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ABSTRACT

Histopathology Whole-Slide Images (WSIs) provide an important tool to assess
cancer prognosis in computational pathology (CPATH). While existing survival
analysis (SA) approaches have made exciting progress, they are generally lim-
ited to adopting highly-expressive architectures and only coarse-grained patient-
level labels to learn prognostic visual representations from gigapixel WSIs. Such
learning paradigm suffers from important performance bottlenecks, when facing
present scarce training data and standard multi-instance learning (MIL) frame-
work in CPATH. To overcome it, this paper, for the first time, proposes a new
Vision-Language-based SA (VLSA) paradigm. Concretely, (1) VLSA is driven
by pathology VL foundation models. It no longer relies on high-capability net-
works and shows the advantage of data efficiency. (2) In vision-end, VLSA en-
codes prognostic language prior and then employs it as auxiliary signals to guide
the aggregating of prognostic visual features at instance level, thereby compensat-
ing for the weak supervision in MIL. Moreover, given the characteristics of SA,
we propose i) ordinal survival prompt learning to transform continuous survival
labels into textual prompts; and ii) ordinal incidence function as prediction target
to make SA compatible with VL-based prediction. Notably, VLSA’s predictions
can be interpreted intuitively by our Shapley values-based method. The extensive
experiments on five datasets confirm the effectiveness of our scheme. Our VLSA
could pave a new way for SA in CPATH by offering weakly-supervised MIL an
effective means to learn valuable prognostic clues from gigapixel WSIs. Our code
is available at this URL.

1 INTRODUCTION

Histopathology whole-slide image (WSI) plays a vital role in cancer diagnosis and treatment (Zarella
et al., 2018). It usually covers rich and holistic microscopic information from cellular morphology
to tumor micro-environment and then to tissue phenotype (Pati et al., 2022; Chen et al., 2022). As
this information can directly reflect tumor progression, digital WSIs are often used in computational
pathology (CPATH) to assess cancer patients’ prognosis (or survival) (Kather et al., 2019; Song et al.,
2023; Jaume et al., 2024). An accurate prognosis assessment is of great significance for enhancing
patient management and disease outcomes (Skrede et al., 2020).

However, the survival analysis (SA) of WSI data has always been faced two critical challenges.
While exiting approaches have made exciting progress in overcoming these challenges, they still suf-
fer from important performance bottlenecks due to the inherent limitations of current SA paradigm.
(1) Scarce training data. Owing to many real-world factors, e.g., the difficulties in long-term pa-
tient follow-up and the concerns about patient privacy, the scale of WSI data for SA has always been
limited (Lu et al., 2022; Liu et al., 2024a; Song et al., 2024a), typically on the order of 1,000. Most
existing SA models often overlook this and generally seek for network-level solutions to improve the
performance, such as adopting highly-expressive modern networks like GNNs (Chen et al., 2021a;
Liu et al., 2023b; Shao et al., 2024; Wang et al., 2024) or Transformers (Huang et al., 2021; Hou
et al., 2022; Liu et al., 2023a). However, when facing present small WSI data, this way is more likely
to cause overfitting in prognostic models (Srivastava et al., 2014), leading to suboptimal prediction
performance. (2) Learning from gigapixel images under weak supervision. Digital WSIs have
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extremely-high resolution, e.g., 40,000× 40,000 pixels, so each one is usually processed into a bag
of multi-instances for training. With only WSI-level labels, bag-level representations are derived via
a defacto weakly-supervised multi-instance learning (MIL) framework (Ilse et al., 2018; Liu et al.,
2024b). It first i) learns task-specific embeddings from single instances and ii) then aggregates nu-
merous instances (typically 10,000) into one single vector. Current SA schemes follow this, yet the
whole learning process is driven entirely by patient-level labels. We argue that such paradigm could
lead to inefficient representations, since SA models are only provided with overall patient-level la-
bels while they are not only required to i) learn prognostic embeddings at a fine-grained instance
level; but also to ii) select key instances from numerous candidates (Li et al., 2023).

To overcome the limitations of current practices, this paper studies a new SA paradigm for CPATH,
called Vision-Language Survival Analysis (VLSA). Concretely, we find that recent foundational
VL models (VLMs) in CPATH, e.g., CONCH (Lu et al., 2024), offer potential means to mitigate the
challenges above. First, these VLMs are pretrained on large-scale image-text pairs by task-agnostic
objectives. They show surprisingly-good performance in terms of data efficiency, especially in zero-
shot transfer, as highlighted in Lu et al. (2024); Javed et al. (2024). This is promising for alleviating
the challenge of scarce training data. Second, VL contrastive pretraining aligns image and language
in latent embedding space (Radford et al., 2021), which enables language to act as “prompt” for
vision tasks. This implies that, with prior knowledge, language is likely to provide auxiliary signals
to boost learning efficiency. Such additional signals could be particularly important to the weak
supervision in MIL. Despite all these appealing merits, VLM-driven SA has not yet been studied. We
believe there are two main reasons: i) the powerful VLMs for CPATH are developed just recently;
ii) different from conventional classification, there remains a gap for SA to adapt to VLMs.

Based on these insights, this paper first proposes a VLSA framework for CPATH. Different from
existing VL-based schemes, VLSA comprises four core designs as follows. (1) Vision-end: it
leverages language-encoded prognostic priors to guide multi-instance aggregation, producing multi-
level visual presentations. (2) Language-end: considering the intrinsic ordinality in survival risks,
we propose ordinal survival prompt learning to encode continuous time-to-event labels into textual
prompts. (3) Prediction and optimization: To make SA compatible with VL-based prediction, we
take incidence function as prediction target and introduce an ordinal inductive bias into it for regular-
ization in optimization. (4) Prediction interpretation: with the classic Shapley values from game
theory, individual prognostic risk could be interpreted from an intuitive perspective—descriptive
language. The extensive experiments on five datasets verify the effectiveness of our scheme. No-
tably, our comparative experiments and analyses suggest that VLSA could pave a new way for SA
in CPATH by offering weakly-supervised MIL an effective means to learn valuable prognostic clues
from gigapixel WSIs,. We summarize the main contributions of this paper as follows:

1. An interpretable Vision-Language Survival Analysis framework (VLSA) is proposed for compu-
tational pathology. To our knowledge, it is the first work that studies VL-based SA in CPATH.

2. Language-encoded prognostic prior is proposed to boost weakly-supervised WSI representation
learning. In view of the characteristics of SA, two ordinal inductive bias terms, i.e., ordinal survival
prompts and ordinal incidence function, are introduced into VLSA to enhance its performance.

3. To assess model performance more rigorously, this paper conducts extensive experiments and
adopts multiple metrics involving discrimination and calibration evaluation. Empirical results show
that VLSA could often obtain new state-of-the-art performances with less computation costs.

2 RELATED WORK

Survival Analysis on WSIs One key challenge of WSI survival analysis is how to effectively learn
global prognostic representations from multi-instances with only patient-level survival labels. To
this end, various data-driven approaches are studied. They can be roughly grouped into three cate-
gories based on the structure assumed for instances: i) cluster-based (Yao et al., 2020; Shao et al.,
2021a), ii) graph-based (Chen et al., 2021a; Liu et al., 2023b; Shao et al., 2024; Wang et al., 2024),
and iii) sequence-based (Huang et al., 2021; Hou et al., 2022; Liu et al., 2023a). These structures are
employed mainly to learn non-local prognostic embeddings at cluster, node, or global token level.
However, most studies in this field currently focus more on pure vision or vision-gene representation
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learning (Zhou & Chen, 2023; Jaume et al., 2024). The vision-language learning paradigm, which
has witnessed remarkable successes in recent years (Zhang et al., 2024a), remains under-studied.

Vision-Language Models for Computation Pathology Since the inception of CLIP (Radford et al.,
2021), Vision-Language Models (VLMs) have attracted considerable attention and are applied to a
wide range of fields. CPATH is one of them. Related studies or applications cover two main direc-
tions. (1) Foundational VLMs for pathology, e.g., PLIP (Huang et al., 2023), QUILTNET (Ike-
zogwo et al., 2023), PathAlign (Ahmed et al., 2024), and CONCH (Lu et al., 2024). These models
are usually pretrained on large-scale pathology image-text pairs by VL contrastive learning. Their
pretrained encoders often perform significantly better than CLIP in pathology-related tasks, laying
a solid foundation for CPATH. (2) VL-based WSI classification. Recent efforts involving VLMs
are mainly seen in WSI classification (Qu et al., 2023; Li et al., 2024; Shi et al., 2024). Based
on pretrained VL encoders, they further improve the performance by large margins through fine-
grained text guidance or multi-scale image features. Given the good foundation and strong potential
of pathology VLMs, a further study on VL-based survival analysis is strongly anticipated.
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Figure 1: Overview of Vision-Language Survival Analysis (VLSA). (a) WSI representation learning
with language-encoded prognostic priors (Section 3.1). (b) Prediction of ordinal incidence function
(Section 3.3). (c) Ordinal survival prompt learning (Section 3.2). The survival prediction of VLSA
can be interpreted by quantifying each prognostic prior’s contribution to overall risk (Section 3.5).

3 METHOD

This section presents our VLSA, a vision-language-based survival analysis framework (Figure 1)
for CPATH. We first introduce its three key parts: i) WSI representation learning with language-
encoded prognostic priors (Figure 1(a), Section 3.1); ii) Ordinal survival prompt learning (Figure
1(c), Section 3.2); and iii) ordinal incidence function prediction (Figure 1(b), Section 3.3). Then, we
give our overall training objectives in Section 3.4 and explain how to interpret the survival prediction
of VLSA in Section 3.5. For new concepts or terminologies, this section will provide necessary
explanations. Detailed elucidations could be found in Appendix B.

3.1 WSI REPRESENTATION LEARNING WITH LANGUAGE-ENCODED PROGNOSTIC PRIORS

Given the WSIs of one patient, we denote their processed instances by a bag X = [x1, . . . ,xK ]T ∈
RK×D, where xk ∈ RD represents the k-th instance features. Instance features are extracted by
the image encoder of a foundational VLM, written as Eimage. To derive WSI representations, we in-
troduce language-encoded prognostic priors to encourage MIL models to distill valuable prognostic
clues from numerous instances under weak supervision, as shown in Figure 1(a).

