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Abstract

The state-of-the-art model for structured sen-001
timent analysis casts the task as a dependency002
parsing problem, which has some limitations:003
(1) The label proportions for span prediction004
and span relation prediction are imbalanced; (2)005
Two nodes in a dependency graph cannot have006
multiple arcs, which are necessary for this task;007
(3) The losses of predicting the imbalanced la-008
bels are directly applied in the prediction layer,009
which further exacerbates the imbalance prob-010
lem. In this work, we propose nichetargeting011
solutions for these issues. First, we introduce a012
novel labeling strategy, which contains two sets013
of token pair labels, namely essential labels and014
whole labels. The essential label set consists015
of the minimum labels for this task, which are016
relatively balanced and applied in the predic-017
tion layer. The whole label set includes rich018
labels to help our model capture various token019
relations, which are imbalanced but merely ap-020
plied in the hidden layer to softly influence our021
model. Moreover, we also propose an effec-022
tive model to well collaborate with our labeling023
strategy, which is equipped with the graph at-024
tention network to iteratively refine token repre-025
sentations, and the adaptive multi-label classifi-026
cation to dynamically predict multiple relations027
between token pairs. We perform extensive028
experiments on 5 benchmark datasets in four029
languages. Experimental results show that our030
model outperforms previous SOTA models by a031
large margin. We believe that our labeling strat-032
egy and model can be well extended to other033
structured prediction tasks.034

1 Introduction035

Structured Sentiment Analysis (SSA), which aims036

to predict a structured sentiment graph as shown037

in Figure 1, can be formulated into the problem of038

tuple extraction, where a tuple (h, t, e, p) denotes a039

holder h who expressed an expression e towards a040

target t with a polarity p. Most of the existing work041

on sentiment analysis only focus on part of the042
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Figure 1: (a) An example of structured sentiment analy-
sis. (b) The head-first parsing graph proposed by Barnes
et al. (2021). (c) Our proposed essential labels.

task, such as the task of Opinion Mining (Katiyar 043

and Cardie, 2016; Xia et al., 2021) which ignores 044

the polarity classification. Recently, Barnes et al. 045

(2021) proposed a unified approach for SSA in 046

which they innovatively cast the sentiment analysis 047

task as a dependency parsing problem and jointly 048

predicts all components of a sentiment graph. 049

However, their method may exist some prob- 050

lems. As seen in Figure 1(b), only 2 arcs (i.e., 051

expressed→import and expressed→Moscow) in 052

their parsing graph are related to span relation 053

prediction, while much more other arcs are re- 054

lated to span prediction (e.g., import→the and 055

import→meat). We argue that this imbalanced set- 056

ting may hurt the extraction of the sentiment tuple, 057

since the span lengths of sentiment tuple compo- 058

nents (e.g., holders or targets) may be very large 059

in this task, which will further exacerbate the label 060

bias. Besides, the dependency parsing graph is not 061

able to deal with multi-label classification, since it 062

does not allow multiple arcs to share the same head 063

and dependent tokens. 064
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Figure 2: Whole labels contains [CLS]-related labels, and the labels for span prediction and span relation prediction.

