
D-LLM: A Token Adaptive Computing Resource
Allocation Strategy for Large Language Models

Yikun Jiang1∗, Huanyu Wang1∗, Lei Xie1, Hanbin Zhao2†,
Chao Zhang2, Hui Qian2, John C.S. Lui3
1FSI Lab, Huawei Technologies Co., Ltd.

2Zhejiang University 3Chinese University of Hong Kong
{jiangyikun5,xielei70}@huawei.com

{huanyuhello,zhaohanbin,zczju,qianhui}@zju.edu.cn
cslui@cse.cuhk.edu.hk

Abstract

Large language models have shown an impressive societal impact owing to their
excellent understanding and logical reasoning skills. However, such strong ability
relies on a huge amount of computing resources, which makes it difficult to deploy
LLMs on computing resource-constrained platforms. Currently, LLMs process
each token equivalently, but we argue that not every word is equally important.
Some words should not be allocated excessive computing resources, particularly
for dispensable terms in simple questions. In this paper, we propose a novel dy-
namic inference paradigm for LLMs, namely D-LLMs, which adaptively allocate
computing resources in token processing. We design a dynamic decision module
for each transformer layer that decides whether a network unit should be executed
or skipped. Moreover, we tackle the issue of adapting D-LLMs to real-world ap-
plications, specifically concerning the missing KV-cache when layers are skipped.
To overcome this, we propose a simple yet effective eviction policy to exclude
the skipped layers from subsequent attention calculations. The eviction policy
not only enables D-LLMs to be compatible with prevalent applications but also
reduces considerable storage resources. Experimentally, D-LLMs show superior
performance, in terms of computational cost and KV storage utilization. It can
reduce up to 45% computational cost and KV storage on Q&A, summarization,
and math solving tasks, 50% on commonsense reasoning tasks.

1 Introduction

Large language models(LLMs), have demonstrated amazing capability on generation tasks. Ben-
efiting from existing parameter-efficient finetuning strategies [30, 44, 54, 66, 84], LLMs can also
be adapted to specific domains with extra training costs. However, such models containing bil-
lions of parameters require expensive computation costs and memory overhead at the inference
stage. Thus, deploying LLMs on resource-constrained platforms becomes challenging especially
considering the ever-growing requirements for offline using, model customizing, and data pri-
vacy [10, 14, 16, 50, 61, 63, 83]. To alleviate this problem, various inference acceleration techniques
have been proposed, e.g., quantization [4, 42, 57, 76, 79], distillation [24, 39, 40, 64, 65], and prun-
ing [51, 52, 77, 81, 82]. Among these methods, pruning is a typical structural compression method
to reduce the participating network layers. These methods usually remove redundant neurons based
on hand-crafted metrics [37, 78], when optimizing or finetuning large language models.

∗Equal contribution. †Correspondence to Hanbin Zhao. Our code is available at https://github.com/
Jyk-122/D-LLM.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Jyk-122/D-LLM
https://github.com/Jyk-122/D-LLM

Although previous methods can decrease computational cost, many essential characteristics of natu-
ral languages are ignored. First, tasks of different difficulties should not be allocated with the same
computing resource. Obviously, a response to "how are you" is much easier than "explaining a math
theorem". More importantly, not every word in a sentence is equally important. Thus, it is not nec-
essary to allocate too much computing resources to non-critical tokens, i.e., articles and punctuation
marks. In this paper, we introduce a novel dynamic inference mechanism, namely D-LLMs, which
can boost inference speeds by dynamically skipping redundant network components. Specifically,
we assign an execution decision module for each transformer layer. Before going through a trans-
former layer, tokens need to pass through the decision module to obtain an execution decision. Based
on the execution decision, D-LLMs would adaptively decide whether the following layer should be
executed or skipped. Thus, dispensable tokens and simple tasks would utilize much fewer layers
than relevant tokens and difficult tasks. Another critical issue that should be emphasized here is how
to apply such dynamic inference mechanism on LLMs, e.g., LLaMA [69], GPT [55, 58], etc. Note
that it is unacceptable to retrain or finetune entire models due to the high computational overhead
and massive training data. Therefore, we combine our strategy with finetuning methods by inserting
low-rank adaptors, LoRA [30], for well pre-trained large language models.

With the aforementioned method, each token execution by a specific network topology can success-
fully reduce the computational cost at inference time. However, to deploy such dynamic inference
networks for realistic scenarios, making this dynamic inference compatible with KV-cache strate-
gies [13, 21, 29] is a crucial challenge. Compared with static inference networks which cache all
KV embeddings of previous tokens, dynamic inference networks selectively skip layers would lead
to KV-cache misses. To tackle this issue, we design a simple yet effective eviction strategy on
KV-cache in our proposed D-LLMs framework. Specifically, we evict the KV embeddings of uncal-
culated transformer layers in previous tokens and simplify the regular causal masks to sparse ones.
For example, if a given token skips a transformer layer at the inference time, it would not be included
in self-attention calculation of subsequent tokens. This way, the attention mask in each layer is also
dynamically changed according to the execution decisions of preceding tokens.

To summarize, the main contributions of our paper are concluded as follows:

• We propose a novel inference framework for LLMs, termed D-LLMs, which can significantly
reduce computational resource requirements with an adaptive allocation scheme. We design de-
cision modules in LLMs, which dynamically decide to execute or skip transformer layers at the
inference time.

• We propose a simple yet effective eviction policy by transforming the causal self-attention masks.
As a result, it not only makes the proposed D-LLMs compatible with KV-cache methods but
also saves the storage overhead at inference time, which is particularly important for resource-
constrained platforms.

• We conduct extensive experiments on main-stream LLMs. The results demonstrate that D-LLMs
reduce up to 45% computational cost and KV-cache storage on Q&A and math solving tasks, and
50% on commonsense reasoning tasks without performance degradation.

2 Related Works.

LLMs Finetuning Methods. Due to the large amount of computational cost of training LLMs,
various parameter efficient finetuning methods have been explored, including prompt-based learning
methods [7, 19, 25, 41, 80], adapter-based learning methods[27, 34, 67, 74] and reparametrization-
based learning methods [11, 15, 30, 45]. Prompt-based learning methods propose to insert and infer
a collection of trainable embeddings to existing tokens. For example, P-tuning [47] adds a prefix to
input, and P-tuning v2 [46] applies prompts to intermediate layers. Adapter-based learning methods
propose to insert specially designed adaptors to pre-trained LLMs. How to insert adaptors has also
been explored, i.e., Adamix [74] and Compacter [34] serially connect adaptors and [27, 67] parallelly
connect adaptors with transformer. Reparametrization-based learning methods exploit finetuning
models with low intrinsic dimension [1]. Specifically, LoRA [30] decomposes parameters into two
low-rank trainable matrices before computation.

Different from these methods which focus on parameter-efficient finetuning, D-LLMs pay more
attention to achieving high-speed inference via adaptive computing resource allocation.