Language-Encoded Prognostic Priors Concretely, for a specific cancer disease, we first obtain the
textual descriptions about its critical prognostic features visible in histopathology WSIs, written as
Tprog = {T 1

prog, . . . , T M
prog}, using a LLM (large language model), GPT-4o. Then, we encode Tprog

into textual features with the text encoder of the VLM, denoted by Etext. We further fine-tune these
textual features using a group of learnable parameters, Tprog ∈ RM×D. We write the result as

P = Etext(Tprog) + Tprog. (1)
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P = [p1, . . . ,pM ]T ∈ RM×D represents language-encoded prognostic priors, where pm ∈ RD is
the m-th prior item and M is the total number of prior items.

WSI Representation In our MIL aggregator AMIL, any vector pm is utilized as a query to aggregate
key instances by similarity matching and weighted averaging, producing one-level WSI represen-
tation (written as fm ∈ RD) corresponding to the m-th prognostic description (T m

prog). Finally,
multi-level visual representations, F = [f1, . . . ,fM ]T ∈ RM×D, are averaged and passed through
a linear neural network layer to obtain the final image features fimage ∈ RD. Formally, we express
these steps as follows:

fm =

K∑
k=1

xk ·
exp

(
α · cos(pm,xk)

)∑K
i=1 exp

(
α · cos(pm,xi)

) , (2)

fimage = Linear
(
mean(F )

)
= Linear

(
mean({fT

m}Mm=1)
)
, (3)

where α is a fixed temperature hyper-parameter, cos(·, ·) is an operator for calculating cosine simi-
larity, and Linear(·) indicates a simple linear layer with learnable weights and biases.

Justification (1) Prognostic prior knowledge: from Eq. (2), we can find that the instances whose
visual features are well-aligned with the prognostic description would be selected and aggregated
into one visual representation. This implies that, with the well-aligned VL embedding space pro-
vided by foundational VLMs, prognostic prior could offer additional helpful signals and compensate
for the weak supervision in MIL. (2) Multi-level visual representations: they are designed to pro-
vide sufficient prognostic clues because there are usually more than one prognostic markers in WSIs,
e.g., nuclear atypia, perineural invasion, mitotic activity, etc. Moreover, multi-level prognostic clues
could enable us to decouple and interpret individual survival predictions from intuitive perspectives
(i.e., descriptive language). Our interpretation method is elaborated in Section 3.5. (3) Difference
from multi-modal representation learning: note that our text description of prognostic prior is
only utilized to provide the weight of each instance for aggregation and mainly plays a guidance
role. The final representation in vision-end only comes from WSI features, not a multi-modal rep-
resentation fusing text and vision features. This is a fundamental discrepancy between our method
and current multi-modal SA models, such as MCAT (Chen et al., 2021b), MOTCat (Xu & Chen,
2023), CMTA (Zhou & Chen, 2023), MoME (Xiong et al., 2024), and MMP (Song et al., 2024b).

3.2 ORDINAL SURVIVAL PROMPT LEARNING

Different from classification, SA provides continuous time-to-event labels, i.e., Y = {t, δ}, where t
is the last follow-up time and δ ∈ {0, 1} is an event indicator at t. Due to this intrinsic difference,
obtaining SA prompts would be more challenging compared with VL-based classification. To ad-
dress it, we propose ordinal survival prompt learning that encodes time-to-event labels into textual
survival prompts for VL-based prediction, as depicted in Figure 1(c).

Time Discretization Following the convention of discrete-time SA (Haider et al., 2020), we first
uniformly discretize time into a set of non-overlapping bins, [T0, T1), [T1, T2), · · · , [TC−1, TC). For
any t ∈ [Tc−1, Tc), we assign its time-discrete label c, where c ∈ [1, C]. These time bins are equal
in length; C is determined by

√
Ne, where Ne is the number of patients with event in survival data.

Refer to Appendix D.5 for more setting details and Appendix E for this setting’s experiments.

Ordinal Survival Prompt Textual prompts usually consist of contexts and class labels in VLM-
driven prediction. Thereby, (1) for context prompt, we follow CoOp (Zhou et al., 2022) to employ
learnable parameters, Vctx ∈ RLctx×Demb , to optimize the context of survival prompts, where Lctx
is the length of context tokens and Demb is the dimension of each token embedding. (2) For class
prompts, we maintain B learnable base class prompts, {V λ1

cls , · · · ,V
λB

cls }, where V λb

cls ∈ RLcls×Demb

(b ∈ [1, B]) is the token embedding of the b-th base class prompt and Lcls is the maximum length
of class tokens. These base class prompts are initialized using common prognosis risk descriptions,
e.g., {“very poor”, “moderately poor”, “moderately good”, “very good”}. Then, considering the or-
dinality in survival classes {1, 2, · · · , C}, we obtain the remaining class prompts by interpolating
virtual points between base class prompts, inspired by Li et al. (2022). Formally, the c-th class
prompt (c ∈ [1, C]) is expressed as follows:

V c
cls =

B∑
b=1

V λb

cls · W (Dc,b)∑B
i=1 W (Dc,i)

, (4)
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where Dc,b is an element of matrix D ∈ RC×B representing the ordering distance between the c-th
class prompt and the b-th base class prompt, and W (·) is a function determining the interpolation
weight based on distance. A closer distance usually indicates a greater interpolation weight. Dc,b

could be simply set by Dc,b = |(c − 1) − (b − 1) · (C − 1)/(B − 1)|. For linear interpolation,
W (Dc,b) = 1− Dc,b

C−1 . (3) For survival prompts, each class prompt is concatenated with Vctx at its
token level, followed by passing through frozen Etext to produce the final ordinal survival prompts,
denoted as Ftext = [f1

text, . . . ,f
C
text]

T ∈ RC×D. Namely, there is

f c
text = Etext

(
[Vctx|V c

cls]
)
∀ c ∈ [1, C]. (5)

Justification (1) Ordinal inductive bias: in common sense, as the length of survival time decreases,
the corresponding risk of death gradually becomes high. This implies the ordinality of survival
classes; such inductive bias could be considered in designing prompts for SA. More explanations
and discussions could be found in Appendix C. (2) Class prompt interpolation: on one hand, most
textual encoders are lacking in the sensitivity to numbers’ ordinality (Thawani et al., 2021; Paiss
et al., 2023), so it may be unsuitable to directly adopt numerical classes as textual prompts. On
the other hand, when the number of classes becomes large, e.g., C = 10, it would be intractable
to manually design fine-grained prognosis risk descriptions at C different levels. In view of these
obstacles, we adopt a few base prompts (λ ≤ 4) and then utilize an interpolation-based strategy (Li
et al., 2022) to preserve ordinalitity in survival prompts.

3.3 ORDINAL INCIDENCE FUNCTION PREDICTION

The prediction target of VL-based models is class probability, usually calculated based on the sim-
ilarity measures between image features and a group of textual class prompts. To make survival
prediction compatible with this way, we propose to take individual incidence function as prediction
target and introduce another ordinal inductive bias term into it, as shown in Figure 1(b).

Survival Prediction with Incidence Function Similar to the manner of VL-based classification,
we calculate SA prediction, denoted by ŷ = [ŷ1, · · · , ŷC ], as follows:

ŷc =
exp

(
τ · cos(fimage,f

c
text)

)∑C
i=1 exp

(
τ · cos(fimage,f i

text)
) ∀ c ∈ [1, C], (6)

where τ is a temperature parameter optimized in training. From a conventional classification per-
spective, ŷc given by Eq. (6) can be cast as the probability that an event first occurs at time c; ŷ is
thus a probability distribution on the first hitting time. Such type of prediction is closely associated
with the concept of incidence function (IF) (Fine & Gray, 1999) and the first hitting time model (Lee
& Whitmore, 2006; Lee et al., 2018) in traditional SA. Therefore, we call Eq. (6) the prediction of
individual IF and leverage IF tools for our task. By definition, cumulative IF is CIF(c) =

∑c
i=1 ŷc.

Survival function (surviving past time c) can be written as Ŝ(c) = 1− CIF(c) = 1−
∑c

i=1 ŷi.

Ordinal Inductive Bias in Incidence Function As the predictive probability ŷ is distributed over
ordered survival classes, we consider an ordinality constraint for this distribution (see Appendix C
for further elucidations). Concretely, given that c is the survival class with the largest probability,
we assume there is a consecutive decline in probability for those classes away from c, as shown in
Figure 1(b). Note that this assumption is concerned with the event that first occurs, as ŷ is defined
as the probability distribution on the first hitting time. To impose the ordinality constraint on ŷ, at
first we adopt Earth Mover’s Distance (EMD) (Levina & Bickel, 2001) as the measure to quantify
the distance between ŷ and y (ground truth distribution), written as

EMD(ŷ,y) =
( 1
C

) 1
l ||CDF(ŷ)− CDF(y)||l, (7)

where CDF(·) means cumulative distribution function. EMD is a measure aware of distribution
ordinality as it considers the geometry property of distribution in distance measurement and it is
smaller when the geometry (shape) of two distributions is closer. Please refer to Appendix B.3
for detailed explanations. Furthermore, we adopt a squared EMD objective (Hou et al., 2017) to
regularize the predictive distribution ŷ in model optimization:

LEMD = ||CDF(ŷ)− CDF(y(c, δ))||22. (8)
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We define y(c, δ) as follows. For the patient with event, y(c, δ = 1) = Softmax
(
τ ′ · (2 · Ii=c − 1)

)
.

For the patient censored at time c, we only know that its actual time-to-event is not less than c, so
y(c, δ = 0) = Softmax

(
τ ′ · (2 · Ii≥c − 1)

)
. Ii ∈ {0, 1}C is an indicator with element ‘1’ at index i.

The value of τ ′ is from τ but not involved in optimization. We note that the ordinality introduced to
Ftext and ŷ could be cast as model-level and subject-level inductive bias, respectively; still, there are
intriguing connections between them. Detailed discussions could be found in Appendix C.

