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Abstract
Dropout is a widely adopted technique that signif-
icantly improves the generalization of deep neu-
ral networks in various domains. However, the
discrepancy in model configurations between the
training and evaluation phases introduces a signif-
icant challenge: the model distributional shift. In
this study, we introduce an innovative approach
termed Model Regularization for Dropout (MoRe-
Drop). MoReDrop actively updates solely the
dense model during training, targeting its loss
function optimization and thus eliminating the
primary source of distributional shift. To further
leverage the benefits of dropout, we introduce a
regularizer derived from the output divergence of
the dense and its dropout models. Importantly,
sub-models receive passive updates owing to their
shared attributes with the dense model. To reduce
computational demands, we introduce a stream-
lined variant of MoReDrop, referred to as MoRe-
DropL, which utilizes dropout exclusively in the
final layer. Our experiments, conducted on several
benchmarks across multiple domains, consistently
demonstrate the scalability, efficiency, and robust-
ness of our proposed algorithms.

1. Introduction
In recent years, deep Neural Networks (DNNs) (Salakhutdi-
nov, 2014; Schmidhuber, 2015) have made significant ad-
vancements across a wide range of areas such as computer
vision, reinforcement learning, and natural language pro-
cessing (Deng et al., 2009; Mnih et al., 2015; He et al., 2016;
Vaswani et al., 2017; Ho et al., 2020; Jumper et al., 2021;
Kang et al., 2024). While DNNs hold great promise with
deeper networks (He et al., 2016; Wang et al., 2022), the
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model complexity correspondingly escalates rapidly. This
rapid escalation underscores the need for effective regular-
ization techniques to mitigate overfitting and enhance the
generalization capabilities of these deep models. Numerous
strategies have been developed to tackle these challenges,
with dropout gaining prominence due to its simplicity and ef-
ficacy extensively utilized in many recent AI breakthroughs
(Hinton et al., 2012; Srivastava et al., 2014; Dosovitskiy
et al., 2021; Jumper et al., 2021; Ramesh et al., 2022; Wang
et al., 2024).

Dropout generally uses a Bernoulli-distributed mask applied
to each layer before each training step, which also implies
independently and randomly deactivating each neuron with
probability p but activating all neurons during inference.
Intuitively, dropout training mimics, simultaneously and
jointly, training an ensemble of neural networks with vary-
ing deactivated unit configurations, all while utilizing shared
weights and parameters to the dense model (Hinton et al.,
2012; Srivastava et al., 2014). However, it is non-trivial to
explicitly assemble sub-models1, and a single model charac-
terized by scaled parameters without dropout, i.e., the dense
model, is employed for the practical evaluation period. It
introduces a subtle but non-negligible model distributional
shift between training and evaluation stages.

A variety of regularizers have been proposed to mitigate
this issue. Sub-to-sub regularization paradigm imposes con-
straints between pairs of sub-models in the training phase.
The primary objective of this constraint is to ensure con-
sistency across different sub-models, thereby maintaining
the expectation of a unified, coherent model for evalua-
tion. Examples of such regularizers include L2 distance
(Zolna et al., 2018), Kullback-Leibler (KL) divergence for
two random sub-models (Liang et al., 2021) or worse-case
sub-models (Xia et al., 2023). Another line of research intro-
duces the dense-to-sub regularization (Ma et al., 2017). This
approach imposes constraints from the divergence of dense
and sub-models throughout the training process, ensuring
consistency across the pair of dense-sub models. However,
existing methodologies consistently employ an active up-
date strategy for sub-models throughout the training process,
with a predominant focus on minimizing sub-models loss.

1We note sub-models as their corresponding dense model em-
ployed dropout with shared parameters.
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Figure 1. The overall framework and detailed loss computation of MoReDrop. Left: The input data x is processed twice, once each
through the dense model and its sampled sub-model, yielding two outputs. The loss function of the dense model is then regularized
by minimizing the discrepancy between these two outputs. The gradient backpropagation is performed only on the dense model
( blue-shaded area ). Right: The details for calculating the regularized loss for the dense model.

Those approaches fail to eliminate the model distributional
shift, which is an intrinsic consequence of the expectation
operation employed during evaluation.

In this study, we propose a novel dense-to-sub regularization
approach, named Model Regularization for Dropout (MoRe-
Drop), to entirely mitigate the model distributional shift.
MoReDrop exclusively updates the dense model, thereby
circumventing the expectation operator to guarantee a uni-
form model configuration across both training and inference
stages, with a primary emphasis on its loss function. More-
over, MoReDrop introduces a novel regularization term,
endowed with a bounded property, into the loss function.
This term is designed to quantify the discrepancy in out-
puts between the dense model and a randomly sampled
sub-model for the same mini-batch dataset.

Remarkably, the regularizer functions as a toolkit, enabling
the dense model to exploit the advantages of dropout at each
gradient iteration, but without explicit dropout implemen-
tation. Conversely, the sub-models receive passive updates
via parameter sharing with the dense model over the course
of training. The overall framework and training details of
MoReDrop are shown in Fig. 1.

However, same as other methods, MoReDrop requires an
additional forward pass in the sub-model, which is compu-
tationally intensive for parameter-heavy deep layers (Devlin
et al., 2019; Dosovitskiy et al., 2021). To alleviate this,
MoReDropL is introduced, reducing the computational de-
mand to a single last-layer forward pass by applying dropout
solely to the final shared-parameter layer. Intuitively, MoRe-
DropL trades a marginal loss in generalization for signifi-
cantly lower computational costs.

We assess our proposed methods across various models

and tasks, containing image classification, image generation
tasks, and language understanding. Experiments show that
our proposed methods allow for a higher dropout rate, which
potentially further improves the performance but avoids the
distributional shift. We also observe that MoReDrop consis-
tently delivers superior performance compared to state-of-
the-art baselines. Surprisingly, MoReDropL also surpasses
previous methods in many tasks though it trades off the
model generalization ability for computation efficiency.

2. Related Work
Dropout and its Variants. Regularization plays a pivotal
role in preventing overfitting in deep learning and large-
scale models. A multitude of regularization techniques has
been proposed to address this issue, including but not lim-
ited to weight decay, dropout, batch normalization, noise
addition, early stopping, and label smoothing (Simonyan
& Zisserman, 2015; Ioffe & Szegedy, 2015; Poole et al.,
2014; Yao et al., 2007; Szegedy et al., 2016). Among these,
dropout stands out as a particularly effective method due to
its simplicity and broad applicability in different domains
(Hinton et al., 2012; Srivastava et al., 2014). For different
model architectures, different dropout methods a variety
of dropout methods have been proposed. These consist of
DropConnect (Wan et al., 2013) for fully connected lay-
ers, SpatialDropout (Tompson et al., 2015) and DropBlock
(Ghiasi et al., 2018) for convolutional neural Networks,
DropPath (Larsson et al., 2017) for ResNet, and DropHead
(Zhou et al., 2020) for Transformer models. In addition
to its role as a regularization method to prevent overfitting,
dropout has also been utilized as a data augmentation tech-
nique (DeVries & Taylor, 2017; Zhong et al., 2020), further
contributing to its effectiveness and versatility.
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Table 1. Comparison of different regularization approaches to mitigate the model distributional shift between the training and inference
stages. It is important to highlight that the distributional gap of MoReDrop between the models in the inference and training stages is zero
because the same model configuration, i.e., the dense model, has been used for those stages.

Algorithms Dense model update Sub-model update Regularizer Distance function Distribution Shift

FD (Zolna et al., 2018) Passive Active Sub-to-sub L2 G
R-Drop (Liang et al., 2021) Passive Active Sub-to-sub KL G
WordReg (Xia et al., 2023) Passive Active Sub-to-sub KL G
ELD (Ma et al., 2017) Passive Active Dense-to-sub L2 G
MoReDrop (ours) Active Passive Dense-to-sub Modified L1 (Eqn. (4)) 0

Model Distributional Shift. Prior work has revealed that
dropout brings the inconsistency between training and in-
ference stages, specifically, the model distributional shift.
There are primary two categories to address this issue: (1)
Sub-to-sub regularization paradigm aims to maintain the
consistency between a pair of sub-models in the training
process. In this paradigm, Fraternal Dropout (FD) (Zolna
et al., 2018) employs L2 distance on hidden states, R-Drop
(Liang et al., 2021) utilizes the on two sampled sub-models
with dropout, and Worst-Case Drop Regularization (Wor-
dReg) (Xia et al., 2023) holds the same inspiration with
R-Drop but firstly find the two worse-case sub-models. (2)
dense-to-sub regularization paradigm, i.e., Expectation Lin-
ear Dropout (ELD) (Ma et al., 2017), which maintains the
consistency between a pair of dense-sub models as training
progresses. MoReDrop belongs to the dense-to-sub regular-
ization paradigm while still holding a significant difference.

