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Abstract

When trained on data with missing symmetries, diffusion models face a fundamental chal-
lenge: how can they generate samples respecting symmetries they have never observed?
We prove that this failure stems from the structure of the learning problem itself. Un-
conditional models must satisfy a global equivariance constraint, coupling all group ele-
ments into a single optimization that requires high-dimensional data extrapolation across
gaps. In contrast, conditioning on group elements factorizes this into |G| independent
problems, transforming the task into low-dimensional function generalization. Our theory
predicts—and experiments confirm—that this simple change yields 5-10× error reduction
on held-out symmetries. On synthetic 2D rotation tasks, conditional models maintain low
error even with 300° gaps while unconditional models collapse catastrophically. We further
suggest that topology-aware group embeddings may help improve this generalization by
ensuring smoother functions over the group manifold.

Keywords: Diffusion Models, Equivariance, Symmetry, Group Theory, Conditional Mod-
els, Generalization, Representation Learning

1. Introduction

Score-based diffusion models have achieved remarkable success in generating high-quality
samples (Song et al., 2021; Ho et al., 2020), yet face a fundamental challenge when data
possess inherent symmetries: how can they respect these symmetries when trained
on incomplete, asymmetric data? Consider training a molecular diffusion model where
certain conformational angles are undersampled, or learning to generate rotated images with
missing viewpoints. While an ideal model should generate valid samples across the entire
symmetric space, unconditional diffusion models fail catastrophically, producing distorted
samples in unobserved regions.

This failure aligns with recent theoretical work showing that conventional neural net-
works fundamentally lack mechanisms to extrapolate symmetries from incomplete data.
Neural Tangent Kernel theory proves that successful symmetry generalization requires lo-
cal data structure to prevail over non-local symmetric structure, occurring only when classes
are sufficiently separated and group orbits are sufficiently dense in kernel space (Perin and
Deny, 2024). When these conditions fail—as they typically do with missing data—networks
cannot learn the global equivariance constraints necessary for principled extrapolation.

Yet despite this understanding, conditional diffusion models demonstrate re-
markably superior generalization to unseen group elements. This presents a fun-
damental theoretical puzzle: why does conditioning on group elements enable successful
symmetry extrapolation when the underlying architectures remain unchanged?

Our work resolves this puzzle through a factorization principle: conditioning on
group elements transforms the diffusion objective from a single, globally-coupled optimiza-
tion with equivariance constraints into |G| independent regression problems. This eliminates
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the coupling that causes unconditional models to fail, fundamentally changing the learning
task from difficult high-dimensional extrapolation to tractable low-dimensional generaliza-
tion. We validate this theoretically and demonstrate empirically that this change reduces
extrapolation error by 5-10×, even with 300° of held-out rotational data.

2. Related Work

Neural networks notoriously fail to extrapolate symmetries, a phenomenon theoretically
explained by Neural Tangent Kernel (NTK) analysis, which reveals that missing group
elements create spectral gaps that prevent generalization (Perin and Deny, 2024). The
dominant solution is to enforce these constraints through equivariant architectures (Cohen
and Welling, 2016; Weiler and Cesa, 2019), a principle extended to diffusion models for tasks
like molecular generation (Hoogeboom et al., 2022; Xu et al., 2022) and through data-based
stochastic symmetrization (Cornish et al., 2024). However, such architectural approaches
are often complex and require complete a priori knowledge of the group. While general
diffusion theory is advancing (Li et al., 2023), it does not address symmetry learning specifi-
cally nor explain why simple conditioning provides a powerful alternative for generalization
on symmetric data—a gap our work aims to fill.