3.4 OVERALL TRAINING OBJECTIVES

For any patient with survival label Y = {t, δ}, we denote its time-discrete label by Yd = {c, δ}
(Section 3.2). To optimize the prediction of individual incidence function, a maximum likelihood
estimation (MLE)-based objective (Tutz & Schmid, 2016) is utilized in training:

LMLE = −
[
δ · log(ŷc) + (1− δ) · log(1−

c−1∑
i=1

ŷi)
]
. (9)

For censored patients (δ = 0), LMLE minimizes
∑c−1

i=1 ŷi, i.e., the probability that the event of
interest first occurs at discrete bins 1, 2, . . . , or c − 1 according to the definition of ŷi in Eq. (6).
Furthermore, with the LEMD given in Eq. 8, our overall training objective is minimizing

L = LMLE + β · LEMD, (10)

where β ≥ 0 is a hyper-parameter that modulates the weight of LEMD.

3.5 PREDICTION INTERPRETATION

Understanding how a model makes predictions is crucial for reliable decision-making, especially in
medical domain. We thereby study the prediction behavior of VLSA and propose an interpretation
method based on the classic Shapley values (see Appendix B.4) from cooperative game theory.

Concretely, we interpret the survival prediction of VLSA through language-encoded prognostic
priors, i.e., P = [p1, . . . ,pM ]T described in Section 3.1, because i) each prior intuitively describes
a certain prognostic visual feature in WSIs and ii) these language-encoded priors play an important
role in learning valuable prognostic clues and making final survival predictions. However, each prior
term’s contribution to risk prediction cannot be computed directly since it is not linearly correlated
with ŷ. Thus, based on a principled framework for model interpretation—Shapley value (Shapley,
1953; Lundberg, 2017), we calculate the contribution of each prior term by

ϕm(frisk) =
∑
Z⊆P

|Z|!(M − |Z| − 1)!

M !
[frisk(Z,X)− frisk(Z \ {pm},X)] , (11)

where P is a set of prognostic priors {p1, . . . ,pM}. The function frisk(Z,X) outputs the risk pre-
diction given prognostic prior subset Z and WSI features X as inputs. Specifically, we i) calculate
fimage using a subset of F corresponding to Z, ii) use it to obtain the IF prediction ŷ through Eq.(6),
and iii) finally derive the risk via the summation of CIF: R̂ =

∑C
i=1 CIF(i).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets Following Chen et al. (2021a), five publicly-available datasets from TCGA (The Cancer
Genome Atlas) are used in experiments: BLCA (bladder urothelial carcinoma) (N = 373), BRCA
(breast invasive carcinoma) (N = 956), GBMLGG (glioblastoma & lower grade glioma) (N =
569), LUAD (lung adenocarcinoma) (N = 453), and UCEC (uterine corpus endometrial carcinoma)
(N = 480). These datasets cover five different cancer types, a total number of 2,831 patients, and
3,530 diagnostic gigapixel WSIs. We follow Chen et al. (2021a) to set overall survival (OS, which
only occurs once) as the event of interest in WSI survival analysis. We adopt a standard CLAM
tool (Lu et al., 2021) to preprocess all WSIs into multi-instance bags for training. CONCH (Lu
et al., 2024), as a state-of-the-art foundational VLM recently developed for CPATH, is employed to
provide powerful encoders Eimage and Etext. Refer to Appendix D.1 for more details on datasets.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Baselines Vision-only and vision-language methods are compared in experiments. Vision-only (V)
baselines contain ABMIL (Ilse et al., 2018), TransMIL (Shao et al., 2021b), ILRA (Xiang & Zhang,
2023), R2T-MIL (Tang et al., 2024), DeepAttnMISL (Yao et al., 2020), and Patch-GCN (Chen et al.,
2021a). Vision-language (VL) baselines are MI-Zero (Lu et al., 2023), CoOp (Zhou et al., 2022),
and OrdinalCLIP (Li et al., 2022). MI-Zero is a VL-based zero-shot approach for classification; we
adapt it for SA to assess the lower bound performance of VLM on new SA tasks. As CoOp and
OrdinalCLIP are not proposed for gigapixel WSIs, we adapt them for comparison: i) in vision-end,
the frequently-adopted attention-based MIL, i.e., ABMIL, is used for instance aggregation; ii) in
language-end, CoOp optimizes both context and class prompts without ordinal inductive bias, while
OrdinalCLIP improves CoOp using ordinal class prompts. As a result, OrdinalCLIP and our VLSA
share the approach to calculating ordinal survival prompts in language-end. All methods use the
same Eimage from CONCH; VL-based methods involve an additional VL projection layer. More
details are provided in Appendix D.2 and D.4.

Evaluation Metrics To evaluate models more comprehensively, we follow traditional SA (Qi et al.,
2023a;b) to consider multiple metrics. (1) Concordance index (CI), as a prevalent metric in SA,
assesses models’ discrimination power. (2) Mean absolute error (MAE) gives the absolute error of
model’s prediction on time-to-event. (3) Distribution calibration (D-cal) (Haider et al., 2020) is a
statistical test to evaluate models’ ability in calibrating survival distribution prediction; we mainly
check if there is no significant difference in distribution between ground truth and prediction (p >
0.05). For any method, we adopt 5-fold cross-validation to evaluate its performance and report the
average on 5 folds. Please refer to Appendix D.3 for more details on evaluation metrics.

4.2 COMPARISON WITH BASELINES

As shown in Table 1, there are three key observations. (1) Our VLSA achieves new state-of-the-art
performances and it could often perform better than most baselines by a large margin. In terms of
average CI, our VLSA (average CI = 0.695) leads runner-up by 2.3%. Moreover, it often predicts
well-calibrated survival distributions, reflected by D-cal Count. (2) For VL-based methods, CoOp
and OrdinalCLIP are competitive with other baselines, although they adopt the ABMIL network
much simpler than others. (3) Original CONCH encoders (with MI-ZeroSurv) often cannot dis-
criminate risks correctly in SA (average CI = 0.54) without supervised fine-tuning (SFT), especially
on GBMLGG. This suggests the necessary of an adaptation of CONCH to SA through SFT.

Table 1: Main comparative results. D-cal count is the number of datasets with p > 0.05 in D-cal
test. † MI-Zero is adapted for SA. Best performance in bold, second best underlined.

Method TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

V

ABMIL 0.5581 0.5825 0.7935 0.6121 0.6667 0.6426 29.83 4(± 0.031) (± 0.035) (± 0.032) (± 0.050) (± 0.033)

TransMIL 0.5885 0.6140 0.7956 0.5708 0.6380 0.6414 30.43 5(± 0.055) (± 0.060) (± 0.015) (± 0.050) (± 0.067)

ILRA 0.5549 0.5705 0.7742 0.5179 0.6503 0.6136 32.59 4(± 0.053) (± 0.067) (± 0.014) (± 0.081) (± 0.064)

R2T-MIL 0.5775 0.5473 0.7757 0.5711 0.6510 0.6245 32.54 4(± 0.024) (± 0.095) (± 0.024) (± 0.076) (± 0.087)

DeepAttnMISL 0.5646 0.5346 0.6750 0.4678 0.6259 0.5736 52.10 5(± 0.035) (± 0.036) (± 0.048) (± 0.039) (± 0.085)

Patch-GCN 0.6124 0.6375 0.7999 0.5922 0.7212 0.6726 26.70 2(± 0.031) (± 0.033) (± 0.021) (± 0.053) (± 0.025)

V
L

MI-ZeroSurv
† 0.5541 0.5788 0.3842 0.5209 0.6623 0.5400 25.63 0(± 0.034) (± 0.028) (± 0.063) (± 0.049) (± 0.059)

CoOp 0.5971 0.5994 0.7853 0.5750 0.6840 0.6482 28.70 5(± 0.033) (± 0.086) (± 0.015) (± 0.064) (± 0.070)

OrdinalCLIP 0.6037 0.6202 0.7893 0.6053 0.6836 0.6604 28.01 5(± 0.043) (± 0.046) (± 0.018) (± 0.065) (± 0.036)
0.6176 0.6652 0.8002 0.6370 0.7571VLSA (ours) (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5
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Figure 2: Interpreting the survival prediction of VLSA via language-encoded prognostic pri-
ors. Top row shows language descriptions (simplified for better view) about prognostic visual fea-
tures in WSIs. Detailed texts are provided in Appendix D.4. Middle row gives the most repre-
sentative patches corresponding to each prognostic text. Last row presents each prognostic prior’s
contribution to overall risk. We mainly examine the top three language priors in terms of contribu-
tion. The three examples are from the first three datasets. Refer to Appendix E for more results.

4.3 ANALYSIS OF LANGUAGE-ENCODED PROGNOSTIC PRIORS

Ablation Study To verify the effectiveness of our instance aggregation method, we compare three
baselines: i) attention, classical attention-based aggregation; ii) learnable prototypes, using the same
number of learnable vectors without prior knowledge encoding; iii) prognostic texts, i.e., only en-
coding textual priors, without Tprog. Their results are shown in Table 2. Our main findings are
as follows. (1) Language-encoded prognostic priors play a particularly important role in the
performance improvement of VLSA. After incorporating prognostic priors, VLSA obtains im-
provements ranging from 1.3% to 6.5% in terms of CI, and an improvement of 3.5% in average CI.
(2) Fine-tuning with Tprog boosts the performance with a slight overall improvement (0.4%).

Table 2: Ablation study on our method for instance aggregation. FT is fine-tuning with Tprog.