To alleviate the label imbalance problem of the065

dependency-parsing-based method proposed by066

Barnes et al. (2021), we propose a novel labeling067

strategy that consists of two parts: First, we ne-068

glect all the labels that are related to non-boundary069

tokens and design a set of labels called essential la-070

bels, which only involves the labels that are related071

to boundary tokens (see Figure 1(c)).1 As seen,072

the proportion of span prediction labels and span073

relation prediction labels are relatively balanced in074

the essential label set, which can mitigate the label075

bias problem if they are utilized in the final output076

layer of our model during training.077

However, the labels related to non-boundary to-078

kens of holder or target spans are also important as079

they can encode the relations between the tokens080

inside the spans, which may benefit holder, expres-081

sion or target extraction with long text spans. To082

this end, we design another label set called whole083

labels (see Figure 2) which includes not only the084

labels related to boundary tokens but also the ones085

related to non-boundary tokens. Moreover, since086

the dependency-based method (Barnes et al., 2021)087

only considers the local relation between each pair088

of tokens, we add the labels between [CLS] and089

other tokens related to sentiment tuples into our090

whole label set, in order to utilize sentence-level091

global information. Considering that if the whole092

label set is directly applied on the output label for093

training, the label imbalance problem may occur094

again. We instead employ the whole label set in095

a soft and implicit fashion by applying it on the096

hidden layer of our model (cf. Section 4.2.2).097

Based on the labeling strategy, we propose an098

effective token graph model, called TGLS (Token099

Graph with a novel Labeling Strategy), to jointly100

predicts the label confidences for extracting all101

1We call them “essential” because these labels can be
considered as the minimum label set that are necessary for
decoding out sentiment tuples for this task.

components of a sentiment tuple. First, BERT (De- 102

vlin et al., 2018) and BiLSTM are used to provide 103

contextualized word representations. Afterwards, 104

we built a latent graph and leverage a graph atten- 105

tion network (GAT) (Veličković et al., 2017) to 106

multi-hop reason the interaction among tokens. A 107

predictor finally classifies the essential labels be- 108

tween token pair and produce all possible tuples 109

with four elements. 110

We conduct extensive experiments on five bench- 111

marks, including NoReCFine (Øvrelid et al., 2020), 112

MultiBEU , MultiBCA (Barnes et al., 2018), MPQA 113

(Wiebe et al., 2005) and DSUnis (Toprak et al., 114

2010). The resluts show that our TGLS model out- 115

performs the current best model by a large margin. 116

In summary, our main contributions include: 117

• We design a novel labeling strategy to address 118

the label imbalance issue in prior work. Con- 119

cretely, we employ the whole label set in the 120

hidden layer to softly influence our model, and 121

the essential label set in the prediction layer 122

to force our model to make minimal correct 123

predictions. 124

• We propose an effective graph model to well 125

collaborate with our label strategy, which 126

mainly includes the graph-based multi-hop 127

reasoning to refine token representations via 128

adjacent label edges, and the adaptive multi- 129

label classification to dynamically adjust the 130

decision threshold for each token pair and 131

each label. 132

• The experimental results show that our model 133

has achieved the state-of-the-art performance 134

in 5 datasets for structured sentiment analysis, 135

especially in terms of the end-to-end senti- 136

ment tuple extraction. Our code will be pub- 137

licly available. 138

2



Encoder

[CLS]

Moscow

Goverment

has

expressed

the

wish

to

import

the

meat

Mongolian

D
ecoding

expressed

[CLS]

has the

wishGoverment

Moscow

Mongolian

to

import

the
meat

Essential Label Prediction

Le

expressed

[CLS]

has the

wishGoverment

Moscow

Mongolian

to

import

the
meat

[CLS]-related Label

Rel Label
Span Label

Whole Label Prediction
Lw

M
ulti-hop

R
easoning

Vanilla     

Figure 3: Overall architecture of the our framework. From left to right, the first is an encoder to yield contextualized
word representations from input sentences, the next is a graph layer where we produce attention scoring matrices by
whole label prediction, then follow by a multi-hop reasoning we build and refine the representation of the token,
finally, a prediction layer is leveraged for reasoning the relations in essential labels and based on which we decode
all components of an opinion tuple.