Knowledge Distillation. Our research delves into the reg-
ularization of outputs between two distinct models: a dense
model and a sub-model employing dropout. This approach
resonates with the principles of knowledge distillation and
the teacher-student training paradigm (Hinton et al., 2015;
Romero et al., 2014; Yim et al., 2017; Allen-Zhu & Li, 2020;
Chen et al., 2020; Tarvainen & Valpola, 2017). Contrary
to prior research in knowledge distillation, our approach
does not explicitly define which model serves as the teacher
or the student. In our framework, the dense model is ex-
pected to provide a stable baseline performance, with further
improvements realized through regularization between the
dense and sub-models. This dual functionality allows either
model to assume the role of teacher or student. However,
our primary objective is to enhance the generality and ro-
bustness of the dense model, positioning it as the student
in this context. Notably, our methodology does not intro-
duce additional parameters or a pre-trained teacher model
during the training process, positioning it as a form of self-
distillation (Xu & Liu, 2019; Zhang et al., 2019; Mobahi
et al., 2020; Allen-Zhu & Li, 2020).

3. Preliminaries
Notation The training set, denoted as D, consists of pairs
{(x1, y1), . . . , (xN , yN )}, where N signifies the total num-
ber of pairs in D. In this context, each pair (xi, yi) in
D is typically considered an independent and identically
distributed (i.i.d.) sample drawn from the respective distri-
butions of X ∈ X and Y ∈ Y , respectively.

Consider a DNN, denoted by M, consisting of L hidden
layers, with X and Y representing the input and output,
respectively. Each layer in the network is indexed by l,
which spans from 1 to L. The output vector from the lth

layer is signified by h(l). In this setup, the network’s input is
specified as h(0) = x, and the final network output is h(L).
The network M is characterized by a set of parameters
collectively symbolized by θ = {θl : l = 1, . . . , L}. Here,
θl encapsulates the parameters associated with the lth layer.
With slight abuse of notation, we indicate l(θ) as the loss
function.

Dropout In the naı̈ve dropout formulation (Hinton et al.,
2012; Srivastava et al., 2014), each layer is associated with
Γ(l), a vector composed of independent Bernoulli random
variables. Each of these variables has a probability pl of
taking the value 0 and a probability 1− pl of assuming the
value 1. This is analogous to independently deactivating
the corresponding neuron (effectively setting each weight
to zero) with a probability pl. We introduce a set of dropout
random variables, denoted by S = {Γ(l) : l = 1, . . . , L},
where Γ(l) corresponds to the dropout random variable for
the lth layer. We can represent the deep neural network Mi

as:
h(l) = fl(h

(l−1) ⊙ γ(l)),

where ⊙ denotes the element-wise product, and fl repre-
sents the transformation function for the lth layer. For in-
stance, if the lth layer is a fully connected layer with a
weight matrix W , a bias vector b, and a sigmoid activation
function σ(x) = 1/(1+ exp(−x)), then the transformation
function is defined as fl(x) = σ(Wx + b). To justify the
connection between the dense model and the sub-model, we
represent Mi as the sub-model derived from M through the
application of dropout, i can be any number to represent
different sub-models. We also use h(l)(x, s; θ) to denote
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the output of the lth layer given the input x and the dropout
value s, under the parameter set θ.

Conceptually, dropout seeks to train an ensemble of ex-
ponentially many neural networks concurrently, with each
network corresponding to a unique configuration of deacti-
vated units, while sharing the same weights or parameters
(Hinton et al., 2012; Hara et al., 2016). We denote the loss
function with dropout as l(S; θ).

Model distributional shift. Dropout implicitly forms
an ensemble of neural networks via weight sharing during
the training phase. However, for evaluation, a determinis-
tic dense model without dropped neurons is employed to
approximate the ensemble operation. This approximation
results in a model distributional shift, noted as G, between
training and evaluation when dropout is used:

G = ES

[
H(L)(x, S; θ)

]
− h(L)(x,E[S]; θ), (1)

where the LHS of the minus signifies the ideal ensemble
model with dropout for evaluation, which is represented by
a dense model with expected activate units on the RHS of
the minus.

4. Model Regularization for Dropout
In this section, we delve into the specifics of our proposed
algorithm which distinctly focuses on actively updating the
dense model with dense-to-sub regularization, MoReDrop
and MoReDropL. The overall high-level structure is de-
picted in Fig. 1. We then proceed to discuss the chosen
regularizer with its analysis and practical implementation
of MoReDrop. Finally, we draw a comparison between
our algorithm and the prior methods to alleviate the model
distributional shift, elucidating why our proposed algorithm
exhibits superior performance, even under high dropout
rates.

4.1. Actively Updating the Dense Model via Its Loss

In supervised learning, for standard dense model training,
the learning objective is to minimize the following negative
log-likelihood function:

1

N

N∑
i=1

l(θ) = − 1

N

N∑
i=1

log p (yi | xi; θ) . (2)

For dropout training, the optimization object additionally
incorporates the marginalization of the dropout variables
(Wang & Manning, 2013; Srivastava et al., 2014; Ma et al.,
2017):

ESi

[
1

N

N∑
i=1

l(S; θ)

]
= −ESi

[
1

N

N∑
i=1

log p(yi|xi, Si; θ)

]
.

(3)

The pivotal element driving the distributional shift is the
disparity between model configurations during training and
inference. During training, there is an active updating of sub-
models, while inference is conducted with a deterministic
model. This approach implicitly defines an expectation term
and consequently introduces a model distributional shift (Ma
et al., 2017; Liang et al., 2021), as delineated in Eqn. (1). To
mitigate this discrepancy, we introduce a novel method,
termed Model Regularization for Dropout (MoReDrop).
Our approach begins by conducting gradient backpropa-
gation exclusively on the dense model, prioritizing the loss
from this configuration without dropout, shown in Eqn. (2).
Unlike conventional methods that pursue model consistency
solely during training, MoReDrop ensures model consis-
tency applied throughout both the training and inference
stages. This approach aligns with traditional dense training,
thus nullifying the model distributional shift: G = 0.

4.2. Dense-to-Sub Regularization

However, the advantages of dropout have been forsaken.
To incorporate these benefits, our algorithm imposes con-
straints on the pair consisting of the dense model M and a
randomly sampled sub-model Mi. This is achieved through
passive updating—without gradient backpropagation by ex-
ploiting their shared-parameter relationship with the dense
model.

R = g(l(S; θ)− l(θ)),

Typically, both the KL divergence and L2 divergence are un-
bounded and may outweigh the primary loss function from
the dense model, particularly in scenarios characterized by
high dropout ratios. Moreover, these divergences exhibit
heightened sensitivity to the coefficient settings.

In the present study, we adopt the function g = (exp(α ·
x)− 1)/(exp(α · x) + 1), a variant of the Logistic Sigmoid
function to confine the output within the range (−1, 1) and
g(0) = 0, where α serves as an exponential-inner coeffi-
cient for R. This specific formulation of the regularization
term offers two notable advantages over other divergences
or distance functions. Firstly, its bounded nature imparts
robustness to the loss function against varying dropout rates
p, rendering it possible to train a near-optimal model even
at high values of p. Second, the incorporation of the co-
efficient α into the exponential function standardizes the
hyperparameter search space across various tasks, with the
dense model providing a stable ”baseline” performance,
upon which further enhancements are realized through this
regularization. Specifically, the regularization term we em-
ployed is as follows:

R =
exp(α · (l(S; θ)− l(θ)))− 1

exp(α · (l(S; θ)− l(θ))) + 1
, (4)
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and the final optimization objective in our algorithm is:

argmin
θ

− 1

N

N∑
i=1

(log p (yi | xi; θ)−R) , (5)

where it is bifurcated into two principal elements: the pri-
mary one being the loss of the dense model, which guar-
antees model consistency for both training and inference;
and a supplementary regularization term R, incorporated to
draw upon the advantages offered by dropout, particularly
generalization abilities. Importantly, MoReDrop conducts
gradient backpropagation exclusively on the dense model,
yet it still capitalizes on the advantages of dropout models.

