, we obtain:

L(x, ŷ; θ) =−
T+R∑
t=1

logP (ŷt|ŷ<t,x, I; θ)

=−
T∑

t=1

logP (yt|y<t,x, I; θ)−
T+R∑

t=T+1

logP (rt|r<t,y,x, I; θ)

=− logP (y|x, I; θ)− logP (r|y,x, I; θ)

(4)

Here, the first term is a traditional MT loss, which trains the model to acquire new translation
knowledge. The second term minimizes the negative log-likelihood of the self-generated rationale r
given the conventional translation instruction-response pair. It can be interpreted as a sequence-level
self-distillation loss on the rationale tokens, which serves as a regularizer to mitigate forgetting by
preventing excessive deviation of model parameters.

4 EXPERIMENTS

4.1 DATASETS

The datasets and benchmarks used for fine-tuning and evaluation are listed below:

Translation. For parallel training data, we adopt the human written data collected by ALMA (Xu
et al., 2024a), as it has been proven effective in enhancing the translation proficiency of LLMs. This
data comprises human written test datasets from WMT’17 to WMT’20, plus the development and
test sets from Flores-200 (Goyal et al., 2022). It covers 4 English-centric language pairs, considering
both from English and to English directions: Czech (cs), Chinese (zh), German (de), and Russian
(ru). The WMT’22 test dataset for the same 8 translation directions is used for testing. Translation
performance is evaluated using the COMET metric (Unbabel/wmt22-comet-da) due to its
better alignment with human evaluations (Rei et al., 2022).

5
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Conversation and Instruction Following. MT-Bench (Zheng et al., 2023) and AlpacaE-
val (Dubois et al., 2024) are employed to evaluate the conversation and instruction-following abil-
ities of the models. MT-Bench consists of a set of challenging multi-turn questions across various
categories, including math, coding, role-play, and writing. GPT-4 is utilized as the judge to assess
the quality of the models’ responses, scoring them on a scale of 1 to 10, as outlined by Zheng et al.
(2023). The AlpacaEval and AlpacaEval 2.0 leaderboard evaluates the models on 805 prompts from
the AlpacaEval dataset and calculates the win rate against text-davinci-003 and GPT-4-1106. For
this evaluation, we use the weighted alpaca eval gpt4 turbo annotator as the judge.

Safety. Safety is evaluated using harmful behavior datasets consisting of unsafe prompts. Fol-
lowing WalledEval (Gupta et al., 2024), we feed 520 unsafe prompts from AdvBench (Zou et al.,
2023) into the LLMs and utilize LLaMA-3-Guard-8B (Dubey et al., 2024) to assess whether the
responses are harmful. We report the safe rate, defined as the percentage of safe responses across all
prompts.

Reasoning. The reasoning ability is evaluated using GSM8K (Cobbe et al., 2021), which
comprises 8.8k high-quality arithmetic word problems designed at the grade school level,
to assess the arithmetic reasoning abilities of LLMs. The evaluations are conducted using
lm-evaluation-harness (Gao et al., 2024) and the exact match scores are reported.

4.2 BASELINES

Our method is compared against two baseline categories. The first category includes representa-
tive continual instruction tuning (CIT) methods, that are compatible with our setting. In the second
category, we consider prior LLM-based MT models, which focus on enhancing the translation pro-
ficiency of LLMs. It’s worth noting that the comparison with prior LLM-based MT models is not
entirely fair due to discrepancies in training data and model architectures.

Continual Instruction Tuning (CIT) Baselines. The following continual instruction tuning ap-
proaches are introduced as baseline methods: (1) Vanilla Fine-tuning, where the backbone LLMs
are directly fine-tuned using translation data; (2) Seq-KD, which employs sequence-level knowl-
edge distillation along with fine-tuning to alleviate forgetting; (3) SDFT (Yang et al., 2024), which
leverages the backbone LLM to paraphrase the original training data and fine-tunes the model using
the synthesized data; (4) Multi-task, which employs open-sourced instruction following dataset and
fine-tunes the LLM with both translation and instruction following data.

Prior LLM-based MT models. This category contains several notable works in the field of LLM-
based machine translation. (1) ParroT (Jiao et al., 2023), which fine-tune LLaMA-1 with a hybrid
of translation and instruction-following data. (2) BigTrans (Yang et al., 2023) enhances LLaMA-
1 by equipping it with multilingual translation capabilities across more than 100 languages. (3)
BayLing (Zhang et al., 2023) fine-tunes LLaMA-1 using automatically generated interactive trans-
lation instructions. (4) ALMA (Xu et al., 2024a) first fine-tunes LLaMA-2 on monolingual data and
subsequently uses high-quality parallel data for instruction tuning.(5) TowerInstruct (Alves et al.,
2024) continued pre-trains LLaMA-2 on a multilingual mixture of monolingual and parallel data,
and fine-tuned with translation and instruction following data.

Please refer to Appendix A for further details of the baselines.