3. Theory: Factorization by Conditioning

3.1. Unconditional vs. Conditional Learning Objectives

Let G be a group acting on the data space X ⊆ Rd via transformations Tg : X → X . A
standard score-based diffusion model learns a single function sθ(xt, t) ≈ ∇xt log pt(xt). For
the model to respect the data’s symmetry, this score function must satisfy a single, global
equivariance constraint:

s(Tgx, t) = Tgs(x, t) ∀g ∈ G, x ∈ X (1)

An unconditional model must learn a single set of parameters θ that satisfies this constraint
across the entire space. In contrast, a conditional model learns a function sc(xt, g, t) that
takes the group element g as an explicit input, fundamentally changing the learning problem.

3.2. The Factorization Principle

Conditioning transforms the diffusion objective from a single, globally coupled problem into
a set of independent sub-problems, one for each group element.

Lemma 1 (Factorization by Group Conditioning) The conditional diffusion objective
Lcond with group labels decomposes into an average of independent objectives, one for each
group element g ∈ G:

Lcond(sc) =
1

|G|
∑
g∈G

Lg(sc) (2)

where each sub-problem Lg(sc) is a standard regression task that only depends on data
associated with the group label g.
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The proof follows directly from the definition of the conditional objective, Lcond =

Eg∼U(G),x0∼p(·|g),ϵ

[∥∥∥sc(xt, g, t) + ϵ√
1−αt

∥∥∥2]. By the law of total expectation, the expectation

over the discrete group G can be written as an average, which isolates each group element’s
contribution into a separate loss term Lg(sc) := Ex0∼p(·|g),ϵ,t[∥sc(xt, g, t) + ϵ√

1−αt
∥2]. This

term depends only on data from that group element, and there are no cross-terms coupling
different group elements (full proof in Appendix).

3.3. How Factorization Unlocks Generalization

This factorization explains the performance gap by reframing the learning problem from
difficult data extrapolation to simpler function generalization, a concept clarified by the
Neural Tangent Kernel (NTK) framework and formally proven in the Appendix.

Unconditional Failure: High-Dimensional Data Extrapolation. The unconditional
model must extrapolate in the high-dimensional data space X . A gap in observed group
elements creates a geometric void in X where test points are physically far from all training
data. In the NTK view, the kernel similarity K(xtest, xi) between a test point and any
training point xi becomes negligible. With no relevant local information, the model must
extrapolate, failing to bridge the symmetric gap and leading to catastrophic error.

Conditional Success: Low-Dimensional Function Generalization. The conditional
model avoids this issue by changing the problem. Its input is the joint space X × G, and
it learns a meta-function that maps a group element g to its corresponding score function.
Even when a test element g∗ is far from the training data, the model is not extrapolating in
the high-dimensional space X . Instead, it performs generalization on the low-dimensional
group manifold G. For symmetries, this meta-function is typically simple and structured
(e.g., a smooth rotation), and generalizing it is a far easier task for a neural network.

The Role of Topology-Aware Embeddings. The quality of this generalization de-
pends on the group embedding choice. An embedding that fails to respect the group’s
topology (e.g., representing an angle θ on [0, 2π)) can introduce artificial discontinuities,
potentially forcing the network to learn a discontinuous meta-function. In contrast, a
topology-aware embedding (e.g., (cos θ, sin θ)) presents a continuous domain, which facili-
tates learning a smooth meta-function.

4. Experiments

4.1. Setup: 2D Circle Dataset

We validate our theory on a controlled 2D dataset where data points lie on the unit circle:
x = (cos θ, sin θ). The true score field is radial, s∗(x) = −x/σ2. Training data consists
of points from angles [0◦, 360◦ − gap], and we test on held-out angles. We compare three
models: (1) Unconditional: Standard diffusion model. (2) Conditional (Topology-
Aware): Condition on (cos θ, sin θ). (3) Conditional (Topology-Unaware): Condition
on θ ∈ [0, 2π). All models use identical 4-layer MLP architectures.
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4.2. Results

We validate our theory by training on a 2D circle dataset with a contiguous wedge of angles
held out, testing in both small-gap (5°-70°) and large-gap (90°-300°) regimes. The results,
summarized in Figure 1, provide strong empirical support for our claims.

