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Abstract

The state-of-the-art model for structured sen-
timent analysis casts the task as a dependency
parsing problem, which has some limitations:
(1) The label proportions for span prediction
and span relation prediction are imbalanced; (2)
Two nodes in a dependency graph cannot have
multiple arcs, which are necessary for this task;
(3) The losses of predicting the imbalanced la-
bels are directly applied in the prediction layer,
which further exacerbates the imbalance prob-
lem. In this work, we propose nichetargeting
solutions for these issues. First, we introduce a
novel labeling strategy, which contains two sets
of token pair labels, namely essential labels and
whole labels. The essential label set consists
of the minimum labels for this task, which are
relatively balanced and applied in the predic-
tion layer. The whole label set includes rich
labels to help our model capture various token
relations, which are imbalanced but merely ap-
plied in the hidden layer to softly influence our
model. Moreover, we also propose an effec-
tive model to well collaborate with our labeling
strategy, which is equipped with the graph at-
tention network to iteratively refine token repre-
sentations, and the adaptive multi-label classifi-
cation to dynamically predict multiple relations
between token pairs. We perform extensive
experiments on 5 benchmark datasets in four
languages. Experimental results show that our
model outperforms previous SOTA models by a
large margin. We believe that our labeling strat-
egy and model can be well extended to other
structured prediction tasks.

1 Introduction

Structured Sentiment Analysis (SSA), which aims
to predict a structured sentiment graph as shown
in Figure 1, can be formulated into the problem of
tuple extraction, where a tuple (h, ¢, e, p) denotes a
holder h who expressed an expression e towards a
target ¢ with a polarity p. Most of the existing work
on sentiment analysis only focus on part of the
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Figure 1: (a) An example of structured sentiment analy-
sis. (b) The head-first parsing graph proposed by Barnes
et al. (2021). (¢) Our proposed essential labels.

task, such as the task of Opinion Mining (Katiyar
and Cardie, 2016; Xia et al., 2021) which ignores
the polarity classification. Recently, Barnes et al.
(2021) proposed a unified approach for SSA in
which they innovatively cast the sentiment analysis
task as a dependency parsing problem and jointly
predicts all components of a sentiment graph.

However, their method may exist some prob-
lems. As seen in Figure 1(b), only 2 arcs (i.e.,
expressed—import and expressed—Moscow) in
their parsing graph are related to span relation
prediction, while much more other arcs are re-
lated to span prediction (e.g., import—the and
import—meat). We argue that this imbalanced set-
ting may hurt the extraction of the sentiment tuple,
since the span lengths of sentiment tuple compo-
nents (e.g., holders or targets) may be very large
in this task, which will further exacerbate the label
bias. Besides, the dependency parsing graph is not
able to deal with multi-label classification, since it
does not allow multiple arcs to share the same head
and dependent tokens.
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To alleviate the label imbalance problem of the
dependency-parsing-based method proposed by
Barnes et al. (2021), we propose a novel labeling
strategy that consists of two parts: First, we ne-
glect all the labels that are related to non-boundary
tokens and design a set of labels called essential la-
bels, which only involves the labels that are related
to boundary tokens (see Figure 1(c)).! As seen,
the proportion of span prediction labels and span
relation prediction labels are relatively balanced in
the essential label set, which can mitigate the label
bias problem if they are utilized in the final output
layer of our model during training.

However, the labels related to non-boundary to-
kens of holder or target spans are also important as
they can encode the relations between the tokens
inside the spans, which may benefit holder, expres-
sion or target extraction with long text spans. To
this end, we design another label set called whole
labels (see Figure 2) which includes not only the
labels related to boundary tokens but also the ones
related to non-boundary tokens. Moreover, since
the dependency-based method (Barnes et al., 2021)
only considers the local relation between each pair
of tokens, we add the labels between [CLS] and
other tokens related to sentiment tuples into our
whole label set, in order to utilize sentence-level
global information. Considering that if the whole
label set is directly applied on the output label for
training, the label imbalance problem may occur
again. We instead employ the whole label set in
a soft and implicit fashion by applying it on the
hidden layer of our model (cf. Section 4.2.2).