4.3 TRAINING DETAILS

In our experiments, we employ LLaMA-2-7B-Chat (Touvron et al., 2023) and Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023) as the backbone LLMs. Given the constraints of our computational re-
sources, the Low-Rank Adaptation (LoRA) technique (Hu et al., 2022) is utilized in most of our
experiments. Specifically, a LoRA adapter with a rank of 16 is integrated into all the linear layers
of the LLMs and exclusively trains the adapter. The LLMs are fine-tuned for three epochs on the
translation dataset, with a learning rate of 1 × 10−4 and a cosine annealing schedule. The batch
is set to 128 for stable training. Our implementation is based on LLaMA-Factory (Zheng et al.,
2024). After the fine-tuning phase, the LoRA module is merged into the backbone LLM for testing.
For further details, please refer to Appendix B.
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4.4 RESULTS

Table 1: The overall translation performance (COMET score) in EN→X. The delta performance
compared to the backbone LLM is shown.

Models Czech German Russian Chinese Avg.

Backbone LLM: LLaMA-2-7B-Chat
Backbone LLM 70.14 75.10 75.76 72.57 73.39
w/ Vanilla-FT 81.80 ↑ 11.66 82.81 ↑ 7.71 84.67 ↑ 8.91 81.96 ↑ 9.39 82.81 ↑ 9.42
w/ Multi-task 81.67 ↑ 11.53 82.58 ↑ 7.48 84.24 ↑ 8.48 81.86 ↑ 9.29 82.59 ↑ 9.20
w/ Seq-KD 70.17 ↑ 0.03 74.40 ↓ 0.7 75.62 ↓ 0.14 72.93 ↑ 0.36 73.28 ↓ 0.11
w/ SDFT 68.59 ↓ 1.55 75.21 ↑ 0.11 79.67 ↑ 3.91 78.45 ↑ 5.88 75.48 ↑ 2.09
w/ RaDis (Ours) 81.77 ↑ 11.63 82.39 ↑ 7.29 84.31 ↑ 8.55 81.98 ↑ 9.41 82.61 ↑ 9.22

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone LLM 67.39 67.87 64.56 71.32 67.79
w/ Vanilla-FT 84.33 ↑ 16.94 83.04 ↑ 15.17 86.23 ↑ 21.67 83.63 ↑ 12.31 84.31 ↑ 16.52
w/ Multi-task 84.79 ↑ 17.40 82.64 ↑ 14.77 86.47 ↑ 21.91 83.87 ↑ 12.55 84.44 ↑ 16.56
w/ Seq-KD 74.30 ↑ 6.91 73.69 ↑ 5.82 73.10 ↑ 8.54 78.28 ↑ 6.96 74.84 ↑ 7.06
w/ SDFT 51.90 ↓ 15.49 53.32 ↓ 14.55 47.07 ↓ 17.49 56.38 ↓ 14.94 52.17 ↓ 15.62
w/ RaDis (Ours) 84.32 ↑ 16.93 82.95 ↑ 15.08 86.55 ↑ 21.99 83.75 ↑ 12.43 84.39 ↑ 16.61

Prior LLM-based MT Models
ParroT - 81.20 - 79.30 -
BigTrans 80.65 78.81 78.21 81.31 79.75
BayLing-7B 76.85 82.18 74.72 84.43 79.55
ALMA-7B 89.05 85.45 87.05 84.87 86.61

Table 2: The overall translation performance (COMET score) in X→EN.The delta performance
compared to the backbone LLM is shown.

Models Czech German Russian Chinese Avg.

Backbone LLM: LLaMA-2-7B-chat
Backbone LLM 79.53 81.20 80.36 74.95 79.01
w/ Vanilla-FT 82.74 ↑ 3.21 83.31 ↑ 2.11 82.70 ↑ 2.34 78.08 ↑ 3.13 81.71 ↑ 2.7
w/ Multi-task 82.71 ↑ 3.18 83.37 ↑ 2.17 82.73 ↑ 2.37 78.20 ↑ 3.25 81.75 ↑ 2.74
w/ Seq-KD 78.50 ↓ 1.03 80.61 ↓ 0.59 79.88 ↓ 0.48 74.48 ↓ 0.47 78.37 ↓ 0.64
w/ SDFT 81.93 ↑ 2.4 82.60 ↑ 1.4 81.87 ↑ 1.51 76.77 ↑ 1.82 80.79 ↑ 1.78
w/ RaDis (Ours) 81.75 ↑ 2.22 83.07 ↑ 1.87 82.22 ↑ 1.86 77.83 ↑ 2.88 81.22 ↑ 2.21