Figure 1: Mean Angle Error vs. Missing Data Gap. (Left) Small Gaps: With small
gaps, unconditional error grows linearly while conditional errors are flat and low.
(Right) Large Gaps: With large gaps, unconditional and topology-unaware
models fail. The topology-aware conditional model alone demonstrates robust
generalization, maintaining dramatically lower error.

In the small-gap regime (Figure 1, left), the unconditional error grows linearly with gap
size—a clear signature of extrapolation failure (see Appendix). Both conditional models
maintain low, stable errors, confirming that conditioning reframes the problem effectively.
The topology-aware variant slightly outperforms by avoiding the discontinuous embedding
artifact at the 0◦/360◦ seam. In the large-gap regime (Figure 1, right), a proper embedding
becomes essential. The unconditional model fails catastrophically. The topology-unaware
model also fails, as it cannot generalize the learned meta-function across the artificial dis-
continuity in its embedding space. Only the topology-aware conditional model demonstrates
robust generalization, maintaining dramatically lower error even when trained on only 17%
of the data (a 300° gap).

5. Conclusion

We proved that conditioning on group elements factorizes the diffusion learning objec-
tive, transforming symmetry learning from high-dimensional data extrapolation to low-
dimensional function generalization. Our experiments confirm this yields 5-10× error re-
duction on held-out symmetries. This insight provides both theoretical understanding and
practical guidance for training diffusion models on symmetric data, with topology-aware
embeddings offering additional benefits.
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Appendix A. Formal Problem Setup

A.1. Preliminaries and Notation

Let X ⊆ Rd be the data space. Let G be a group acting on X via transformations Tg :
X → X for each group element g ∈ G. We require that this action satisfies Te = IdX and
Tg1 ◦ Tg2 = Tg1g2 . We assume Tg are isometries.

A score-based diffusion model learns a score function sθ(xt, t) ≈ ∇xt log pt(xt) by mini-
mizing the denoising score matching objective:

L(θ) = Et,x0,ϵ

[∥∥∥∥sθ(√αtx0 +
√
1− αtϵ, t) +

ϵ√
1− αt

∥∥∥∥2
]

(3)

A.2. Unconditional vs. Conditional Models

Definition 2 (Unconditional Score Model) An unconditional model is a function sθ :
X × [0, T ] → Rd. For a symmetric data distribution, the ideal score function must satisfy
the global equivariance constraint:

s(Tgx, t) = Tgs(x, t) ∀g ∈ G, x ∈ X , t ∈ [0, T ] (4)

The model sθ must learn a single function that satisfies this constraint over the entire space.

Definition 3 (Conditional Score Model) A conditional model is a function sc : X ×
G × [0, T ] → Rd. It takes the group element g as an explicit input. The training objective is
to approximate the conditional score ∇xt log pt(xt|g).

Appendix B. The Factorization Lemma: A Formal Proof

Lemma 4 (Factorization of the Conditional Objective) Let G be a finite group. The
learning objective for a conditional score model sc, trained on data with group labels, de-
composes into a sum of |G| independent objectives.

Proof Step 1: Define the conditional learning objective. The objective is an
expectation over all sources of randomness: time t, group element g, initial data x0, and
noise ϵ.

Lcond(sc) = Et∼U [0,T ],g∼U(G),x0∼p(·|g),ϵ∼N (0,I)

[∥∥∥∥sc(xt, g, t) + ϵ√
1− αt

∥∥∥∥2
]

(5)
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Step 2: Expand the expectation over the discrete group G. Since g is sampled
uniformly from a finite group G, the expectation over g is equivalent to an average over all
group elements. By the law of total expectation, we can write:

Lcond(sc) = Eg∼U(G)

[
Et,x0∼p(·|g),ϵ

[∥∥∥∥sc(xt, g, t) + ϵ√
1− αt

∥∥∥∥2
]]