Aggregation method TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

Attention 0.6083 0.6180 0.7908 0.6048 0.6908 0.6625 26.78 5(± 0.047) (± 0.046) (± 0.017) (± 0.063) (± 0.035)

Learnable prototypes 0.5872 0.6201 0.7853 0.6061 0.6845 0.6566 26.76 4(± 0.048) (± 0.050) (± 0.013) (± 0.053) (± 0.052)
0.6159 0.6614 0.7985 0.6314 0.7491Prognostic texts (± 0.025) (± 0.047) (± 0.009) (± 0.028) (± 0.049) 0.6912 25.05 4

0.6176 0.6652 0.8002 0.6370 0.7571Prognostic texts + FT (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5

Visualization We conduct a case study to further examine the role of language-encoded prognostic
priors in our VLSA. As shown in Figure 2, we observe that valuable visual features can be high-
lighted by prognostic texts in most cases. These visual features, e.g., “differentiation of tumor cells”
and “high cellular density”, could often provide important clues for cancer prognosis. We note that,
such desirable behavior is largely attributed to the intrinsic property of foundational VLMs, i.e.,
VLMs offer a well-aligned vision-language embedding space to enable us to manipulate visual fea-
tures with language prior. We believe that this property is particularly important to the MIL in which
a model is usually required to aggregate numerous instances under weak supervision.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

�� �� �� �� �� �	 �
 �� �� �
 ���
���

���

���

���

�� �� �� �� �� �	 �
 �� �� �
 ���
���

���

���

���

�� �� �� �� �� �	 �
 �� �� �
 ��� ��� ���
���

���

���

���

�� �� �� �� �� �	 �
 �� �� �
 ��� ��� ���
���

���

���

���

�� �� �� �� �� �	 �
 �� �� �
 ��� ���
���

���

���

���

�� �� �� �� �� �	 �
 ��
���

���

���

���

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

Pr
ed

ict
ed

 P
ro

ba
.

Pr
ed

ict
ed

 P
ro

ba
.

�� �� �� �� �� �	 �
 ��
�������������

���

���

���

��	

�
��
�
��
��
�
��
��
�
�
�
��
��
 

���


����
�������������

EMD = 0.124 EMD = 0.101 EMD = 0.135
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Acc = 63.64%

Acc = 96.97%

VLSA
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Acc = 100%

Acc = 51.28%
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(a) (b)

Figure 3: Ordinality visualization. (a) Heatmap of the similarity between any two learned survival
prompts. Its horizontal axis places the first prompt to the last prompt from left to right; its vertical
one does so from top to bottom. Acc is the accuracy of prompt ranking. The results are from the
first three datasets listed from left to right. More results are shown in Appendix E. (b) Predictive
probability (Proba.) w/o and w/ ordinality. The patients from test set are used for prediction. ∆EMD
is equal to EMD(y, ŷw/o)− EMD(y, ŷw/). Vertical dashed line indicates individual time-to-event.

4.4 ANALYSIS OF ORDINAL INDUCTIVE BIASES

Ablation Study We conduct an ablation study to verify the effectiveness of our two ordinal inductive
bias terms. Its result is shown in Table 3. We have two main observations. (1) Ordinal survival
prompt makes a large contribution (3.4% and 3.6%) to the VLSA’s performance on BRCA in terms
of CI; While on the other four datasets, the contribution is often marginal. (2) Ordinal probability,
i.e., ordinal IF, could often help to decrease MAE. More discussions on these two inductive bias
terms are provided in Appendix C.

Table 3: Ablation study on the two ordinal inductive bias terms in VLSA.
Ordinality TCGA Average D-cal

Prompt Proba. BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

0.6128 0.6304 0.7927 0.6351 0.7606 0.6863 26.76 5(± 0.028) (± 0.065) (± 0.015) (± 0.041) (± 0.037)

✓
0.6145 0.6643 0.7973 0.6368 0.7478 0.6921 26.53 5(± 0.024) (± 0.055) (± 0.009) (± 0.034) (± 0.060)

✓
0.6138 0.6293 0.7975 0.6361 0.7592 0.6872 25.23 5(± 0.022) (± 0.067) (± 0.013) (± 0.036) (± 0.036)
0.6176 0.6652 0.8002 0.6370 0.7571

✓ ✓ (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5

Discussion We note that in this study two ordinal inductive biases often show marginal improve-
ments in CI. One possible reason for this is that VLSA shows a trend of saturation in CI performance
when it uses prognostic priors. It could be observed from that the average CI has already reached
a high level (0.6863) when there is no any ordinal inductive bias. By contrast, for the counterpart,
i.e., the VLSA without prognostic priors (see Table 8), its average CI is only 0.6482 when there
is no any ordinal inductive bias. This means there could leave room for CI improvements. This is
indicated by the experimental results of Table 8: i) two ordinal inductive biases often show larger
improvements on five datasets and ii) the average improvement in CI is 1.43%.

Ordinality Visualization (1) Survival prompts: We calculate the similarity between any two sur-
vival prompts learned by the model and show the similarity in a heatmap. By intuitively comparing
the heatmaps from the VLSA model with and without ordinal prompt, we further examine the effect
of ordinal prompt in a qualitative way. As shown in Figure 3 (a), we can see that survival prompts are
better in ordinality when considering an ordinal inductive bias for them. (2) Predictive incidence
function: the case study shown in Figure 3 (b) suggest that the ordinality constraint imposed on IF
prediction could help to decrease the EMD between ŷ and ground truth distribution. This leads to
the improvements of MAE (see Table 3).
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4.5 FEW-SHOT SURVIVAL PREDICTION

Here we focus on a few-shot learning (FSL) scenario in which only a few samples can be used
for training. We use this scenario to simulate the case of scarce training data and evaluate the
performance of different SA methods in terms of data efficiency. Since existing works on SA rarely
study FSL, this experiment follows common few-shot settings. Concretely, we randomly sample
s patients from each time-discrete class. For censored patients, their true class labels are partially
given, so we adopt the KM method (Kaplan & Meier, 1958) to estimate them in advance for few-
shot sampling. Moreover, due to small patient numbers, we run each single experiment 5 times and
report the median metrics, following CONCH (Lu et al., 2024).

Table 4: Few-shot survival prediction (data efficiency evaluation). The CI averaged on five
datasets is presented.

Method # Shots Average Full-shots1 2 4 8 16

ABMIL 0.5061 0.5136 0.5339 0.5541 0.5798 0.5375 0.6426
TransMIL 0.5607 0.5856 0.6145 0.6236 0.6388 0.6046 0.6414
ILRA 0.5503 0.5658 0.5891 0.6023 0.6033 0.5822 0.6136
R2-MIL 0.5725 0.5835 0.5924 0.5927 0.6072 0.5897 0.6245
DeepAttnMISL 0.5182 0.5252 0.5522 0.5682 0.5877 0.5503 0.5736

V

Patch-GCN 0.5627 0.5497 0.5872 0.6022 0.6186 0.5841 0.6726

CoOp 0.5846 0.5870 0.6081 0.6056 0.6237 0.6018 0.6482
OrdinalCLIP 0.5710 0.5983 0.6118 0.6106 0.6246 0.6033 0.6604V

L

VLSA 0.5787 0.6068 0.6271 0.6465 0.6592 0.6237 0.6954

The results of few-shot survival prediction are shown in Table 4. (1) From these results, we find that
our VLSA still often obtains the best performance in FSL scenarios. This indicates the data effi-
ciency of our VLSA. (2) When using only 16 shots, our VLSA can obtain comparable performance
with nearly-all full-shot baseline models. (3) Furthermore, we observe that, in standard full-shot set-
ting, two VL-based baselines, i.e., CoOp and OrdinalCLIP with ABMIL as their MIL aggregator,
only show an improvement of 0.6% and 1.8% over vision-only ABMIL, respectively. By contrast,
the average improvements seen in few-shot settings are around 6.5%, much larger than those in full-
shot. This observation also suggests the advantage of VL-based schemes over vision-only ones in
terms of data efficiency.

4.6 ANALYSIS OF MODEL EFFICIENCY

Table 5: Model efficiency. A random WSI (from
BLCA) with 20,265 instances is used to measure
the # MACs in model inference.

Model # Params # MACs

V

ABMIL 137.74K 2.68G
TransMIL 683.55K 14.23G
ILRA 3.16M 34.79G
R2-MIL 2.44M 29.62G
DeepAttnMISL 329.22K 2.68G
Patch-GCN 363.91K 3.41G

V
L CoOp 434.18K 2.68G

OrdinalCLIP 409.60K 2.68G
VLSA 284.16K 0.25G

In this experiment, we evaluate the efficiency
of all models in terms of parameter num-
bers and computation consumption. The num-
ber of learnable parameters (# Params) and
Multiply–Accumulate operations (# MACs) are
taken as main evaluation metrics. From the
results shown in Table 5, we can see that
VLSA not only has fewer learnable parame-
ters (284.16K) than all baseline models except
for ABMIL but also is the most efficient one
(0.25G) in terms of model inference cost. Our
further analysis is as follows.

(1) Our vision-end model only has two groups
of learnable parameters: i) Tprog for fine-tuning
textual features and ii) one linear layer for pro-
jecting image features. Such network is very
simple relatively yet it demonstrates strong ca-
pabilities (Table 1) in survival prediction. One critical factor behind this is that the well-aligned
vision-language embeddings from foundational VLMs are effectively utilized to improve visual rep-
resentation learning.
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(2) Our survival prompts can be computed in advance and they are subsequently reused in model
inference for different individuals. Therefore, Etext is not involved explicitly in the process of model
forward inference. This enhances the computation efficiency of individual predictions.

5 LIMITATION AND FUTURE WORK

Although promising results are obtained in this study, we note that there are still some limitations.
(1) The number of datasets and the diversity of cancer types are limited. Due to the extremely-
high resolution of histopathology WSIs, it is usually challenging to collect tens of thousands of
images and preprocess them into feasible training data. (2) The textual descriptions about cancer-
specific prognostic prior are derived from GPT-4o. They may be lacking in knowledge completeness
and accuracy. More holistic and accurate prognostic prior knowledge are likely to provide stronger
guidance for weakly-supervised MIL and perform better in survival prediction. (3) The foundational
VLM that our empirical results rely on is CONCH (Lu et al., 2024), a recent state-of-the-art VLM
for CPATH. More pathology VLMs may be needed to further validate our VLSA. (4) Many state-
of-the-art approaches for WSI classification (Zhang et al., 2022; Xiong et al., 2023; Tang et al.,
2023; Qu et al., 2023; Shi et al., 2024; Fourkioti et al., 2024; Tang et al., 2024) have shown strong
capabilities in representation learning. VLSA could take inspiration from them to further improve
its performance in SA.

We note that VL-base approaches stand on the shoulder of foundational VLMs and their perfor-
mances are closely correlated with the capability of VLMs. Our VLSA is no exception. We strongly
believe that VLSA could further refresh the state-of-the-art performances in SA tasks with the con-
tinual advancements of VLMs. In the future, we will continue to follow the frontier of VLMs in
CPATH and leverage advanced tools to study the potential of VLSA in cancer prognosis.