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone LLM 81.88 81.73 81.97 77.76 80.84
w/ Vanilla-FT 83.51 ↑ 1.63 83.35 ↑ 1.62 83.23 ↑ 1.26 79.21 ↑ 1.45 82.33 ↑ 1.49
w/ Multi-task 82.84 ↑ 0.96 83.04 ↑ 1.31 83.15 ↑ 1.18 79.31 ↑ 1.55 82.09 ↑ 1.25
w/ Seq-KD 81.66 ↓ 0.22 81.98 ↑ 0.25 82.50 ↑ 0.53 77.49 ↓ 0.27 80.91 ↑ 0.07
w/ SDFT 80.38 ↓ 1.5 79.72 ↓ 2.01 80.21 ↓ 1.76 77.39 ↓ 0.37 79.43 ↓ 1.41
w/ RaDis (Ours) 82.41 ↑ 0.53 82.86 ↑ 1.13 83.32 ↑ 1.35 79.17 ↑ 1.41 81.94 ↑ 1.1

Prior LLM-based MT Models
ParroT - 82.40 - 75.20 -
BigTrans 81.19 80.68 77.80 74.26 78.48
BayLing-7B 82.03 83.19 82.48 77.48 81.30
ALMA-7B 85.93 83.95 84.84 79.78 83.63

The translation performance in EN→X and X→EN are shown in Table 1 and Table 2, respectively.
The performance on general ability, including instruction following, safety, and reasoning, is shown
in Table 3.

Fine-tuning is a double-edged sword. In the EN→X direction, Vanilla-FT significantly enhances
translation performance compared to zero-shot results, achieving an average COMET score im-
provement of +16.52. In the X→EN direction, the performance improvement is relatively small
(+1.49 COMET). This is mainly because the backbone LLMs already have a strong ability to trans-
late to English. However, this improvement in translation proficiency comes at the cost of a sub-
stantial decline in general capabilities, as reflected by the sharp performance drop in instruction-
following, safety, and reasoning benchmarks.

RaDis balances translation proficiency and general abilities. Multi-task achieves performance
comparable to Vanilla-FT. However, its performance on general tasks declines significantly, despite
the inclusion of additional instruction-following data. This is because the external instruction data

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The performance on instruction following, safety, and reasoning benchmarks. RP repre-
sents relative performance compared to the backbone LLM and is only calculated for CIT methods.
The delta performance compared to vanilla fine-tuning (Vanilla-FT) is shown. The safety rate for
BigTrans and ALMA is omitted, as these translation-specific models can not generate reasonable
responses.

Models Conversation and Instruction Following Safety Reasoning RP[%]
MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Backbone LLM: LLaMA-2-7B-chat
Backbone LLM 6.51 71.40 9.66 100.00 21.83 -
w/ Vanilla-FT 1.5 2.18 0.71 37.88 4.32 18.22
w/ Multi-task 5.64 ↑ 4.14 44.55 ↑ 42.37 3.98 ↑ 3.27 98.65 ↑ 60.77 11.98 ↑ 7.66 68.75 ↑ 50.53
w/ Seq-KD 6.59 ↑ 5.09 67.48 ↑ 65.30 8.33 ↑ 7.62 100.00 ↑ 62.12 19.48 ↑ 15.16 94.24 ↑ 76.02
w/ SDFT 5.66 ↑ 4.16 67.55 ↑ 65.37 7.09 ↑ 6.38 98.08 ↑ 60.20 20.02 ↑ 15.70 88.95 ↑ 70.72
w/ RaDis 6.56 ↑ 5.06 67.94 ↑ 65.76 7.47 ↑ 6.76 100.00 ↑ 62.12 19.48 ↑ 15.16 92.50 ↑ 74.27

Backbone LLM: Mistral-7B-Instruct-v0.2
Backbone LLM 7.67 84.91 15.09 68.46 41.62 -
w/ Vanilla-FT 1.94 6.07 1.02 4.23 0.23 9.19
w/ Multi-task 6.87 ↑ 4.93 49.46 ↑ 43.39 5.45 ↑ 4.43 63.85 ↑ 59.62 22.97 ↑ 22.74 66.48 ↑ 57.29
w/ Seq-KD 6.99 ↑ 5.05 82.06 ↑ 75.99 12.7 ↑ 11.68 60.58 ↑ 56.35 41.77 ↑ 41.54 92.16 ↑ 82.97
w/ SDFT 7.00 ↑ 5.06 78.32 ↑ 72.25 10.02 ↑ 9.00 48.27 ↑ 44.04 41.09 ↑ 40.86 83.83 ↑ 74.64
w/ RaDis 7.57 ↑ 5.63 80.34 ↑ 74.27 11.05 ↑ 10.03 62.12 ↑ 57.89 41.70 ↑ 41.47 91.49 ↑ 82.31