(6)

Applying the definition of expectation for a discrete uniform variable:

Lcond(sc) =
1

|G|
∑
g∈G

Et,x0∼p(·|g),ϵ

[∥∥∥∥sc(xt, g, t) + ϵ√
1− αt

∥∥∥∥2
]

(7)

Step 3: Identify the independent sub-problems. Define a loss term Lg for each
group element g ∈ G:

Lg(sc) := Et,x0∼p(·|g),ϵ

[∥∥∥∥sc(xt, g, t) + ϵ√
1− αt

∥∥∥∥2
]

(8)

The total conditional loss is the average of these individual losses:

Lcond(sc) =
1

|G|
∑
g∈G

Lg(sc) (9)

The term Lg(sc) depends only on data sampled with label g and the model’s evaluation at
g. The gradients of the total loss with respect to the model parameters θ are ∇θLcond =
1
|G|

∑
g∈G ∇θLg. In stochastic gradient descent, a sample (x0,i, gi) contributes only to the

gradient component∇θLgi . The learning problems for different group elements are therefore
decoupled.

Corollary 5 (Implication for Missing Data) If the training set contains no data for a
subset of group elements H ⊂ G, the terms Lg for g ∈ H are never optimized. However,
the optimization of Lg for g /∈ H proceeds unaffected. The unconditional model, in contrast,
receives no gradient information for inputs in the regions {Tgx|g ∈ H,x ∈ X}, making it
impossible to directly enforce the equivariance constraint (4) in those regions.

Appendix C. From Factorization to Generalization: A Rigorous NTK
Analysis

The factorization of the learning objective fundamentally changes the generalization prob-
lem. We formalize this using the Neural Tangent Kernel (NTK) framework, which charac-
terizes the behavior of wide neural networks as kernel regression.

C.1. Kernel Regression and Generalization

In the NTK limit, a model’s prediction at a test point ztest is a weighted average of training
targets, f(ztest) =

∑
iwiyi, where weights wi ∝ K(ztest, zi). For the estimate to be consis-

tent (i.e., for the error to decrease with more data), ztest must have sufficient kernel support
from the training set {zi}. If K(ztest, zi) → 0 for all i, the model is forced to extrapolate,
and the error remains O(1).
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C.2. Main Result: Extrapolation vs. Well-Posed Generalization

Let the training set be generated from a subset of group elements Gtrain ⊂ G, and let
H = G \ Gtrain be a contiguous ”wedge” of held-out group elements.

Theorem 6 (Generalization Gap due to Input Space Structure) For any test point
associated with a group element g∗ ∈ H, the unconditional model’s kernel function has
vanishing support over the training set, leading to extrapolation failure. In contrast, the
conditional model is posed a well-posed function generalization problem.

Proof The proof analyzes the geometry of the input spaces and the nature of the functions
being learned.

Part 1: Unconditional Model and Geometric Isolation. The input to the uncon-
ditional model is a point in the data space, zu ∈ X . A test input from the held-out wedge
is zu,test = Tg∗xt for some base data point xt and g∗ ∈ H. Any training input is of the form
zu,i = Tgixt with gi ∈ Gtrain.

Since the group action g 7→ Tgxt is continuous and H is a contiguous region separated
from Gtrain, the set of test points {Tgxt}g∈H is geometrically separated from the set of
training points {Tgxt}g∈Gtrain . This implies the existence of a minimum distance δ > 0 such
that for any zu,test and any zu,i:

∥zu,test − zu,i∥ = ∥Tg∗xt − Tgixt∥ ≥ δ (10)

For any stationary kernel Ku(z, z
′) = k(∥z − z′∥), such as the NTK of an MLP, the kernel

similarity is uniformly bounded away from its maximum: Ku(zu,test, zu,i) ≤ k(δ). As the gap
H increases, δ increases and k(δ) → 0. The kernel weights vanish for all training points.
The model is forced to perform high-dimensional data extrapolation, and the regression
estimate is inconsistent. The error is O(1).