Vctx[1] Vctx[2] Vctx[i]

6 CONCLUSION

This paper presents Vision-Language Survival Analysis (VLSA) for computational pathology. It is
the first VL-based SA framework for histopathology WSIs. Different from current SA paradigm in
CPATH, our VLSA proposes to leverage language-encoded prognostic priors as auxiliary signals
to improve weakly-supervised WSI representation learning. Moreover, considering the intrinsic
characteristics of SA, we propose ordinal survival prompt learning and ordinal incidence function
prediction. Owing to the introducing of language-encoded prognostic priors, our VLSA enjoys a
good interpretability, supported by our Shapley values-based interpretation method. The extensive
experiments on five datasets verify the effectiveness of our scheme. On one hand, VLSA obtains
new state-of-the-art performances in SA tasks; on the other hand, it often shows clear superiority
over existing schemes in terms of few-shot learning and model efficiency. Notably, our comparative
experiments and analyses suggest that vision-language-based learning paradigm can offer weakly-
supervised MIL an effective means to learn valuable prognostic clues from gigapixel WSIs. This
finding is likely to provide a new solution for improving the weak supervision in MIL, thereby
paving a new way for survival analysis in computational pathology.
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A OVERVIEW OF APPENDIX

This appendix first provides related preliminary knowledge in Appendix B, including survival anal-
ysis (SA) (B.1), weakly-supervised MIL (B.2), Earth Mover’s Distance (EMD) (B.3), and Shapley
value (B.4). In Appendix C, we further explain and discuss our two ordinal inductive biases to help
readers better understand them. Then, we give more experimental details in Appendix D, including
datasets (D.1), baselines (D.2), evaluation metrics (D.3), the implementation details of VLSA (D.4),
and the details of time discretization settings for all methods (D.5). Finally, we present additional
experimental results in Appendix E.

B PRELIMINARIES

B.1 SURVIVAL ANALYSIS

Survival analysis (SA), also known as time-to-event analysis, is one of the primary statistical ap-
proaches for analyzing data on time to event (Kaplan & Meier, 1958; Cox, 1975). Time-to-event
data is usually denoted by D = {Xi, ti, δi}Ni=1, where Xi represents individual characteristics and
δi is the individual status of event of interest (e.g., death and machine failure) observed at time ti.
Particularly, δ = 0, called censorship in SA, indicate that event does not occur during follow-up ob-
servation. They are also considered in analysis and modeling. One common task in SA is to predict
the risk of event occurrence. It covers a wide range of applications in healthcare and finance. Next,
we give some key concepts in SA for reference.

Survival Function It quantifies the probability one will survive past a given time t, often written
as S(t) = Pr(T > t) where T is a random variable indicating survival time. This function is
non-increasing, i.e., the probability of survival will not increase as the observation process con-
tinues. Given individual survival function, the corresponding time-to-event can be estimated by
t̂ = Et[S(t)] =

∫∞
0

S(t)dt.

Hazard Function It quantifies the probability that one will experience event at time t given no event
occurrence before t. By definition, it is written as h(t) = lim

∆t→0

Pr(t≤T≤t+∆t|T>t)
∆t . Thus, survival

function can be derived from it by S(t) = exp(−
∫ t

0
h(z)dz).

Incidence Function (IF) It aims to capture the probability distribution of the first hitting time, p(t),
often seen in SA under competing risks (Fine & Gray, 1999; Lee & Whitmore, 2006; Lee et al.,
2018). Cumulative IF (CIF) gives the probability that one experiences event at or before time t,
namely, CIF(t) =

∫ t

0
p(z)dz. Thus, survival function can be calculated by S(t) = 1− CIF(t).

Modeling Approach To estimate individual risks, most survival modeling approaches take the fol-
lowing functions as prediction target.

• Proportional hazard (Cox, 1975). As the most popular one (CoxPH) in SA, it assumes that
individual hazard function is proportional to a cohort-level hazard function (computable);
it predicts a scalar indicating individual proportional hazard.

• Hazard function (Tutz & Schmid, 2016). Traditional SA models usually assume a specific
form for the distribution of individual hazard function, and then optimize the parameter of
this specified distribution. Modeling hazard function without any explicit assumption is
also studied in SA. It often performs better than traditional ones in real-world datasets.

• Incidence function. In DeepHit (Lee et al., 2018), it is first taken as prediction target for
deep learning-based SA. Its optimization are similar to classification with partial labels
(refer to Eq. (9)). One biggest difference is that modeling incidence function requires to
handle the censored individuals (whose true time-to-event is partially known) in D.

Additionally, survival time is also directly adopted as prediction target in some SA models (Liu
et al., 2024a). Readers could refer to Tutz & Schmid (2016) for more details about SA.

When prediction target is incidence function or hazard function, survival time is usually prepro-
cessed as discrete time labels for analysis. We compare these two prediction targets and try different
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time discretization settings in our VLSA. The results can be found in Appendix E. Evaluation
metrics for SA models are elaborated in Appendix D.3.

B.2 WEAKLY-SUPERVISED MULTI-INSTANCE LEARNING

Multi-Instance Learning (MIL) is a fundamental machine learning problem that has been studied
for decades (Dietterich et al., 1997; Ilse et al., 2018; Liu & Ji, 2024). Different from conventional
learning settings, a sample in MIL is a bag of multi-instances, i.e., X = {xk}Kk=1. xk is the
k-th instance. In weakly-supervised MIL, bag-level labels are given while instance-level labels
are unknown. A MIL model is often required to learn from size-varied bags and make bag-level or
instance-level predictions. Its applications cover pathology image analysis, video anomaly detection,
point could analysis, etc.

Embedding-level approach (Ilse et al., 2018) is often adopted for bag-level prediction in the
era of deep learning. This approach provides a principled and general three-step framework for
MIL. (1) Instance-level embedding: xk is transformed into a low-dimensional embedding hk. (2)
Permutation-invariant pooling: {hk}Kk=1 are combined into a bag-level representation hbag via
permutation-invariant pooling. (3) Bag classification: bag-level representation is passed through
a classifier for prediction. Common pooling strategies contain mean, max, and attention. Particu-
larly, attention-based pooling is a classic method proposed by Ilse et al. (2018), frequently adopted
in weakly-supervised MIL. It can be written as follows:

hbag =

K∑
k=1

ak · hk, ak = Softmax
(
φ(hk)

)
=

exp
(
φ(hk)

)∑K
i=1 exp

(
φ(hi)

) , (12)

where φ(·) is a transformation function in the attention network, parameterized by a multi-layer
perceptron. Embedding-level approach usually assumes x1,x2, · · · ,xK are i.i.d. Subsequent
works (Shao et al., 2021b) improve it by assuming and handling the relation between instances.
They often perform better in bag classification tasks.

B.3 EARTH MOVER’S DISTANCE

Earth Mover’s Distance (EMD), as known as the Wasserstein distance (p = 1), is utilized to the
measure the distance between two distributions (Kolouri et al., 2017). Intuitively, considering two
simple one-dimensional discrete probability distributions, P (x) and Q(x), EMD captures the opti-
mal total transportation costs in moving the probability mass of P from any point a to b to make P
equal to Q in probability density. In every moving process, the cost is the product of moving mass
and moving distance (|a − b|). From this intuitive example, we could find that EMD considers the
geometry property of distribution in distance measurement. This makes EMD different from other
metrics like Kullback-Leibler divergence and Euclidean distance.

Formally, EMD is defined as an infimum over joint probabilities:

EMD(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γd(x, y). (13)

Π(P,Q) is the set of all joint distributions whose marginal distributions are P and Q. d(x, y) is the
distance between x and y. As shown in Levina & Bickel (2001), for two one-dimensional discrete
distributions, P and Q, EMD can be calculated by

EMD(P,Q) =
( 1
C

) 1
l ||CDF(P )− CDF(Q)||l, (14)

where CDF means cumulative density function and C is the number of discrete values.

B.4 SHAPLEY VALUE

Shapley value is a classic solution concept in cooperative game theory (Shapley, 1953). It assigns
a unique contribution to each player according to the payoff earned by the coalition of players. In
machine learning, Shapley value is often adopted to interpret model predictions (Lundberg, 2017),
e.g., the importance of input features. This application enables us to interpret black-box, complex
nonlinear models, e.g., deep networks, particularly popular in the medical domain.
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Formally, to calculate the importance of each feature for an original model f(·), there is f(x) =
g(x′) = f(hx(x

′)) for a corresponding explanation model g(·), where x′ is a simplified input that
maps to the original input x through a function x = hx(x

′). Additive feature attribution meth-
ods provide such explanation models. Concretely, g(·) is formulated as a linear function of binary
variables. It is expected to have a property of local accuracy, expressed as

f(x) = g(x′) = ϕ0 +

A∑
i=1

ϕix
′
i, (15)

where ϕi ∈ R indicates the importance of the i-th feature, x′ ∈ {0, 1}A, and A is the number of sim-
plified input features. Moreover, g(·) should satisfy two other desirable properties: i) missingness,
missing features (x′

i = 0) have no attributed impact; and ii) consistency, some features’ attribu-
tion should not decrease if these features’ contribution (i.e., marginal reward) does not decrease.
Theorem 1 in Lundberg (2017) states that only one possible g(·) follows those three properties:

ϕi(f, x) =
∑
z′⊆x′

|z′|!(A− |z′| − 1)!

A!
[fx(z

′)− fx(z
′ \ i)] , (16)

where |z′| is the number of non-zero entries in z′ and z′ ⊆ x′ represents all z′ vectors where the
non-zero entries are a subset of the non-zero entries in x′. This theorem follows from combined
cooperative game theory results. ϕi is known as Shapley value (Shapley, 1953). Readers could refer
to Lundberg (2017) for proofs and related details.

C FURTHER DISCUSSION ON THE ORDINAL INDUCTIVE BIASES IN VLSA

Our VLSA considers two ordinal inductive biases: i) ordinal survival prompts and ii) ordinal inci-
dence function. For better understanding, next we first explain them in detail and then discuss the
connection and difference between them.

