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Abstract

Standard fine-tuning is considered not as ef-
fective as specialized methods for model edit-
ing due to its comparatively poor performance.
However, it is simple, agnostic to the architec-
tural details of the model being edited, and able
to leverage advances in standard training tech-
niques with no additional work (e.g., black-box
PEFT for computational efficiency), making
it an appealing choice for a model editor. In
this work, we show that standard fine-tuning
alone can yield competitive model editing per-
formance with two minor modifications. First,
we optimize the conditional likelihood rather
than the full likelihood. Second, in addition
to the typical practice of training on randomly
paraphrased edit prompts to encourage gener-
alization, we also train on random or similar
unedited facts to encourage locality. Our ex-
periments on the ZsRE and COUNTERFACT
datasets demonstrate that these simple modifi-
cations allow standard fine-tuning to match or
outperform highly specialized editors in terms
of edit score.

1 Introduction
Model editing is a promising approach to combat-
ing incorrect or otherwise unwanted knowledge in
LLMs. Given a set of edits that assert desired in-
formation, the approach aims to alter the model so
that it not only succeeds in memorizing these edits
(efficacy) but also applies the asserted information
to new prompts (generalization), without changing
inferences that should remain unchanged (locality).
There is clearly a trade-off between these metrics.
At one extreme, the model can achieve high effi-
cacy by memorizing the edits, but it will fail in
generalization and locality. At another extreme, the
model can achieve high locality by staying unmod-
ified, but it will fail in efficacy and generalization.

Naively fine-tuning the model on the requested
edits is well known to perform poorly, especially

Editor
Standard
model?

Batched
edits?

No extra
training?

Effective
edits?

Naive fine-tuning ✓ ✓ ✓ ✗

MEND ✗ ✓ ✗ ✓

ROME ✗ ✗ ✓ ✓

MEMIT ✗ ✓ ✓ ✓

Our fine-tuning ✓ ✓ ✗ ✓

Table 1: Conceptual comparisons of model editors.

in locality. This motivated researchers to develop
highly specialized model editors (Mitchell et al.,
2022; Meng et al., 2022, 2023; Hartvigsen et al.,
2023; Li et al., 2024a, inter alia). A central
theme of these methods is “minimally invasive
editing” achieved by a careful selection of layers,
model-specific adapter designs, and low-rank up-
dates. While technically interesting, they require
a suite of assumptions which may not be satis-
fied in other contexts (e.g., with different model
architectures). In contrast, standard fine-tuning
is simple, completely agnostic to the details of
the model, and can take advantage of advances in
standard training such as parameter-efficient fine-
tuning (PEFT) techniques for immediate computa-
tional efficiency.1

In this work, we show that standard fine-tuning
can yield competitive model editing performance,
focusing primarily on improving the edit score. We
shift the focus from models and algorithms to train-
ing objectives and data augmentation. See Table 1
for conceptual comparisons between our approach
and other editors. Our fine-tuning uses two small
but impactful modifications. First, in line with the
theme of minimal editing, we optimize the con-
ditional likelihood (i.e., mask all tokens except
the edited target). Second, we augment the train-
ing data with random or similar unedited facts to

1We emphasize that our use of PEFT is only for computa-
tional convenience (i.e., we use black-box PEFT and are not
concerned with its details such as LoRA vs others) and should
not be confused with works that develop specialized adapters
for model editing such as Yu et al. (2024).
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encourage locality. This is in addition to the typ-
ical practice in existing works of training on ran-
domly paraphrased edits to encourage generaliza-
tion. These simple modifications allow standard
fine-tuning to match or outperform specialized edi-
tors in mass-editing, and also perform respectably
in single-editing.

