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Abstract
A key opportunity to make mathematical information more easily

accessible is creating search engines that leverage relationships

between visual and semantic formula representations. In this pa-

per we introduce a formula retrieval model where visual and se-

mantic embeddings are queried separately, but trained jointly. Em-

beddings are produced using two Relational Graph Convolutional

Neural Networks (R-GCNs), which are jointly optimized using a

self-supervised training task with a contrastive loss, where pairs

of visual and semantic formula nodes are classified as being from

the same formula or different formulas. To avoid information loss,

we use node embeddings to retrieve visual and semantic formula

graphs, with each scored separately using a greedy alignment be-

tween query and candidate nodes in the manner of ColBERT. We ex-

plore combining and selecting visual and semantic relevance scores

in different ways. We present results for two math formula retrieval

benchmarks, ARQMath and NTCIR-12. Results show comparable

results against the state-of-the-art and significant improvement

when combining visual and semantic information from formulas.

CCS Concepts
• Computing methodologies→ Neural networks; • Information
systems →Mathematics retrieval; Document structure.

Keywords
Formula retrieval, Graph embeddings, Constrastive learning, Multi-

vector retrieval, Math IR.
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1 Introduction
Math-aware search has been of growing interest for the academic

community due to its application in many fields of science and

technology [6, 7, 14, 23]. Existing commercial search engines such

as DuckDuckGo, Google and Bing lack effective access to math
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Figure 1: Symbol Layout Tree (SLT) and Operator Tree (OPT)
for the formula 𝑥2𝑦 + 1. N!, V!, O!, and U! in node labels give
symbols types as (N)umbers, (V)ariables, (O)rdered operators,
and (U)nordered operators.

formulas since these are treated as plain text, which loses struc-

tural information. To address this issue, math-aware search engines

have been built where formulas are handled differently than plain

text. Formulas are naturally represented by trees rather than token

sequences. Formula appearance is represented by the placement of

symbols on writing lines using Symbol Layout Trees (SLTs), while

the represented mathematical operations are captured in Operator

Trees (OPTs). Examples of these are shown in Figure 1 for the for-

mula 𝑥2𝑦 + 1. In the SLT, the root of the tree is the left-most symbol

with edges identifying spatial relationships between symbols, while
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Table 1: Formula node & Symbol Layout Tree edge types.

Example Example

Node Type Label Exp. SLT Edge Label Exp.
number (N) N!2 2𝑥 next (n) 𝑥 next + 𝑥+
const. (C) C!∞

∫
0

∞ above (a) 𝑒 above 𝑥 𝑒𝑥

var. (V) V!𝑥 2𝑥 below (b) 𝑥 below 𝑖 𝑥𝑖
func. (F) F!sin sin𝑥 over (o) 𝑥 over − 𝑥

𝑦

text (T) T!val 𝑥 + val under (u) 𝑦 over − 𝑥
𝑦

group (M) M!( )
( 𝑎
𝑏

)
pre-a. (c) 𝑥 pre-a. 𝑖 𝑖𝑥

unord. (U) U!+ 𝑎 + 𝑏 pre-b. (d) 𝑥 pre-b. 𝑖 𝑖𝑥

ord. (O) O!⊂ 𝐴 ⊂ 𝐵 elem. (e) 𝑎 elem. 𝑏
( 𝑎
𝑏

)
within (w) 𝑥 within

√
𝑥

the OPT gives a hierarchy of operations with variable and number

arguments at the leaves, and edges numbered to show the order

of operands for operations. In practice, the choice of representing

formulas by SLTs or OPTs depends upon the intended task: for

retrieval both have been used.

For the SLT andOPT representations used in this paper, nodes are

defined using pairs of the form (type!value), except for operator
symbols in SLTs, where operators have only a single symbol (e.g.,

for ‘+’ in Figure 1). The different node types and types of SLT edges

are shown in Table 1. Edges in the Operator Tree define the order of

operands in an expression. In Figure 1, for the ordered superscript

operation representing exponentiation (O!SUP), node 0 is the base

(𝑥) and node 1 is the exponent (2𝑦). If an operator has unordered
arguments, such as for commutative operations like addition and

multiplication, all edges to arguments are labeled with 0.