2 Related Works139

The task of the Structured Sentiment Analysis can140

be divided into sub-tasks such as span extraction of141

the holder, target and expression, relation predic-142

tion between these elements and assigning polar-143

ity. Some existing works in Opinion Mining used144

pipeline methods to first extract spans and then the145

relations mostly on the MPQA dataset (Wiebe et al.,146

2005), such as Katiyar and Cardie (2016) propose a147

BiLSTM-CRF model which is the first such attempt148

using a deep learning approach, Zhang et al. (2019)149

propose a transition-based model which identifies150

opinion elements by the human-designed transi-151

tion actions, Xia et al. (2021) propose a unified152

span-based model to jointly extract the span and153

relations. However, all of these works ignore the154

polarity classification sub-task.155

In End2End Aspect-Based Sentiment Analysis156

(ABSA), there are also some attempts to unify sev-157

eral sub-tasks. Wang et al. (2016) augment the158

ABSA datasets with sentiment expressions, He et al.159

(2019) make use of this data and models the joint160

relations between several sub-tasks to learn com-161

mon features, (Chen and Qian, 2020) also exploit162

interactive information from each pair of sub-tasks163

(target extraction, expression extraction, sentiment164

classification). However, Wang et al. (2016) only165

annotate sentiment-bearing words not phrases and166

do not specify the relationship between target and167

expression, it therefore may not be adequate for168

full structured sentiment analysis.169

Thus, Barnes et al. (2021) propose a unified ap- 170

proach in which they formulate the structured senti- 171

ment analysis task into a dependency graph parsing 172

task and jointly predicts all components of a sen- 173

timent graph. However, as aforementioned, this 174

direct transformation may be problematic as it may 175

introduce label imbalance in span and relation pre- 176

diction. Thus, we propose an effective graph model 177

with a novel labeling strategy in which we employ 178

a whole label set in the hidden layer to softly af- 179

fect our model, and an essential label set in the 180

prediction layer to address the imbalance issue. 181

The design of our essential label set is inspired 182

by the Handshaking Tagging Scheme (Wang et al., 183

2020), which is a token pair tagging scheme for 184

entity and relation extraction. The Handshaking 185

Tagging Scheme involves only the labels related to 186

the boundary tokens and enables a one-stage joint 187

extraction of spans and relations. 188

3 Token-Pair Labeling Scheme 189

3.1 Essential Labels 190

The design of the essential label set is inspired by 191

Handshaking Tagging Scheme (Wang et al., 2020), 192

which only involves the labels related to the bound- 193

ary tokens. Thus, the label proportions for span 194

prediction and span relation prediction are rela- 195

tively balanced, which mitigates the label imbal- 196

ance problem in prior work (Barnes et al., 2021). 197

For essential labels, we use them in the prediction 198

layer to decode sentiment tuples. 199
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3.2 Whole Labels200