2 Task

Our main task is mass-editing (i.e., performing
multiple edits at the same time). Let V denote
the vocabulary. A fact is a sentence x ∈ VT that
expresses a subject-relation-object triple (s, r, o)
in natural language. We follow the convention in
the model editing literature and assume that the
object o ∈ Vm is the last m tokens of x. The
prefix π = (x1 . . . xm−1) expresses (s, r) and is
denoted as the prompt. Let E denote a set of facts
to enforce (i.e., requested edits). Our goal is to edit
a language model so that it upholds the relations
expressed in E without changing its behavior on
other facts. In ZsRE, E consists of 10,000 factual
statements (e.g., “The artwork Gideon’s Way was
by who? John Creasey”). In COUNTERFACT, E
consists of 10,000 counterfactual statements (e.g.,
“TextEdit, a product of Nintendo”).

An editor is evaluated by three competing met-
rics: efficacy, generalization, and locality. Let pθ
denote a language model edited on E . In ZsRE, ef-
ficacy is the accuracy of o = argmaxy pθ(y|π)
for (π, o) ∈ E ; generalization is the accuracy
of o = argmaxy pθ(y|πpar) where πpar is a para-
phrase of π; locality is the accuracy of ounrel =
argmaxy pθ(y|πunrel) where (πunrel, ounrel) is an unre-
lated fact. In COUNTERFACT, efficacy and gen-
eralization measure the accuracy of pθ(o|π) >
pθ(opre|π) and pθ(o|πpar) > pθ(opre|πpar) where opre

is a pre-edit object for (π, o) ∈ E (e.g., “Apple”
in “TextEdit, a product of Nintendo”). Locality
measures the accuracy of pθ(opre|πnb) > pθ(o|πnb)
where πnb is a “neighborhood” unedited prompt
whose target is opre (e.g., “Macintosh File System,
a product of” → “Apple”). In both datasets, the
final edit score is the harmonic mean of efficacy,
generalization, and locality.

It is well known that naive fine-tuning, namely
just optimizing

min
θ

−
∑

x∈E
log pθ(x) (1)

results in a poor edit score. The main reason is that
while it improves efficacy and possibly even gener-

Fact: The mother tongue of Danielle Darrieux is English

Paraphrase augmentation (generated by the model):
1) The present invention relates. The mother tongue of
Danielle Darrieux is English

Random fact augmentation (from the training split):
1) Crate & Barrel was founded in Chicago
2) Haines Borough is within Nevada

Figure 1: An example from COUNTERFACT along with
paraphrase and random fact augmentation.

alization, it harms locality by changing the model’s
predictions on unrelated or neighborhood prompts.
This led to the development of highly specialized
editing methods, with the implicit assumption that
fine-tuning is not effective for model editing.

3 Method
We propose a purely fine-tuning-based method that
achieves a competitive edit score. Our objective is
a slight variation of (1):

min
θ

−
∑

(π,o)∈E∪P∪R
log pθ(o|π) (2)

There are two small but important differences be-
tween (1) and (2). First, we optimize the condi-
tional likelihood of the edit target o|π rather than
the full likelihood. Our motivation is to make the
training more focused (for efficacy and general-
ization) and minimize the damage caused by fine-
tuning (for locality).

Second, we fine-tune not only on the requested
edits E but also additional facts in P and R
to promote generalization and locality. P is
pseudo-paraphrases of the prompts in E obtained
by prepending random words generated from the
(unedited) model. Paraphrase augmentation is uni-
versally used in existing model editors (Mitchell
et al., 2022; Meng et al., 2023; Li et al., 2024a).
Additionally, we augment with facts R that should
not be altered by editing on E . There are many
ways to obtain R, but we find taking random facts
from the training split to be simple and effective.
We filter x ∈ R to ensure that x does not include
the subject-relation-object triple used in evaluation.
Figure 1 shows an example from COUNTERFACT

(we only show 1 paraphrase and 2 random facts for
illustration, in practice we use more).

We emphasize that the augmented sets P and
R do not use the evaluation facts (otherwise it is
trivial). Given the requested edits E , we perform
the data augmentation and fine-tune the model ac-
cording to (2).
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Contrastive learning. Given that our goal in
COUNTERFACT is to achieve pθ(o|π) > pθ(opre|π)
where o and opre are the new and pre-edit objects
for a given prompt π, it is natural to consider a
contrastive objective. We experimented with DPO
(Rafailov et al., 2023) where we frame o|π as the
“preferred” response over opre|π, optimizing the
DPO loss jointly with (2). However, we found
that prompt masking and data augmentation are al-
ready effective and do not benefit from contrastive
learning.