Zanibbi et al. [24] categorize formula retrieval models according

to the representation(s) and models used for retrieval: text, tree,

embedding, visual-spatial, or their combination. We center our

attention on embedding models that work from tree-based formula

representations. Embedding models use statistical machine learning

to represent formula similarity by end-point or angular distances

between vectors in a euclidean space. Dense retrieval models that

use embeddings address some limitations of sparse retrieval models

that use fixed pattern vocabularies for lookup, e.g., in an inverted

index. The vocabulary problem faced by sparse retrieval systems

arises due to exact matching of graphs, nodes, edges, or paths: if

a formula has tokens that are not in the vocabulary, they cannot

be used for retrieval without additional processing. In contrast, in

embedding models context is used to embed patterns in euclidean

space even when a particular pattern (e.g., symbol) is unseen during

training. To fully leverage the structural information of formulas

represented as OPTs and SLTs, in our model we have used Graph

Neural Networks (GNNs), which have been used widely to learn

information from graphs [5, 21].

Due to a scarcity of relevance assessment data for formula re-

trieval, dense retrieval models for formulas are primarily trained

using self-supervised learning. A widely used technique is con-
trastive learning, where we modify embeddings with the goal of

placing equivalent/similar objects closer than distinct objects us-

ing designated ‘positive’ and ‘negative’ examples [8]. When using

contrastive learning with GNNs [20, 26], augmentation/expansion

methods are needed to produce variations of individual graphs.

These are used both to increase the number of positive examples,

and the variety in negative examples. We adopt this approach, and

leverage the fact that we already have two graph representations

for each formula in our benchmark data sets: SLTs and OPTs.

Motivated by the effectiveness of part-basedmatching and greedy

alignment of token vectors for ColBERT [9] for text retrieval tasks,

we present a contrastive learning-based retrieval model that oper-

ates at the formula graph node level, and uses the max similarity

from ColBERT. This technique is used at the retrieval stage to per-

formmulti-vector retrieval over node embeddings as well. We adopt

the idea of adding backward edges to SLTs and OPTs from Ahmed

et al.[1], and apply contrastive learning to formula retrieval in a

manner similar to Wang et al. [20], but use node-level rather than

formula-level embeddings. The code and model weights for our

model are available online.
1

The research questions that we pursue in this paper are:

• RQ1: Do formula representations that combine semantic

and visual information through a contrastive loss improve

retrieval results?

• RQ2: Does combining separate semantic and visual formula

retrieval results using score fusion functions such as average

and reciprocal rank fusion improve performance?

• RQ3: Is formula retrieval using the proposed granular con-

trastive learning framework comparable in effectiveness to

current formula retrieval models?

2 Related Work
Formula Retrieval with GNNs and Contrastive Learning. An
early use of GNNs for formula search is the work of Pfahler and

Morik [16]. They embed math formulas into a single vector using a

Graph Convolutional Network trained by node masking and con-

textual similarity, under the assumption that related expressions

appear in similar contexts. Lin et al. [10] embed logical formula

graphs using a Graph Convolutional Network and perform con-

trastive learning where positive pairs are logically equivalent for-

mulas. The produced embeddings are used for entailment checking

and premise selection. Song and Chen [18] embed OPTs into single

vectors after merging nodes that represent the same symbol. They

presented experiments using three different types of GNNs: Graph

Convolutional Network, Graph SAmple and aggreGatE (Graph-

SAGE), and Graph Isomorphism Network. Models were trained in

a self-supervised way using node masking and context prediction.

Edge features are added to node features at the message passing

step.