As seen in Figure 2, the whole label set in-201

volves both the labels related to boundary and non-202

boundary tokens, as well as three labels related to203

[CLS] and all tokens in the sentiment tuples. Thus,204

our whole label set can be divided into three groups,205

span labels, relation labels and [CLS]-related la-206

bels. Non-boundary tokens make our model be207

aware of the relations between the inside tokens208

of a holder, expression or target span, and [CLS]-209

related labels help inject the sentence-level global210

information into our model. We apply whole la-211

bels in the hidden layer to softly embed the above212

information into our model, in order to avoid the213

potential label imbalance issue.214

4 Methodology215

The architecture of our framework is illustrated in216

Figure 3, which mainly consists of three compo-217

nents. First bi-directional LSTM is employed as218

the encoder to yield contextualized word represen-219

tations from input sentences. Then a graph layer220

is used to build and refine the representation of the221

token, effectively capturing the token interaction222

among spans and global information with whole223

labels. Finally, a prediction layer is leveraged for224

reasoning the relations in essential labels between225

all word pairs.226

4.1 Encoder Layer227

Consider the ith token in a sentence with n tokens,228

we represent it by concatenating its token embed-229

ding eword
i , part-of-speech (POS) embedding eposi ,230

lemma embedding elemma
i , and character-level em-231

bedding echari together:232

wi = eword
i ⊕ eposi ⊕ elemma

i ⊕ echari (1)233

where ⊕ denotes the concatenation operation. The234

character-level embedding is generated by the con-235

volution neural networks (CNN) (Kalchbrenner236

et al., 2014). Then, we employ bi-directional237

LSTM (BiLSTM) to encode the vectorial token238

representations into contextualized word represen-239

tations:240

hi = BiLSTM(wi) (2)241

where hi is the token hidden representation.242

Moreover, in the same way as previous work243

(Barnes et al., 2021), we also enhance token rep-244

resentations with pretrained contextualized em-245

beddings using multilingual BERT (Devlin et al.,246

2018).247

4.2 Graph Layer 248

4.2.1 Token Graph 249

We treat our graph as a latent variable, where the 250

graph nodes are the token representations from the 251

encoder layer, and the graph edges are formulated 252

into the adjacency attention matrix of the graph 253

attention network (GAT) (Veličković et al., 2017). 254

The proposed token graph includes 4 views, where 255

each view corresponds to an adjacency attention 256

matrix. Recall that the whole label set is applied 257

in this layer, which includes three groups of labels. 258

Thus, three attention matrices are used to predict 259

three groups of labels respectively, while one atten- 260

tion matrix is used without any prediction task, as 261

the method in vanilla GAT. Formally, we represent 262

the latent token graph G as follows: 263

G =
(
V, SG

0 , S
G
s , S

G
r , S

G
c

)
(3) 264

where V is the set of tokens, SG
0 is the attention 265

matrix in vanilla GAT, SG
s , SG

r and SG
c are the atten- 266

tion matrices used to predict span prediction labels, 267

span relation prediction labels and [CLS]-related 268

labels respectively. 269

4.2.2 Whole Label Prediction 270

In this section, we introduce the process that whole 271

labels influence the graph layer by label prediction 272

using the attention scores of attention matrices SG
s , 273

SG
r and SG

c . Without loss of generality, we employ 274

SG unifiedly. 275

Attention Scoring Our attention matrices are 276

produced by a mechanism of Attention Scoring 277

which takes two token representations hi,hj as 278

the input and for the nth attention matrix, we first 279

map the tokens to q(hi, n) and k(hj , n) with two 280

multi-layer perceptions (MLP): 281

q(hi, n) = MLP q
n (hi)

k(hj , n) = MLP k
n (hj)

(4) 282

Then we apply a technique of Rotary Position Em- 283

bedding (RoPE) (Su et al., 2021) to encode relative 284

position information. The attention score SG
n (i, j) 285

can be calculated as follows: 286

SG
n (i, j) = score(hi,hj , n)

score(hi,hj , n) = (q(hi, n))
⊤Rj−ik(hj , n)

(5)

287

where Rj−i incorporates explicit relative positional 288

information in attention scoring. 289
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And in the same way as calculating SG
n (i, j), we290

can produce all token pair scores of all adjacency291

attention matrix, thus inducing the whole graph292

edges SG :293

SG =
{
SG
n (i, j)|1 ≤ n ≤ N, 1 ≤ i, j ≤ l

}
(6)294

where n denotes the nth adjacency attention matrix,295

N is the total number of the matrix, l is the length296

of the sentence.297

Then, we introduce an adaptive thresholding298

function below, which produces a token pair de-299

pendent threshold to enable the injection of the300

information from whole labels Ru into the adja-301

cency attention matrix.302

Adaptive Thresholding for a certain token pair303

with representations of hi,hj , the token pair depen-304

dent threshold and the whole THG are calculated305

as follows:306

THG =
{
THG

ij |1 ≤ i, j ≤ l
}

THG
ij = threshold(hi,hj)

(7)307

where the threshold(hi,hj) is defined as:308

qTH(hi) = W qhi + bq

kTH(hj) = W khj + bk

threshold(hi,hj) =
(
qTH(hi)

)⊤
Rj−ik

TH(hj)

(8)