4 Related Work
We discuss existing model editors and the different
assumptions they require to highlight the simplicity
of our approach; we refer to Zhang et al. (2024) for
an in-depth survey.

MEND (Mitchell et al., 2022) is a meta-learning
method (Sinitsin et al., 2020; De Cao et al., 2021)
that predicts the change in the gradient. Similar
to our approach, it also involves an explicit train-
ing stage (on the training split of ZsRE). It uses
a special rank-one decomposition of the gradient
for parameter efficiency. In our case, we achieve
parameter efficiency without special considerations
simply by leveraging black-box PEFT.

ROME (Meng et al., 2022) is a locate-then-edit
method (Geva et al., 2021; Dai et al., 2022) that
first uses causal tracing to identify the feedforward
layer to change, and then applies a rank-one up-
date to the layer’s weight matrix. While it does not
involve an explicit training stage, it does require
an explicit knowledge of the subject s in the edit
and its vector representation (which is heuristically
induced). It also relies on Wikipedia to estimate
the covariance matrix of the subject embeddings
(needed for the rank-one update). MEMIT (Meng
et al., 2023) extends ROME to multiple edits by
carefully spreading updates to multiple layers. Like
ROME, it requires layer specification, subject em-
beddings, and covariance statistics obtained from
Wikipedia.

IKE (Zheng et al., 2023) proposes in-context
learning for model editing. While similar to our
approach in avoiding the need to develop a special-
ized editor, it requires a strong model capable of
effective in-context learning and is critically limited
to single-editing. Consequently, IKE focuses on
single-editing experiments with large-scale LLMs,
making their results not comparable to ours.

We define our scope as achieving a competitive
edit score through standard fine-tuning. In particu-

lar, we do not focus on preserving general capabili-
ties of the model being edited. Recent work shows
that performance on a variety of downstream tasks
drops to zero under any editor (Gu et al., 2024).
We leave preserving the general capabilities of an
LLM with a fine-tuning editor as the next step of
our work.

5 Experiments

5.1 Mass-Editing

Our main results are on mass-editing with on ZsRE
and COUNTERFACT, following the same setting
in Meng et al. (2023). Each dataset provides
10,000 requested edits (i.e., E). As described in
Section 3, we augment the fine-tuning data with
pseudo-paraphrases of the edit prompts P for gen-
eralization supervision and random facts R for
locality supervision. More specifically, for each
edit in E we generate 15 paraphrases and take 20
facts from the training split while ensuring that
they do not contain any evaluation facts. Thus the
total number of facts we fine-tune on is 360,000.
We fine-tune GPT-J (6B) (Wang and Komatsuzaki,
2021) with LoRA (Hu et al., 2022) for computa-
tional efficiency. We optimize (2). The training
takes around 2–2.5 hours on 8 GPUs.2

We give the results in Table 2 where the row
“FT + Mask + Para + Rand” corresponds to our
final method. We can make the following observa-
tions. First, the proposed prompt masking in (2)
(FT + Mask) improves the performance of vanilla
fine-tuning (FT). In fact, on ZsRE this already out-
performs MEMIT without any data augmentation.
Second, augmenting the data with paraphrased
prompts substantially improves generalization (FT
+ Mask + Para). Third, augmenting the data with
random facts further improves locality (FT + Mask
+ Para + Rand), allowing standard fine-tuning to
match the performance of MEMIT on COUNTER-
FACT. Adding the DPO loss on top of the final
method does not yield improvements.

We perform additional experiments on the
WikiRecent dataset (Cohen et al., 2023) with simi-
lar conclusions; details are given in Appendix A.

5.2 Single-Editing

To compare with existing methods developed for
single-editing (i.e., updating the model for a single
fact), we consider optimizing (2) one edit at a time.