An ablation study on various regularization forms, as de-
tailed in Appendix B.7, showcases the superiority of our
designed R. Nevertheless, we recognize the potential for
more effective loss functions and consider their exploration
an avenue for future research.

4.3. Regularizer Analysis

As the concrete form of R in Eqn. (4) cannot guarantee
a point-wise lower bound to 0, i.e., ∃x, y, s.t. g(l(S; θ) −
l(θ)) ≤ 0, which results in l(S; θ) − l(θ) ≤ 0. In theory,
this could potentially lead to hacking solutions, such as an
infinitely large l(θ) alongside a near-zero l(S; θ), against
the primary optimization objective to minimize l(θ). How-
ever, that scenario is precluded because (1) the upper bound
nature of g(·) and the coefficient α limit the magnitude of
R; and (2) due to the passive update process of sub-models
from the dense model, the value of l(S; θ) tends to stay
proximate to l(θ) within a reasonable range.

In our experiments, we find that the expectation of l(S; θ)−
l(θ) ≥ 0 holds across diverse dropout rate configurations,
as shown in Fig. 7. In contrast, the expected value of the
concrete form of R over the set S, taken across the entire
training dataset, is provably non-negative when l(S; θ) −
l(θ) ≤ 0, as established in Theorem 4.1 (see details in
Appendix A), which further precludes undesirable solutions,
i.e., l(θ) → ∞.
Theorem 4.1. The regularizer R (Eqn. (4)), under the con-
dition of l(S; θ)− l(θ) ≤ 0, maintains non-negativity over
the expectation over S throughout the training process:

ESi

[
1

N

N∑
i=1

exp(α · (l(S; θ)− l(θ)))− 1

exp(α · (l(S; θ)− l(θ))) + 1

]
≥ 0

4.4. Algorithm Summary

During every gradient update, we execute the forward op-
eration twice using the same randomly sampled mini-batch
dataset: once for the dense model and once for the sub-
model. Then, we calculate the loss function based on these

two forward operations. We summarize our final algorithm
in Algorithm 1 and Fig. 1. Note that we only apply gradient
update to the dense model M; the sub-model Mi does not
undergo updates through gradient backpropagation and we
note the stop gradient operator as [·]. To further mitigate

Algorithm 1 Model Regularization for Dropout
Input: D = {(xi, yi)}Ni=1, coefficient α.
Initialize Mθ

for t = 1 to N do
Randomly sample mini-batch Bi ∼ D
Randomly sample a sub-model Miθ

Forward the Bi to the dense model Mθ and obtain l(θ)
Forward the Bi to the sub-model Miθ and obtain
[[l (S; θ) ]

Update Mθ based on Eqn. (5)
end for

computational costs, we introduce a light variant of MoRe-
Drop, termed MoReDropL. This version retains the guiding
principle of MoReDrop, where the main loss comes from the
dense model regularized by the interplay between the dense
model and its sub-models. The key distinction between
MoReDropL and MoReDrop lies in their network structure
for utilizing dropout: MoReDropL employs dropout solely
in the final layer, thereby circumventing additional matrix
computations in forward, while MoReDrop applies dropout
across all layers, necessitating extra matrix computations
for all networks. Although MoReDropL sacrifices a de-
gree of generalization capability, this compromise enables a
significant reduction in computational burden.

4.5. Discussions

Our proposed method, MoReDrop and MoReDropL, ex-
hibits similarities with various established approaches han-
dling model distributional shift raised from the employment
of dropout, as detailed in Table 1. However, MoReDrop
finds a distinct way to mitigate the model distributional shift
and follows two principle ordering pipelines: a). Firstly,
actively updating solely on the dense model during training
to zero-forcing the model distributional shift b). Further, in-
troducing the regularizer to embrace the benefits of dropout.

Mitigation of Model Distributional Shift. In MoRe-
Drop, model configurations during training and inference
are identical to ensure G = 0 and passively update sub-
models. In contrast, alternative methods that actively update
sub-models incur an implicit expectation and thus G > 0, de-
spite various regularization attempts to minimize it. Further-
more, the dense model actively updating imparts a notable
resilience to variations in dropout ratios, which is inherently
independent of both p and α, thereby ensuring stable base
performance under different coefficient configurations.
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Table 2. The averaged results of NLU tasks on the GLUE benchmark. MoReDrop outperforms the backbone model for all tasks and
MoReDropL outperforms the backbone in 17 out of 24 tasks. The best performances are in bold.

Methods CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE AverageMatt. Acc. Acc./F1 P. Corr. Acc./F1 m./mm. Acc. Acc.

BERT-base 56.49±0.24 93.31±0.12 85.10±0.31 / 89.41±0.18 87.92±0.22 91.38±0.02 / 87.55±0.02 83.49±0.16 / 84.84±0.18 91.46±0.12 67.99±0.21 83.54
+ MoReDropL 58.23±0.39 92.52±0.07 87.12±0.22 / 90.82±0.29 88.24±0.18 91.21±0.04 / 87.77±0.09 83.97±0.11 / 84.46±0.11 91.14±0.12 69.05±0.13 84.05
+ MoReDrop 58.99±0.26 93.53±0.10 87.18±0.31 / 90.86±0.22 88.31±0.09 91.41±0.04 / 87.97±0.04 84.98±0.21 / 85.27±0.22 91.59±0.14 69.98±0.27 84.55

RoBERTa-base 60.07±0.22 93.86±0.28 87.50±0.33 / 90.84±0.21 89.68±0.22 91.02±0.07 / 87.40±0.11 87.77±0.11 / 87.49±0.24 92.62±0.07 72.77±0.33 85.55
+ MoReDropL 62.39±0.31 94.09±0.41 88.19±0.54 / 91.52±0.33 90.46±0.27 91.38±0.05 / 87.94±0.18 87.20±0.13 / 86.71±0.27 92.27±0.02 79.48±1.33 86.51
+ MoReDrop 62.37±0.33 94.79±0.37 89.80±0.22 / 92.44±0.16 90.55±0.16 91.55±0.09/ 88.17±0.09 87.90±0.10 / 87.60±0.17 92.73±0.11 77.45±0.41 86.85

DeBERTaV3-xsmall 61.34±0.82 92.60±0.37 89.58±0.92 / 92.29±0.78 89.95±0.16 90.54±0.04 / 86.73±0.04 87.84±0.08 / 87.94±0.12 92.47±0.16 71.02±0.50 85.66
+ MoReDropL 63.46±1.12 93.12±0.35 89.64±0.14 / 92.31±0.15 89.95±0.24 90.50±0.11 / 86.65±0.08 87.91±0.04 / 87.64±0.02 92.37±0.22 71.18±0.51 85.88
+ MoReDrop 64.64±1.68 92.93±0.11 90.04±0.36 / 92.74±0.23 90.32±0.02 91.21±0.04 / 87.70±0.10 88.07±0.08 / 88.14±0.09 92.49±0.11 76.46±1.06 86.79

Motivation for the regularizer. With the same formu-
lation from the mathematical side to minimize the output
discrepancy, the regularizer of other approaches aligns with
the learning objective to reduce the model distributional gap,
either dense-to-sub or sub-to-sub. Conversely, the purpose
of R in MoReDrop is to leverage the advantages of dropout.

Limitation of sub-to-sub regularization. Sub-to-sub
regularization, such as R-Drop, potentially struggles with
the polynomial growth of model pairs, particularly under
high dropout rates. Thus, sub-to-sub regularization meth-
ods may inadvertently compromise model generalization
in favor of maintaining sub-model consistency due to their
larger search spaces. To confirm this, a systematic analysis
through the training loss curves is presented in Section 5.4.

5. Experiments
To underscore the wide-ranging applicability of our pro-
posed method, we conducted a thorough evaluation span-
ning distinct machine learning domains, i.e., general lan-
guage understanding, image classification, and image gen-
eration with different backbones algorithms (Section 5.1,
Section 5.2, and Section 5.3). In the Section 5.4, we present
a systematic comparison of our dense-to-sub regularization
with R-Drop sub-to-sub regularization. This comparative
study provides a crucial understanding of the superior per-
formance of MoReDrop. Further experimental details, train-
ing time, and ablations on hyperparameters and forms of
regularization are provided in Appendix B.