Based on the labeling strategy, we propose an
effective token graph model, called TGLS (Token
Graph with a novel Labeling Strategy), to jointly
predicts the label confidences for extracting all

"We call them “essential” because these labels can be
considered as the minimum label set that are necessary for
decoding out sentiment tuples for this task.

components of a sentiment tuple. First, BERT (De-
vlin et al., 2018) and BiLSTM are used to provide
contextualized word representations. Afterwards,
we built a latent graph and leverage a graph atten-
tion network (GAT) (Velickovié et al., 2017) to
multi-hop reason the interaction among tokens. A
predictor finally classifies the essential labels be-
tween token pair and produce all possible tuples
with four elements.

We conduct extensive experiments on five bench-
marks, including NoReCpipe (Dvrelid et al., 2020),
MultiBgy, MultiBca (Barnes et al., 2018), MPQA
(Wiebe et al., 2005) and DSyyis (Toprak et al.,
2010). The resluts show that our TGLS model out-
performs the current best model by a large margin.
In summary, our main contributions include:

* We design a novel labeling strategy to address
the label imbalance issue in prior work. Con-
cretely, we employ the whole label set in the
hidden layer to softly influence our model, and
the essential label set in the prediction layer
to force our model to make minimal correct
predictions.

* We propose an effective graph model to well
collaborate with our label strategy, which
mainly includes the graph-based multi-hop
reasoning to refine token representations via
adjacent label edges, and the adaptive multi-
label classification to dynamically adjust the
decision threshold for each token pair and
each label.

* The experimental results show that our model
has achieved the state-of-the-art performance
in 5 datasets for structured sentiment analysis,
especially in terms of the end-to-end senti-
ment tuple extraction. Our code will be pub-
licly available.
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Figure 3: Overall architecture of the our framework. From left to right, the first is an encoder to yield contextualized
word representations from input sentences, the next is a graph layer where we produce attention scoring matrices by
whole label prediction, then follow by a multi-hop reasoning we build and refine the representation of the token,
finally, a prediction layer is leveraged for reasoning the relations in essential labels and based on which we decode

all components of an opinion tuple.

2 Related Works

The task of the Structured Sentiment Analysis can
be divided into sub-tasks such as span extraction of
the holder, target and expression, relation predic-
tion between these elements and assigning polar-
ity. Some existing works in Opinion Mining used
pipeline methods to first extract spans and then the
relations mostly on the MPQA dataset (Wiebe et al.,
2005), such as Katiyar and Cardie (2016) propose a
BiLSTM-CRF model which is the first such attempt
using a deep learning approach, Zhang et al. (2019)
propose a transition-based model which identifies
opinion elements by the human-designed transi-
tion actions, Xia et al. (2021) propose a unified
span-based model to jointly extract the span and
relations. However, all of these works ignore the
polarity classification sub-task.

In End2End Aspect-Based Sentiment Analysis
(ABSA), there are also some attempts to unify sev-
eral sub-tasks. Wang et al. (2016) augment the
ABSA datasets with sentiment expressions, He et al.
(2019) make use of this data and models the joint
relations between several sub-tasks to learn com-
mon features, (Chen and Qian, 2020) also exploit
interactive information from each pair of sub-tasks
(target extraction, expression extraction, sentiment
classification). However, Wang et al. (2016) only
annotate sentiment-bearing words not phrases and
do not specify the relationship between target and
expression, it therefore may not be adequate for
full structured sentiment analysis.

Thus, Barnes et al. (2021) propose a unified ap-
proach in which they formulate the structured senti-
ment analysis task into a dependency graph parsing
task and jointly predicts all components of a sen-
timent graph. However, as aforementioned, this
direct transformation may be problematic as it may
introduce label imbalance in span and relation pre-
diction. Thus, we propose an effective graph model
with a novel labeling strategy in which we employ
a whole label set in the hidden layer to softly af-
fect our model, and an essential label set in the
prediction layer to address the imbalance issue.