2The code is available at: https://github.com/
au-revoir/model-editing-ft.
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ZsRE COUNTERFACT

Editor Score Efficacy Generalization Locality Score Efficacy Generalization Locality
— (original GPT-J) 26.4 26.4 (0.6) 25.8 (0.5) 27.0 (0.5) 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5)

FT-W (21st layer w/ weight decay) 42.1 69.6 (0.6) 64.8 (0.6) 24.1 (0.6) 67.6 99.4 (0.1) 77.0 (0.7) 46.9 (0.6)

MEND (Mitchell et al., 2022) 20.0 19.4 (0.5) 18.6 (0.5) 22.4 (0.5) 23.1 15.7 (0.7) 18.5 (0.7) 83.0 (0.5)

ROME (Meng et al., 2022) 2.6 21.0 (0.7) 19.6 (0.7) 0.9 (0.1) 50.3 50.2 (1.0) 50.4 (0.8) 50.2 (0.6)

MEMIT (Meng et al., 2023) 50.8 96.7 (0.3) 89.7 (0.5) 26.6 (0.5) 85.8 98.9 (0.2) 88.6 (0.5) 73.7 (0.5)

PMET (Li et al., 2024b) 51.0 96.9 (0.3) 90.6 (0.2) 26.7 (0.2) 86.2 99.5 (0.1) 92.8 (0.4) 71.4 (0.5)

FT 44.8 99.9 (0.0) 98.9 (0.2) 21.4 (0.5) 52.8 79.6 (0.8) 58.5 (0.8) 36.8 (0.7)

FT (21st layer) 42.9 99.9 (0.0) 87.4 (0.5) 20.5 (0.5) 60.5 99.9 (0.04) 63.3 (0.8) 42.0 (0.6)

FT + Mask 58.3 97.6 (0.3) 91.7 (0.5) 32.9 (0.6) 54.3 97.1 (0.3) 62.1 (0.8) 34.7 (0.6)

FT + Mask + Para 56.1 99.9 (0.0) 98.7 (0.2) 29.9 (0.5) 63.7 100.0 (0.0) 92.5 (0.4) 38.0 (0.6)

FT + Mask + Para + Rand 62.0 99.9 (0.0) 97.0 (0.3) 35.6 (0.6) 86.5 98.8 (0.2) 93.6 (0.4) 72.0 (0.6)

FT + Mask + Para + Rand + DPO — — — — 85.5 98.8 (0.2) 93.4 (0.4) 70.1 (0.6)

Table 2: Mass-editing results on ZsRE and COUNTERFACT (10,000 edits each) with GPT-J. The results of FT-W,
MEND, ROME, and MEMIT are from Meng et al. (2023). FT denotes naive fine-tuning on the requested edits; FT
(21st layer) denotes FT only on the 21st layer. “+ Mask” means we mask the prompt. “+ Para” means paraphrase
augmentation (which is involved in all the baselines). “+ Rand” means we augment the data with random facts from
the training split (not overlapping with any evaluation facts). “+ DPO” means we additionally optimize the DPO loss
term using the changed target as the preferred response over the pre-edit target (only provided in COUNTERFACT).
Except for FT (21st layer), all our results use LoRA for computational efficiency.

ZsRE COUNTERFACT

Editor Score Efficacy Generalization Locality Score Efficacy Generalization Locality
— (original GPT-2 XL) 22.5 22.2 (0.5) 21.3 (0.5) 24.2 (0.5) 30.5 22.2 (0.9) 24.7 (0.8) 78.1 (0.6)

FT 45.9 99.6 (0.1) 82.1 (0.1) 23.2 (0.5) 65.1 100.0 (0.0) 87.9 (0.6) 40.4 (0.7)

FT-L 40.1 92.3 (0.4) 47.2 (0.7) 23.4 (0.5) 66.9 99.1 (0.2) 48.7 (1.0) 70.3 (0.7)

KN - - - - 35.6 28.7 (1.0) 28.0 (0.9) 72.9 (0.7)

KE 41.8 65.5 (0.6) 61.4 (0.6) 24.9 (0.5) 52.2 84.3 (0.8) 75.4 (0.8) 30.9 (0.7)

MEND 42.9 75.9 (0.5) 65.3 (0.6) 24.1 (0.5) 57.9 99.1 (0.2) 65.4 (0.9) 37.9 (0.7)