Ahmed et al. [1] used a Graph Convolutional Network to encode

formula graphs in a single vector combined with visual features of

formula images using regression. Their formula graphs add back-

ward edges to SLTs and OPTs, which are called Symbol Layout
Graphs (SLGs) and Operator Graphs (OPGs), respectively. Edge and
node features are concatenated at the message passing step. Train-

ing is performed by minimizing a triplet loss over positive and nega-

tive pairs constructed using graph symmetric scores, after which the

learned embeddings are used for isolated formula retrieval. Wang

et al. [20] used graph-based contrastive learning for single vector

1
Source code and model weights: https://gitlab.com/ma5339/new_graph_retrieval

https://gitlab.com/ma5339/new_graph_retrieval
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formula retrieval, starting from Tangent-CFT node embeddings for

SLTs and OPTs [13]. They then apply contrastive self-supervised

learning models using graph augmentation to generate positive

and negative pairs. Wang and Tian [19] apply transformer-based

models as enconders over MathML and LaTeX text tokens, and

trained them jointly to produce embeddings for isolated formula

retrieval. Presentation MathML and Content MathML (Symbol Lay-

out Tree and Operator Tree) tokens are first trained jointly using

a single encoder. The second training stage uses the encoder em-

beddings along with a second encoder for the LaTeX tokens. Their

final formula representation is a single vector (i.e. one vector per

formula).

Formula Retrieval Evaluation. Benchmarks for formula re-

trieval include include the NII Testbeds and Community for In-

formation Access Research (NTCIR) (in their 10
𝑡ℎ
, 11

𝑡ℎ
and 12

𝑡ℎ

editons) and ARQMath (in their 1
𝑠𝑡
, 2

𝑛𝑑
and 3

𝑟𝑑
editions). The

ARQMath data was obtained from Math Stack Exchange (MSE)
2
,

a popular mathematics question answering forum. Questions and

answers from 2010-2018 are used as the test collection. Topics used

for evaluation (i.e., test queries) are taken from questions appearing

on MSE in 2019, 2020 and 2021 for ARQMath 1, 2 and 3 respec-

tively, ensuring that no test questions appeared in the training set.

The NTCIR-12 dataset for the MathIR task was created using math

tagged documents from Wikipedia.

Some insights gleaned from these benchmarks are that combin-

ing formula appearance and mathematical operations tend to pro-

duce the best retrieval results [22], and sparse tree-based retrieval

models performed best until the recent emergence of strong em-

bedding models [11]. The state-of-the-art for the NTCIR12 dataset

is MathBERT+Approach0 [15] , which trains a BERT model on

Content MathML (OPT) and LATEX tokens along with surrounding

text, and results from this are combined with results from a sparse

retrieval model using leaf-root tree paths extracted from OPTs (Ap-

proach0). The state-of-the-art model for ARQMath-3 Task 2 dataset

is Approach0+ColBERT [25], which includes the surrounding text

of formulas to contextualize formula representations.

Existing formula retrieval systems perform single vector re-

trieval, which we believe degrades performance: aggregating sym-

bols and relationships in formulas into a single vector loses infor-

mation. We address this by applying multi-vector retrieval similar

to ColBERT.

3 Visual and Semantic Graph Embeddings
To produce effective embeddings for retrieval, both the visual and

semantic information present in SLTs and OPTs must be taken into

consideration. Formula relevance for some queries may depend

more on formula appearance (e.g., to find a specific formula), or

more on underlying operations (e.g., to find semantically equivalent

formulas for theorem proving). For some queries, both visual and

semantic elements may come into play (e.g., when browsing for

formulas ‘similar’ to a query formula).

Formula graphs with reverse edges (SLG and OPG).Math

formulas are commonly represented in the web using LATEX or

MathML, and for MathML most commonly Presentation MathML

(i.e., ‘visual’ SLT representations described in Section 1). We parse

2
https://math.stackexchange.com/

MathML using the Tangent-S code base [4], producing Symbol Lay-

out Trees (SLTs) from Presentation MathML and Operator Trees

(OPTs) from Content MathML provided in the benchmarks used,

where Content MathML was previously produced offline from

LATEX.
3

We start with SLTs and OPTs, and adopt the idea of adding back-

ward edges to them as proposed in Ahmad et al. [1]. This prevents

nodes whose in-degree is 0 from never being updated during graph

network training. These new edges contain a new label for reversed

versions of the original edge. We define the resulting representa-

tions as Symbol Layout Graph (SLG) and Operator Graph (OPG),

as shown in Figure 2.