Further Explanation (1) Ordinal survival prompts. For C survival classes after time discretization,
there are C prompts that encode the information of survival labels. Concretely, from the first class to
the last class, i.e., for time-to-event ranging from [T0, T1) to [TC−1, TC), the respective class prompt
describes a risk from high to low. Therefore, if two classes are closer in ordering, e.g., the c-th and
(c+1)-th classes, their class prompts would be more similar in encoded risk information. Formally,

Sim(V c
cls,V

i
cls) > Sim(V c

cls,V
j

cls) if |c− i| < |c− j|, (17)
where Sim(·, ·) is a function measuring two inputs’ similarity. (2) Ordinal incidence function. It
captures the probability distribution of discrete first-hitting time, i.e., y = [y1, · · · , yC ]. Since this
distribution also characterize ordered survival classes like the class prompt aforementioned, there is
a similar ordinality in incidence function,

|yc − yi| < |yc − yj | if |c− i| < |c− j|, (18)
as depicted in Figure 1(b). Our experiments (Table 3 and Table 8) confirm the effectiveness of these
two ordinal inductive biases: i) ordinal survival prompts tend to enhance the model’s ability in risk
discrimination; and ii) ordinal incidence function could often reduce the bias of predicted survival
time (MAE).

Connection and Difference between Two Ordinal Inductive Biases Taking two inductive biases
into one formula, the prediction of individual incidence function can be written as

ŷ = Softmax
(
τ ·

[
cos(fimage,f

1
text), cos(fimage,f

2
text), · · · , cos(fimage,f

C
text)

])
. (19)

So, the first inductive bias, introduced into {f c
text}Cc=1, could be cast as a model-level ordinal con-

straint, because f c
text is a part of model parameters and it is used in all individual predictions. The

second inductive bias, imposed on individual prediction ŷ, is a subject-level ordinal constraint. We
claim that only considering model-level ordinal constraint cannot always lead to ordinal incidence
function, i.e., Eq. (18) does not hold in some cases even when Eq. (17) holds for all c, i, j ∈ [1, C].
We show an example in Figure 4. In this example, f c

text,f
c+1
text ,f c+2

text are ordinal and there are
cos(fimage,f

c
text) > cos(fimage,f

c+1
text ) and cos(fimage,f

c
text) > cos(fimage,f

c+2
text ). However, there ex-

ists an area (colored in gray) so that cos(fimage,f
c+1
text ) > cos(fimage,f

c+2
text ) does not hold. Namely,

there exists the case in which incidence function is not ordinal even if all survival prompts satisfy
the ordinality. Therefore, both model-level and subject-level ordinal constraint should be considered
in VLSA for better survival prediction. This is also implied by our empirical results in Table 3.
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Figure 4: An example to illustrate the case that incidence function is not ordinal when prompts are.
Lc,c+1 is the bisector of the angle between f c

text and f c+1
text . When fimage falls into the gray area,

cos(fimage,f
c+1
text ) > cos(fimage,f

c+2
text ) does not hold.

D MORE EXPERIMENTAL DETAILS

D.1 DATASETS

We provide the statistics on five TCGA datasets (BLCA, BRCA, GBMLGG, LUAD, and UCEC)
used in this study. Please see them in Table 6.

The preprocessing of histopathology WSIs contains the following key steps: i) tissue region seg-
mentation, ii) image patching, and iii) patch feature extraction. Following CONCH (Lu et al., 2024),
each WSI is divided into patches with size of 448 × 448 pixels at 20× magnification. In the last
step, CONCH’s image encoder is used to obtain patch features. We utilize a toolkit provided by
CLAM 1 (Lu et al., 2021) for these steps. The statistical details on processed instances (patches) are
provided in Table 6.

There are three notable numbers in Table 6. (1) The number of patients in each dataset is smaller
than 1,000. This scale is too small to compare with current standard vision datasets. This poses
great challenges to survival analysis on WSIs. (2) The number of instances for one patient can
reach up to 134,016 in UCEC. Thus, it could be challenging for MIL models to learn one effective
representation from numerous patches. (3) The number of time bins is usually around 10. This
means that manually designing fine-grained risk descriptions at all 10 levels is often intractable.

Table 6: Dataset details. The last two rows are calculated at patient level.

Statistic TCGA
BLCA BRCA GBMLGG LUAD UCEC

# Patients 373 956 569 453 480
# Patients w/ event (Ne) 169 130 189 158 75
# Time bins (

√
Ne) 12 11 13 12 8

Event ratio 45.31% 13.60% 33.22% 34.88% 15.63%
Maximum t (month) 163.17 282.69 211.01 238.11 225.33

# WSIs 437 1,022 1,016 516 539
# WSIs per patient 1.17 1.07 1.79 1.14 1.12
# Instances (sum) 2,463,402 4,113,285 3,508,119 2,302,933 3,229,606
# Instances (mean) 6,604.3 4,302.6 6,165.4 5,083.7 6,728.3
# Instances (max) 69,843 23,263 75,012 63,658 134,016

1Available at https://github.com/mahmoodlab/CLAM
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D.2 BASELINES

Vision-Only Baselines We compare the baselines originally proposed for WSI classification, i.e.,
ABMIL (Ilse et al., 2018), TransMIL (Shao et al., 2021b), ILRA (Xiang & Zhang, 2023), and R2-
MIL (Tang et al., 2024), and those for WSI survival analysis, i.e., DeepAttnMISL (Yao et al., 2020)
and Patch-GCN (Chen et al., 2021a). DeepAttnMISL and Patch-GCN are the most representative
method based on cluster and graph, respectively.

Vision-Language Baselines Since the vast majority of existing works focus on classification or
segmentation tasks, we adapt the related methods to WSI survival analysis. These methods include
MI-Zero (Lu et al., 2023) for zero-shot WSI classification, CoOp (Zhou et al., 2022) for context
prompt optimization, and OrdinalCLIP (Li et al., 2022) for VL-based ordinal regression.

Implementation Details Baselines are implemented as follows:

• ABMIL, TransMIL, ILRA, and R2-MIL: we adapt them to SA by replacing their prediction
target with incidence function and using the LMLE same as our VLSA. Moreover, their time
discretization setting (Section 3.2) is also the same as VLSA.

• DeepAttnMISL and Patch-GCN: we follow their original implementations for SA tasks.
Concretely, DeepAttnMISL adopts a survival modeling approach same as CoxPH (Cox,
1975). It predicts a proportional hazard. We transform it into discrete survival distribution,
based on a standard KM method (Kaplan & Meier, 1958; Qi et al., 2023b). Patch-GCN
predicts discrete hazard function for individuals and is optimized by LMLE, where survival
time is discretized by quantiles.

• MI-Zero: at vision-end, we try different score aggregation methods proposed by it to obtain
WSI representations and report one with the best performance, i.e., mean-based aggrega-
tion. At language-end, we tried different survival prompts for MI-Zero and finally adopt
the best: context = “the cancer prognosis reflected in the pathology image is”, classes =
[“very poor”, “poor”, “good”, “very good”]. The final four survival prompts are encoded
into four textual vectors by the CONCH’s text encoder. They are then used to derive the
prediction of IF via Eq. (6), same as our VLSA.

• CoOp and OrdinalCLIP: the implementation of CoOp and OrdinalCLIP are stated in the
main paper. Unless specified, they use the same setting as our VLSA.

D.3 EVALUATION METRICS

Our main evaluation metrics contain concordance index (CI), mean absolute error (MAE), and dis-
tribution calibration (D-cal). They are adopted to evaluate the performance of SA models in risk
discrimination and distribution calibration. We utilize the toolkit from SurvivalEVAL 2 (Qi et al.,
2023b) for performance evaluation. The section is adapted from Qi et al. (2023a). Readers could
refer to Qi et al. (2023a) for more details. We show the details of these metrics below.

Concordance Index (CI) It is the most popular metric in SA (Harrell Jr et al., 1996). It is often
used to assess the SA model’s ability in predicting high risk for the patient who experiences the
event earlier. It is ranged in [0, 1], calculated by

CI =

∑
i,j 1ti<tj · 1R̂i>R̂j

· δi∑
i,j 1ti<tj · δi

, (20)

where 1(·) is an indication function and R̂i the risk prediction of the i-th individual. A larger CI
suggests the model is more powerful in risk discrimination.

Mean Absolute Error (MAE) It measures the mean of the absolute error between ground truth
time-to-event and the predicted event time t̂i. It can be calculated via

MAE(t̂i, ti, δi) = δi · |ti − t̂i|+ (1− δi) · max(0, ti − t̂i). (21)

In this formulation, a hinge loss is adopted to evaluate the MAE of censored patients. Namely, as
we only know the actual time-to-event of a censored patient is larger than ti, the MAE is 0 if the

2Available at https://github.com/shi-ang/SurvivalEVAL
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prediction t̂i is larger than ti; otherwise, it should be ti − t̂i. The smaller the value of MAE, the
better the model performance.

Distribution Calibration (D-cal) (Haider et al., 2020) It is a statistical test to check if individual
survival distribution is well calibrated with the ground truth survival distribution. Its calculation
follows these steps. (1) For any probability interval [µa, µb] ⊂ [0, 1], we first obtain the uncensored
individuals whose predicted survival probabilities are in [µa, µb] at their time-to-event, i.e.,

D(µa, µb) =
{
(xi, ti, δi = 1) ∈ D | Ŝ(ti) ∈ [µa, µb]

}
. (22)

(2) The model is well calibrated in survival distribution prediction if there is

|D(µa, µb)|
D

≈ µb − µa. (23)

Typically, equal-sized, mutually exclusive probability intervals, like the time bins calculated in time
discretization (see Section 3.2), are used in these two steps (Haider et al., 2020). Then, Pearson’s
χ2 test is applied to examine if |D(µa,µb)|

D is uniformly distributed. p ≤ 0.05 means there is a
significant difference between predictive survival distribution and the ground truth, implying a SA
model poor in distribution calibration. A well-calibrated model tends to make safer probability
prediction, instead of providing over-confident estimations.

D.4 IMPLEMENTATION DETAILS OF VLSA

This section provides the implementation details of our VLSA, including the description of prog-
nostic priors, survival prompt settings, hyper-parameter settings, and training settings. More details
could be found in our source code.