309

where W q, W k, bq and bk are the trainable weight310

and bias matrix, Rj−i are calculated in the same311

way as Eq.(5), which is used to incorporate explicit312

relative positional information.313

Then combined with a multi-label adaptive-314

threshold loss and for a certain whole label r ∈ Rw315

and the corresponding adjacency attention matrix316

SG
r , we push the logits SG

r (i, j) above the adaptive317

threshold THG
ij when the token pair possesses the318

label, and pull below when it does not.319

Due to the abundance of whole labels and the320

flexibility of the adaptive threshold, it allows the321

model to induce a more informative adjacency at-322

tention matrix for our token graph.323

4.2.3 Multi-hop Reasoning324

Considering that the adjacency attention matrix325

SG is embedded with the information from whole326

labels Rw, we naturally think of applying the multi-327

head graph attention networks (GATs) (Veličković328

et al., 2017) for multi-hop reasoning to obtain more329

informative token representations. Specifically, we 330

first apply a softmax on our adjacency attention 331

matrix SG , then the GATs computation for the rep- 332

resentation ul+1
i of the token i at the (l+1)thlayer, 333

which takes the representations from previous layer 334

as input and outputs the updated representations, 335

can be defined as: 336

A = Softmax
(
SG) (9) 337

ul+1
i = σ

 1

N

N∑
n=1

∑
j∈Nn

i

An
ijW

n
l u

l
j

 (10) 338

where W n
l is the trainable weight matrix for lth 339

layer and nth adjacency attention matrix, N n
i is 340

the neighbor of token i, σ is the ReLU (Nair and 341

Hinton, 2010) activation function. 342

4.3 Prediction Layer 343

For each token, we get the final representation ci by 344

taking a shortcut connection between the outputs 345

of Encoder Layer and Graph Layer: 346

ci = hi ⊕ ui (11) 347

To identify possible essential labels Re of each 348

token pair, we calculate the token pair score matrix 349

SP , r ∈ Re and the adaptive threshold THP based 350

on the function of attention scoring and adaptive 351

threshold (see Eq.(5) and Eq.(8)): 352

SP
r (i, j, r) = score(ci, cj , r)

THP
ij = threshold(ci, cj)

SP =
{
SP
r (i, j)|1 ≤ i, j ≤ l, r ∈ Re

}
THP =

{
THP

ij |1 ≤ i, j ≤ l
} (12) 353

Formally, the essential labels for a certain token 354

pair ci, cj is predicted by following equation: 355

Ωij =
{
r|SP

r (i, j) > THP
ij , r ∈ Re

}
(13) 356

where token pair satisfying SP
r (i, j) > THP

ij are 357

regarded as possessing label r ∈ Re, and Ωij is the 358

set of predicted essential labels of token pair ci, cj . 359

4.4 Training 360

In our work, we apply a loss2 that extends cross 361

entropy to multi-label classification problem. How- 362

ever, we replace the global threshold with a token 363

pair dependent threshold to enable the informa- 364

tion injection from whole labels Rw to adjacency 365

2The loss was proposed by Su on the blog website
https://kexue.fm/archives/7359.
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Dataset Model
Span Targeted Sent. Graph

Holder F1 Target F1 Exp. F1 Avg. F1 F1 NSF1 SF1

NoReCFine

RACL-BERT - 47.2 56.3 - 30.3 - -
Head-first 51.1 50.1 54.4 53.1∗ 30.5 37.0 29.5
Head-final 60.4 54.8 55.5 55.7∗ 31.9 39.2 31.2

TGLS 60.9 53.2 61.0 58.1 38.1 46.4 37.6

MultiBEU

RACL-BERT - 59.9 72.6 - 56.8 - -
Head-first 60.4 64.0 73.9 69.6∗ 57.8 58.0 54.7
Head-final 60.5 64.0 72.1 68.2∗ 56.9 58.0 54.7

TGLS 62.8 65.6 75.2 71.0 60.9 61.1 58.9

MultiBCA

RACL-BERT - 67.5 70.3 - 52.4 - -
Head-first 43.0 72.5 71.1 70.5∗ 55.0 62.0 56.8
Head-final 37.1 71.2 67.1 70.2∗ 53.9 59.7 53.7