Prior LLM-based MT models
ParroT 4.58 28.06 2.82 26.35 4.09 -
BigTrans 1.73 0.42 0.22 - 0 -
BayLing-7B 4.51 51.29 4.43 84.62 5.38 -
ALMA-7B 2.80 1.08 0.17 - 0 -

is of low quality and out-of-distribution relative to the backbone LLM. As a result, fine-tuning
these data does not alleviate the issue of catastrophic forgetting. The translation results of SDFT
fall below the zero-shot performance of backbone LLM when using Mistral-7B-Instruct-v0.2 as the
backbone LLM. This under-performance stems from the fact that the prompt used for rewriting data
is tailored for LLaMA-2 models, which does not generalize well to Mistral models. Additionally,
SDFT shows weaker performance in EN→X translations compared to X→EN, indicating that the
limited ability of the backbone LLM to translate into other languages diminishes the quality of the
distilled dataset. Seq-KD preserves up to 94.24% of the overall general capabilities but brings almost
no improvement in translation performance. In contrast, RaDis strikes a better balance between
translation proficiency and general ability. It achieves a COMET score comparable to Vanilla-FT
(81.58 vs. 82.02, 83.17 vs. 83.56) while preserving up to 92.50% of the general capabilities.

Compared with prior LLM-based MT models. RaDis helps backbone models perform com-
parably with SOTA LLM-based MT models in translation performance. Our best model (Mistral-
7B-Instruct-v0.2 w/ RaDis) surpasses BigTrans, BayLing, and ParroT by a considerable margin in
average COMET scores, particularly in the EN→X direction. Although ALMA achieves a higher
COMET score than our best model, it benefits from continual pre-training on massive monolin-
gual data, which is not implemented in our approach. Regarding general ability, models equipped
with RaDis significantly outperform all prior studies. Translate-specific models, such as BigTrans
and ALMA that are only fine-tuned with translation data, lack general ability. While ParroT and
BayLing utilize Alpaca data in training, their general ability is limited by their backbone models and
the quality of Alpaca data. In contrast, RaDis preserves the strong general ability of the backbone
LLMs, achieving the highest performance. As TowerInstruct has been fine-tuned on the WMT’22
test dataset, we evaluate translation performance on the WMT’23 test dataset following their setting.
The detailed comparison can be found in Appendix C.

5 ANALYSIS

5.1 DO RATIONALES CONTAIN GENERAL KNOWLEDGE?

To investigate the content of self-generated rationales, we randomly sampled 25 instances from each
translation direction, forming a set of 200 for analysis. The content of the rationales included diverse
information, as expected. As shown in Table 4, the information can be broadly categorized into eight
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Table 4: Rationale categories and their main contents. Note that the percentages do not sum to
100%, as each rationale may include multiple categories of information.

Information Category Contents Occurrence [%]

Word/phrase translation Translations of individual words and phrases in the sentence. 29.5
Alternative translation Multiple translation options provided for selection. 19.5
Helpful&Safety Guidance on helpful and safe practices when translating sensitive sentences. 17.5
Semantic explanation Clarification of the sentence’s meaning. 15.5
Back-translation Back-translations of non-English results to verify their accuracy. 12.5
Factual supplement Additional factual information regarding entities or events in the sentence. 9.0
Word/phrase explanation Explanations for special words, idioms, or expressions. 7.5
Grammar Information on grammar, such as part-of-speech or sentence structure. 5.5

types, ranging from word alignments to factual knowledge. These rationales act as a ”semantic
scaffold”, linking old knowledge to new tasks and building an underlying reasoning framework that
ties everything together, which improves knowledge retention. For examples of rationales, please
refer to Appendix E.

5.2 WHICH IS THE KEY: RATIONALE QUALITY OR SELF-DISTILLATION PROPERTY?

Table 5: The result of ablation study. The names in brackets are the models used to generate ratio-
nales. The best results in different RaDis variants are highlighted in bold.

Models Machine Translation Conversation and Instruction Following Safety Reasoning

X→EN EN→X MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Mistral-7B-Instruct-v0.2 80.84 67.79 7.67 84.91 15.09 68.46 41.62
w/ Vanilla-FT 82.33 84.31 1.94 6.07 1.02 4.23 0.23
w/ RaDis (Self-generated) 81.94 84.39 7.57 80.34 11.05 62.12 41.70
w/ RaDis (LLaMA-2-Chat-7B) 82.33 84.51 6.89 63.85 6.28 98.46 35.03
w/ RaDis (LLaMA-3-70B-Instruct) 82.84 84.71 7.00 77.41 10.27 58.27 39.42

The effectiveness of RaDis can be explained in two ways: rationale quality (in terms of the knowl-
edge they contain) and the self-distillation property. We conducted the following ablation experi-
ment to analyze the impact of these two factors. Specifically, the self-generated rationales in RaDis
were replaced by rationales generated by different models, namely LLaMA-2-7B-Chat and LLaMA-
3-70B-Instruct (Dubey et al., 2024). Due to the difference in parameter size and fine-tuning data,
these models can provide rationales with varying levels of quality, but all lack the self-distillation
property. Therefore, it is possible to separate the rationale quality and the self-distillation property
to analyze their contributions.