R-GCN Embedding Architecture. To leverage graph struc-

ture in our formulas, we encode them using the Relational Graph

Convolutional Network (R-GCN) proposed by Schlichtkrull et al.

[17]. R-GCN extends grid convolution from Convolutional Neural

Networks to graphs, and leverages edge types. Normally GNNs are

trained using message passing, where each node state 𝑛𝑖 is updated

by receiving messages from its neighbors 𝑁𝑖 . In R-GCN, messages

are filtered by edge type, and each node is updated by aggregat-

ing neighbors separately for each relation (edge type). We apply

this model because we expect the edge labels to carry important

information. Similar GNN models for formula retrieval concatenate

or add edge features to node features, which can decrease their

influence.

The updating function of this model is given by Equation 1:

ℎ (𝑙+1)𝑖 = 𝜎

(∑︁
𝑟 ∈𝑅

∑︁
𝑗∈𝑁 𝑟

𝑖

1

𝑐𝑖,𝑟
𝑊

(𝑙 )
𝑟 ℎ

(𝑙 )
𝑗

+𝑊 (𝑙 )
0

ℎ
(𝑙 )
𝑖

)
(1)

where ℎ𝑙+1
𝑖

is the updated vector for node 𝑖 . 𝑙 is the number of the

current layer. 𝑅 is the set of relations of node 𝑖 . 𝑁 𝑟
𝑖
denotes the set

of neighbors of node 𝑖 under the relation 𝑟 . 𝑐𝑖,𝑟 is a normalization

factor set to |𝑁 𝑟
𝑖
|. 𝜎 is an activation function (ReLU in our case).

𝑊𝑟 represents the learning parameters for the relation 𝑟 .

Training: Node Pair Classification & Sub-expressions. To
leverage both visual and semantic representation and preserve

granular interactions, we propose a self-supervised contrastive

training at the node level. The granular interaction in this context

comes from pairing nodes across a pair of graphs. For a given pair

of graphs, we pair each node from the first graph with the node

from the second graph with the maximum cosine similarity (in the

maxsim manner of ColBERT). In the positive pairs, both graphs

correspond to the same formula. Negative pairs are created using

graphs from different formulas within a training batch.

The core learning task will be to classify pairs of nodes as be-

ing from the same formula (positive pair), or two different formu-

las (negative pairs). However, we will make use of formulas both

within and across SLG and OPG representations. In addition, we

include SLG and OPG subexpressions, deciding ‘positive’ or ‘nega-

tive’ based on whether or not the subexpressions are taken from the

same original formula in SLG or OPG form. Figure 2c and 2d show

sub-expressions for the formula 𝑥2𝑦 + 1 after removing the node

[+] from the SLG and the corresponding node [U!plus] from the

OPG. We use this subexpression strategy for augmentation rather

than traditional graph augmentation techniques (add/remove edges,

3
For an overview of known limitations in such a conversion, see Zanibbi et al. [24].
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Formula Graphs for 𝑥2𝑦 + 1
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Figure 2: Example formula graphs for 𝑥2𝑦 + 1. Shown are the visual SLG (a), semantic OPG (b) and example sub-expressions
from these (c,d). Both sub-expressions are obtained by removing the addition node in the SLG and OPG ([+] and [U!plus]).

feature perturbation, etc) because they may produce nonsensical

formulas. By utilizing subexpressions, we hope to improve the

ability both to retrieve formulas by parts (i.e., similar shared subex-

pressions), and to capture a larger variety of contexts for nodes and

symbols for a single formula graph.

To select a sub-expression from a formula, we randomly remove

an internal node from the graph (SLG or OPG) and select the largest

connected component that remains after the removal. We do not

remove leaf nodes because in OPTs these are operands, and may

carry important information essential for retrieval. For instance, if

we have a greek letter that appears very few times in the dataset

and input a query formula that contains it, the retrieval of related

formulasmay be largely determined by this symbol.
4
This reasoning

does not apply for SLTs, but use the same strategy for simplicity and

consistency between representations. This sub-expression selection

is made at every epoch to improve generalization.