Part 2: Conditional Model and Low-Dimensional Function Generalization.
The input to the conditional model is a pair zc = (x, e(g)) ∈ X × Rk, where e(g) is an
embedding of the group element. Due to the Factorization Lemma, the network is not
tasked with discovering a single, global geometric constraint on X . Instead, it learns to
approximate a meta-function F : e(G) → (Functions on X ), which maps a group element’s
embedding to the appropriate score function.

For a symmetry group, this mapping F is highly structured and smooth. For example,
for rotations, F simply describes how the entire score vector field rotates in response to a
change in the input angle e(g). When the model is evaluated at a test element g∗ ∈ H
(even one far from Gtrain), it is not extrapolating in the high-dimensional space X . Instead,
it is tasked with extending the simple, smooth function F that it has fit to the training
data. Neural networks, by virtue of their compositional structure, have a strong inductive
bias toward learning smooth and simple global functions. Generalizing the meta-function
F across the low-dimensional manifold e(G) is therefore a much more well-posed problem.
This low-dimensional function generalization is fundamentally more tractable than the high-
dimensional data extrapolation faced by the unconditional model.
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C.3. The Role of Embedding Topology in Robust Generalization

While conditioning solves the primary issue of extrapolation by reframing the learning
problem, the quality and robustness of the generalization heavily depend on the properties
of the group embedding e(g).

An ideal embedding should make the meta-function F that the network must learn as
smooth and simple as possible, aligning with the inductive biases of neural networks. An
embedding that does not respect the group’s topology can introduce artificial discontinuities
into the domain of F , hindering the learning process.

Consider the group G = SO(2).

• Topology-Unaware Embedding: Let ebad(θ) = θ ∈ [0, 2π). This embedding is
discontinuous when viewed on the circle manifold. Points that are close on the circle,
like 2π−ε and ε, are mapped to opposite ends of the interval. If a data gap spans this
0/2π seam, the network is forced to learn a meta-function F that appears to jump
discontinuously. It must learn to map inputs near 2π to a function very similar to the
one for inputs near 0, despite their large distance in the embedding space. This is a
difficult extrapolation task in the conditioning space that works against the network’s
natural tendency to learn smooth functions.

• Topology-Aware Embedding: Let egood(θ) = (cos θ, sin θ). This embedding is a
continuous mapping from the group to a circle in R2. The distance between embed-
dings ∥egood(θ1)− egood(θ2)∥ directly reflects the true distance between angles on the
group manifold. This presents the network with a continuous domain for F , meaning
the target function is globally smooth. This aligns perfectly with the network’s induc-
tive bias, making the function generalization task easier and more robust, particularly
across the 0/2π seam.

Therefore, using a topology-aware embedding is critical for robust performance, as it ensures
the low-dimensional generalization problem posed to the network is well-behaved across
the entire group manifold. This intuition explains the refined error hierarchy observed in
experiments: ϵunconditional > ϵbad > ϵgood.

Appendix D. Experimental Details and Additional Results

This appendix provides a detailed description of the experimental protocol and presents
supplementary visualizations for both the small-gap and large-gap regimes discussed in the
main text.

D.1. Experimental Protocol

Dataset and Ground Truth. To isolate the effects of symmetry learning, we use a
synthetic 2D dataset where the data manifold is the unit circle, X = S1 ⊂ R2. The
acting group is G = SO(2). The ground truth data distribution, pdata, is uniform over the
circle, and a point x ∈ S1 is parameterized by its angle θ ∈ [0, 2π) as x(θ) = (cos θ, sin θ).
The analytical ground truth score function is radial, s∗(x, t) = −x/σ2

t , allowing for precise
quantitative evaluation.