To ensure a fair comparison, we retained the same common
training hyperparameter setting as in the baseline models,
such as epochs and batch size. We prioritize R-Drop as the
baseline due to its efficiency and superiority over others, fol-
lowing the same setting as R-Drop. The absence of certain
baseline results is a deliberate choice with different reasons,
detailed in Appendix B.8.

5.1. Natural Language Understanding

Benchmark Datasets. Our evaluation begins with natu-
ral language understanding tasks, for which we apply our
proposed methods on the standard development sets of the
General Language Understanding Evaluation (GLUE) bench-
mark (Wang et al., 2019). The GLUE benchmark includes
eight unique tasks, all of which involve text classification or
regression. The distinct characteristics of each task provide
a comprehensive and robust testing ground for our proposed
methodology. The evaluation metrics for the eight tasks and
experiment details are shown in Appendix B.2.

Model & Training. We utilize three publicly available
pre-trained models: BERT-base (Devlin et al., 2019) and
RoBERTa-base (Liu et al., 2019) and DeBERTaV3-xsmall
(He et al., 2020; 2021) as our foundation models for fine-
tuning. As BERT-base, RoBERTa-base and DeBERTaV3-
xsmall all employ standard dropout, we could directly apply
our method and use the original models for comparison. For
MoReDrop, we performed a parameter sweep, setting the
dropout probability p to span from 0.1 to 0.9 and α to take
on values from the set {0.1, 0.5, 1, 2}, uniformly applying
this sweeping across all subsequent domains.

Results. We present the final performance in Table 2 av-
eraged by 5 independent seeds. MoReDrop outperforms
the baselines across all tasks, showing averaged improve-
ments of approximately 1.0%, 1.3% and 1.1% on BERT-
base, RoBERTa-base and DeBERTaV3-xsmall models, re-
spectively. Our findings also indicate that MoReDropL
enhances average performance over the baseline. Interest-
ingly, MoReDropL outperforms MoReDrop on some tasks,
notably achieving a 2% performance margin on the RTE
task. We hypothesize that applying dropout to all layers
may disrupt beneficial features in pre-trained layers, while
limiting dropout to the last layer preserves these features,
enabling more effective task-specific fine-tuning. This will
be investigated in future work.
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5.2. Image Classification Domains

Benchmark Datasets. Our image classification experi-
ments were conducted on three well-recognized benchmark
datasets: CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet (Deng et al., 2009). The CIFAR-10
and CIFAR-100 datasets both consist of low-dimensional
pixel images, with the primary distinction between them
being the number of categories they feature, as indicated by
their respective names. Conversely, the ImageNet dataset
presents a significantly greater challenge, encompassing
more than 1, 000 categories.

Model & Training. To offer a scalable comparison of
MoReDrop in the domain of image classification, we utilize
three models: a small model with 1.2 million parameters
(ResNet-18) (He et al., 2016), a medium model with 86 mil-
lion parameters (ViT-B/16) (Dosovitskiy et al., 2021) and a
large model with 307 million parameters (ViT-L/16). Note
that the standard ResNet-18 does not incorporate dropout,
while the default configuration of the vanı̈lla ViT-B/16 and
ViT-L/16 set p = 0.1. For the ResNet-18, our baselines
comprise: (1) DropBlock (Ghiasi et al., 2018), which miti-
gates overfitting by dropping continuous regions of neurons,
and (2) DropPath (Larsson et al., 2017), which zeroes out
an entire branch in the neural network during training, aim-
ing to achieve the same goal as DropBlock. It is worth
noting that ResNet incorporates batch normalization as a
technique to combat overfitting, disrupting the training pro-
cess (Ioffe & Szegedy, 2015). As for the ViT-B/16 and
ViT-L/16 algorithm, we incorporate R-Drop (Liang et al.,
2021) to alleviate model distributional shift, a goal akin to
that of MoReDrop. In all baselines, we set the dropout rate
to 0.1, as recommended by the original papers, and this rate
has been found to yield the best performance compared to
other dropout rates in our evaluation, as shown in Appendix
Fig. 3.

Results. The results displayed in Section 5.2 represent av-
erages obtained from 5 independent seeds and experimental
details are shown in Appendix B.3. When integrated with
DropPath and DropBlock for the ResNet-18 model, MoRe-
Drop consistently delivers superior performance on both
the CIFAR-10 and the more challenging CIFAR-100
datasets. Notably, when paired with DropBlock, MoRe-
Drop realizes a significant increase in accuracy compared to
both the original ResNet-18 and DropBlock, with improve-
ments of approximately 1% in the CIFAR-10 dataset and
1.8% in the more challenging CIFAR-100 dataset. The
consistently improved performance across different dropout
methods, i.e., DropPath and DropBlock, attests to the gen-
eral applicability of MoReDrop.

With the backbone of ViT-B/16 and ViT-L/16, we find that
MoReDrop outperforms the vanı̈lla model and its variant
with R-Drop over three degrees of challenges tasks. The

Table 3. Accuracy on CIFAR-10, CIFAR-100 and ImageNet.
Both MoReDrop and MoReDropL consistently outperform the
baseline across all tasks. The best performances are in bold.

Methods CIFAR-10 CIFAR-100 ImageNet

ResNet-18 95.44±0.07 77.78±0.07 -
+ DropPath 95.35±0.05 78.12±0.11 -
+ DropBlock 95.53±0.12 78.72±0.06 -

+ MoReDropL 95.79±0.21 79.11±0.05 -
+ DropPath + MoReDrop 95.60±0.14 79.25±0.19 -
+ DropBlock + MoReDrop 96.41±0.11 79.53±0.32 -

ViT-B/16 98.68±0.24 92.78±0.10 84.05±0.15

+ R-Drop 98.97±0.01 92.90±0.02 84.16±0.04

+ MoReDropL 99.14±0.03 93.25±0.03 84.62±0.12

+ MoReDrop 99.10±0.06 93.38±0.04 84.43±0.06

ViT-L/16 99.15±0.04 93.72±0.03 84.68±0.04

+ R-Drop 99.11±0.02 93.78±0.05 84.85±0.03

+ MoReDropL 99.18±0.07 93.74±0.06 84.74±0.06

+ MoReDrop 99.24±0.02 93.91±0.01 84.91±0.01

smaller margin gained (< 1%) from MoReDrop and MoRe-
DropL, compared with the backbone of ResNet-18, is at-
tributed to the saturated performance by its ViT-B/16 and
ViT-L/16 backbones. This observation underscores the supe-
riority and scalability of our proposed algorithm on varying
challenging tasks. Also, we observe that R-Drop necessi-
tates approximately 3x the number of training epochs to
converge on the ImageNet dataset, yet its final perfor-
mance is not on par with our methods (both MoReDrop and
MoReDropL). We attribute this to the compromise of model
expressiveness for maintaining sub-model consistency in
R-Drop with sub-to-sub regularization (detailed analysis in
Section 5.4).

5.3. Image Generation Domains

Benchmark Datasets. Our evaluation extends to image
generation tasks, utilizing the CIFAR-10 dataset for con-
ditional image synthesis. The detailed introduction of dif-
fusion models is in Appendix B.4. To measure the quality
of generated images, we calculate the Fréchet Inception
Distance (FID) (Heusel et al., 2017).

Table 4. Sample quality comparison on CIFAR-10.

Method FID

EDM (step=18) 4.8786±0.05

+ MoReDrop (step=18) 4.3682±0.04

EDM (step=30) 4.7470±0.01

+ MoReDrop (step=30) 4.2274±0.03

Model & Training. In our comparative study, we utilize
the state-of-the-art generative model EDM (Karras et al.,
2022). Due to computational constraints, we preserved the
original dropout ratio p of 0.13 as specified in EDM, and
set α = 1 based on our empirical observations from other
tasks, without further sweeping. Both EDM and EDM with
MoReDrop were trained for 250 epochs.
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Figure 2. The training loss curves over ViT/16, comparing different dropout methods and rates on the CIFAR-10 dataset. Left: Training
loss curves of various methods with a consistent dropout rate (p = 0.1). Middle: Training loss curves of R-Drop under varying dropout
rates. Right: Training loss curves of MoReDrop under different dropout rates.