The design of our essential label set is inspired
by the Handshaking Tagging Scheme (Wang et al.,
2020), which is a token pair tagging scheme for
entity and relation extraction. The Handshaking
Tagging Scheme involves only the labels related to
the boundary tokens and enables a one-stage joint
extraction of spans and relations.

3 Token-Pair Labeling Scheme

3.1 Essential Labels

The design of the essential label set is inspired by
Handshaking Tagging Scheme (Wang et al., 2020),
which only involves the labels related to the bound-
ary tokens. Thus, the label proportions for span
prediction and span relation prediction are rela-
tively balanced, which mitigates the label imbal-
ance problem in prior work (Barnes et al., 2021).
For essential labels, we use them in the prediction
layer to decode sentiment tuples.



3.2 Whole Labels

As seen in Figure 2, the whole label set in-
volves both the labels related to boundary and non-
boundary tokens, as well as three labels related to
[CLS] and all tokens in the sentiment tuples. Thus,
our whole label set can be divided into three groups,
span labels, relation labels and [CLS] -related la-
bels. Non-boundary tokens make our model be
aware of the relations between the inside tokens
of a holder, expression or target span, and [CLS]-
related labels help inject the sentence-level global
information into our model. We apply whole la-
bels in the hidden layer to softly embed the above
information into our model, in order to avoid the
potential label imbalance issue.

4 Methodology

The architecture of our framework is illustrated in
Figure 3, which mainly consists of three compo-
nents. First bi-directional LSTM is employed as
the encoder to yield contextualized word represen-
tations from input sentences. Then a graph layer
is used to build and refine the representation of the
token, effectively capturing the token interaction
among spans and global information with whole
labels. Finally, a prediction layer is leveraged for
reasoning the relations in essential labels between
all word pairs.

4.1 Encoder Layer

Consider the 7" token in a sentence with n tokens,
we represent it by concatenating its token embed-
ding e, part-of-speech (POS) embedding e?”*,
lemma embedding el™™@, and character-level em-

bedding efhc”“ together:
w; = e%umd D e;;JOS D eéemma D ezghar (1)

where @ denotes the concatenation operation. The
character-level embedding is generated by the con-
volution neural networks (CNN) (Kalchbrenner
et al.,, 2014). Then, we employ bi-directional
LSTM (BiLSTM) to encode the vectorial token
representations into contextualized word represen-
tations:

where h; is the token hidden representation.

Moreover, in the same way as previous work
(Barnes et al., 2021), we also enhance token rep-
resentations with pretrained contextualized em-
beddings using multilingual BERT (Devlin et al.,
2018).

4.2 Graph Layer

4.2.1 Token Graph

We treat our graph as a latent variable, where the
graph nodes are the token representations from the
encoder layer, and the graph edges are formulated
into the adjacency attention matrix of the graph
attention network (GAT) (Velickovié et al., 2017).
The proposed token graph includes 4 views, where
each view corresponds to an adjacency attention
matrix. Recall that the whole label set is applied
in this layer, which includes three groups of labels.
Thus, three attention matrices are used to predict
three groups of labels respectively, while one atten-
tion matrix is used without any prediction task, as
the method in vanilla GAT. Formally, we represent
the latent token graph G as follows:

G=(V,87,87,87,57) 3

where V is the set of tokens, Sog is the attention
matrix in vanilla GAT, SY, SY and SY are the atten-
tion matrices used to predict span prediction labels,
span relation prediction labels and [CLS] -related
labels respectively.

4.2.2 Whole Label Prediction

In this section, we introduce the process that whole
labels influence the graph layer by label prediction
using the attention scores of attention matrices SY,
S9 and SY. Without loss of generality, we employ
SY unifiedly.