ROME 47.9 99.8 (0.0) 88.1 (0.5) 24.2 (0.5) 89.2 100.0 (0.1) 96.4 (0.3) 75.4 (0.7)

FT + Mask + Para + Sim 51.4 100.0 (0.0) 99.9 (0.0) 26.1 (0.8) 83.1 98.6 (0.3) 87.3 (0.7) 69.0 (0.7)

Table 3: Single-editing results on ZsRE (10,000 edits) and COUNTERFACT (7,500 edits) with GPT-2 XL. “+ Sim”
means we include similar facts (measured by Sentence-BERT) instead of random facts for locality supervision.

We follow the setting in ROME and use GPT-2 XL
(1.5B). The training takes around 1.4 seconds per
edit on average. We give the results in Table 3.
We find that it is helpful to include similar facts in-
stead of random facts for locality supervision, pre-
sumably because fine-tuning is more sensitive with
small data size thus requiring more care in the se-
lection of demonstrations. We use Sentence-BERT
embeddings (Reimers and Gurevych, 2019) and
take 15 nearest facts as R. On ZsRE, our method
outperforms all existing single-edit methods. On
COUNTERFACT, our method lags behind ROME
which is specifically optimized for single-editing,
but still achieves the second-best edit score.

5.3 Generative Metrics
We report results on generative metrics in Table 4
(see Appendix B for single-editing results). Fol-
lowing prior work (Meng et al., 2022, 2023), we

report fluency (entropy of n-gram distributions)
and consistency (similarity score with a reference
text). Our fine-tuning methods take a hit on these
metrics while improving the edit score, showing
that more work is needed to go beyond classifica-
tion. However, recent work shows that none of
the compared editors preserves downstream perfor-
mance (Gu et al., 2024), thus achieving this goal
meaningfully is still an open problem.

We additionally show that we can easily incor-
porate considerations for generative performance
into fine-tuning. Specifically, we optimize (1 −
γ)L1(θ) + γL2(θ) where L1(θ) is the loss in (2)
and L2(θ) = −∑

w∈W log pθ(w) is a language
modeling loss on random Wikipedia text. We
choose Wikipedia articles so that they do not over-
lap with those used for consistency evaluation. We
set γ = 0.1. With this change (“+ Wikipedia
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Editor Score Fluency Consistency
— (original GPT-J) 22.4 622.4 (0.3) 29.4 (0.2)

FT-W 67.6 293.9 (2.4) 15.9 (0.3)

MEND 20.0 618.4 (0.3) 31.1 (0.2)

ROME 50.3 589.6 (0.5) 3.3 (0.0)

MEMIT 85.8 619.9 (0.3) 40.1 (0.2)

PMET 86.2 620.0 (0.3) 40.6 (0.2)

FT 52.8 626.1 (0.4) 31.0 (0.2)

FT + Mask 54.3 563.6 (0.5) 6.1 (0.1)

FT + Mask + Para 63.7 550.7 (0.6) 4.7 (0.1)

FT + Mask + Para + Rand 86.5 352.0 (1.5) 5.2 (0.2)

+ Wikipedia Loss 84.8 609.2 (0.6) 29.2 (0.2)

Table 4: Fluency and consistency with mass-editing
on COUNTERFACT. “+ Wikipedia Loss” means we
additionally optimize a language modeling loss on
Wikipedia text (Section 5.3).

Editor Score Efficacy Generalization Locality
— (GPT-2 XL) 29.9 21.8 (0.8) 24.1 (0.7) 78.3 (0.5)

ROME 50.4 50.3 (0.9) 49.4 (0.8) 51.6 (0.6)

MEMIT 71.5 79.9 (0.7) 66.2 (0.8) 69.8 (0.5)

FT + M + P + R 85.4 98.8 (0.2) 86.5 (0.5) 74.3 (0.5)

w/o LoRA 86.9 98.8 (0.2) 91.2 (0.4) 74.4 (0.5)

Table 5: Mass-editing results on COUNTERFACT with
and without LoRA.