TGLS 47.4 73.8 71.8 71.6 60.6 64.2 59.8

MPQA

RACL-BERT - 20.0 31.2 - 17.8 - -
Head-first 43.8 51.0 48.1 47.7∗ 33.5 24.5 17.4
Head-final 46.3 49.5 46.0 47.2∗ 18.6 26.1 18.8

TGLS 44.1 51.7 47.8 47.0 23.3 28.2 21.6

DSUnis

RACL-BERT - 44.6 38.2 - 27.3 - -
Head-first 28.0 39.9 40.3 40.1∗ 26.7 31.0 25.0
Head-final 37.4 42.1 45.5 43.0∗ 29.6 34.3 26.5

TGLS 43.7 49.0 42.6 45.7 31.6 36.1 31.1

Table 1: Main experimental results of our TGLS model and comparison with previous works. The baseline results
with "∗" are from our reimplementation, the others are from (Barnes et al., 2021).

attention matrix of the GATs. The loss is also366

applied in the Prediction Layer to identify all pos-367

sible essential labels for each token pair to solve368

the multi-label problem. Formally, the multi-label369

adaptive-threshold loss function in prediction layer370

is defined as follows:371

Le = L(THP , SP)

=
∑
i

∑
j>i

log

eTHP
ij +

∑
r∈Ωneg

ij

eS
P
r (i,j)


+
∑
i

∑
j>i

log

e−THP
ij +

∑
r∈Ωpos

ij

e−SP
r (i,j)


(14)

372

where Ωpos
ij and Ωneg

ij are positive and negative373

classes involving link labels that exist or not exist374

between token i and token j. When minimizing the375

loss, it pushes the logits of all positive classes above376

the corresponding threshold THP
ij , and pulles the377

logits of negative classes below.378

In a similar way we can get the loss Lw in Graph379

Layer by taking the THG , SG as the inputs of the380

loss function. Thus the whole loss of our model 381

can be calculated as follows: 382

Lall =Le + αLw (15) 383

where the α is a hyperparameter to adjust the ratio 384

of the two losses. 385

5 Experimental Settings 386

5.1 Datasets and Configuration 387

For comparison with previous sota work (Barnes 388

et al., 2021), we perform experiments on five struc- 389

tured sentiment datasets in four languages, includ- 390

ing multi-domain professional reviews NoReCFine 391

(Øvrelid et al., 2020) in Norwegian, hotel reviews 392

MultiBEU and MultiBCA (Barnes et al., 2018) in 393

Basque and Catalan respectively, news MPQA 394

(Wiebe et al., 2005) in English and reviews of on- 395

line universities and e-commerce DSUnis (Toprak 396

et al., 2010) in English. 397

For fair comparison, we use word2vec skip-gram 398

embeddings openly available from the NLPL vec- 399

tor repository (Kutuzov et al., 2017). Our model 400

is implemented with PyTorch and the network 401
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weights are optimized with Adam (Kingma and402