Attention Scoring Our attention matrices are
produced by a mechanism of Attention Scoring
which takes two token representations h;, h; as
the input and for the n'" attention matrix, we first
map the tokens to ¢(h;,n) and k(h;, n) with two
multi-layer perceptions (MLP):

q(hi,n) = MLP} (h;)

4
K(hy,m) = MLPY (hy) @

Then we apply a technique of Rotary Position Em-
bedding (RoPE) (Su et al., 2021) to encode relative
position information. The attention score S¥ (i, j)
can be calculated as follows:

Sg(l, .7) = SCOT@(hi, h’j7 TL)
score(h;, hj,n) = (q(hi,n)) " R;_;k(hj,n)
)

where R;_; incorporates explicit relative positional
information in attention scoring.



And in the same way as calculating S¥ (i, j), we
can produce all token pair scores of all adjacency
attention matrix, thus inducing the whole graph
edges SY:

S9={89(i, )l <n<N,1<i,j<I} (6

where n denotes the " adjacency attention matrix,
N is the total number of the matrix, [ is the length
of the sentence.

Then, we introduce an adaptive thresholding
function below, which produces a token pair de-
pendent threshold to enable the injection of the
information from whole labels R, into the adja-
cency attention matrix.

Adaptive Thresholding for a certain token pair
with representations of h;, h;, the token pair depen-
dent threshold and the whole THY are calculated
as follows:

THY = {THigj\l <ij< l}

(7)
THY = threshold(h;, h)

where the threshold(h;, h;) is defined as:

¢"H(h;) = W,h; + b,

ETH(h;) = Wih; + by,
threshold(hi, hj) = (¢"" (hs)) " R;_:k™ (h;)
3)

where W, W, b, and by, are the trainable weight
and bias matrix, IR;_; are calculated in the same
way as Eq.(5), which is used to incorporate explicit
relative positional information.

Then combined with a multi-label adaptive-
threshold loss and for a certain whole label r € R,
and the corresponding adjacency attention matrix
S9, we push the logits S (i, j) above the adaptive
threshold T'H. g when the token pair possesses the
label, and pull below when it does not.

Due to the abundance of whole labels and the
flexibility of the adaptive threshold, it allows the
model to induce a more informative adjacency at-
tention matrix for our token graph.

4.2.3

Considering that the adjacency attention matrix
59 is embedded with the information from whole
labels R, we naturally think of applying the multi-
head graph attention networks (GATs) (Velickovié¢
et al., 2017) for multi-hop reasoning to obtain more

Multi-hop Reasoning

informative token representations. Specifically, we
first apply a softmax on our adjacency attention
matrix SY, then the GATs computation for the rep-
resentation ué“ of the token i at the (I + 1)**layer,
which takes the representations from previous layer
as input and outputs the updated representations,
can be defined as:

A = Softmaz (S9) 9)
1 N
wl=o (&Y Y, AGWiug | (10)
n=1jeN]

where W7 is the trainable weight matrix for [th
layer and n'* adjacency attention matrix, N is
the neighbor of token 7, o is the ReLU (Nair and
Hinton, 2010) activation function.

4.3 Prediction Layer

For each token, we get the final representation c; by
taking a shortcut connection between the outputs
of Encoder Layer and Graph Layer:

c, = h; ®u; (11)

To identify possible essential labels R, of each
token pair, we calculate the token pair score matrix
SP r € R, and the adaptive threshold T H” based
on the function of attention scoring and adaptive
threshold (see Eq.(5) and Eq.(8)):

Sf(i,j,r) = score(c;, cj,r)

THZ; = threshold(c;, c;)

SP = {SP(i, )1 <i,j <l,re R}
TH” = {THJ|1 <i,j <1}

12)

Formally, the essential labels for a certain token
pair ¢;, c¢; is predicted by following equation:

Qij = {r|SF(i,j) > TH. ,r € R.}

z (13)

where token pair satisfying ST (i, j) > TH], are
regarded as possessing label € R, and (2;; is the
set of predicted essential labels of token pair ¢;, ¢;.