Results. The experimental results, as presented in Table 4,
using deterministic sampling with 18 and 30 steps, respec-
tively, reveal that the application of MoReDrop consistently
yields a reduction in FID. This pattern emphasizes the effi-
cacy of MoReDrop in improving the quality and diversity of
generated images. While systematic hyperparameter tuning
is likely to refine and possibly enhance MoReDrop’s perfor-
mance on image generation tasks, we designate this avenue
of exploration as future work due to computational budget
constraints.

5.4. Dense-to-sub vs. Sub-to-sub Regularization

To further investigate the edges of the dense-to-sub reg-
ularization in MoReDrop, we perform a comprehensive
comparative loss analysis between MoReDrop (dense-to-
sub) and the state-of-the-art sub-to-sub model regulariza-
tion approach, R-Drop. In Fig. 2, we present the training
loss curves over ViT-B/16, comparing different rates on the
CIFAR-10 dataset. Note that we only track the MoReDrop
sub-model R-Drop dense-model loss without gradient up-
dates. Consistent with our expectations from Fig. 2 (Left),
the training losses of dense models exhibit an inverse re-
lationship with their performance as demonstrated in Sec-
tion 5.2, where MoReDrop achieves the lowest training loss
as well as the highest performance.

zero-forcing discrepancy2 of R-Drop. The discrepancy
of training curves between dense and sub-models in Fig. 2,
under the same algorithm, approximates the model discrep-
ancy in function space. While R-Drop presents negligible
divergence between its dense and sub-models (blue lines),
an observed divergence of those is shown in MoReDrop
(purple lines). This finding indicates that a high level of
consistency among sub-models may compromise model ex-
pressivity, leading to incomparable performance. Addition-
ally, a key factor contributing to this inferior performance is
the inherent expectation operator used in R-Drop during the
evaluation process.

2The ’discrepancy’ is specifically constrained to the training
process. In contrast, ’model distributional shift’ refers to differ-
ences arising from varying model configurations during training
and evaluation phases.

Does higher dropout rates mitigate zero-forcing dis-
crepancy? To answer it, we analyze the loss curves
from dense and sub-models across varying dropout rates
of R-Drop in Fig. 2 (Middle). We observe that the loss
gap approaches zero irrespective of the dropout rate with
p ∈ [0.1, 0.3, 0.5]. However, this is concurrent with in-
creased loss and decreased performance, shown in Fig. 4,
suggesting a strong performance compromise while con-
straining sub-model pairs. We hypothesize the loss of gen-
eralization in sub-to-sub regularization along R-Drop arises
from the rising challenge to maintain consistency. In con-
trast, MoReDrop dense-to-sub regularization approach suc-
cessfully preserves model generalization ability. This is
evidenced by the observed positive correlation between the
dropout rate p and the loss gap, as illustrated in Fig. 2 (Right)
and Fig. 4.

6. Conclusion
We present MoReDrop, an efficient method designed to
counter model distributional shift in dropout models, capi-
talizing on dropout benefits, without dropping during gradi-
ent backpropagation. MoReDrop solely updates the dense
model, maintaining uniformity across training and infer-
ence phases and focusing on its loss function optimization.
MoReDrop then integrates a regularization loss originating
from the output divergence from the dense model and sub-
models. We highlight that the sub-models only passively
update due to shared parameters to the dense model. For
computational efficiency, MoReDropL, a variant of MoRe-
Drop, limits the dropout and matrix multiplication to the
final layer, balancing efficiency with generalization. Our
experimental results across a variety of tasks and domains
consistently demonstrate that both MoReDrop and MoRe-
DropL achieve state-of-the-art performance in the majority
of tasks and their strong robustness. Significantly, MoRe-
DropL not only reduces computational demands but also
outperforms MoReDrop on some tasks, such as theRTE task
of the GLUE benchmark from language understanding do-
mains. This finding paves the way for future research to
delve into the joint effects of last-layer dropout and fine-
tuning, while simple last-layer fine-tuning can match or
outperform state-of-the-art approaches in image domains
(Kirichenko et al., 2022; Le et al., 2023).
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Broader impact. Our paper studies the model distri-
butional shift problem in dropout models. By thinking a
step further about the fundamental reason for the model
distributional shift, our paper has the potential to encourage
researchers to solve existing problems from a new perspec-
tive, distant from prior methods. This work also has poten-
tial impacts on the field of last-layer pre-training for giant
models.

References
Allen-Zhu, Z. and Li, Y. Towards understanding ensem-

ble, knowledge distillation and self-distillation in deep
learning. arXiv preprint arXiv:2012.09816, 2020.

Chen, D., Mei, J.-P., Wang, C., Feng, Y., and Chen, C.
Online knowledge distillation with diverse peers. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 3430–3437, 2020.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. Randaugment:
Practical automated data augmentation with a reduced
search space. In Proc. of NeurIPS, 2020.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F.
Imagenet: A large-scale hierarchical image database. In
Proc. of CVPR, 2009.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proc. of NAACL, 2019.

DeVries, T. and Taylor, G. W. Improved regularization
of convolutional neural networks with cutout. ArXiv
preprint, 2017.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. In Proc. of ICLR, 2021.

Ghiasi, G., Lin, T., and Le, Q. V. Dropblock: A regular-
ization method for convolutional networks. In Proc. of
NeurIPS, 2018.

Hara, K., Saitoh, D., and Shouno, H. Analysis of dropout
learning regarded as ensemble learning. In Proc. of
ICANN, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. of CVPR, 2016.

He, P., Liu, X., Gao, J., and Chen, W. Deberta: Decoding-
enhanced bert with disentangled attention. arXiv preprint
arXiv:2006.03654, 2020.

He, P., Gao, J., and Chen, W. Debertav3: Im-
proving deberta using electra-style pre-training with
gradient-disentangled embedding sharing. arXiv preprint
arXiv:2111.09543, 2021.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever,
I., and Salakhutdinov, R. R. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580, 2012.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. Advances in neural information process-
ing systems, 33:6840–6851, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In Proc. of ICML, 2015.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
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A. Proof of Theorem 4.1
Theorem A.1. The regularizer R (Eqn. (4)), under the condition l(S; θ) − l(θ) ≤ 0, maintains non-negativity over the
expectation over S throughout the training process:

ESi

[
1

N

N∑
i=1

exp(α · (l(S; θ)− l(θ)))− 1

exp(α · (l(S; θ)− l(θ))) + 1

]
≥ 0

Proof. Given f(x) = (eax − 1)/(eax + 1) is convex (f ′′(ax) ≥ 0) with a > 0 when x ≤ 0. We can apply Jensen’s
Inequality to Eqn. (4) under the condition l(S; θ)− l(θ) ≤ 0:
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1

N

N∑
i=1

exp(α · (l(S; θ)− l(θ)))− 1

exp(α · (l(S; θ)− l(θ))) + 1

]
≥
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])
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(
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α · (l(S; θ)− l(θ))
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We aim to establish the following inequality as the denominator is non-negative:

exp

(
ESi

[
1

N

N∑
i=1

α · (l(S; θ)− l(θ))

])
− 1 ≥ 0,

which simplifies to:

ESi

[
1

N

N∑
i=1

(l(S; θ)− l(θ))

]
≥ 0, (6)

where α is omitted as it holds positive. For a tractable approximation for dropout variable p, we use Bayes’ rule to express
the parameterized conditional probability of the output y given the input x and p under parameter θ:

p(y | x; θ) =
∫
S
p(y | x, s; θ)p(s)dµ(s).

Next, we reformulate the loss function for sub-models incorporating dropout (as in Eqn. 3):

ESi

[
1

N

N∑
i=1

l(S; θ)

]
= −ESi

[
1

N

N∑
i=1

log p(yi|xi, Si; θ)

]

= −
∫
S

N∏
i=1

p(si)
( 1

N

N∑
i=1

log p(yi|xi, si; θ)
)
dµ(s1) . . . dµ(sN )

= − 1

N

N∑
i=1

∫
S
p(si) log p(yi|xi, si; θ)dµ(si).

Given that log(·) is a concave function, Jensen’s Inequality yields:∫
S
p(s) log p(y|x, s; θ)dµ(s) ≤ log

∫
S
p(s)p(y|x, s; θ)dµ(s).