9



Authors

Training Regimes. We simulate incomplete symmetry coverage by sampling training
data uniformly from a sub-arc of the circle. For a given angular gap size ∆θ (in degrees),
we sample from the arc [0, 360−∆θ]

◦. We test in two regimes: a small-gap regime (e.g.,
40◦, 70◦) and a more challenging large-gap regime (e.g., 90◦, 120◦, 240◦).

Models and Training. We compare three models with identical 4-layer MLP architec-
tures: (1) Unconditional, sθ(x, t); (2) Conditional (Topology-Aware), sc(x, g, t) with
g embedded as (cos θ, sin θ); and (3) Conditional (Topology-Unaware), sc(x, g, t) with
g embedded as θ/(2π). All models were trained for 100,000 iterations using the Adam
optimizer.

Evaluation. We visualize generated samples and the learned score function on a uniform
grid. The quantitative metric is the Mean Angle Error between the learned and true score
vectors.

D.2. Qualitative Analysis and Visualizations

D.2.1. Small-Gap Regime: Conditioning Prevents Collapse

Figure 2 shows qualitative results for small data gaps. The unconditional model fails to
generalize, with its generated distribution collapsing into disconnected clusters as the gap
size increases from 40° (left panel) to 70° (right panel). Its score field is highly distorted in the
unseen wedge. In contrast, both conditional models successfully generate a complete circle.
However, the topology-unaware model consistently exhibits a localized ”jet” of high error
at the 0◦/360◦ seam, a direct consequence of its discontinuous embedding. The topology-
aware model is the only one to produce a nearly perfect score field with low, uniform error
in both cases.

Figure 2: Qualitative comparison in the small-gap regime. Left panel shows a 40° data
gap; right panel shows a 70° gap. The unconditional model fails to bridge the
gap, while both conditional models succeed. The topology-unaware model shows
a distinct error artifact at the seam.
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D.2.2. Large-Gap Regime: Topology-Awareness is Essential for Robustness

Figure 3 illustrates model performance when a significant fraction of the data is missing.
This stress test reveals the critical importance of a correct embedding for robust generaliza-
tion. As the missing wedge increases from 90° (left panel) to 120° (center) and 240° (right),
the failure modes of the unconditional and topology-unaware models become extreme and
nearly indistinguishable. Their generated samples devolve into scattered clouds, and their
score fields become globally incorrect.

The topology-aware model is the only one to demonstrate robust generalization. While
its performance naturally degrades with less data—generating a distorted arc with a 240°
gap—it still correctly captures the global structure of the problem. Its score field remains
qualitatively correct in the seen regions and attempts a smooth transition across the vast un-
seen region. This highlights that a topology-aware embedding is not merely an improvement
but is essential for robustly generalizing a global group structure from sparse observations.

Figure 3: Qualitative comparison in the large-gap regime. Panels from left to right cor-
respond to 90°, 120°, and 240° of missing data. The unconditional and topology-
unaware models fail catastrophically. The topology-aware model alone maintains
structural integrity, demonstrating robust generalization.

11


	Introduction
	Related Work
	Theory: Factorization by Conditioning
	Unconditional vs. Conditional Learning Objectives
	The Factorization Principle
	How Factorization Unlocks Generalization

	Experiments
	Setup: 2D Circle Dataset
	Results

	Conclusion
	Formal Problem Setup
	Preliminaries and Notation
	Unconditional vs. Conditional Models

	The Factorization Lemma: A Formal Proof
	From Factorization to Generalization: A Rigorous NTK Analysis
	Kernel Regression and Generalization
	Main Result: Extrapolation vs. Well-Posed Generalization
	The Role of Embedding Topology in Robust Generalization

	Experimental Details and Additional Results
	Experimental Protocol
	Qualitative Analysis and Visualizations
	Small-Gap Regime: Conditioning Prevents Collapse
	Large-Gap Regime: Topology-Awareness is Essential for Robustness