As shown in Table 5, RaDis consistently mitigates the forgetting of general capabilities, regard-
less of the type of rationales used. When comparing rationales generated by LLaMA-2-7B-Chat
and LLaMA-3-70B-Instruct, the latter demonstrates superior performance in both MT and general
tasks, except for the safety task. These results suggest that models can learn more translation knowl-
edge from higher-quality rationales, which leads to better performance. However, self-generated
rationales demonstrate the strongest ability to retain general capabilities, even outperforming those
generated by LLaMA-3-70B-Instruct, highlighting the importance of the self-distillation property.

5.3 RADIS AVOIDS THE CONFLICT BETWEEN LEARNING AND MITIGATING CF

As demonstrated in Section 3.3, our proposed RaDis can be viewed as a specialized form of
sequence-level distillation, where the rationale r serves as the distillation target. However, while
both methods excel at preserving general capabilities, RaDis notably enhances translation profi-
ciency, whereas Seq-KD does not. We posit that the difference arises from whether the regu-
larization term conflicts with the MT learning process. In Seq-KD (Equation 5), the MT loss
− logP (y|x, I; θ) and the regularization term − logP (y′|x, I; θ) share the same input but have
different outputs, which may lead to conflict in optimization. In contrast, with RaDis (Equation 4),
the MT loss and the regularization term − logP (r|y,x, I; θ) are less likely to exhibit this issue.
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Figure 4: Overview of the gradient similarity between the regularization term and MT loss.

We analyze gradient similarity to validate our assumption. Specifically, we sample 128 examples
from each translation direction to create a validation set consisting of 1024 samples. Subsequently,
the gradient features for the MT loss and the regularization term for both methods are extracted,
following Xia et al. (2024). Finally, the cosine similarity of the gradient features is computed.
As depicted in Figure 4, in 24 out of 32 layers, the gradient of the regularization term for Seq-
KD exhibits negative similarity with the MT loss, indicating a significant conflict between these
objectives. In contrast, in 25 out of 32 layers, the gradient of RaDis’ regularization term shows
positive similarity with the MT loss, suggesting that RaDis can avoid the conflict between learning
and mitigating forgetting.

6 CONCLUSIONS

In this paper, we conducted a systematic evaluation of prior LLM-based MT models, finding that
they lack diverse general capabilities, degenerating into task-specific translation models. This degen-
eration is mainly caused by catastrophic forgetting while fine-tuning for translation tasks. Previous
continual learning approaches can not preserve the general capabilities gained from in-house train-
ing data. To address this issue, we propose a simple yet effective strategy, RaDis. RaDis prompts
LLMs to generate rationales for the reference translation and utilizes these rationales to mitigate for-
getting in a self-distillation manner. Mirroring the human learning process, these rationales connect
prior knowledge with new tasks, building a reasoning framework that ties internal concepts together
and enhances knowledge retention. Extensive experiments show that RaDis greatly enhances the
translation performance while preserving the models’ general ability. These insights can help future
research on building LLMs capable of excelling in specialized tasks without compromising their
generality or safety and providing a fresh angle for utilizing rationales in the CL field.

7 LIMITATIONS AND FUTURE WORK

Our study is subject to certain limitations. Owing to constraints in computational resources, we
adopt LoRA on models with 7B parameters. Further investigations involving larger models and
full fine-tuning remain to be explored. Besides, as a post-training method, RaDis is limited by
the language proficiency of backbone LLM. This limits its performance on low-resource language.
However, we believe the rapidly evolving multilingual LLMs would narrow this gap. Furthermore,
we predominately focus on fine-tuning with machine translation data, applying RaDis to other NLP
tasks will further support its effectiveness (See Appendix C). This potential direction is what we
intend to explore in future work.

REPRODUCIBILITY STATEMENT

Codes and model weights will be made public after review to advocate future research. For synthe-
sizing data, we provide several examples in Appendix E. For evaluation, we primarily use greedy
decoding to ensure reproducibility, except where specific generation configurations are mandated by
certain benchmark tools. Note that evaluations on instruction-following abilities (AlpacaEval and
MT-Bench) rely on OpenAI’s API. The randomness of API responses may have little impact on the
reproducibility of these benchmarks.
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Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Somin Wadhwa, Silvio Amir, and Byron C. Wallace. Investigating mysteries of cot-augmented
distillation. CoRR, abs/2406.14511, 2024. doi: 10.48550/ARXIV.2406.14511. URL https:
//doi.org/10.48550/arXiv.2406.14511.

Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, and Xiang Ren. SCOTT: self-
consistent chain-of-thought distillation. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki
Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 5546–
5558. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.ACL-LONG.
304. URL https://doi.org/10.18653/v1/2023.acl-long.304.

Yifan Wang, Yafei Liu, Chufan Shi, Haoling Li, Chen Chen, Haonan Lu, and Yujiu Yang. Inscl: A
data-efficient continual learning paradigm for fine-tuning large language models with instructions.
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A BASELINE DETAILS

A.1 CONTINUAL INSTRUCTION TUNING BASELINES

Vanilla Fine-tuning. This method directly fine-tunes the backbone LLMs with translation data,
without incorporating any mechanism to address the forgetting issue.