Thus

ESi

[
1

N

N∑
i=1

(l(S; θ))

]
≥ − 1

N

N∑
i=1

log

∫
S
p(si)p(y|x, s; θ)dµ(si) =

1

N

N∑
i=1

l(θ).

Consequently, the proof is finished as Eqn. (6) is satisfied with the condition l(S; θ)− l(θ) ≤ 0.
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B. Experiments Details
B.1. Hardware Setup

Our experiments were performed using PyTorch and run on NVIDIA GeForce RTX 3090 and NVIDIA A800 80GB PCIe
graphics cards. For the CIFAR-10 and CIFAR-100 tasks, we utilized single-card training on the NVIDIA GeForce RTX
3090. For the GLUE and ImageNet tasks, we employed distributed training across 4× NVIDIA A800 80GB PCIe cards.

B.2. Natural Language Processing

Model Details. Our experiments utilized three pre-trained models: BERT-base, RoBERTa-base and DeBERTaV3-xsmall.

BERT-base is a transformer-based model with 12 layers, 768 hidden units, and 12 attention heads, totaling 110 million
parameters. It was pre-trained on a large corpus of English text from the BooksCorpus (800M words) and English Wikipedia
(2, 500M words).

RoBERTa-base, on the other hand, is a variant of BERT that uses a larger byte-level BPE vocabulary, longer training time,
and different pre-training data. It has the same architecture as BERT-base but was trained on more data (160GB of text).

DeBERTaV3-xsmall is an advancement in transformer-based models, incorporating disentangled attention and an enhanced
mask decoder. With a more compact structure than its larger counterparts, it has 12 layers, 384 hidden units, and 12 attention
heads, resulting in a total of around 22 million parameters. This model variant was pre-trained on a diverse set of textual
data sources, similar to those used for BERT and RoBERTa, but with additional refinements in training techniques and
optimizations that enhance its performance on downstream tasks, despite its smaller size.

Datasets & Evaluation Metrics. For language understanding tasks, we adhere to the prevalent pre-training and fine-tuning
methodology, with the GLUE benchmark serving as the fine-tuning set. Consistent with previous studies, we focus on
eight tasks, including single-sentence classification tasks (CoLA, SST-2), sentence-pair classification tasks (MNLI, QNLI,
RTE, QQP, MRPC), and the sentence-pair regression task (STS-B). Detailed data statistics can be found in the original
paper (Wang et al., 2019). The evaluation metrics for the aforementioned tasks are as follows: The STS-B task is evaluated
using the Pearson correlation; The CoLA task is assessed via Matthew’s correlation; Both the F-1 score and accuracy are
used as metrics for the MRPC and QQP tasks; The remaining tasks (MNLI, QNLI, RTE, SST-2) are evaluated based on
accuracy. These metrics collectively provide a holistic assessment of the models’ performance across a range of language
understanding tasks.

Baseline Setting & Experiments Design. Given that BERT-base, RoBERTa-base and DeBERTaV3-xsmall all incorporate
standard dropout, MoReDrop can be directly applied. Meanwhile, MoReDropL was applied before the last linear layer as
shown in Fig. 1.

Fine-tuning Details. All the models were fine-tuned on the GLUE benchmark datasets. As the datasets vary in size and
complexity, we employed a dynamic dropout rate and used a set of different values for the parameter α. The exact values of
the dropout rate and α were determined based on the specific characteristics of each task. The chosen values for each task
and model can be found in Table 11, Table 12 and Table 13.

Hyperparameters & Training Setting. For the fine-tuning process, we adhered to the original training hyperparameters
used in the BERT, RoBERTa and DeBERTa models. For the sake of simplicity in implementation, we assigned the same
values for batch size, learning rate, and epochs across different tasks and models, which were 32, 2e− 5, and 3, respectively.
We used the Adam optimizer for both models. The precise hyperparameters for each task and model can be found in
Table 11, Table 12 and Table 13.

B.3. Image Classification

Model Details. Our image classification experiments employed three distinct models: ResNet-18, ViT-B/16 and ViT-L/16.
ResNet-18, is a smalle model boasting 1.2 million parameters. As a member of the ResNet family, it utilizes a residual
learning framework to streamline the training of networks, encompassing 18 layers that include convolutional, identity, and
fully connected layers. ViT-B/16 and ViT-L/16, in contrast, are larger models with 86 million and 307 million parameters,
respectively. These models are adaptations of the Vision Transformer (ViT), originally developed for natural language
processing tasks, now repurposed for computer vision applications.
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Figure 3. The accuracy of ResNet-18 employing DropBlock and DropPath under varying dropout rates on CIFAR-10 and CIFAR-100.
Left: Accuracy curves of ResNet-18 utilizing DropBlock. Right: Accuracy curves of ResNet-18 utilizing DropPath. Note that DropPath
failed to train the model under the dropout rate p = 0.9, hence this data point is not represented in the figure.
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Figure 4. Accuracy across varying dropout ratios for different methods on CIFAR datasets.

Baseline Setting & Experiments Design. While the vanı̈lla ResNet-18 does involve the dropout technique, we take
DropBlock (Ghiasi et al., 2018) and DropPath (Larsson et al., 2017) as our baselines. DropBlock mitigates overfitting by
dropping continuous regions of neurons, while DropPath zeroes out an entire branch in the neural network during training,
as opposed to just a single unit, making it a perfect match for ResNet. We set the dropout rate to 0.1, as recommended by
the original papers for both DropBlock and DropPath, as well as the best dropout rate referring in our experiments(as shown
in Fig. 3). This rate has been determined to yield the best performance in comparison to other dropout rates. Further details
about these experiments can be found in Table 14.

In contrast, we adopt R-Drop as the comparison in ViT-B/16 and ViT-L/16, which minimizes the bidirectional KL-divergence
of the output distributions of any pair of sub-models sampled from dropout in model training. As both ViT-B/16 and
ViT-L/16 incorporate standard dropout in their architecture, MoReDrop is seamlessly applicable to these models.

For MoReDropL, as applied in Appendix B.2, we employed standard dropout before the final linear layer.

Fine-tuning Details. On ResNet-18, we fine-tuned the CIFAR-10, CIFAR-100 while ViT-B/16 and ViT-L/16 on
CIFAR-10, CIFAR-100 and ImageNet datasets. As the datasets vary in size and complexity, we employed a dynamic
dropout rate and used a set of different values for the parameter α. The exact values of the dropout rate and α were
determined based on the specific characteristics of each task. The chosen values for each task and model can be found in
Table 14.

Hyperparameters & Training Setting. For the fine-tuning process, we used different training hyperparameters for each
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model. For ResNet-18, we used a batch size of 128 for CIFAR-10 and CIFAR-100. For ViT-B/16 and ViT-L/16, we
used a batch size of 32 for CIFAR-10, and 256 for CIFAR-100 and 64 for ImageNet. Regarding the training epochs,
ResNet-18 was set to 200 for both CIFAR-10 and CIFAR-100. For ViT-B/16, we set the training epochs to 50 for
CIFAR-10 and CIFAR-100, and 10 for ImageNet in the original ViT-B/16 and our algorithm. Due to the difficulty in
achieving convergence with R-Drop, we increased the training epochs to 30 when training ImageNet. Furthermore, the
image size for ViT-B/16 was set to 384 for ImageNet, and 224 for both CIFAR-10 and CIFAR-100.

The exact hyperparameters for each task and model can be found in Table 14. For the CIFAR-10 and CIFAR-100
tasks, we employed the SGD optimizer with a learning rate of 1e − 2, while for the ImageNet task in ViT-B/16, we
utilized the Adam optimizer with a learning rate of 1e− 4 and 5e− 5 for ViT-L/16. For data augmentation, we exclusively
utilized random cropping for the CIFAR-10 and CIFAR-100 tasks. However, for the ImageNet dataset, we adopted
RandAugment (Cubuk et al., 2020).

B.4. Image Generation Domains

Introduction. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are a novel class of
generative models that produce high-quality samples, excelling in tasks such as image and audio generation. Inspired by the
natural diffusion process, these models convert data into noise through a series of steps and then learn to reverse this process.
By predicting and cancelling out the noise incrementally, the models reconstruct the original data, generating new samples.
While diffusion models are powerful in capturing complex data patterns and ensuring the realism of the samples, they often
require significant computational power due to the numerous steps.