Ba, 2014). We also conduct Cosine Annealing403

Warm Restarts learning rate schedule (Loshchilov404

and Hutter, 2016). We train our models for at most405

100 epochs and choose the model with the best406

performance in SF1 score on the validation set to407

output results on the test set. And we run all of our408

models three times with different random seeds.409

Finally, the average results of the three runs are410

reported in our work (Hyper-parameter settings are411

listed in Table 4).412

5.2 Baselines413

We compare our proposed model with three state-414

of-the-art baselines which outperform other models415

in all datasets:416

RACL-BERT Chen and Qian (2020) propose a417

relation-aware collaborative learning framework418

for end2end sentiment analysis which models the419

interactive relations between each pair of sub-tasks420

(target extraction, expression extraction, sentiment421

classification). Barnes et al. (2021) reimplement422

the RACL as a baseline for SSA task in their work,423

and they also enhance token representations using424

multilingual BERT (Devlin et al., 2018).425

Head-first and Head-final Barnes et al. (2021)426

cast the structured sentiment analysis as a depen-427

dency parsing task and apply a reimplementation428

of the neural parser by Dozat and Manning (2018),429

where the main architecture of the model is based430

on a biaffine classifier. The Head-first and Head431

final are two models with different setups in the432

parsing graph.433

5.3 Evaluation Metrics434

Following previous sota work Barnes et al. (2021),435

we use the Span F1, Targeted F1 and two Sentiment436

Graph Metrics to measure the experimental results.437

In detail, Span F1 evaluates how well these mod-438

els are able to identify the holders, targets, and439

expressions. Targeted F1 requires the exact extrac-440

tion of the correct target, and the corresponding441

polarity. Sentiment Graph Metrics include two F1442

score, Non-polar Sentiment Graph F1 (NSF1) and443

Sentiment Graph F1 (SF1), which aims to measure444

the overall performance of a model to capture the445

full sentiment graph (see Figure 1a). For NSF1,446

each sentiment graph is a tuple of (holder, target,447

expression), while SF1 adds the polarity (holder,448

target, expression, polarity). A true positive is de-449

fined as an exact match at graph-level, weighting450

NoReCFine MultiBEU MultiBCA MPQA DSUnis

Head-final 52.3 63.9 67.3 45.0 41.5

TGLS
+parsing labels 54.2 65.4 67.5 44.7 43.2
+essential labels 57.8 68.7 70.1 46.1 45.7

Table 2: Experimental results and comparison of the
pure relation extraction F1 scores.

the overlap in predicted and gold spans for each 451

element, averaged across all three spans. 452

Moreover, for ease of analysis, we add an Aver- 453

age Span F1 Score which evaluates how well these 454

models are able to identify all three elements of a 455

sentiment graph with token-level F1. 456

6 Results 457

In this section, we introduce the main experimental 458

results (see Table 1) compared with three state- 459

of-the-art models RACL-BERT (Chen and Qian, 460

2020), Head-first and Head-final models (Barnes 461

et al., 2021). 462

Table 1 shows that in most cases our TGLS 463

model performs better than other baselines in terms 464

of the Span F1 metric on all datasets. And the av- 465

erage improvement (↑ 1.4) in Avg. Span F1 score 466

proves the effectiveness of our model in span ex- 467

traction. Besides, there exists some significant im- 468

provements such as extracting holder on DSUnis 469

(↑6.3) and extracting expression on NoReCFine 470

(↑4.7), but the extracting expression on DSUnis 471

(↓2.9) are poor. 472

As for the metric of Targeted F1, although 473

the Head-first model performs well on MPQA, 474

our TGLS model is obviously more robust as we 475

achieves superior performance on other 4 datasets. 476

There are also extremely significant improvements 477

such as on NoReCFine (↑6.2) and on MultiBCA 478

(↑5.6), it proves the capacity of our model in exact 479

prediction of target and the corresponding polar. 480

As for the Sentiment Graph metrics, which 481

are important for comprehensively examining 482

span, relation and polar predictions, our TGLS 483

model achieves superior performance throughout 484

all datasets in both NSF1 and SF1 score, especially 485

on NoReCFine (↑7.2 and ↑6.4). And the average im- 486

provement (↑4.5) in SF1 score verifies the excellent 487

ability of our model in the end-to-end sentiment tu- 488

ple extraction, which is the key point in Structured 489

Sentiment Analysis task. 490
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7 Discussion491