Sequence-level Knowledge Distillation (Seq-KD). This method first sends the formatted trans-
lation instructions to the backbone LLM and generates outputs y′. The model is trained with both
golden references y and the self-generated outputs y′. The overall training objective is:

LSeq-KD =L(x,y; θ) + L(x,y′; θ)

=− logP (y|x, I; θ)− logP (y′|x, I; θ)
(5)

Self-distillation Fine-tuning (SDFT). (Yang et al., 2024) This method first prompts the backbone
LLM to paraphrase the original responses present in the task dataset, yielding a distilled dataset.
Subsequently, the distilled dataset, which is used in subsequent fine-tuning, helps narrow the dis-
tribution gap between LLM and the original dataset. We adopt the general distillation template
provided in their paper to paraphrase the dataset.

Multi-task fine-tuning (Multi-task) . This method employs open-sourced instruction following
datasets and fine-tunes the LLM with both translation and instruction following data. Specifically,
we adopt Alpaca (Taori et al., 2023) and Dolly (Conover et al., 2023) as the chosen instruction
following dataset. Note that multi-task fine-tuning utilizes more data in the training process and is
usually considered the upper bound of the continual learning approaches.

A.2 PRIOR LLM-BASED MT MODELS

ParroT (Jiao et al., 2023) reformulates translation data into the instruction-following style and
introduces a ”Hint” field for incorporating extra requirements to regulate the translation process. It
is also fine-tuned on the Alpaca dataset to enhance general ability.

BigTrans (Yang et al., 2023) continual pre-train LLaMA-1-13B with Chinese monolingual data
and an extensive parallel dataset encompassing 102 natural languages. They then apply multilingual
translation instructions for fine-tuning.

BayLing (Zhang et al., 2023) builds an interactive translation dataset and fine-tune LLaMA-1
models with both interactive translation and instruction-following datasets (Alpaca).

ALMA (Xu et al., 2024a) proposes a new training recipe for building LLM-based MT models,
which begins with initial fine-tuning on monolingual data and then progresses to fine-tuning on a
select set of high-quality parallel data.

TowerInstruct (Alves et al., 2024) propose a recipe for tailoring LLMs to multiple tasks present
in translation workflows. They perform continued pre-training on a multilingual mixture of mono-
lingual and parallel data, followed by fine-tuning instructions relevant to translation processes and
general tasks.

In our experiments, we utilized the 7B models as baselines for ParroT, BayLing, ALMA and Tow-
erInstruct to ensure a fair comparison of model size.
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B TRAINING DETAILS

B.1 PROMPT TEMPLATES

In all experiments, we use the original instruction format of the backbone LLM for both rationale
generation and fine-tuning. For LLaMA To avoid the overfit on specific instructions. 5 different
translation instructions are generated and randomly applied to each sample. The instructions are
shown in Figure 5.

Instruction 1:
Could you please translate this sentence from {lang1} to {lang2}?
{sent1}
Instruction 2:
Translate the following sentence from {lang1} to {lang2}:
{sent1}
Instruction 3:
Translate this sentence from {lang1} to {lang2}.
{sent1}
Instruction 4:
Translate from {lang1} to {lang2}:
{sent1}
Instruction 5:
{sent1}
Translate this sentence to {lang2}.

Figure 5: The translation instructions.

B.2 HYPERPARAMETER

Due to the limitation of resources, our experiments utilize the Low-Rank Adaptation (LoRA) tech-
nique (Hu et al., 2022). Specifically, we integrate a LoRA adapter with a rank of 16 into all the
linear layers of the LLMs and exclusively train the adapter. The LLMs are fine-tuned over three
epochs on the translation dataset, which equates to approximately 2,500 steps. We use a learning
rate of 1×10−4 and a batch size of 128 to ensure stable training across most experiments. An excep-
tion is Seq-KD, which requires a batch size of 256 to maintain the same number of training steps.
All experiments are performed on 4 NVIDIA A100 80GB GPUs. For data synthesis, we employ
vllm (Kwon et al., 2023) to facilitate fast data generation. For evaluation, we primarily use greedy
decoding to ensure reproducibility, except where specific generation configurations are mandated by
certain benchmark tools.

C COMPARISON WITH TOWERINSTRUCT

Given that TowerInstruct has been fine-tuned on the WMT’22 test set, we shifted the transla-
tion test set to the WMT’23 test set. We report the performance of the best model in our pa-
per (Mistral+RaDis) alongside ALMA and TowerInstruct. To further demonstrate the potential
of our approach, we also conducted new experiments with Qwen2.5-Instruct as the backbone
(Qwen2.5+RaDis).

As shown in Table 6, RaDis consistently outperforms TowerInstruct-v0.2 in terms of preserving gen-
eral abilities. This is primarily due to the fact that TowerInstruct-v0.2 is fine-tuned using UltraChat,
which, like other open-sourced instruction datasets, suffers from lower quality.