We use two formula graphs to produce the positive and nega-

tive node classification pairs used in our contrastive learning. We

have six different ways to produce these graph pairs, which use

four graph types: SLG, OPG, SLG sub-expression and OPG sub-

expression. Note that a pair of graphs is not commutative; the first

graph is the reference point for matching nodes across graphs by

maximum cosine similarity. Note also that each graph type pairing

may come from the same formula (producing positive node pairs)

4
This is related to TF-IDF models, where rarer symbols have a higher impact on

relevance scores, on the assumption that rarer terms carry more information.
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Figure 3: Training with contrastive learning across SLG and OPG nodes using the Outer set of graph augmentations. Positive
and negative node pairs are created by maxsim alignment of nodes from the first to second type in each graph pairing. This
occurs both for complete formulas (i.e., whole OPGs/SLGs), and for complete formulas in one representation vs. sub-expressions
in the other representation (e.g., (SLG, OPG-sub). The final loss is averaged across the four graph type pairings.

or a different formula within the training batch (producing negative

node pairs). The six approaches used to produce graph pairs and

then positive/negative node pairs are listed below.

(1) SLG: Visual information only: (SLG, SLG-sub)

(2) OPG: Semantic information only: (OPG, OPG-sub)

(3) SLG+OPG: Complete formula graphs across visual/semantic

representations: (SLG, OPG) and (OPG, SLG)

(4) Inner (1 ∪ 2 ∪ 3): Sub-expressions within representation

types and complete graphs across representation types:

(SLG, SLG-sub), (OPG, OPG-sub), (SLG, OPG) and (OPG,

SLG).

(5) Outer: Complete formulas and sub-expression pairs across
representations:

(SLG, OPG), (OPG, SLG), (SLG, OPG-sub), (OPG, SLG-sub).

(6) Inner+Outer (4 ∪ 5): All six graph pairing types above:

(SLG, SLG-sub), (OPG, OPG-sub),

(SLG, OPG-sub), (OPG, SLG-sub),

(SLG, OPG) and (OPG, SLG).

Figure 3 illustrates the training process for augmentation con-

dition 5 (Outer). In a given batch we generate embeddings for

four graph types: SLT, OPG, SLG sub-expression and OPG sub-

expression, using two R-GCNs: one for OPGs, and one for SLGs.

Once we have these embeddings, we build our node pairs for train-

ing using the maxsim alignment described earlier. For instance, the

most similar nodes in Figure 2a and Figure 2d would form positive

pairs of the type (SLG, OPG sub-expression), with Figure 2a acting

as the reference or ‘query’ graph when computing similarities.

We used as loss function for a node 𝑖 a variation of the formula

presented by Chen et al. [2] showed in Equation 2:

ℓ𝑖 = − log

exp (sim(𝑧𝑖 , 𝑧+𝑗 )/𝜏)∑𝑁−1
𝑘=1

exp (sim(𝑧𝑖 , 𝑧−𝑘 )/𝜏)
(2)

where 𝑁 is the total number of formulas in a batch, 𝜏 is a parameter

that controls the smoothness of the distribution (set to 0.1 after a

grid search), 𝑧𝑖 is the embedding for the current node, 𝑧+
𝑗
is the

embedding of its positive partner and 𝑧−
𝑘
is the embedding for the

𝑘𝑡ℎ negative partner; each node has 1 positive example and 𝑁 − 1

negative examples. The final loss is given by Equation 3:

L =
1

2

©­« 1

𝑀𝑙

𝑀𝑙∑︁
𝑖=1

ℓ𝑖 +
1

𝑀𝑜

𝑀𝑜∑︁
𝑖=1

ℓ𝑖
ª®¬ (3)

where 𝑀𝑙
is total number of nodes for all SLGs in the batch and

𝑀𝑜
represents total of nodes in all OPGs.

4 Indexing and Retrieval Model
We implement indexing and retrieval using the vector database

Qdrant
5
, which uses the Hierarchical Navigable Small Worlds

(HNSW) for search and provides an implementation of max simi-

larity alignment for scoring candidates. As in ColBERT, HNSW is

used to retrieve a first set of candidates by running a query per each

node vector in the query graph, and later re-rank the candidate

list using max sim alignment to produce the final results. We use a

value of 𝑘 = 20 (i.e. 20 neighbors in HNSW algorithm) for initial

retrieval of graph nodes to obtain formula candidates.