Loss”), we obtain a significant improvement in
both fluency and consistency at the cost of a mod-
est drop in the edit score.

5.4 Analysis
What is the effect of PEFT? We repeat mass-
editing experiments with a smaller model (GPT-2
XL, 1.5B) to compare the performance of LoRA vs
full fine-tuning in Table 5. We see that we achieve
better generalization without LoRA, thus our im-
provement comes from conditional likelihood op-
timization and data augmentation, not the use of
adapters (i.e., unlike specialized model editors that
are based on adapters).

Does layer selection help? Layer selection is
an important component in many existing model
editing works. To see if it also benefits us, we
fine-tune (without LoRA) only the layers 3–5 in
GPT-J which are a subset of the layers chosen in
MEMIT. Table 6 shows that we obtain a signifi-
cant improvement compared to updating all layers
(Table 2). Thus layer selection helps on top of our
already strong fine-tuning approach.

Subject knowledge vs data augmentation. A
common but rather strong assumption in many
state-of-the-art editors is that the subject phrase

Editor Score Efficacy Generalization Locality
FT + M 63.0 98.1 (0.2) 61.2 (0.8) 47.4 (0.6)

FT + M + P 77.8 100 (0.0) 98.6 (0.2) 54.2 (0.6)

FT + M + P + R 91.1 98.8 (0.2) 96.8 (0.3) 80.2 (0.5)

Table 6: Mass-editing results on COUNTERFACT with
GPT-J but only fine-tuning layers 3–5.

Editor Score Efficacy Generalization Locality
— (GPT-J) 22.4 15.2 (0.7) 17.7 (0.6) 83.5 (0.5)

SWEA
⊕

OS 91.2 99.5 (0.1) 98.1 (0.2) 79.0 (0.5)

SWEA
⊕

OS + RE 91.2 99.5 (0.1) 97.7 (0.2) 79.4 (0.5)

Table 7: Mass-editing results (reproduced) on COUN-
TERFACT by adding neighborhood augmentation to
SWEA

⊕
OS.

in a fact is known. This knowledge critically al-
lows the model to completely avoid changing at
test time if the subject is not recognized, giving
a significant advantage in locality. For instance,
with perfect subject knowledge, locality is optimal.
We apply our neighborhood fact augmentation to
SWEA

⊕
OS (Li et al., 2024a) which holds a state-

of-the-art result on COUNTERFACT using subject
knowledge (see Appendix C for details). Table 7
shows that the augmentation does not help further.
Hence subject knowledge obviates the need for data
augmentation aimed at improving locality.

6 Conclusions
We have demonstrated that standard fine-tuning is
sufficient to obtain strong edit performance with
a slight modification: optimizing the conditional
likelihood and augmenting the data with additional
facts to promote locality. Our results challenge the
assumption that standard fine-tuning is ineffective
as a model editor, suggesting that model editing
could be achieved as part of standard training rather
than through a specialized model editor.

Acknowledgements

We thank the anonymous ARR reviewers for help-
ful feedback.

Limitations
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A Mass-Editing on WikiRecent

To further validate our mass-editing results, we
perform additional experiments on a simplified
version of the WikiRecent dataset (Cohen et al.,
2023). The original dataset consists of 570 and
1,266 facts from Wikidata for training and testing,
where each fact has been recently modified (after
July 2022). An example prompt is π =“The name
of the position held by Nicolaus Bergius is” with
the target object o =“bishop”. Since the dataset
does not provide paraphrase prompts for evaluat-
ing generalization, we create paraphrases of π by
few-shot prompting GPT (gpt-3.5-turbo-0125).
The prompt for GPT is given in Figure 2. Since the
task is relatively straightforward, we find the gen-
erated paraphrases preserve the original meaning
(e.g., “The position held by Nicolaus Bergius is”).
For neighborhood prompts, we select 10 random

5912

http://arxiv.org/abs/2211.11031
http://arxiv.org/abs/2211.11031
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2401.17809
http://arxiv.org/abs/2401.17809
http://arxiv.org/abs/2401.17809
http://arxiv.org/abs/2308.08742
http://arxiv.org/abs/2308.08742
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=HJedXaEtvS
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax


Paraphrase the given incomplete statement without changing
the meaning. The same completion in the original input
must also work for your paraphrase. Provide as many
distinct paraphrases as you can come up with.