2

LLMs Acceleration Methods. Extensive research works have been proposed to compress LLMs
and reduce the network parameters. Among these methods, quantization [4, 36, 42, 57, 62], distilla-
tion [24, 39, 40, 64, 65] and pruning [38, 43, 48, 51, 82] are mainstream approaches. Quantization
methods propose to reduce the bits of each parameter by converting floating-point (FP32 / FP16)
parameters to integers (INT8 / INT4) or other discrete forms. This line of methods preserves the
structural characteristics of the network and compresses models in exchange for lowering accuracy.
Distillation methods [24, 39, 40] attempt to transfer knowledge from LLMs to a lightweight student
model. However, such methods usually require retraining models in an end-to-end manner and may
take up large computing resources. Model pruning methods propose to reduce the complexity of
models by removing redundant parameters. These methods have two forms, static pruning [3, 18, 23]
and dynamic pruning [2, 12, 21, 29, 49, 81]. Static pruning methods usually remove redundant layers
based on various relevant metrics. For example, Shortened-LLaMA [35] measures the importance
of layers and prunes the unnecessary ones. However, with the increase of pruned parameters, static
pruning poses inevitable performance degradation. Dynamic pruning methods tend to prune unim-
portance layers based on inputs. For example, Ada-Infer [17] introduces an early-exit mechanism to
stop the inference at intermediate layers. Mixture-of-Depths [59] measures the importance of each
token and only calculates the top-k tokens at different layers.

In essence, the proposed D-LLM belongs to dynamic pruning methods, which dynamically decide
which layers should be executed for each input token.

Dynamic Inference in Computer Vision. Dynamic inference is a promising technique to skip
layers at inference time to achieve acceleration [70, 71, 72, 73], which was initially proposed in
computer visions. Research on dynamic inference mechanisms has two different approaches. The
first one is layer skipping. This line of methods mainly focus on how to design a specific dynamic
decision module or metric to reduce computational cost. Specifically, ConvNet-AIG [70] uses a
convolutional module to define the inference graph conditioned on inputs. It proposes a router to
make the execution decision for each model layer. SkipNet [73] utilizes LSTM as the decision
module to determine whether a layer should be executed or not. Besides, CoDiNet [72] attempts to
model the relationship between the inputs and their executing decisions to enhance the optimization.
The second line of methods is early prediction. While a dynamic inference network has only one
exit, an early prediction network is characterized by multiple exits. In early prediction networks,
the execution would stop once a criterion for a given sample is satisfied. MSDN [31] is a typical
example, which introduces multiple early-exits, according to the allowed time budget. Instead of
bypassing all units, DCP [20] generated decisions to reduce the computational cost on channels.

Inspired by dynamic inference in the CV task, we rethink the characteristics of NLP and raise the
following question. Should models allocate the same computing resource on tasks of different diffi-
culties or tokens of different importance? Motivated by this, we introduce the D-LLMs framework,
which will dynamically allocate fewer computing resources for unimportant tokens.

3 Methods

3.1 Preliminary: LLMs Architecture

As a natural language processing task, a sequence of input words is first embedded into tokens
{x1, x2, · · · , xN} by a tokenizer. Each token would then go through a pre-defined large language
model sequentially in an autoregressive manner. That is to say the target of {x1, x2, · · · , xn} is
xn+1. In this way, the inference paradigm of a large language model is formulated as

xn+1 = foutput ⊙ fL ⊙ fL−1 ⊙ · · · ⊙ f1 ⊙ fhead(x
1, x2, · · · , xn), (1)

where L is the total number of transformer layers, fhead is the word embedding and foutput is the word
classifier. For convenience, we use the superscript to represent the token index and the subscript to
represent the layer index of token embeddings in the following sections.

Transformer Layer. Dominant architectures of LLMs are decoder-only transformer networks,
which consist of L transformer layers. Each transformer layer contains a multi-head self-attention
(MHA) and a feed-forward network (FFN). The inference of the l-th transformer layer can be de-

3

fined as,

hn
l = MHA(xn

l) + xn
l , (2)

xn
l+1 = FFN(hn

l) + hn
l , (3)

where xn
l is the n-th input token embedding of the l-th transformer layer and hn

l is the output of
MHA. Specifically, a MHA divides token embeddings into multiple heads and perform self-attention
operations in parallel.

Self Attention. Since large language models mainly process inputs sequentially, the calculation of
former tokens should not be affected by latter ones. To tackle this problem, the self-attention module
(SA) uses a causal attention mask M on attention scores as

Mi,j =

{
0, j ≤ i,

−∞, j > i.
(4)

With the causal attention mask M, the features of the n-th token are processed without subsequent
tokens. Under such framework, the formulation of MHA(·) is defined as

MHA(xn
l) := concat(SA(xn

l,1), SA(xn
l,2), · · · , SA(xn

l,h)) ◦WO, (5)

where WO is a learnable parameter and ◦ is matrix multiplication. MHA(·) is essentially concatena-
tion of self-attention operated features divided into h heads {xn

l,i}hi=1. Based on learnable weights
WQ,WK ,WV , a self attention is formulated as

SA(xn
l,i) := softmax(

xn
l,i ◦WQ ◦ (X ◦WK)T

√
d

+ M) ◦X ◦WV , (6)

where X = {x1
l,i, x

2
l,i, · · · , xN

l,i} is input features of the sentence, d is the dimension of each head
and (·)T is transpose. In addition, FFN consists of several linear layers with activation functions
following the MHA.

KV-Cache. The KV-Cache method [56] has been a standard acceleration technique for large lan-
guage model inference. As shown in Eq. 6, the query embedding of a given token only calculates the
self-attention with previous keys and values. Since decoder-only LLMs process input tokens in an
autoregressive way, the key and value embeddings can be reused to boost inference speed by storing
calculated key and value embeddings. The KV-cache method reduces the computation complexity
from O(n2) to O(n), but brings extra memory overheads to store the KV-cache when generating
long texts [13, 21, 29, 75].

3.2 D-LLMs: Dynamic Inference LLMs

In this section, we illustrate the proposed dynamic inference mechanism in large language models.
We assign a dynamic decision module before each single transformer layer. At the inference time,
the dynamic decision module makes an execution decision whether the related transformer layer
should be executed or not as shown in Fig. 1a.

Given a token x in an input sequence, it would go through a dynamic decision module gl, prior to the
l-th transformer layer fl in large language models. As shown in Fig. 1b, a dynamic decision module
is composed of two linear layers separated by an activation function. At the inference time, the
dynamic decision module outputs gl(xl), the parameters of a categorical distribution that represent
the probability of skipping and executing based on the input feature xl to the l-th transformer layer.
The execution decision for the l-th layer is defined as

bl := 1(argmax(gl(xl))), (7)

where 1 is one-hot operation and bl is a two-dimensional vector. This way, the result of the execution
decision tuple for each token is either [0, 1] or [1, 0]. However, argmax operation deterministically
outputs the max argument without exploration and is not differentiable during training. To solve
this problem, we utilize the Gumbel-Softmax reparametrization technique [32] and straight-through
estimator [5] to ensure the transformer networks can be optimized in an end-to-end fashion during
training. Thus, the execution decisions are organized as hard forms when forward computing:

b̂l := 1(argmax(log(gl(xl)) + π)), π ∼ G(0, 1), (8)

4

Q,K,V
MHA FFN

Transformer Layer

Q,K,V
MHA FFN

D
ec
is
io
n

M
od
ul
e

D
ec
is
io
n

M
od
ul
e

Transformer Layer
🔥 🔥

🔥 Trainable Freezed

LoRA
🔥

LoRA
🔥

(a) The framework of D-LLMs.

Linear

Norm & Nonlinearity

Linear & Softmax

D
ec

is
io

n
M

od
ul

e

(b) The Dynamic Decision Module.

MHA

Causal Mask Eviction Mask

Reserved

(c) The KV-cache Eviction Mask.