In terms of translation, TowerInstruct-v0.2 achieves higher performance, largely due to the benefits
of multilingual pre-training and extensive parallel fine-tuning. However, we would like to emphasize
the strong potential of our approach from two key perspectives:

• RaDis is more efficient: The training times for TowerBase 7B and 13B were 80 and 160
GPU days, respectively, using A100-80GB GPUs. Fine-tuning TowerInstruct adds an ad-
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Table 6: Comparison to TowerInstruct-v0.2. The best result in each column is marked in bold. The
second best is italicized.

Models Machine Translation Conversation and Instruction Following Safety Reasoning

X→EN EN→X MT-bench AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Mistral-7B-Instruct-v0.2 80.84 67.79 7.67 84.91 15.09 68.46 41.62
w/ RaDis 80.64 80.58 7.57 80.34 11.05 62.12 41.70

Qwen2.5-7B-Instruct 80.90 80.50 8.58 88.46 31.55 99.81 87.72
w/ RaDis 82.13 82.81 8.44 85.62 27.91 99.04 88.78

ALMA-7B 81.65 81.91 2.80 1.08 0.17 - 0.00
TowerInstruct-7B-v0.2 82.77 84.28 5.71 51.59 4.02 30.19 7.35

ditional 200 GPU hours. In contrast, RaDis requires only 20 GPU hours (4 hours for
generating rationales and 16 hours for training), which is less than 1% of the training cost
for TowerInstruct-7B, while still achieving strong performance.

• RaDis can benefit from stronger backbone LLM: While TowerInstruct achieves better
translation performance, RaDis can effectively bridge this gap by leveraging a stronger
backbone LLM. As shown in ‘Table 2‘, switching the backbone from Mistral to Qwen2.5
leads to substantial improvements across all tasks and outperforms ALMA. We believe that
as open-source multilingual LLMs continue to improve, the performance gap in translation
will gradually narrow.

Together, these results underscore the advantages of our approach and demonstrate that RaDis offers
a novel and competitive paradigm for building LLMs that excel in both translation proficiency and
general ability.

D GENERALIZING RADIS TO OTHER TASKS

In this paper, we predominately grounded RaDis to the MT task. However, RaDis can serve as a
universal CIT method for broader tasks. In this section, we demonstrate this potential with the code
generation task. Specifically, we fine-tuned Mistral-v0.2 on Python code data from the Magicoder
dataset (Wei et al., 2024) and evaluated its performance using HumanEval (Chen et al., 2021) and
general ability benchmarks.

Table 7: Experiments on code generation. The best result in each column is marked in bold.

Models Code Generation Conversation and Instruction Following Safety Reasoning

HumanEval AlpacaEval AlpacaEval 2.0 AdvBench GSM8K

Mistral-7B-Instruct-v0.2 36.59 84.91 15.09 68.46 41.62
w/ Vanilla-FT 42.07 73.89 8.75 40.00 43.97
w/ SDFT 40.24 78.58 10.46 48.08 40.86
w/ RaDis 43.90 80.25 11.4 51.92 42.91

As shown in Table 7, RaDis outperforms Vanilla-FT and SDFT in code generation tasks, achieving
higher Pass@1 on HumanEval and excelling in other benchmarks for general abilities.

A key reason for this is that RaDis directly preserves the original references in the dataset, whereas
SDFT paraphrases them. Intuitively, while paraphrasing helps bridge the distribution gap, it also
reduces the amount of learnable knowledge. As a result, SDFT may struggle to outperform Vanilla-
FT on certain tasks. In contrast, RaDis directly utilizes the original references, preserving all the
knowledge embedded in the data.

Regarding performance on general tasks, RaDis still outperforms SDFT. We believe this can be
attributed to the distribution gap. While SDFT claims to distill the dataset, it actually paraphrases
the data. As a result, the model’s responses are sampled from the paraphrased instruction’s output
distribution, which tends to be out-of-distribution relative to the original task instruction. In contrast,
RaDis performs self-distillation using rationales, which are fully in-distribution. This enables RaDis
to more effectively alleviate forgetting and better preserve general abilities.
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These results suggest that RaDis generalizes well to a broader range of tasks, highlighting its po-
tential as a robust, general-purpose continual instruction tuning method. We plan to investigate this
potential in future works.

E RATIONALE EXAMPLES

Several examples of rationales generated by Mistral-7B-Instruct-v0.2 are provided in Fig-
ure 7,8,9,10,11,12,13.

Instruction:
Translate this sentence from Czech to English.
Policie celý přı́pad řádně prošetřila a útočnı́ka posléze vypátrala.

Response:
The police investigated the case thoroughly and finally tracked down the assailant.