4.4 Training

In our work, we apply a loss? that extends cross
entropy to multi-label classification problem. How-
ever, we replace the global threshold with a token
pair dependent threshold to enable the informa-
tion injection from whole labels R, to adjacency

>The loss was proposed by Su on the blog website
https://kexue.fm/archives/7359.
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Dataset Model
Holder F1 Target F1 Exp. F1 Avg. Fl F1 NSF1 SF1
RACL-BERT - 47.2 56.3 - 30.3 - -
NoReCr Head-first 51.1 50.1 54.4 53.1* 30.5 37.0 295
Fine  Head-final 60.4 54.8 55.5 55.7* 31.9 392 312
TGLS 60.9 53.2 61.0 58.1 38.1 464 37.6
RACL-BERT - 59.9 72.6 - 56.8 - -
MultiB Head-first 60.4 64.0 73.9 69.6* 57.8 580 54.7
BV Head-final 60.5 64.0 72.1 68.2* 569 580 547
TGLS 62.8 65.6 75.2 71.0 60.9 61.1 589
RACL-BERT - 67.5 70.3 - 52.4 - -
MultiB Head-first 43.0 72.5 71.1 70.5* 55.0 62.0 56.8
€A Head-final 37.1 71.2 67.1 70.2* 53.9 59.7 53.7
TGLS 474 73.8 71.8 71.6 60.6 64.2 59.8
RACL-BERT - 20.0 31.2 - 17.8 - -
MPQA Head-first 43.8 51.0 48.1 47.7* 33.5 245 174
Head-final 46.3 49.5 46.0 47.2* 18.6 26.1 18.8
TGLS 44.1 51.7 47.8 47.0 233 282 216
RACL-BERT - 44.6 38.2 - 273 - -
DS Head-first 28.0 39.9 40.3 40.1* 26.7 31.0 250
Unis Head-final 374 42.1 45.5 43.0* 29.6 343 265
TGLS 43.7 49.0 42.6 45.7 31.6 361 31.1

Table 1: Main experimental results of our TGLS model and comparison with previous works. The baseline results

"k

wit

attention matrix of the GATs. The loss is also
applied in the Prediction Layer to identify all pos-
sible essential labels for each token pair to solve
the multi-label problem. Formally, the multi-label
adaptive-threshold loss function in prediction layer
is defined as follows:

L.=L(TH”, S")

:ZZIOg eTHEJr Z 57 (0:9)

i g>i reQ?

_ P P(i i

+ g g log e THZ] + g e_Sr (7’7])
PG> reqre

(14)

where Q77 and QY are positive and negative
classes involving link labels that exist or not exist
between token ¢ and token j. When minimizing the
loss, it pushes the logits of all positive classes above
the corresponding threshold T'H Z; , and pulles the
logits of negative classes below.

In a similar way we can get the loss £, in Graph
Layer by taking the THY, SY as the inputs of the

are from our reimplementation, the others are from (Barnes et al., 2021).

loss function. Thus the whole loss of our model
can be calculated as follows:

Loy =Le + aly, (15)

where the « is a hyperparameter to adjust the ratio
of the two losses.

5 Experimental Settings

5.1 Datasets and Configuration

For comparison with previous sota work (Barnes
et al., 2021), we perform experiments on five struc-
tured sentiment datasets in four languages, includ-
ing multi-domain professional reviews NoReCpjpe
(@vrelid et al., 2020) in Norwegian, hotel reviews
MultiBgy and MultiBc4 (Barnes et al., 2018) in
Basque and Catalan respectively, news MPQA
(Wiebe et al., 2005) in English and reviews of on-
line universities and e-commerce DSyy;s (Toprak
et al., 2010) in English.