Experimental Setup. We employ one of the state-of-the-art generative models, EDM (Karras et al., 2022), as our training
backbone. Since EDM uses standard dropout, MoReDrop can be readily applied. Due to computational resource constraints,
we maintained the original dropout ratio p = 0.13 and assigned α = 1.

B.5. Training Time
Table 5. Training time per epoch.

Model Training time
(seconds)

ResNet-18 14
+ MoReDropL 15
+ MoReDrop 29

ViT-B/16 90
+ R-Drop 176
+ MoReDropL 92
+ MoReDrop 172

In Table 5, we present the per epoch training time for MoReDrop,
MoReDropL, and baselines on the CIFAR-10 task, executed on a
GPU (NVIDIA A800 80GB PCIe) using a batch size of 32. MoRe-
DropL exhibits a significant efficiency advantage with nearly the same
training time as the backbone, and approximately 50% faster than
both MoReDrop and R-Drop. For example, in the case of ViT-B/16,
R-Drop and MoReDrop require 176s and 172s respectively to execute
a training epoch, whereas MoReDropL requires only 92s, almost on
par with the 90s needed for ViT-B/16.

B.6. Ablation Study on Hyperparameters

In this section, we conduct an ablation study to evaluate the impact
of hyperparameters in MoReDrop, specifically the dropout ratio p and the regularization weight α. The sets explored for
p and α are {0.1, 0.3, 0.5, 0.7} and {0.1, 0.5, 1, 2}, respectively. As illustrated in Fig. 5, MoReDrop exhibits significant
robustness to hyperparameter variations. Most combinations yield performance superior to the baseline, with the exception
of certain extreme combinations such as (p, α) = (0.7, 2) on the CIFAR-10 dataset using the ResNet-18 backbone, and
(p, α) = (0.7, 1)/(0.5, 2)/(0.5, 1) on the MRPC task. Generally, when tuning MoReDrop for application in other domains,
we recommend prioritizing adjustments to p due to its significant influence on performance.

Typically, higher p values, e.g., 0.5, are associated with less precise predictions, shown in Fig. 4. However, MoReDrop
challenges this norm by exhibiting superior performance even at high dropout, such as p = 0.7. This notable achievement
can be ascribed to two main contributing factors.

Firstly, the performance in MoReDrop primarily relies on traditional dense training for gradient updates, upon which further
enhancements are expected through this regularization. Secondly, the inherent bounded nature of R, along with the weight
factor α, ensures that its influence on the primary optimization target remains controlled. To counter underperforming sub-
models with high dropout rates p, lowering α is crucial for diminishing the influence of R, thus preserving the performance
anchored in the dense model. Conversely, a higher coefficient α is beneficial at a lower dropout ratio p, capitalizing on
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Figure 5. Performance of various tasks using MoReDrop under different hyperparameter combinations. Left: Performance of ResNet-18
with DropBlock and MoReDrop on the CIFAR-10 dataset. Right: Performance of RoBERTa-base with MoReDrop on the MRPC task.

sub-model strengths from dropout, as demonstrated in Fig. 5. We highlight that the ablation study targets high p to showcase
MoReDrop’s robustness; however, lower p values are generally favored in practice.

B.7. Ablation Study on Different Regularization Forms
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Figure 6. Illustration of the g(x).

In prior research, specifically in the contexts of ELD and FD, the
L2 distance on hidden states was employed as a regularization loss
function. However, this approach diverges significantly from the
primary training objective, which is to minimize the negative log-
likelihood over the model’s output distribution. R-Drop introduced the
use of KL-divergence between output probability distributions. While
this method imposes a strong constraint on the model, affecting its
generalization capabilities, it also incurs considerable computational
costs.

To address these challenges, we propose to use a loss scalar to quantify
the discrepancy and then project this into a relative space, adjustable
through a hyperparameter α. Additionally, we exploit the bounded
nature of the sigmoid(·) function, within [0, 1], to reshape it into
g(x) = ex−1

ex+1 = 2 · (sigmoid(x) − 1
2 ), forming our regularization

loss function. Fig. 6 illustrates the behavior of g(x) for various values
of α, highlighting how the function’s shape is modulated to control
the impact on the regularization term.

We conduct numerical experiments to demonstrate the efficacy of different formulations of g(·) For practicality and
simplicity in implementation, we adopt ResNet-18 as our model backbone. We configure four distinct experimental
scenarios: ResNet-18-2D, which incorporates 2 dropout layers.

Table 6. Results of different form of g(·) on CIFAR-10 with ResNet-18.

g(·) p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

g(x) = x 95.22 95.31 95.13 95.04 90.07
g(x) = x2 95.42 95.61 95.33 95.23 94.23
g(x) = ex−1

ex+1 95.56 95.70 95.72 95.47 95.23

The tables above reveal distinct performance trends across different g(·) functions. Specifically, g(x) = ex−1
ex+1 outperforms
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Figure 7. Comparison of the expected loss discrepancies between sub-models and the dense model across different dropout ratios for
ResNet-18 on CIFAR-10 during training. The loss gap remains positive after the initial phase, attributable to the randomness in model
weight initialization.

in all settings, g(x) = x demonstrated inferior performance compared to both g(x) = x2 and g(x) = ex−1
ex+1 . Notably,

g(x) = x2 and g(x) = ex−1
ex+1 demonstrate comparable effectiveness under conditions of low dropout rates. However,

as dropout rates increase to 0.7, 0.9, the function g(x) = ex−1
ex+1 exhibits superior robustness in these extreme conditions.

This leads to the conclusion that g(x) = ex−1
ex+1 is not only adaptable to varying scenarios but also demonstrates enhanced

performance and robustness across different dropout rates.

Further investigation focuses on the role of the hyperparameter α within our regularization function, examining whether it is
more effective in the form of α · g(x) or g(α · x). To this end, an experiment was conducted using ResNet-18-4D as the
backbone, setting p = 0.5, and observing performance variations across different values of α.

Table 7. Results under different α and g(·) on CIFAR-10 with ResNet-18.

g(·) α = 0.1 α = 0.5 α = 1 α = 2 α = 5 α = 10

α · g(x) 95.55 95.81 95.61 95.48 94.28 73.80
g(α · x) 95.52 95.83 95.66 95.48 95.36 95.22

From the table, we observe that both α · g(x) and g(α · x) deliver comparable performance under low α value. However,
with the increment of α, g(α · x) performs more robust compared to g(α · x), meanwhile considering various application
scenarios, it becomes evident that a bounded loss function like g(α ·x) offers more versatility in addressing a range of issues.
Therefore, this paper opts for the use of g(α · x) in the proposed framework. Nevertheless, it is crucial to recognize the
potential for discovering more effective loss functions. Future research will be directed towards exploring these alternatives
to further enhance the performance and adaptability of our model.

B.8. Baseline Design

The absence of certain experimental results was a deliberate design choice. We provide a detailed explanation as follows:

Why R-Drop is our main baseline for comparison? Our decision to use R-Drop as the main baseline is influenced by
its proven computational efficiency and benchmarking superiority over ELD (Ma et al., 2017) and FD (Zolna et al., 2018),
as shown in the R-Drop paper. This choice follows the R-Drop paper, which compares R-Drop and FD based on FD’s
established advantages over ELD, thereby focusing our comparisons on R-Drop versus MoReDrop.

Regarding WordReg (Xia et al., 2023), the absence of publicly available code and detailed experimental information hinders
direct comparison. We have reached out to the authors of WordReg via email to inquire further without a response. On the
other hand, WordReg and R-Drop share a similar paradigm in using regularization to mitigate model distributional shifts.
Conversely, MoReDrop represents a novel paradigm, aiming to harness the advantages of dropout through regularization
while the models distributional shift is 0 through actively updating the dense model.

B.8.1. NLP DOMAINS IN TABLE 2

Why is R-Drop excluded? We observed that R-Drop requires significant time (3x-10x) to converge, which is consistent
with the experimental details shown in Table 8 of the R-Drop paper. To make a fair comparison to the established baseline,
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we meticulously adhered to the experimental setup outlined in the BERT (Devlin et al., 2019) paper, encompassing 3
identical training epochs. In Table 8, we provide the best performance of R-Drop by sweeping the training epochs from 3 to
30. We observe that R-Drop fails to converge within the 3 epochs, which is consistent with Table 10 in the R-Drop paper.
For example, the RTE dataset requires 30 epochs to achieve results comparable to ours, and other datasets need 10 epochs or
more to converge. Therefore, considering a fair comparison in the main part, we exclude R-Drop for the comparison. Given
the computational cost, we list only the relatively small datasets CoLA, MRPC, STS-B, and RTE in Table 8. For instance,
training on the QQP dataset requires nearly 40 hours using 4 A100 80GB GPUs with R-Drop applied.