Figure 1: The framework the proposed D-LLMs. The inference paradigm of dynamic decisions for
transformer layers is shown in Fig. 1a. The design of dynamic execution decision modules is shown
in Fig. 1b. The mask in multi-head self-attention with eviction strategy is shown in Fig. 1c.

where G(0, 1)is a Gumbel distribution. With sampled noise π, the decisions b̂l satisfy the categorical
distribution gl(xl). The decisions are calculated in soft forms when back-propagating:

b̃l,i =
exp((log(gl(xl))i + πi)/τ)∑
i exp((log(gl(xl))i + πi)/τ)

, i ∈ {0, 1}. (9)

The temperature τ controls the sharpness of softmax. As τ → 0, the softmax result converges to the
discrete form from the categorical distribution. Finally, the output of layer l is defined as

xl+1 = b̂l,0 · xl + b̂l,1 · fl(xl), (10)

where b̂l,0, b̂l,1 ∈ {0, 1} are the decisions of skipping or executing the l-th transformer layer.

3.3 Customizable Acceleration Rate

According to Eq. 10, when b̂l,1 is zero, fl(xl) would not be involved in calculation. Thus, it achieves
reducing the computational cost of fl. The average acceleration rate ωn for the token xn can be
defined as

ωn = 1− 1

L
·
∑L

l=1(b̂
n
l,1), (11)

where L is the total number of layers, and b̂l,1 is the decision of executing the n-th token at the l-th
layer. To make the acceleration rate adaptive to platforms of different computing capabilities, we
design an acceleration ratio loss to customize the acceleration rate as

Lrate =
1

N
·
∑N

n=1(|ω
n − Ω|1), (12)

where | · |1 is l1-norm and the Ω is the user-defined target acceleration rate.

Based on the aforementioned method, we achieve the optimization and inference for D-LLMs in
end-to-end manners. Note that in addition to training the LLM model from scratch and obtaining
generalized D-LLMs, our method can easily work on pre-trained LLMs by employing LoRA [30].

5

0.2 0.4 0.6 0.8 1.0
FLOPs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Baseline

MaWPS

D-LLMs
LoRA
Sh.LLM(Tay.)
Sh.LLM(PPL)
Ada-Infer
MoD

(a) Acc.(↑) v.s. FLOPs on MaWPS.

0.2 0.4 0.6 0.8 1.0
FLOPs

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Baseline

OBQA

D-LLMs
LoRA
Sh.LLM(Tay.)
Sh.LLM(PPL)
Ada-Infer
MoD

(b) Acc.(↑) v.s. FLOPs on OBQA.

0.2 0.4 0.6 0.8 1.0
FLOPs

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

PP
L

Baseline

SAMSum
D-LLMs
LoRA
Sh.LLM(Tay.)
Sh.LLM(PPL)
MoD

(c) PPL(↓) v.s. FLOPs on SAMSum.

Figure 2: The performance against computational cost of D-LLMs on three datasets. The figures
show that reducing around 40% to 60% computational cost achieves the best trade-off.

3.4 KV-Cache Eviction Strategy

In this section, we elaborate how our proposed dynamic inference mechanism can cooperate with
the KV-cache strategy. Considering the inference of the n-th token of the l-th transformer layer
in eq. (6), all previous tokens are involved in the calculation of xn

l . It means that even the execution
decision b̂il,1, i ∈ {1, · · · , n} on token embedding xi

l is zero, we still need to calculate its keys
and values for self-attention calculation of xn

l . We conduct an aggressive strategy of self-attention,
which bypasses the features of skipped tokens. We propose a KV-cache eviction policy by designing
a mask on the attention matrix to ignore the uncalculated features. Thus, the corresponding KV-
cache is unnecessary to keep, which reduces storage overhead during inference.

As shown in Fig. 1c, we design an eviction attention mask E at each layer together with causal
mask in Eq. 6, which supports training in batch. In addition, recent research on attention maps
and KV-cache [26, 75] shows that tokens at the beginning of a sentence are crucial to subsequent
tokens. We also find that evicting the KV-cache of initial tokens at skipped layers would either leads
to performance decreasing or causes unstable optimization. Therefore, we preserve the keys and
values of the first m tokens at the beginning of texts. Hence, the eviction attention mask for the l-th
layer is encoded as

Ei,j =

{
0, j ≤ m or bjl,2 = 1

−∞, otherwise,
(13)

where bjl,2 = 1 represents the j-th token executing the l-th transformer layer, and m is the number
of preserved tokens at beginning. Thus, the KV-cache of m initial tokens are kept in the prefilling
phase. In our method, we simply set the decisions of initial tokens to be executed in a deterministic
way, which demonstrates equivalent performance and is easier to implement in practice.

Finally, we introduce the overall loss functions in D-LLMs. The objective function is composed of
two parts: cross-entropy loss and acceleration ratio loss.

L = LCE + α · Lrate, (14)

where LCE is the cross-entropy loss and α is a hyper-parameter of the acceleration ratio loss Lrate.

4 Experiments

4.1 Experimental Setup

Models and Benchmarks. We conduct experiments of the proposed D-LLMs on widely used LLMs,
LLaMA2-7B and LLaMA3-8B. LLaMA2-7B and LLaMA3-8B both contain 32 transformer layers.
We perform few-shot finetuning on nine different benchmarks to evaluate the effectiveness. The
benchmarks are divided into three different tasks. The first task is Q&A and summarization, in-
cluding Alpaca [68] and SAMSum [22], and perplexity (PPL) is used to measure their performance.

6

Table 1: Performance Comparison on different tasks under Few-shot Settings based on LLaMA2-7B.
Sh. Lla. PPL refers to Shortened-LLaMA applying PPL metric. Sh. Lla. Tay. refers to Shortened-
LLaMA applying Taylor metric. Ada-Inf. refers to Ada-Infer. For convenience, we mark the best
performance in red and the lowest computational cost in blue.

Dataset MoD [59] Sh. Lla. PPL [35] Sh. Lla. Tay. [35] Ada-Inf. [17] D-LLM

Q&A PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓)

Alpaca 10.32 0.56 7.09 0.66 7.65 0.66 319 0.65 6.01 0.59
SAMSum 4.47 0.56 4.39 0.66 4.66 0.66 874 0.56 3.18 0.55

Math Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓)

GSM8K 0.08 0.56 0.10 0.66 0.18 0.66 0.00 0.83 0.29 0.59
MaWPS 0.33 0.56 0.52 0.66 0.39 0.66 0.00 0.90 0.74 0.56

Com. Sen. Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓)

BoolQ 0.64 0.56 0.67 0.66 0.73 0.66 0.71 0.61 0.73 0.52
PIQA 0.49 0.56 0.76 0.66 0.83 0.66 0.55 0.63 0.84 0.52
SIQA 0.58 0.56 0.75 0.66 0.81 0.66 0.80 0.64 0.82 0.54
OBQA 0.42 0.56 0.63 0.66 0.81 0.66 0.78 0.76 0.80 0.53
MMLU 0.28 0.56 0.47 0.66 0.53 0.66 0.41 0.60 0.53 0.55

Second, GSM8K [9], MaWPS [33] are about math problem solving. The answers are marked as
correct only if the numerical difference is less than 10−5. Finally, BoolQ [8], PIQA [6], SIQA [60],
OBQA [53], MMLU [28] are datasets about common sense reasoning. The performance on these
benchmarks is evaluated by accuracy.

Implementation Details. To avoid finetuning the entire parameters in D-LLMs, we adopt the LoRA
finetuning method as a baseline. We apply dynamic decision modules to transformer layers except
the first two for training stability. The maximal context length of tokens is set to 1024. In the
designing of the dynamic decision module, we use two linear layers with a hidden dimension of
512. For the KV-cache eviction policy, we reserve the first two tokens, i.e., m = 2. Finally, α in
the loss function is set to 5 for Q&A, summarization task, 1.0 for math problems tasks, and 0.1 for
commonsense reasoning tasks. We finetune 20 epochs for GSM8K and 10 epochs for other datasets.