For fair comparison, we use word2vec skip-gram
embeddings openly available from the NLPL vec-
tor repository (Kutuzov et al., 2017). Our model
is implemented with PyTorch and the network



weights are optimized with Adam (Kingma and
Ba, 2014). We also conduct Cosine Annealing
Warm Restarts learning rate schedule (Loshchilov
and Hutter, 2016). We train our models for at most
100 epochs and choose the model with the best
performance in SF1 score on the validation set to
output results on the test set. And we run all of our
models three times with different random seeds.
Finally, the average results of the three runs are
reported in our work (Hyper-parameter settings are
listed in Table 4).

5.2 Baselines

We compare our proposed model with three state-
of-the-art baselines which outperform other models
in all datasets:

RACL-BERT Chen and Qian (2020) propose a
relation-aware collaborative learning framework
for end2end sentiment analysis which models the
interactive relations between each pair of sub-tasks
(target extraction, expression extraction, sentiment
classification). Barnes et al. (2021) reimplement
the RACL as a baseline for SSA task in their work,
and they also enhance token representations using
multilingual BERT (Devlin et al., 2018).

Head-first and Head-final Barnes et al. (2021)
cast the structured sentiment analysis as a depen-
dency parsing task and apply a reimplementation
of the neural parser by Dozat and Manning (2018),
where the main architecture of the model is based
on a biaffine classifier. The Head-first and Head
final are two models with different setups in the
parsing graph.

5.3 Evaluation Metrics

Following previous sota work Barnes et al. (2021),
we use the Span F1, Targeted F1 and two Sentiment
Graph Metrics to measure the experimental results.

In detail, Span F1 evaluates how well these mod-
els are able to identify the holders, targets, and
expressions. Targeted F1 requires the exact extrac-
tion of the correct target, and the corresponding
polarity. Sentiment Graph Metrics include two F1
score, Non-polar Sentiment Graph F1 (NSF1) and
Sentiment Graph F1 (SF1), which aims to measure
the overall performance of a model to capture the
full sentiment graph (see Figure 1a). For NSFI,
each sentiment graph is a tuple of (holder, target,
expression), while SF1 adds the polarity (holder,
target, expression, polarity). A true positive is de-
fined as an exact match at graph-level, weighting

NoReCgi,e MultiBgy  MultiBca MPQA DSy
Head-final 52.3 63.9 67.3 45.0 41.5
TGLS
+parsing labels 54.2 65.4 67.5 44.7 43.2
+essential labels 57.8 68.7 70.1 46.1 45.7

Table 2: Experimental results and comparison of the
pure relation extraction F1 scores.

the overlap in predicted and gold spans for each
element, averaged across all three spans.

Moreover, for ease of analysis, we add an Aver-
age Span F1 Score which evaluates how well these
models are able to identify all three elements of a
sentiment graph with token-level F1.

6 Results

In this section, we introduce the main experimental
results (see Table 1) compared with three state-
of-the-art models RACL-BERT (Chen and Qian,
2020), Head-first and Head-final models (Barnes
etal., 2021).

Table 1 shows that in most cases our TGLS
model performs better than other baselines in terms
of the Span F1 metric on all datasets. And the av-
erage improvement (1 1.4) in Avg. Span F1 score
proves the effectiveness of our model in span ex-
traction. Besides, there exists some significant im-
provements such as extracting holder on DSyys
(16.3) and extracting expression on NoReCp;,e
(14.7), but the extracting expression on DSypis
(12.9) are poor.

As for the metric of Targeted F1, although
the Head-first model performs well on MPQA,
our TGLS model is obviously more robust as we
achieves superior performance on other 4 datasets.
There are also extremely significant improvements
such as on NoReCgjpe (16.2) and on MultiBca
(15.6), it proves the capacity of our model in exact
prediction of target and the corresponding polar.