INPUT: The war during which Mario Stoppani was in the
armed forces was
1) Paraphrased: The war Mario Stoppani was in the army in
was
2) Paraphrased: Mario Stoppani was in the war called
3) Paraphrased: Mario Stoppani served in the army during

INPUT: The birth date of Luca Pianca is
1) Paraphrased: The date of birth of Luca Pianca is
2) Paraphrased: Luca Pianca was born in
3) Paraphrased: The day of Luca Pianca’s birth is
4) Paraphrased: Luca Pianca’s birth date is
5) Paraphrased: The birthday of Luca Pianca is

INPUT: The name of the architect of Ravenna Cathedral is
1) Paraphrased: Ravenna Cathedral was built by
2) Paraphrased: The person who built Ravenna Cathedral
was
3) Paraphrased: The architect of Ravenna Cathedral is
4) Paraphrased: The architect behind the construction of
Ravenna Cathedral is
5) Paraphrased: Ravenna Cathedral was built by the architect

INPUT: {prompt}
1) Paraphrased:

Figure 2: The few-shot prompt we use for paraphrase
generation. We selected in-context examples from
COUNTERFACT.

Editor Score Efficacy Generalization Locality
— (GPT-J) 37.4 34.4 (1.7) 34.5 (1.5) 45.3 (0.9)

ROME 35.0 39.8 (2.2) 25.5 (1.4) 46.9 (0.8)

MEMIT 67.3 99.2 (0.3) 80.2 (1.2) 45.3 (0.8)

FT 55.8 68.1 (1.8) 60.4 (1.7) 44.5 (0.8)

FT + M + P + R 68.5 99.6 (0.2) 84.6 (1.1) 45.8 (0.9)

Table 8: Mass-editing results on WikiRecent (1,266
edits).

neighborhood prompts from COUNTERFACT from
the corresponding train/test splits. The training
data for our fine-tuning method consists of 1,266
edit requests, 18,990 augmented paraphrases (i.e.,
randomly generated), and 12,660 random neighbor-
hood prompts from COUNTERFACT (not overlap-
ping with those in the test set).

Table 8 shows the results. We again find that
while vanilla fine-tuning is not effective, our condi-
tional fine-tuning with random data augmentation
is competitive with MEMIT.

B Generative Metrics for Single-Editing

For completeness, we give generative performance
for single-editing in Table 9 as an accompani-

Editor Score Fluency Consistency
— (original GPT-2 XL) 30.5 626.6 (0.3) 31.9 (0.2)

FT 65.1 607.1 (1.1) 40.5 (0.3)

FT-L 66.9 621.4 (1.0) 37.4 (0.3)

KN 35.6 570.4 (2.3) 30.3 (0.3)

KE 52.2 586.6 (2.1) 31.2 (0.3)

MEND 57.9 624.2 (0.4) 34.8 (0.3)

ROME 89.2 621.9 (0.5) 41.9 (0.3)

FT + Mask + Para + Sim 83.1 557.0 (1.8) 15.2 (0.3)

Table 9: Fluency and consistency with single-editing on
COUNTERFACT.

ment to Table 4. Our method is again competitive
with the best performing single-editing baseline
(ROME) in the edit score, but has lower generative
scores.

C Data Augmentation for SWEA
⊕

OS

We train SWEA
⊕

OS on a set of random facts
RE in addition to random paraphrases (which is
already present). We use 10,661 random facts con-
taining unique subjects from E within the training
split. This is done because SWEA

⊕
OS is only

concerned with a final cache containing subject
tokens and their embeddings. We first obtain the
subject embeddings of the requested edits in E as
described in Li et al. (2024a). We then repeat the
process for the augmented random facts in RE .
Between the two sets of subjects, there are 392
subjects that overlap. In the case of an overlap, we
only retain the embeddings from the E and remove
those from RE .
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