4.2 Performance Comparison

Inference Acceleration. We show the acceleration of our proposed D-LLMs. As defined in Eq. 11,
D-LLMs can customize the acceleration rate by adjusting the target rate Ω. In Fig. 2, we show the
performance under different FLOPs on three datasets. The performance on MaWPS and OBQA is
evaluated by accuracy, while that on SAMSum is evaluated by PPL. With the increasing FLOPs
on MaWPS and OBQA, the accuracy shows improvement. When only using 40% FLOPs and 30%
FLOPs on MaWPS and OBQA, D-LLM exceeds the baseline with 100% FLOPs. In terms of SAM-
Sum, which is a Q&A task, the performance gets better first and then gets worse. The reason that
performance gets worse when the cost is over 60%, might be due to overfitting.

Comparison with state-of-the-art. We compare the proposed D-LLMs with state-of-the-art meth-
ods on nine benchmarks. These benchmarks are concluded in three tasks, i.e., Q&A with summariza-
tion, Math Solving, and Common Sense Reasoning. The performance of D-LLMs exceed MoD [59],
Shortened-LLaMA [35], and Ada-Infer [17] in a large margin. In terms of computational cost, we
denoted the FLOPs of LLaMA2-7B with LoRA as 1.00, the cost of others are percentages based
on it as shown in Tab. 1. It is worth noting that FLOPs are calculated on average cost over tokens.
Specifically, with the same baseline, i.e., LLaMA2-7B with LoRA finetuning, D-LLMs achieve bet-
ter performance with only using about 50% computational cost. Shortened-LLaMA reports two
different results in their paper, which utilize Taylor and PPL as metrics, respectively. D-LLMs sur-
pass Shortened-LLaMA on all datasets, though adopting fewer computing resources. Besides, we
also reproduce the MoD and Ada-Infer and show that D-LLMs perform better as well.

7

Table 2: Ablation on different tasks under Few-shot Settings based on LLaMA2-7B and LLaMA3-
8B. LoRA refers to using LLaMA3-8B and LLaMA2-7B as pretrained model and finetuning with
LoRA. D-LLM w/o Evi. Str. refers to the proposed method without eviction strategy.

Datasets Alpaca SAMSum GSM8K MaWPS BoolQ PIQA SIQA OBQA MMLU

Metrics PPL(↓)
FLOPs(↓)

PPL(↓)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Acc.(↑)
FLOPs(↓)

Backbone LLaMA2-7B

LoRA 4.69 3.61 0.27 0.72 0.73 0.84 0.81 0.79 0.54
finetune 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D-LLM w/o. 6.08 3.63 0.29 0.72 0.72 0.83 0.81 0.82 0.53
Evi. Str. 0.64 0.62 0.60 0.61 0.60 0.59 0.60 0.59 0.60

D-LLM
6.01 3.18 0.29 0.74 0.73 0.84 0.82 0.80 0.53
0.59 0.55 0.59 0.56 0.52 0.52 0.54 0.53 0.55

Backbone LLaMA3-8B

LoRA 4.84 3.93 0.52 0.88 0.75 0.87 0.81 0.85 0.56
finetune 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D-LLM
8.43 3.63 0.50 0.91 0.75 0.88 0.81 0.82 0.57
0.59 0.58 0.60 0.55 0.51 0.52 0.55 0.53 0.55

4.3 Quantitative Analysis

Ablation Study. We conduct ablation studies of our proposed method based on LLaMA2-7B and
LLaMA3-8B and then perform the results in three different tasks including Q&A and Summary,
Math Problem, and Common Sense Reasoning. As shown in Tab. 2, we illustrate the performance
of dynamic inference large language models over the baseline. Based on LLaMA3-8B, with less than
55% computational cost, our proposed D-LLM achieves better performance than that of the baseline
on five datasets. In comparison, obtaining a comparable performance, D-LLMs on LLaMA2-7B
only take about 55% computational cost. On Q&A and Summary tasks, D-LLMs sacrifice some
accuracy for lower computational cost. The performance of baseline methods, i.e., LLaMA with
LoRA finetuning, outperforms D-LLMs on Alpaca using 40% extra cost. Considering math-solving
problems, D-LLMs spend more computing resources than common sense reasoning tasks, which
also demonstrates that math-solving problems are more difficult.

KV-Cache Overhead. In this part, we discuss the KV-cache storage benefits of D-LLMs. With
the KV-cache eviction strategy, some keys and values are not necessary, because these features are
useless to subsequent tokens. So the memory overhead on KV-cache is reduced with the layers are
skipped. The benefits of reducing KV-cache storage are actually the skipped ratios of transformer
layers in D-LLMs. As a result, we achieve almost 45% storage overhead reduction than the baselines
on both LLaMA3-8B and LLaMA2-7B.

Table 3: The parameter analysis on numbers of reserved tokens not participate in dynamic inference.

Res. Tok. m = 0 m = 1 m = 2 m = 4 m = 8

Metrics PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓) PPL(↓) FLOPs(↓)

SAMSum 3.33 0.55 3.32 0.55 3.18 0.55 3.29 0.55 3.35 0.55

Metrics Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓)

SIQA 0.80 0.53 0.81 0.55 0.82 0.53 0.81 0.55 0.80 0.55

Reserved Tokens (m). We conduct experiments to analyze the number m of initial tokens reserved
in our proposed eviction policy. For a fair comparison, we set the computational cost of all experi-
ments at the same level with Ω = 0.5. We compare reserved tokens of 0, 1, 2, 4, and 8 on SAMSum
and SIQA datasets. As shown in Tab. 3, using about 55% computational cost of entire LLMs, the
perplexity decreases at first and then increases. The result demonstrates that keeping the first two

8

tokens is the best setting. Similarly, it shows the same tendency on SIQA, and the inflection point
appears at the same time. As a result, we keep the first two tokens without skipping over layers.

4.4 Qualitative Analysis.

Execution Layers of Grammatical Terms. Here, we present a visualization of the execution ratios
of different grammatical terms as shown in Fig. 3. From this figure, we observe that executing ratios
of number and math symbols are much higher than others on layer #4 and layer #26. Meanwhile,
layer #21 and layer #23 are utilized more by modal verbs and subject terms respectively. All terms
show high execution ratios on the layer #18. Since different grammatical terms usually play the
same role in sentences, thus, their execution ratios are similar. More importantly, different layers in
D-LLMs are of different abilities, which are used by different grammatical terms.

They
It

SheHe

I
We

These
must

shouldwill
could

would

may

might

can

>
<

|=/ +

-

0
1

2
3

4
5

67

8
9

Layer 4

(a) Ratio on layer 4.

They
It She

He I We

These

must

shouldwill
could

would
may

mightcan

>
<

|
=

/

+ -

0

1 2
3

4 56

7 89

Layer 18

(b) Ratio on layer 18.

TheyIt
She
HeI

We

These
must

should
will

could

would

may

might
can

>
< |

=/
+

-

0
1 2

3 4

567
8

9

Layer 21

(c) Ratio on layer 21.

They

It

She
HeI

We

These must

should

will

could

would

maymight
can

>

<
|

=

/

+
-

0

1
2
3 4

5

6

7 8

9

Layer 23

(d) Ratio on layer 23.