Rationale:
Explanation:
In this sentence, ”policie” means ”police,” ”celý přı́pad” means ”the entire case,” ”řádně
prošetřila” means ”thoroughly investigated,” and ”vypátrala” means ”tracked down” or
”found.” The past tense verbs ”prošetřila” and ”vypátrala” both end in ”-la,” which is the fem-
inine singular past tense ending in Czech. Since there is no definite article before ”policie,” it
is assumed to be in the neutral form, which is why the verb forms are in the feminine singu-
lar. In English, we keep the same meaning but change the word order to ”the police investi-
gated the case thoroughly and finally found the assailant.”

Figure 6: Example of rationale containing word/phrase translation.

Instruction:
Could you please translate this sentence from Czech to English?
Tak to vypadá, když se lidé za odpočinkem a zábavou přesunou někam, kde je to velmi
odlišné od jejich každodennı́ho života.

Response:
This is when people go to a place that is very different from their regular day-to-day life to
relax and have fun.

Rationale:
or
It looks like this when people move to a place that is quite different from their everyday life
for relaxation and enjoyment.

Figure 7: Example of rationale containing alternative translation.
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Instruction:
Translate the following sentence from English to Chinese:
But denuclearization negotiations have stalled.

Response:
但无核化谈判陷入了僵局。

Rationale:
This translation is provided for information purposes only and may not be 100% accurate. It
is always recommended to consult a professional translator for important documents or con-
versations.

Figure 8: Example of rationale containing helpful&safety information.

Instruction:
Translate from English to Czech:
It will support their training.

Response:
Podpořı́ jejich výcvik.

Rationale:
This sentence means that the action or thing being referred to will help or contribute to the
training of the people mentioned.

Figure 9: Example of rationale containing semantic explanation.

Instruction:
Could you please translate this sentence from English to Chinese?
According to their research, a single tea bag can release more than 11.6 billion plastic parti-
cles, ”which is higher than the plastic load of other earlier foods by several magnitudes”.

Response:
根据这项研究显示，他们发现，单一茶袋释出超过116亿颗塑料微粒，“较先前其他食物的
塑料负荷量高出好几个级数”。

Rationale:
This sentence translates to:
According to their research, a single tea bag releases over 11.6 billion plastic particles, which
is several magnitudes higher than the plastic load of other earlier foods.

Figure 10: Example of rationale containing back-translation.
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Instruction:
Translate from English to Czech:
Its second claw was larger, giving rise to the name Hesperonychus which means ”western
claw.”

Response:
Jeho druhý dráp byl většı́, a proto byl pojmenován Hesperonychus, což znamená ”západnı́
dráp“.

Rationale:
This dinosaur was a theropod, a group of dinosaurs that includes meat-eating species. Hesper-
onychus lived during the Late Cretaceous period, around 75 to 73 million years ago, in what
is now the southwestern United States. Its fossils have been found in the Morrison Formation
in Colorado and Utah.
Hesperonychus was a relatively small theropod, with an estimated length of about 3 meters
(10 feet) and weight of around 30 kilograms (66 pounds). It had a long, low snout and small,
sharp teeth, suggesting that it may have been an agile predator that hunted small prey.
The most distinctive feature of Hesperonychus was its second toe, which was much larger
than the others. This feature gave rise to its name, as ”hespero” means ”western” and ”ny-
chus” means ”claw.” The large claw was likely used for gripping and holding onto branches
or prey, making Hesperonychus a unique and intriguing dinosaur.
Despite its small size, Hesperonychus was an important discovery in the study of dinosaur
evolution, as it provided evidence of the diversity of theropod foot structures during the Late
Cretaceous period.

Figure 11: Example of rationale containing factual supplement.

Instruction:
Could you please translate this sentence from Czech to English?

”I kdyby všechno ostatnı́ na světě bylo špatně, on byl nebroušený diamant, který ozářil každý
den“, řekl.”

Response:
”With everything else that’s going wrong with the world, he was that diamond in the rough
that was shining bright every day,” he said.

Rationale:
This idiomatic expression ”diamond in the rough” refers to someone who has great potential
or value, despite not being polished or perfect yet.

Figure 12: Example of rationale containing word/phrase explanation.
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Instruction:
Wir können froh sein, dass wir diese Zeit längst überwunden haben.
Translate this sentence to English.

Response:
We can be glad that we have long overcome this time.

Rationale:
Explanation: The sentence in German means ”We can be glad that we have got over this time
a long time ago.” The past perfect tense ”haben überwunden” (have overcome) is used to ex-
press that an action was completed in the past. The subjunctive mood ”können sein” (can be)
is used to express a state of being or a condition. The past participle ”überwunden” agrees
with the subject ”wir” (we) in gender and number. The article ”diese” refers to the time men-
tioned earlier in the sentence. The word ”längst” (long) is an adverb that modifies the verb
”überwunden” and indicates that the action was completed a long time ago. The sentence
in English conveys the same meaning, but uses the past perfect continuous tense ”have been
glad” to express the same idea of a past state that continues up to the present.

Figure 13: Example of rationale containing grammar information.
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