Why does R-Drop need more training time to coverage? Our experiments reveal that, despite a substantial increase
in computational resources, performance significantly lags behind expectations. We attribute this leading reason to the
compromise of model expressiveness for maintaining sub-model consistency (detailed analysis in Section 5.4).

Table 8. Performance comparison across different models and configurations in NLP tasks.

Method CoLA MRPC STS-B RTE

BERT-base 56.49 85.10/89.41 87.92 67.99
R-Drop 56.70 86.46/90.39 87.98 68.31
MoReDrop 58.99 87.18/90.86 88.31 69.98

Roberta-base 60.07 87.50/90.84 89.68 72.77
+R-Drop 61.75 88.86/92.02 90.66 76.36
+MoReDrop 62.37 89.80/92.44 90.55 77.45

DeBERTaV3-xsmall 61.34 89.58/92.29 89.95 71.02
+R-Drop 62.78 89.90/92.20 90.34 76.52
+MoReDrop 64.64 90.04/92.74 90.32 76.46

B.8.2. IMAGE DOMAINS IN SECTION 5.2

Why ResNet-18 with MoReDrop and ResNet-18 with R-Drop are excluded? The integration of dropout with
BatchNorm in the standard ResNet architecture has been shown to degrade performance, as reported in (He et al., 2016;
Zhou et al., 2020). Our findings corroborate this, as detailed in Table 9. To ensure a fair comparison, we maintain the
original architecture of ResNet18 unchanged. Our experiments demonstrate that incorporating dropout into ResNet-18
adversely affects its performance. Introducing dropout alongside R-Drop in ResNet18 for CIFAR tasks leads to catastrophic
failure, whereas MoReDrop remains robust due to its primary dense model optimization.

Table 9. Performance of R-Drop and MoReDrop with ResNet18 on CIFAR tasks.

Method CIFAR-10 CIFAR-100

ResNet18 95.44 77.87
+ dropout 95.32 77.69

+ dropout + R-Drop (α = 0.5) 12.02 1.86
+ dropout + R-Drop (α = 0.1) 11.50 1.70
+ dropout + R-Drop (α = 0.01) 14.28 1.85

+ dropout + MoReDrop (α = 0.5) 95.51 78.20

Why ResNet-18 + DropPath + R-Drop and ResNet-18 + DropBlock + R-Drop are excluded? In our experiments,
We observe that R-Drop fails to achieve convergence and even is not comparable to the vanilla backbone models. We
hypothesize this phenomenon for two main interplayed reasons: (a) DropBlock and DropPath employ a form of dropping
that is fundamentally different from traditional dropout, leading to a significant feature loss even at low dropout rates (e.g.,
p=0.1), when combined with DropBlock. (b) Maintaining sub-model consistency potentially limits model expressivity,
resulting in suboptimal performance. Additionally, the complexity of maintaining sub-model consistency increases with the
varying dimensions of feature dropping.
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On the other hand, MoReDrop can guarantee coverage as the parameter optimization anchors the dense model. Our
comprehensive analysis contrasts MoReDrop’s dense-to-sub approach with R-Drop’s sub-to-sub methodology, detailed in
Section 5.4, underscores our method’s superior scalability. We also present a new experiment under ViT-B + dropout head
(p=0.1), a dropout variant by dropping attention heads in a multi-head attention mechanism [3]. It is similar to DropPath and
DropBlock, dropping some structural features of the model. As shown in Table 10, adding the R-Drop leads to catastrophic
failure even not comparable to the backbone.

Table 10. Performance of R-Drop and MoReDrop with ViT-B/16 on CIFAR tasks.

Method CIFAR-10 CIFAR-100

ViT-B/16 98.68 92.78
+ DropHead 99.11 93.25
+ R-Drop + DropHead 99.00 91.96
+ MoReDrop + DropHead 99.14 93.51

Table 11. Hyperparameters for BERT-base experiments.

Datasets p α Learning Rate Batch Size Epochs
BERT-base + MoReDropL + MoReDrop BERT-base + MoReDropL + MoReDrop

CoLA 0.1 0.7 0.2 - 1 1 2e-5 32 3

SST-2 0.1 0.3 0.2 - 1 1 2e-5 32 3

MRPC 0.1 0.9 0.3 - 2 0.1 2e-5 32 3

STS-B 0.1 0.3 0.1 - 0.1 1 2e-5 32 3

QQP 0.1 0.2 0.2 - 0.5 0.5 2e-5 32 3

MNLI 0.1 0.2 0.2 - 1 1 2e-5 32 3

QNLI 0.1 0.3 0.3 - 1 1 2e-5 32 3

RTE 0.1 0.5 0.3 - 0.1 0.5 2e-5 32 3

Table 12. Hyperparameters for RoBERTa-base experiments.

Datasets p α Learning Rate Batch Size Epochs
RoBERTa-base + MoReDropL + MoReDrop RoBERTa-base + MoReDropL + MoReDrop

CoLA 0.1 0.5 0.2 - 0.1 1 2e-5 32 3

SST-2 0.1 0.3 0.2 - 0.1 1 2e-5 32 3

MRPC 0.1 0.1 0.7 - 2 0.1 2e-5 32 3

STS-B 0.1 0.2 0.4 - 2 2 2e-5 32 3

QQP 0.1 0.3 0.2 - 0.5 0.5 2e-5 32 3

MNLI 0.1 0.3 0.2 - 0.5 1 2e-5 32 3

QNLI 0.1 0.1 0.2 - 0.1 1 2e-5 32 3

RTE 0.1 0.1 0.2 - 0.1 0.1 2e-5 32 3
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Table 13. Hyperparameters for DeBERTaV3-xsmall experiments.

Datasets p α Learning Rate Batch Size Epochs
DeBERTaV3-xsmall + MoReDropL + MoReDrop DeBERTaV3-xsmall + MoReDropL + MoReDrop

CoLA 0.1 0.1 0.1 - 0.1 0.5 2e-5 32 3

SST-2 0.1 0.3 0.3 - 1 0.5 2e-5 32 3

MRPC 0.1 0.1 0.3 - 0.1 0.5 2e-5 32 3

STS-B 0.1 0.3 0.1 - 1 0.5 2e-5 32 3

QQP 0.1 0.5 0.1 - 1 0.5 2e-5 32 3

MNLI 0.1 0.3 0.2 - 2 1 2e-5 32 3

QNLI 0.1 0.3 0.1 - 2 2 2e-5 32 3

RTE 0.1 0.1 0.1 - 0.5 0.1 2e-5 32 3

Table 14. Hyperparameters for Image Classification tasks.

Model p α Batch Size Epochs

CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet CIFAR-10 CIFAR-100 ImageNet

ResNet-18 - - - - - - 128 128 - 200 200 -

+ DropPath 0.1 0.1 - - - - 128 128 - 200 200 -

+ DropBlock 0.1 0.1 - - - - 128 128 - 200 200 -

+ MoReDropL 0.1 0.3 - 0.1 0.5 - 128 128 - 200 200 -

+ DropPath + MoReDrop 0.5 0.1 - 0.1 0.1 - 128 128 - 200 200 -

+ DropBlock + MoReDrop 0.3 0.2 - 0.5 0.5 - 128 128 - 200 200 -

ViT-B/16 0.1 0.1 0.1 - - - 32 256 64 50 50 10

+ R-Dorp 0.1 0.1 0.1 0.3 0.6 0.6 32 256 64 50 50 30

+ MoReDropL 0.1 0.4 0.1 1 1 1 32 256 64 50 50 10

+ MoReDrop 0.1 0.1 0.1 1 0.5 1 32 256 64 50 50 10

ViT-L/16 0.1 0.1 0.1 - - - 32 256 24 50 50 5

+ R-Dorp 0.1 0.1 0.1 0.3 0.6 0.6 32 256 24 50 50 5

+ MoReDropL 0.1 0.4 0.1 1 1 1 32 256 24 50 50 5

+ MoReDrop 0.1 0.1 0.2 1 0.5 1 32 256 24 50 50 5
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