TheyIt
SheHe
I

We

These must

should

will

could

would

may

mightcan

>

<

|
=

/ +

-

0

1
23

4
5 6

7 8
9

Layer 26

(e) Ratio on layer 26.

Figure 3: Execution ratios on different layers of three grammatical terms. Blue dots refer to number
and math symbols, e.g., ‘1, +, ×’. Red dots refer to subject terms, e.g., ‘She, He, They’. Green
dots refer to modal verbs, e.g., ‘may, should, might’. The distance of a dot to the center represents
executing ratio. The red circle is probability of 100% and the blue circle is the average ratios.

Execution Decisions of Similar Tasks. We count up and visualize the executing ratios of different
layers to illustrate the difference on Benchmarks and Questions. As shown in Fig. 4a, the first few
layers are utilized by most Benchmarks. Q&A and summarization tasks and math solving show
larger diversity than common sense reasoning. Common sense reasoning tasks utilize more shallow
layers and show smaller variances. In addition, we visualize several questions about high school
history, science, and engineering knowledge from MMLU. As shown in Fig. 4b, the execution ratios
of historical knowledge are similar, while that of science and engineering knowledge are similar. In
conclusion, the execution behavior of utilizing similar knowledge tends to adopt similar ratios in
D-LLM.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Alp
aca

SA
MSu

m

GSM
8K

MaW
PS

Bo
olQ

PIQ
A

SIQ
A

OBQ
A

MMLU
0.0

0.2

0.4

0.6

0.8

1.0

(a) Execution ratios of layers on Benchmarks.

14 15 16 17 18 19 22 27

0.2

0.4

0.6

0.8

1.0
high_school_european_history
high_school_us_history
high_school_world_history
abstract_algebra
college_chemistry
electrical_engineering

(b) Execution ratios of layers on Questions.

Figure 4: The execution ratios of different layers visualizations on Benchmarks and Questions.
Fig. 4a shows the execution ratios of different benchmarks on respective layers. A deeper color
refers to a higher execution ratios. Fig. 4b shows six standard questions’ execution ratios over layers
from MMLU. The Y-axis is the execution ratios and X-axis is the layer index.

5 Conclusion

In this paper, we take the inference of large language models from a new perspective, that tasks
of different difficulties should not require the same amount of computing resources and not every
word is equally important in a sentence. Motivated by this, we propose a novel dynamic inference
framework for LLMs, called D-LLMs, which achieves adaptive computing resource allocation for
different tokens. We first propose a dynamic decision module to decide whether a layer is necessary

9

for the given token. Then, we propose a KV-cache eviction strategy to enable D-LLMs’ deployment
in real-world applications. Finally, we conduct experiments on nine benchmarks and show D-LLMs
performing comparable accuracy with only about 50% computational cost over baselines. More
importantly, the D-LLMs can be deployed on almost all LLMs with negligible training cost.

Limitation. Our proposed D-LLMs make the first attempt to adaptively allocate computing re-
sources at inference time for LLMs. Although experiments show surprising performance with lower
cost, there are still some interesting issues worthy of future research. First, the generalizability of
D-LLMs for broader tasks still needs verification. Second, it is worth exploring the dynamic mech-
anism on different granularities, e.g., sentences and tasks.

References
[1] Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the effective-

ness of language model fine-tuning. In arXiv:2012.13255, 2020.
[2] Sotiris Anagnostidis, Dario Pavllo, Luca Biggio, Lorenzo Noci, Aurelien Lucchi, and Thomas Hofmann.

Dynamic context pruning for efficient and interpretable autoregressive transformers. In Adv. Neural
Inform. Process. Syst., 2024.

[3] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural
networks. In Emerg. Techn. Comput. Syst., 2017.

[4] Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin King.
Binarybert: Pushing the limit of bert quantization. In arXiv:2012.15701, 2020.

[5] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

[6] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In Proc. AAAI Conf. Artif. Intell., 2020.

[7] Lester Brian, Al-Rfou Rami, and Constant Noah. The power of scale for parameter-efficient prompt
tuning. In arXiv:2104.08691, 2021.

[8] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In NAACL, 2019.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training
verifiers to solve math word problems. In arXiv:2110.14168, 2021.

[10] Xiangxiang Dai, Jin Li, Xutong Liu, Anqi Yu, and John Lui. Cost-effective online multi-llm selection
with versatile reward models. arXiv preprint arXiv:2405.16587, 2024.

[11] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of
quantized llms. In Adv. Neural Inform. Process. Syst., 2023.

[12] Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more with
less: Synthesizing recurrence with kv cache compression for efficient llm inference. In arXiv:2402.09398,
2024.

[13] Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm kv
cache. In arXiv:2403.04643, 2024.

[14] Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, Kshitiz Malik, and Zhou Yu. Towards next-
generation intelligent assistants leveraging llm techniques. In Proc. Knowl. Disc. Data Mining, 2023.

[15] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi Rezagholizadeh.
Króna: Parameter efficient tuning with kronecker adapter. In arXiv:2212.10650, 2022.

[16] Ahmad Faiz, Sotaro Kaneda, Ruhan Wang, Rita Chukwunyere Osi, Prateek Sharma, Fan Chen, and Lei
Jiang. LLMCarbon: Modeling the end-to-end carbon footprint of large language models. In Int. Conf.
Learn. Represent., 2024.

[17] Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. Not all layers of llms are necessary during inference. In arXiv:2403.02181, 2024.

[18] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards any
structural pruning. In IEEE Conf. Comput. Vis. Pattern Recog., 2023.

[19] Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu, Conghui
He, Xiangyu Yue, Hongsheng Li, and Yu Qiao. Llama-adapter v2: Parameter-efficient visual instruction
model. In arXiv:2304.15010, 2023.

[20] Xitong Gao, Yiren Zhao, ukasz Dudziak, Robert Mullins, and Cheng zhong Xu. Dynamic channel prun-
ing: Feature boosting and suppression. In Int. Conf. Learn. Represent., 2019.

[21] Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you what
to discard: Adaptive kv cache compression for LLMs. In Int. Conf. Learn. Represent., 2024.

[22] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Proc. Worksh. New Front. Summariz., 2019.

[23] Mitchell A Gordon, Kevin Duh, and Nicholas Andrews. Compressing bert: Studying the effects of weight
pruning on transfer learning. In arXiv:2002.08307, 2020.

[24] Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In Int. Conf. Learn. Represent., 2023.

10

[25] Qin Guanghui and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts. In
arXiv:2104.06599, 2021.

[26] Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Zero-
shot extreme length generalization for large language models. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), 2024.

[27] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. In arXiv:2110.04366, 2021.

[28] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. Measuring massive multitask language understanding. In Int. Conf. Learn. Represent., 2021.

[29] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv cache
quantization. In arXiv:2401.18079, 2024.

[30] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. In Int. Conf. Learn. Represent.,
2022.

[31] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q Weinberger.
Multiscale dense networks for resource efficient image classification. In Int. Conf. Learn. Represent.,
2018.

[32] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In Int.
Conf. Learn. Represent., 2017.

[33] Marek Kadlík, Michal tefánik, Ondej Sotolá, and Vlastimil Martinek. Calc-x and calcformers: Empower-
ing arithmetical chain-of-thought through interaction with symbolic systems. In Proc. Conf. Empir. Meth.
Natural Langu. Process., 2023.

[34] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank hyper-
complex adapter layers. In Adv. Neural Inform. Process. Syst., 2021.

[35] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin, and
Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models. In
arXiv:2402.02834, 2024.