Description of Prognostic Priors We derive it by asking GPT-4o (a version before 2024-07-01)
the following questions one by one: i) “What visual features of H&E stained pathological images
are related to the prognosis of [CANCER TYPE]? Please list them point by point.”, ii) “Please
exclude the features that cannot be directly observed from pathology images.”, and iii) “Please
briefly describe each relevant visual feature.”. Then, we further process the answers from GPT-4o
by manually extracting the most relevant part of visual feature descriptions. The final results for five
datasets are exhibited in Table 7. From this table, we can see that common prognostic features in
WSIs are “celluar atypia”, “tumor infiltration”, and “tumor growth pattern”.

Table 7: Descriptions of prognostic priors.

Item Brief Summary Description

TCGA-BLCA (M = 12)

1 Cellular atypia Abnormalities in the size, shape, and organization of tumor cells. High degrees of atypia are associated with more
aggressive tumors.

2 Nuclei atypia Variation in the size and shape of the nuclei within tumor cells. Pronounced pleomorphism typically indicates a higher
grade and more aggressive cancer.

3 Mitotic activity The presence and frequency of cell division figures (mitoses) within the tumor. High mitotic activity suggests rapid
tumor growth and a poorer prognosis.

4 Tumor arrangement
pattern

The structural arrangement of the tumor, such as solid or mixed patterns.

5 Tumor infiltration Tumor cells invade deep into the bladder wall layers, especially into detrusor muscle or muscularis propria, perivesical
fat and beyond.

6 Tumor invasion Tumor cells within blood vessels or lymphatic channels.

7 Necrotic tumor cells Areas of dead (necrotic) tumor cells within the tissue. Necrosis often appears as regions lacking viable cells and can
indicate rapid tumor growth outpacing its blood supply.

8 Perineural Invasion Tumor cells surrounding or invading nerves.

9 Tumor growth pattern Dense fibrous or connective tissue growth around the tumor indicates an aggressive response to the tumor, often seen
in high-grade cancers.

10 Tumor infiltration Tumor cells penetrate the surrounding stroma, muscle, or other tissues, lack of a clear demarcation between the tumor
and the normal tissue, known as poorly defined tumor margins.

11 Formation of new blood
vessels

Formation of new blood vessels within the tumor, necessary for tumor growth and spread. High levels of angiogenesis
indicate a more aggressive tumor.

(Continued on next page)
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(Continued from previous page)

Item Brief Summary Description

12 Carcinoma in situ Presence of areas of flat, high-grade, non-invasive cancer, known as carcinoma in situ, identified by high-grade cellular
atypia disorganized epithelial structure, increased and atypical mitotic activity, loss of normal epithelial architecture,
and absence of umbrella cells.

TCGA-BRCA (M = 10)

1 Tumor size The dimensions of the tumor observed on the slide.

2 Tumor boundary The boundary between the tumor and surrounding tissue.

3 Tumor differentiation The differentiation of tumor cells.

4 Tumor invasion Presence of tumor cells within lymphatic and blood vessels.

5 Lymph node metastasis Visual confirmation of metastasis in lymph nodes, seen as clusters of tumor cells.

6 Cellular morphology The appearance of tumor cells, including their size, shape, and nuclear features.

7 Necrotic tumor cells Areas within the tumor where cells have died, typically due to insufficient blood supply.

8 Tumor infiltration The characteristics of the tissue surrounding the tumor, such as fibrosis (desmoplasia) and immune cell infiltration.

9 Perineural Invasion Tumor cells surrounding or invading nerves.

10 Pattern of tumor growth
and arrangement

Different patterns of tumor growth and cell arrangement, which vary among subtypes such as ductal, lobular, and
mucinous carcinoma.

TCGA-GBMLGG (M = 7)

1 Cellular density High cellular density indicates a large number of closely packed cells, suggesting rapid tumor growth and aggressive
behavior.

2 Nuclei atypia The abnormal appearance of cell nuclei, characterized by variations in size, shape, and staining intensity. Higher nuclear
atypia indicates more aggressive tumor cells with significant genetic abnormalities.

3 Mitotic activity Cells undergoing division (mitosis) can be identified by the presence of mitotic figures. A higher number of mitotic
figures points to increased tumor cell proliferation and aggressiveness.

4 Necrotic tumor cells Areas of dead tumor cells, often surrounded by viable tumor cells. Necrosis is a hallmark of high-grade tumors and is
associated with poor oxygen supply and rapid tumor growth. Pseudopalisading necrosis features rows of tumor cells
lining the necrotic areas.

5 Formation of new blood
vessels

The abnormal and excessive growth of small blood vessels within the tumor. This indicates the tumor’s ability to
stimulate new blood vessel formation (angiogenesis), which supports its rapid growth and spread.

6 Tumor infiltration Tumor cells diffusely infiltrate into normal brain tissue, identified by scattered tumor cells within normal brain tissue,
unclear boundaries between tumor and normal tissue, and a disrupted normal tissue architecture.

7 Tumor arrangement
pattern

Tumor cells arranged in a palisading pattern around necrotic areas. This feature is characteristic of Glioblastoma and
indicates aggressive tumor behavior and rapid cell turnover.

TCGA-LUAD (M = 8)

1 Tumor differentiation The degree of cellular differentiation within the tumor.

2 Tumor size The dimensions of the tumor mass within the tissue section, often measured in terms of its diameter or extent.

3 Tumor boundary The appearance of tumor borders within the tissue.

4 Nuclei features The characteristics of tumor cell nuclei, such as size, shape, and staining pattern.

5 Mitotic activity The presence of actively dividing cells, identified by the presence of mitotic figures within the tumor tissue.

6 Necrotic tumor cells Areas of tissue death within the tumor mass.

7 Pattern of tumor growth
and arrangement

The overall arrangement and growth pattern of tumor cells within the tissue.

8 Tumor invasion The presence of tumor cells within lymphatic or blood vessels.

TCGA-UCEC (M = 10)

1 Nuclei atypia The variation in size, shape, and chromatin pattern of cell nuclei. High-grade nuclei appear larger, irregular, and darker
due to increased chromatin (hyperchromasia). Prominent nucleoli may also be visible.

2 Mitotic activity The number of mitotic figures (cells undergoing division) per high-power field. High mitotic activity indicates rapid
cell proliferation, which is a sign of tumor aggressiveness.

3 Tumor arrangement
pattern

The structural pattern of the tumor, including gland formation and architectural complexity. Poorly differentiated tumors
may show solid, cribriform, or papillary patterns.

4 Tumor invasion The extent of the tumor’s penetration into surrounding tissues, particularly the depth of myometrial invasion. It also
includes the presence of tumor cells in lymphovascular spaces (LVSI), indicating potential for metastasis.

5 Tumor infiltration The appearance of the tumor edges, which can be infiltrative (irregular, spreading into surrounding tissue) or pushing
(smooth, well-defined borders). Irregular, jagged margins suggest aggressive growth.

6 Necrotic tumor cells Areas of dead (necrotic) tumor cells within the tissue. Necrosis often appears as regions lacking viable cells and can
indicate rapid tumor growth outpacing its blood supply.

7 Inflammatory cell The presence and density of inflammatory cells (e.g., lymphocytes, macrophages) within and around the tumor.

8 Tumor infiltration Changes in the supportive tissue (stroma) surrounding the tumor, including desmoplasia (dense fibrous tissue response).

9 Tumor differentiation Areas within the tumor where cells show squamous (flat, scale-like) characteristics. Squamous differentiation can
impact the behavior and classification of the tumor.

10 Tumor heterogeneity The variability in cellular and structural characteristics within different areas of the tumor. High heterogeneity indicates
diverse cell populations, often associated with more aggressive behavior and resistance to treatment.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Survival Prompt Settings In time discretization, the number of discrete time bins is set by C =√
Ne. Specific numbers for five datasets can be found in Table 6. For context prompt, we initialize

Vctx using the text “a histopathology image suggesting”. We use 4 base class prompts, i.e., B = 4.
Their learnable parameters, {V λ1

cls ,V
λ2

cls ,V
λ3

cls ,V
λ4

cls }, are initialized using “a very poor prognosis”,
“a poor prognosis”, “a good prognosis”, and “a very good prognosis”, respectively. Following the
interpolation setting in Li et al. (2022), we set the ordering distance matrix to Dc,b = |(c − 1) −
(b− 1) · (C − 1)/(B − 1)| and adopt the linear interpolation, i.e., W (Dc,b) = 1− Dc,b

C−1 .

Hyper-Parameter Settings Since we adopt CONCH in our experiments, most settings for feature
dimension is the same as CONCH: D = 512 and Demb = 768. We simply set the coefficient of
LEMD to β = 1 without fine-tuning, and α = 100 by default.

Training Settings In model training, we set the number of epochs to 10, learning rate to 0.0002,
batch size to 1 (one bag), the step of gradient accumulation to 32, and the optimizer to Adam with a
weight decay rate of 0.00001. These setting are shared across five datasets, without dataset-specific
fine-tuning. Please refer to our source code for more training details.

D.5 TIME DISCRETIZATION SETTINGS

This section provides the details of time discretization settings for all related SA models. For discrete
SA models, survival time is continuous so it is often transformed into a discrete one at first.

Conventional Settings As stated in Appendix B.1, discrete SA models are usually categorized into
two groups: hazard-based and incidence-based. Their conventional settings in time discretization
are as follows:

• Hazard-based SA models: Most works (Chen et al., 2021b; Xu & Chen, 2023; Zhou &
Chen, 2023; Zhang et al., 2024b) follow the settings used in Zadeh & Schmid (2020) and
Chen et al. (2021a), i.e., using 4 time bins with quantiles as cutoff points.

• Incidence-based SA models: As suggested in Haider et al. (2020), the number of time
bins is determined by

√
Ne, which could often lead to better probability calibration in SA

models. It is adopted in many works (Yu et al., 2011; Lee et al., 2018; Qi et al., 2023a;b).
Particularly, DeepHit (Lee et al., 2018), as the first deep learning-based SA model with
incidence function as prediction target, sets the number of time bins to

√
Ne and the length

of each time bin to be equal (i.e., time cutoff points are uniformly distributed).