As for the Sentiment Graph metrics, which
are important for comprehensively examining
span, relation and polar predictions, our TGLS
model achieves superior performance throughout
all datasets in both NSF1 and SF1 score, especially
on NoReCripe (17.2 and 16.4). And the average im-
provement (14.5) in SF1 score verifies the excellent
ability of our model in the end-to-end sentiment tu-
ple extraction, which is the key point in Structured
Sentiment Analysis task.
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7 Discussion

In this section we perform a deeper analysis on the
models in order to answer two research questions:

7.1 Do our model mitigates the label bias in
span and relation prediction?

We hypothesize that the dependency-parsing-based
method proposed by Barnes et al. (2021) may in-
troduce the label imbalance problem and affect the
efficiency in relation prediction, we therefore only
use the essential labels in the prediction layer to
make minimal correct predictions. Experimental
results show that our model performs significantly
better in the overall metric SF1, which to some
extent proves that our model can simultaneously
ensure the efficiency of span and relation extrac-
tion. Howeuver, it is still a worthy question to ex-
plore whether and how much do our essential labels
improve the performance of relation prediction?
For ease of analysis, we replace our essential
labels with the dependency-parsing-based labels
(Barnes et al., 2021) in the prediction layer and
experiment on all datasets in terms of a relation

prediction metric, where a true positive is defined
as any span pair that overlaps the gold span pair
and has the same relation. Table 2 shows that our
model significantly improve the performance of
relation prediction compared with previous sota
model (Barnes et al., 2021) on all datasets. Besides,
we can see that our model with essential labels
achieves superior performance than the model with
replaced dependency-parsing-based labels, which
proves the effectiveness of using essential labels to
improve the performance of relation prediction.

7.2 Do the utilization of whole labels improve
the result?

In this section, we first evaluate our model on all
datasets in terms of the Avg Span F1 and Tar-
geted F1, NSF1 and SF1 scores by directly drop
the whole labels. Figure 3 shows the performance
drops without the whole labels, the whole labels al-
most improves the performance in all metrics on all
datasets, although the MultiBgy, MultiBca and
DSunis in Targeted F1 metric are exceptions, this
may attributed to the three datasets have shorter
targets, and it indicates that the whole labels may
benefit more from long span issues.

Then, we experiment on NoReCp;,. to further
explore whether whole labels contribute to long
span issues? Figure 5a evaluates the Expression
F1 score regarding to different expression length,
we can find that whole labels helps most on those
expressions with longer length. We also report the
SF1 score regarding to different distance from the
token in tuple with smallest position to the token
with largest position in Figure 5b, which shows a
similar conclusion.

8 Conclusion

In this paper, we propose a graph model TGLS
with a novel labeling strategy, consisting of whole
labels and essential labels, to extract opinion tuples
for structured sentiment analysis. By predicting
whole labels, our model is capable of capturing
global and token pair interaction information. We
further propose a multi-hop reasoning graph layer
for better refining the token representations via the
latent graph built from the whole label prediction.
We conduct extensive experiments on five bench-
mark datasets to validate the effectiveness of the
proposed framework. Experimental results show
that our model overwhelmingly outperforms SOTA
baselines.
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Dataset Head-final TGLS

NoReCFipe, 57 62.1 (15.1)
MultiBgy, 75.7 79.3 (13.6)
MultiBca, 71.7 76.2 (14.5)
MPQA 38.5 41.0 (12.5)
DSunis» 44.5 47.8 (13.3)

Table 3: Experimental results and comparison of the
Polarity F1 scores.

Hyperparameter Best assignment

contexualized embedding mBERT

embeddings trainable FALSE
number of epochs 100
batch size 8
learning rate 3e-5
o} 0.25
hidden 1stm 400
layers Istm 4
dim embedding 100
dim char embedding 100
dropout embedding 0.4
dropout main recurrent 0.3

Table 4: Detailed settings of our hyper-parameter.

A Analysis of polarity predictions

In this section, we focus on the performance in
only polarity prediction, where a true positive is
defined as any expression that overlaps the gold
expression with the same polarity. Table 3 shows
that our model achieves superior performance than
previous sota model (Barnes et al., 2021) on all
datasets, especially on NoReCpi, (15.1), which
has longer expressions, it once again verifies that
our model has excellent performance on the long
span problem.