[36] Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and
Dongsoo Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer
quantization. In Adv. Neural Inform. Process. Syst., 2023.

[37] Aaron Klein, Jacek Golebiowski, Xingchen Ma, Valerio Perrone, and Cedric Archambeau. Struc-
tural pruning of large language models via neural architecture search. In AutoML Conference 2023
(Workshop), 2023.

[38] Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin,
and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large lan-
guage models. In arXiv:2203.07259, 2022.

[39] Lei Li, Yankai Lin, Shuhuai Ren, Peng Li, Jie Zhou, and Xu Sun. Dynamic knowledge distillation for
pre-trained language models. In arXiv:2109.11295, 2021.

[40] Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen, Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, et al. Explanations from large language models make small reasoners better. In
arXiv:2210.06726, 2022.

[41] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
arXiv:2101.00190, 2021.

[42] Yanjing Li, Sheng Xu, Xianbin Cao, Xiao Sun, and Baochang Zhang. Q-DM: An efficient low-bit quan-
tized diffusion model. In Adv. Neural Inform. Process. Syst., 2023.

[43] Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao. LoSparse:
Structured compression of large language models based on low-rank and sparse approximation. In Int.
Conf. Mach. Learn., 2023.

[44] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and Colin A
Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. In Adv.
Neural Inform. Process. Syst., 2022.

[45] Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation. In arXiv:2402.09353,
2024.

[46] Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2:
Prompt tuning can be comparable to fine-tuning universally across scales and tasks. In arXiv:2110.07602,
2021.

[47] Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt under-
stands, too. In AI Open, 2023.

[48] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava, Ce
Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Contextual sparsity for efficient LLMs at infer-
ence time. In Int. Conf. Mach. Learn., 2023.

[49] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi Chen, and
Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. In arXiv:2402.02750, 2024.

11

[50] Ruilong Ma, Jingyu Wang, Qi Qi, Xiang Yang, Haifeng Sun, Zirui Zhuang, and Jianxin Liao. Pipellm:
Pipeline llm inference on heterogeneous devices with sequence slicing. In Proc. SIGCOMM Conf., 2023.

[51] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. In Adv. Neural Inform. Process. Syst., 2023.

[52] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect. In
arXiv:2403.03853, 2024.

[53] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering. In Conf. Empir. Meth. Natur. Lang. Process., 2018.

[54] Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir Radev, Al-
ham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson, dward Raff, and Colin
Raffel. Crosslingual generalization through multitask finetuning. In Proc. Assoc. Comput. Ling., 2023.

[55] openai. Chatgpt. In chat.openai.com, 2023.
[56] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan Heek,

Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference. Proceedings of
Machine Learning and Systems, 2023.

[57] Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, and Xianglong
Liu. Bibench: benchmarking and analyzing network binarization. In Int. Conf. Mach. Learn., 2023.

[58] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. In GitHub.com, 2019.

[59] David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and Adam
Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based language models. In
arXiv:2404.02258, 2024.

[60] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Commonsense
reasoning about social interactions. In arXiv: arXiv 1904.09728, 2019.

[61] Armin Sarabi, Tongxin Yin, and Mingyan Liu. An llm-based framework for fingerprinting internet-
connected devices. In Proc. Intern. Measur. Conf., 2023.

[62] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language
models. In Int. Conf. Learn. Represent., 2024.

[63] Benjamin Frederick Spector and Christopher Re. Accelerating LLM inference with staged speculative
decoding. In Int. Conf. Mach. Learn., 2023.

[64] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression.
In arXiv:1908.09355, 2019.

[65] Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu. Contrastive distillation on
intermediate representations for language model compression. In arXiv:2009.14167, 2020.

[66] Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming Yang,
and Chuang Gan. Principle-driven self-alignment of language models from scratch with minimal human
supervision. In Adv. Neural Inform. Process. Syst., 2023.

[67] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Ladder side-tuning for parameter and memory efficient
transfer learning. In Adv. Neural Inform. Process. Syst., 2022.

[68] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model. In GitHub.com,
2023.

[69] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[70] Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In Eur. Conf.
Comput. Vis., 2018.

[71] Huanyu Wang, Songyuan Li, Shihao Su, Zequn Qin, and Xi Li. Rdi-net: Relational dynamic inference
networks. In Int. Conf. Comput. Vis., 2021.

[72] Huanyu Wang, Zequn Qin, Songyuan Li, and Xi Li. Codinet: Path distribution modeling with consistency
and diversity for dynamic routing. In IEEE Trans. Pattern Anal. Mach. Intell., 2022.

[73] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. Skipnet: Learning dynamic
routing in convolutional networks. In Eur. Conf. Comput. Vis., 2018.

[74] Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu, Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. Adamix: Mixture-of-adapter for parameter-efficient tuning of large language models. In
arXiv:2205.12410, 2022.

[75] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language
models with attention sinks. In Int. Conf. Learn. Represent., 2023.

[76] Z Yao, RY Aminabadi, M Zhang, X Wu, C Li, and Y Zeroquant He. Efficient and affordable post-training
quantization for large-scale transformers, 2022. In arXiv:2206.01861, 2022.

[77] Deming Ye, Yankai Lin, Yufei Huang, and Maosong Sun. Tr-bert: Dynamic token reduction for acceler-
ating bert inference. In arXiv:2105.11618, 2021.

[78] Shuzhou Yuan, Ercong Nie, Bolei Ma, and Michael Färber. Why lift so heavy? slimming large language
models by cutting off the layers. In arXiv:2402.11700, 2024.

12

[79] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert. In Adv.
Neural Inform. Process. Syst. Worksh., 2019.

[80] Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, and Yu Qiao. Llama-adapter: Efficient fine-tuning of language models with zero-init attention.
In Int. Conf. Learn. Represent., 2024.

[81] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang. A
systematic dnn weight pruning framework using alternating direction method of multipliers. In Eur. Conf.
Comput. Vis., 2018.

[82] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-hitter oracle
for efficient generative inference of large language models. In Adv. Neural Inform. Process. Syst., 2023.

[83] Juntao Zhao, Borui Wan, Chuan Wu, Yanghua Peng, and Haibin Lin. Llm-pq:serving llm on heteroge-
neous clusters with phase-aware partition and adaptive quantization. In Proc. Annu. Sympos. Princip.
Pract. Program., 2024.

[84] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing
vision-language understanding with advanced large language models. In Int. Conf. Learn. Represent.,
2024.

13

A Appendix

The Appendix is organized as follows. In Sec.A.1, we visualize the execution decisions over layers
of tasks of different difficulties. In Sec.A.2, we show the execution ratios of each layer under differ-
ent computational cost. In Sec.A.3, we present the concrete accuracy and perplexity under different
cost. In Sec.A.4, we show the accuracy and computational cost under different hyper-parameter α.
In Sec.A.5, we provide information about extra overhead taken by our proposed decision modules
in D-LLMs. In Sec.A.6, we elaborate details on the reproduction of state-of-the-art methods and im-
plementation of our D-LLMs. In Sec.A.7, we present the comparisons of generated results between
D-LLMs and LLaMA with LoRA. In Sec.A.8, we list the licenses for all assets used in this paper.

A.1 Visualization on Tasks of Different Difficulties.