Settings for Baselines and VLSA We follow conventional settings in time discretization:

• For the hazard-based baseline model, Patch-GCN (Chen et al., 2021a), we follow its orig-
inal setting to use 4 time bins with quantiles as cutoff points. We also examine its perfor-
mance under the same number of time bins as VLSA for a fair comparison (Table 10).

• For the baseline models not originally proposed for SA, we adopt the same discretization
settings as our VLSA, i.e.,

√
Ne time bins with equal length.

• For our incidence-based VLSA, we use
√
Ne time bins with equal length, as stated in

the main paper. Besides, we also evaluate the performance of VLSA using different time
discretization settings. Please refer to Table 9 for the results.

E ADDITIONAL EXPERIMENTAL RESULTS

Risk Grouping and Kaplan-Meier Analysis This experiment is conducted to examine whether our
VLSA could discriminate the patients with high-risk and low-risk. Its results are shown in Figure 5.
For each dataset, the median risk of the entire cohort is used as the cutoff for risk grouping. From the
results in Figure 5, we can observe that VLSA can discriminate between high- and low-risk patients
with a significant difference (P-Value < 0.05 by a log-rank test).

Prediction Interpretation via Language-Encoded Prognostic Priors Additional results are shown
in Figure 6. In most cases, descriptive texts can identify the key patches that help assess cancer
prognosis. Detailed descriptive texts are provided in Table 7.
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Figure 5: Risk Grouping and Kaplan-Meier Analysis. All patients within each dataset are grouped
into two risk groups: low-risk (blue) and high-risk (orange). Patients’ risk predictions are derived
from VLSA. The median risk of the entire cohort is adopted as the cutoff for risk grouping.
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Figure 6: Additional results of prediction interpretation via language-encoded prognostic pri-
ors. The two examples are from the last two datasets, TCGA-LUAD (left) and TCGA-UCEC (right).

(a) (b)
VLSAw/o Ordinal Prompt

Acc = 65.15% Acc = 100% Acc = 75% Acc = 89.29%

VLSAw/o Ordinal Prompt

Figure 7: Additional results of visualizing survival prompts’ ordinality. The visualization results
are from the model trained with the last two datasets, TCGA-LUAD (a) and TCGA-UCEC (b).
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Visualization of Survival Prompts’ Ordinality Additional results are shown in Figure 7. These
results verify that there is often a better ordinality in the survival prompts optimized by VLSA.

Table 8: Effect of ordinal inductive bias without prognostic priors in VLSA. ABMIL is used for
multi-instance aggregation in this experiment.

Ordinality TCGA Average D-cal
Prompt Proba. BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

0.5971 0.5994 0.7853 0.5750 0.6840 0.6482 28.70 5(± 0.033) (± 0.086) (± 0.015) (± 0.064) (± 0.070)

✓
0.6037 0.6202 0.7893 0.6053 0.6836 0.6604 28.01 5(± 0.043) (± 0.046) (± 0.018) (± 0.065) (± 0.036)

✓
0.5997 0.6049 0.7846 0.5818 0.6769 0.6496 26.99 3(± 0.033) (± 0.104) (± 0.016) (± 0.056) (± 0.065)
0.6083 0.6180 0.7908 0.6048 0.6908

✓ ✓ (± 0.047) (± 0.046) (± 0.017) (± 0.063) (± 0.035) 0.6625 26.78 5

Effect of Ordinal Inductive Bias without Prognostic Priors in VLSA We show its results in
Table 8. We can find that ordinal prompts obtain an improvement of around 1.3% in average CI
when language-encoded prognostic priors are absent in VLSA. This improvement is larger than that
with prognostic priors (Table 3). Moreover, we see the improvements in MAE when considering the
ordinality of incidence function (Proba.) in optimization. This experiment could also confirm the
effectiveness of our introduced ordinal inductive biases.

Different Time Discretization Settings for VLSA Here we examine the impact of time discretiza-
tion on model performance. Specifically, we try to cut survival time into 4 bins or using quantile
time points. The results are shown in Table 9. We can see that quantile time points or 4 time bins
could often lead to poor calibration in predictive survival distribution. A poorly-calibrated distribu-
tion often indicates over-confident survival predictions. Thus, we follow the setting of Haider et al.
(2020) in time discretization, i.e., uniformly discretize time into

√
Ne bins.

Table 9: Different time discretization settings for VLSA. Ne is the number of patients with event.

Time cutoff #Cuts TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

Quantile 4 0.6238 0.6483 0.7962 0.6240 0.7295 0.6844 24.40 0(± 0.036) (± 0.060) (± 0.014) (± 0.028) (± 0.057)

Quantile
√
Ne

0.6255 0.6567 0.8006 0.6150 0.7300 0.6856 21.92 2(± 0.015) (± 0.064) (± 0.013) (± 0.031) (± 0.038)

Uniform 4 0.6124 0.6458 0.7907 0.6312 0.7674 0.6895 23.25 1(± 0.020) (± 0.056) (± 0.010) (± 0.038) (± 0.041)
0.6176 0.6652 0.8002 0.6370 0.7571Uniform

√
Ne (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5

Comparison with Patch-GCN under the Same Number of Time Bins We use the same number
of time bins for Patch-GCN and VLSA to further compare their performance. The results are shown
in Table 10. From these results, we can see that our VLSA could often outperform Patch-GCN in
terms of average CI and MAE even when the number of time bins is set to the same value.

Table 10: Comparison with Patch-GCN under the same number of time bins.

#Cuts Method TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

Patch-GCN 0.6124 0.6375 0.7999 0.5922 0.7212 0.6726 26.70 2(± 0.031) (± 0.033) (± 0.021) (± 0.053) (± 0.025)
0.6124 0.6458 0.7907 0.6312 0.76744

VLSA (± 0.020) (± 0.056) (± 0.010) (± 0.038) (± 0.041) 0.6895 23.25 1

Patch-GCN 0.6054 0.6300 0.7890 0.5912 0.6967 0.6625 28.65 5(± 0.049) (± 0.068) (± 0.020) (± 0.029) (± 0.030)
0.6176 0.6652 0.8002 0.6370 0.7571

√
Ne

VLSA (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5
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Comparison with Hazard-Based Survival Modeling Since hazard function is also utilized in some
SA models, we further try to take it as the prediction target of VLSA. Following Zadeh & Schmid
(2020), the settings of hazard-based survival modeling for VLSA are as follows: i) survival time is
discretized into 4 bins based on quantile time points; ii) we derive the prediction of individual hazard
function by applying Sigmoid(·) to the scaled similarity scores, i.e., {τ · cos(fimage,f

c
text)}Cc=1; and

iii) the MLE loss corresponding to hazard function prediction is adopted to optimize the model.

The results are shown in Table 11. From these results, we observe that there is a decrease of 1.4%
in overall CI performance. Additionally, when modeling individual hazard function, the predicted
time-to-event is often largely biased. One possible reason is that hazard-based survival modeling
may not be suitable for VL paradigm since it relies on a Sigmoid-based probability transformation
and this makes it failed to establish connection with conventional multi-class classification. By
contrast, incidence-based survival modeling makes SA tasks similar to the classification with partial
labels, as reflected by Eq.(9), so it could often work better with current VL-based prediction manner.

Table 11: Comparison with hazard-based survival modeling.

Prediction target TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

0.5934 0.6435 0.7908 0.6089 0.7721 0.6817 72.46 5Hazard function (± 0.018) (± 0.072) (± 0.014) (± 0.049) (± 0.019)
0.6176 0.6652 0.8002 0.6370 0.7571Incidence function (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5

PLIP as the Foundational VLM for Survival Analysis As another foundational VLM in computa-
tional pathology, PLIP (Huang et al., 2023) is pretrained on the pathology image-text pairs crawled
from Twitter. It is the first work exploring VLMs for pathology, developed before CONCH (Lu
et al., 2024). We further adopt it for VL-based methods in this experiment.

The results of this experiment are shown in Table 12. From these results, we can find that, compared
with CONCH, VL-based methods with PLIP often suffer from large decreases in overall perfor-
mance. In particular, the zero-shot method MI-ZeroSurv makes survival predictions like random
guessing (CI = 0.519). The other three models with supervised training perform almost identically.
One main reason for this could be that CONCH provides a better VL-aligned latent space than PLIP
since it is pretrained on high-quality data at a larger scale (Lu et al., 2024).

We note that VL-base methods stand on the shoulder of foundational VLMs and the capability of
foundational VLMs could largely determine their performance bounds. Our VLSA is no exception.
When vision and language embeddings are well-aligned, language-encoded prognostic priors can
effectively guide instance aggregation and improve prognostic visual representation learning.

Table 12: PLIP as the foundational VLM for survival analysis.

Method VLM TCGA Average D-cal
BLCA BRCA GBMLGG LUAD UCEC CI MAE Count

PLIP 0.4990 0.5048 0.5374 0.4681 0.5855 0.5190 27.22 4(± 0.035) (± 0.056) (± 0.048) (± 0.081) (± 0.059)
0.5541 0.5788 0.3842 0.5209 0.6623MI-ZeroSurv

†

CONCH (± 0.034) (± 0.028) (± 0.063) (± 0.049) (± 0.059) 0.5400 25.63 0

PLIP 0.5753 0.5458 0.7929 0.5838 0.6841 0.6364 29.69 5(± 0.022) (± 0.026) (± 0.031) (± 0.014) (± 0.064)
0.5971 0.5994 0.7853 0.5750 0.6840CoOp

CONCH (± 0.033) (± 0.086) (± 0.015) (± 0.064) (± 0.070) 0.6482 28.70 5

PLIP 0.5707 0.5467 0.7913 0.5648 0.6850 0.6317 29.62 5(± 0.037) (± 0.038) (± 0.035) (± 0.036) (± 0.053)
0.6037 0.6202 0.7893 0.6053 0.6836OrdinalCLIP

CONCH (± 0.043) (± 0.046) (± 0.018) (± 0.065) (± 0.036) 0.6604 28.01 5

PLIP 0.5780 0.5469 0.7626 0.5657 0.7038 0.6314 27.41 5(± 0.048) (± 0.034) (± 0.023) (± 0.013) (± 0.029)
0.6176 0.6652 0.8002 0.6370 0.7571VLSA

CONCH (± 0.025) (± 0.057) (± 0.010) (± 0.027) (± 0.045) 0.6954 25.15 5
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