In this section we perform a deeper analysis on the492

models in order to answer two research questions:493

7.1 Do our model mitigates the label bias in494

span and relation prediction?495

We hypothesize that the dependency-parsing-based496

method proposed by Barnes et al. (2021) may in-497

troduce the label imbalance problem and affect the498

efficiency in relation prediction, we therefore only499

use the essential labels in the prediction layer to500

make minimal correct predictions. Experimental501

results show that our model performs significantly502

better in the overall metric SF1, which to some503

extent proves that our model can simultaneously504

ensure the efficiency of span and relation extrac-505

tion. However, it is still a worthy question to ex-506

plore whether and how much do our essential labels507

improve the performance of relation prediction?508

For ease of analysis, we replace our essential509

labels with the dependency-parsing-based labels510

(Barnes et al., 2021) in the prediction layer and511

experiment on all datasets in terms of a relation512

prediction metric, where a true positive is defined 513

as any span pair that overlaps the gold span pair 514

and has the same relation. Table 2 shows that our 515

model significantly improve the performance of 516

relation prediction compared with previous sota 517

model (Barnes et al., 2021) on all datasets. Besides, 518

we can see that our model with essential labels 519

achieves superior performance than the model with 520

replaced dependency-parsing-based labels, which 521

proves the effectiveness of using essential labels to 522

improve the performance of relation prediction. 523

7.2 Do the utilization of whole labels improve 524

the result? 525

In this section, we first evaluate our model on all 526

datasets in terms of the Avg Span F1 and Tar- 527

geted F1, NSF1 and SF1 scores by directly drop 528

the whole labels. Figure 3 shows the performance 529

drops without the whole labels, the whole labels al- 530

most improves the performance in all metrics on all 531

datasets, although the MultiBEU , MultiBCA and 532

DSUnis in Targeted F1 metric are exceptions, this 533

may attributed to the three datasets have shorter 534

targets, and it indicates that the whole labels may 535

benefit more from long span issues. 536

Then, we experiment on NoReCFine to further 537

explore whether whole labels contribute to long 538

span issues? Figure 5a evaluates the Expression 539

F1 score regarding to different expression length, 540

we can find that whole labels helps most on those 541

expressions with longer length. We also report the 542

SF1 score regarding to different distance from the 543

token in tuple with smallest position to the token 544

with largest position in Figure 5b, which shows a 545

similar conclusion. 546

8 Conclusion 547

In this paper, we propose a graph model TGLS 548

with a novel labeling strategy, consisting of whole 549

labels and essential labels, to extract opinion tuples 550

for structured sentiment analysis. By predicting 551

whole labels, our model is capable of capturing 552

global and token pair interaction information. We 553

further propose a multi-hop reasoning graph layer 554

for better refining the token representations via the 555

latent graph built from the whole label prediction. 556

We conduct extensive experiments on five bench- 557

mark datasets to validate the effectiveness of the 558

proposed framework. Experimental results show 559

that our model overwhelmingly outperforms SOTA 560

baselines. 561
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Dataset Head-final TGLS

NoReCFine , 57 62.1 (↑5.1)
MultiBEU , 75.7 79.3 (↑3.6)
MultiBCA , 71.7 76.2 (↑4.5)
MPQA 38.5 41.0 (↑2.5)
DSUnis , 44.5 47.8 (↑3.3)

Table 3: Experimental results and comparison of the
Polarity F1 scores.

Hyperparameter Best assignment

contexualized embedding mBERT

embeddings trainable FALSE

number of epochs 100

batch size 8

learning rate 3e-5

α 0.25

hidden lstm 400

layers lstm 4

dim embedding 100

dim char embedding 100

dropout embedding 0.4

dropout main recurrent 0.3

Table 4: Detailed settings of our hyper-parameter.

A Analysis of polarity predictions666

In this section, we focus on the performance in667

only polarity prediction, where a true positive is668

defined as any expression that overlaps the gold669

expression with the same polarity. Table 3 shows670

that our model achieves superior performance than671

previous sota model (Barnes et al., 2021) on all672

datasets, especially on NoReCFine (↑5.1), which673

has longer expressions, it once again verifies that674

our model has excellent performance on the long675

span problem.676
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