To demonstrate the key motivation ‘models should not allocate the same computing resource on tasks
of different difficulties or tokens of different importance.’, we illustrate the transformer layers to be
executed for tasks of different difficulties in D-LLMs as shown in Fig. 5. We compare the execution
decisions over layers on two questions. The first question is "How can I develop my critical thinking
skills?", which is referred as a simple one. The second question is "Can you explain Fermat’s Last
Theorem?", which is referred as a difficult one. From Fig. 5, we can observe that the simple question
utilizes fewer tokens than the different question. Moreover, the skipping decisions usually happen
on upper half and lower half, while the execution decisions happen on initial layers, middle layers,
and last layers.

De
ve

lop in
g

yo
ur

cr
iti

ca
l

th
in

kin
g

sk
ills ca

n be
do

ne in a
va

rie
ty of

wa
ys .

On
e

wa
y is

th
ro

ug
h

re
ad

in
g ,

lis
te

ni
ng

,
an

d
di

sc
us

s
in

g
wi

th
ot

he
rs .

An
ot

he
r

wa
y is

th
ro

ug
h

ex
pe

rim
en

t
at

ion
,

pr
ob

lem
so

lvi
ng

,
an

d
an

aly
z

in
g .

Ad
di

tio
na

lly , it
ca

n be
he

lp
fu

l to

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

La
ye

r I
D

(a) Tokens in a Simple Task.

F
er

m at ' s
La

st
Th

eo
re

m
st

at
es th
at it is

im
po

ss
ib

le to fin
d

th
re

e
po

sit
ive

in
te

ge
rs a , b ,

an
d c , all of

wh
ich ar

e
gr

ea
te

r
th

an tw
o ,

su
ch th
at a ^ n + b ^ n + c ^ n = 0 fo
r

an
y

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

La
ye

r I
D

(b) Tokens in a Difficult Task.

Figure 5: The transformer layers to be executed for tasks of different difficulties in D-LLMs. fig. 5a
is the execution decisions, when D-LLM answers "How can I develop my critical thinking skills?".
fig. 5b is the execution decisions, when D-LLM answers "Can you explain Fermat’s Last Theorem?".
The second question is more difficulty than the first one, therefore, utilizing more transformer layers.
A filled block refers to a token executing the corresponding layer, while an empty block refers to a
token skipping the corresponding layer.

14

A.2 Execution Ratios under Different Cost.

We visualize the executing ratios of layers under different computational cost in Fig. 6. As one can
observe, with the reduced computational cost, the skipped layers are usually from the last layers.
When we only utilize about 25% computational cost, most of the layers are skipped. Only the
first three layers are executed by most tokens. This phenomenon illustrates that just a few layers
are enough for most of the tokens’ understanding and generation. Only a few tokens require more
computational resources.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

80%

71%

63%

54%

46%

39%

27%

MaWPS

(a) Execution ratios under different cost on MaWPS.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

80%

71%

60%

52%

43%

38%

24%

OBQA

(b) Execution ratios under different cost on OBQA.

Figure 6: Execution Decisions over Layers under different ratios on MaWPS and OBQA. The verti-
cal coordinate is the computational cost. The horizontal coordinate is the indices of layers. A dark
color refers to most tokens execute the layer, while a light color refers to most tokens skip the layer.

A.3 Performance and Cost Trade-off.

With the customizable acceleration rate loss, we adjust the user-defined target acceleration rate Ω to
achieve performance under different FLOPs on three datasets. The concrete performance in terms
of accuracy and computational cost is shown in Tab. 4. Under extreme conditions, our proposed
D-LLMs obtain 57% and 77% accuracy with less than 25% percentage of computational cost on
MaWPS and OBQA, respectively. Specifically, the performance ranges from 57% to 73% under
computational cost from 0.28 to 0.80 on MaWPS. And it ranges from 24% to 81% under compu-
tational cost from 0.24 to 0.81. In terms of SAMSum, our method achieves at least 4.09 PPL with
76% computational cost reduction.

Table 4: The accuracy against computational cost on MaWPS, OBQA, and SAMSum datasets.

MaWPS OBQA SAMSum

Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) PPL(↓) FLOPs(↓)

0.73 0.80 0.81 0.81 3.44 0.81
0.72 0.72 0.81 0.72 3.25 0.72
0.74 0.64 0.80 0.61 3.17 0.64
0.74 0.55 0.80 0.52 3.18 0.56
0.72 0.47 0.81 0.44 3.23 0.48
0.73 0.40 0.80 0.39 3.50 0.38
0.71 0.36 0.80 0.34 3.73 0.32
0.57 0.28 0.77 0.24 4.09 0.24

A.4 Hyper-parameter Analysis.

We use hyper-parameter α as the factor of Lrate in loss function Eq.14 to control the importance of
acceleration ratio loss during training. α influences the performance on specific tasks and the ability
to control the acceleration rate in D-LLMs. We perform parameter analysis on the MaWPS. In Tab. 5,
the results show that larger α provides better control over the acceleration rate. For example, with the
target acceleration ratio Ω set to 80%, the trained model with α = 0.1 achieves only 47%, whereas

15

α = 5, D-LLM achieves 72%. In addition, an excessively large α can decrease the performance of
D-LLM, even when trained models share the same computation cost. For example, comparing cases
on (Ω = 0.7, α = 1) with cases on (Ω = 0.6, α = 5), trained D-LLMs both achieve approximately
60% acceleration. However, the accuracy in α = 5 decreases by 11% compared to the α = 1 case.

Table 5: The accuracy and computational cost against hyper-parameter α on MaWPS dataset.

α = 0.1 α = 1 α = 10

Ω Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓) Acc.(↑) FLOPs(↓)

0.5 0.75 0.63 0.74 0.56 0.62 0.52
0.6 0.73 0.57 0.72 0.47 0.62 0.42
0.7 0.75 0.56 0.73 0.40 0.61 0.34
0.8 0.73 0.53 0.71 0.36 0.57 0.28
0.9 0.72 0.49 0.70 0.33 0.50 0.22

A.5 Overhead of Decision Modules.

We provide information about extra overhead taken by decision modules of D-LLM in Tab.6. The
base LLM is LLaMA2-7B.

Params/FLOPs overheads. Decision modules are parameter-efficient, which only take 1.0% of the
size of parameters of LLM and 0.9% FLOPs compared with the forward computation of LLM.

Training memory overheads. We store parameters to be updated in float32 and others in bfloat16
during training. The running GPU memory usage of training LoRA on LLM is about 26.2 GB and
training D-LLM is about 32 GB, which means the extra memory cost taken by decision modules is
only 5.8 GB.

Inference memory overheads. During inference, the additional GPU memory cost taken by de-
cision modules is only 0.3 GB. Furthermore, D-LLM requires less memory when generating each
token since layers decided to be skipped are unnecessary to load into GPU memory. For example,
D-LLM with an acceleration rate 50% requires only 7.4 GB when inference, significantly less than
the 13.9 GB needed by an origin LLM using all layers.

Latency. To the latency of inference, computing through one decision module costs only 0.1 ms,
which is quite lightweight compared with computing through a transformer block, which costs about
1.2 ms. The gain of acceleration brought by layer skipping is significant.

Table 6: Overhead information of decision modules in D-LLMs.

Params FLOPs Training(GB) Inference(GB) Latency/Block(ms)

Decision Modules 0.9% 0.8% 5.8 0.3 0.1

LLM 1.0 1.0 26.2(LoRA) 13.9 1.2

A.6 Experimental Details

Reproduce of State-of-the-art. Shortened-LLaMA. The pruning strategy on Shortened-LLaMA is
based on Taylor and PPL metrics. According to authors’ implementation, the number of pruning lay-
ers is set to 11. Taylor-based Shortened-LLaMA prunes layers [27,24,26,25,29,28,23,22,21,20,19]
and PPL-based Shortened-LLaMA prunes layers [24,26,25,10,27,13,22,14,9,29,12].

Ada-Infer. Ada-Infer is trained on LoRA-based pretrained LLMs. We use Gap and Top Prob as the
input feature and reproduce the classifier with two linear layers of 512 hidden dimension.

Mixture-of-depth. MoD selects top-k tokens for calculation at dynamic layers. According to their
paper, we deploy dynamic selections on even layers and the number of k is set to 12.5% of the length

16

of sentences. We reproduce the classifier with a linear layer and incorporate the same LoRA module
for finetuning.

Computational resources. We conduct experiments on a server with 8 NVIDIA L20 GPUs. Models
are implemented in Pytorch with a AdamW optimizer. It takes about 0.07s every step at the training
phase. The learning rate is set to 9× 10−3. Furthermore, we warm up training in the first 2 epochs
and then utilize cosine annealing schedule.

A.7 Comparison of Generated Results.

Instruction: Give students tips on how to keep their nerves under control during class presentations.

D-LLMs on LLaMA2-7B: (58% FLOPs)
1. Practice your presentation in front of a mirror or with a friend.
2. Take deep breaths and relax before the presentation.
3. Make sure to stay focused on the task and don’t let your nerves get the better of you.
4. Make sure to smile and stay positive throughout the presentation.
5. Don’t be afraid to make mistakes or stumble.
6. Make sure to thank your teacher and classmates for their support.
7. Ask questions and listen to your teachers feedback.
8. Don’t be afraid to ask questions if you don’t understand something.

LLaMA2-7B + LoRA: (100% FLOPs)
1. Practice presenting your material in front of a mirror or with a friend.
2. Make sure to breathe deeply and relax your body before the presentation.
3. Visualize success and remind yourself of your strengths.
4. Speak slowly and clearly, and make sure to pause for a few seconds between each point.
5. Smile and make eye contact with the audience.
6. Be confident and don’t be afraid to ask for help if needed.

Instruction: What is Gremolata?

D-LLMs on LLaMA2-7B: (61% FLOPs)
Gremolata is a classic Italian condiment made from garlic, lemon, and parsley. It is traditionally
served with grilled meats, such as steak, chicken, and fish, and is often added to pasta dishes, soups,
and salads.

LLaMA2-7B + LoRA: (100% FLOPs)
Gremolata is a popular Italian condiment made from garlic, parsley, and lemon zest. It is often used
as a topping for pasta dishes, but can also be used as a side dish or as a topping for grilled meats.

Instruction: Please, summarise the book "Harry Potter and the Deathly Hallows" in two paragraphs.

D-LLMs on LLaMA2-7B: (60% FLOPs)
Harry Potter and the Deathly Hallows is a story of a young wizard and his quest to defeat the evil
Lord Voldemort. The book follows Harry Potter as he and his friends embark on a dangerous journey
to find the Deathly Hallows, the legendary objects that will grant Harry the power of defeating the
evil Lord Voldemort. Along the way, Harry and his friends face many challenges and make difficult
choices, but ultimately, they are able to defeat the evil Lord Voldemort and save the wizarding world.

LLaMA2-7B + LoRA: (100% FLOPs)
Harry Potter and the Deathly Hallows is the seventh and final book in the Harry Potter series. It
follows Harry Potter and his friends as they embark on a quest to find and destroy the Horcruxes,
powerful objects that contain the essence of Lord Voldemort. Along the way, they face many
challenges and dangers, including a powerful wizard who is determined to stop them. In the end,
Harry and his friends succeed in their quest and destroy the Horcruxes, saving the wizarding world
from Lord Voldemort.

17

Instruction: Cody eats three times as many cookies as Amir eats. If Amir eats 5 cookies,how many
cookies do both of them eat together?

D-LLMs on LLaMA2-7B: (55% FLOPs)
Cody eats 3 * 5 = «3*5=15»15 cookies.
Together, they eat 5 + 15 = «5+15=20»20 cookies.

LLaMA2-7B + LoRA: (100% FLOPs)
If Amir eats 5 cookies, Cody eats 3*5 = «5*3=15»15 cookies
Together, they eat 15+5 = «15+5=20»20 cookies

Instruction: Mike needed a new pair of jeans. When he got to the mall he saw that his favorite
jeans were advertised 25% off. The original price of the jeans was $40. How much money will
Mike have left over if he pays with a $50.00 bill?

D-LLMs on LLaMA2-7B: (62% FLOPs)
The jeans are on sale for 25% off so they are on sale for 100% - 25% = 75%
The original price of the jeans was $40.00 and they are on sale for 75% so he will pay 40*.75 =
$«40*.75=30.00»30.00
Mike has $50.00 and he will pay $30.00 for the jeans so that leaves him with 50-30 = $«50-
30=20.00»20.00

LLaMA2-7B + LoRA: (100% FLOPs)
The jeans are $40.00 and he can get 25% off, so 40*.25 = $«40*.25=10.00»10.00 discount
If the jeans are $40.00 and he gets $10.00 off then he will pay 40-10=$«40-10=30.00»30.00 for the
jeans.
If he pays $30.00 and has $50.00 then 50-30 = $«50-30=20.00»20.00 left over.

A.8 License of Assets.

We do not utilize any close-source assets in this paper. The LLaMA2-7B and LLaMA3-
8B can be downloaded from https://llama.meta.com/llama-downloads and the licenses
are from https://llama.meta.com/llama2/license/, https://llama.meta.com/llama3/
license/. All benchmarks are obtained from huggingface. The license of Alpaca, SAMSum is CC
BY-NC 4.0. The license of for BoolQ is Creative Commons Share-Alike 3.0. The license of PIQA
is Academic Free License v3. And license for MaWPS, MMLU is MIT acknowledge.

18

https://llama.meta.com/llama-downloads
https://llama.meta.com/llama2/license/
https://llama.meta.com/llama3/license/
https://llama.meta.com/llama3/license/

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the claims and accurately introduce the contributions and
scope in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec.5 of the manuscript.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

19

Justification: D-LLMs is a novel inference framework and do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have clearly elaborated the method in Sec.3 and specify the experimental
details in Sec.4.1 of the manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

20

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided our code at https://github.com/Jyk-122/D-LLM, and
will release all experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details and settings are elaborated in Sec 4.1 in manuscript
and Sec 1.4 in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported the statistical significance of performance against cost under
different settings, all numerical results are provided in Sec 4 in the manuscript and Sec 1.2
in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

21

 https://github.com/Jyk-122/D-LLM
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have presented the information of computing resources in Sec 1.4 of the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The proposed D-LLMs is an inference framework for LLM, thus, has no
negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

22

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The proposed method do not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have stated the licenses of assets used in Sec 1.6 of the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

23

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: We will release documentation along with code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: We did not conduct crowdsourcing experiments and research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not conduct crowdsourcing experiments and research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

24

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

25

	Introduction
	Related Works.
	Methods
	Preliminary: LLMs Architecture
	D-LLMs: Dynamic Inference LLMs
	Customizable Acceleration Rate
	KV-Cache Eviction Strategy

	Experiments
	Experimental Setup
	Performance Comparison
	Quantitative Analysis
	Qualitative Analysis.

	Conclusion
	Appendix
	Visualization on Tasks of Different Difficulties.
	Execution Ratios under Different Cost.
	Performance and Cost Trade-off.
	Hyper-parameter Analysis.
	Overhead of Decision Modules.
	Experimental Details
	Comparison of Generated Results.
	License of Assets.