Retrieval is performed separately for visual and semantic graphs

using node embeddings, with separate SLG and OPG node embed-

ding indexes. The resulting retrieval scores are then combined to

produce the final retrieval result. In each case, we measure visual or

semantic similarity by using multiple node vectors for each query

and candidate.

We employ the greedy alignment proposed for ColBERT by Khat-

tab et al. [9]. Similarity between query and candidate node vectors

is obtained from the sum of maximum cosine similarities between

node pairs. Given a query graph 𝑄 and candidate graph𝐶 , we com-

pute node embeddings for each of them, producing the matrices

𝐸𝑄 and 𝐸𝐶 . Each matrix has rows for nodes, and the number of

columns is given by the embedding size. We denote the size of each

graph in nodes using |𝐸𝑄 | and |𝐸𝐶 |, and enumerate query graph

nodes using 𝑖 and candidate graph nodes using 𝑗 . The similarity 𝑆

is then given by Equation 4:

𝑆 =
∑︁

𝑖∈{1, ... , |𝐸𝑄 | }
max

𝑗∈{1, ... , |𝐸𝐶 | }
𝐸𝑄𝑖

· 𝐸𝑇𝐶 𝑗
(4)

5
https://qdrant.tech/
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Since we have embeddings for both SLG and OPG, we use this

ensemble to score similarity using Equation 4 separately for each

representation. We then fuse the similarity scores using static com-

bination functions of different types, including max, mean, F1 and

RRF (Reciprocal Rank Fusion [3]).

5 Results
Datasets. We present results on ARQMath-3 Formula Retrieval

Task (Task 2) and NTCIR12 MathIR Task. For ARQMath-3 [11],

participants return the top 1000 formulas given a formula query

taken from a test question post. Returned formulas from all par-

ticipants where then pooled and evaluated for relevance by math

undergraduate and graduate students, taking the context of the post

containing a retrieved formula into account. The full ARQMath

dataset contains around 28 million formulas; approximately 9.3

million formulas are visually unique. The test collection contains

76 formulas queries (topics) with human-annotated assessments

using a relevance scale of 0 to 3 (0 non-relevant, 3 high relevance).

For binary metrics, 2 and 3 are considered relevant and the others

not relevant. We make usage of the official metrics for the com-

petitions: NDCG’@1000, MAP’@1000 and P’@10. Here, prime (’)

indicates that only evaluated hits are considered when computing

the metrics. This insures that models are compared using the same

pool of formulas with known relevance, whether they participate

in the original task or run an evaluation afterward.

The NTCIR12 MathIRWikipedia corpus contains 319,689 articles

from English Wikipedia and contains around 590,000 formulas in

the corpus [22]. There are around 250,000 visual unique formulas

in this dataset. The task is to return top 1000 formulas for a given

formula query chosen by the organizers. The test collection consists

of 40 formula queries (topics) which results were human-annotated

in a relevance scale of 0 to 4 (0 not relevant, 4 high relevance). For

binary metrics, 3 and 4 are considered relevant and the others not

relevant. We only use the first 20 queries because the remaining

queries contain wildcards, and have been usually omitted when

reporting NTCIR-12 results. Official metrics are Partial Binary Pref-

erence (Bpref@1000 full) and Full Binary Preference (Bpref@1000

full). Additional details about these test collections and evaluation

metrics are available elsewhere [24].

Training Data.We trained our models using the visually unique

formulas from the ARQMath-3 and NTCIR-12 test collections sepa-

rately. This means that results shown in Tables 2 – 4 for ARQMath

were produced with models trained using approximately 9.3 million

visual unique formulas from ARQMath. However, results in Tables

2 and 5 for NTCIR-12 were produced using only about 250,000

visually unique formulas from NTCIR-12. As mentioned in Section

3, the training procedure is entirely self-supervised.

Efficiency Metrics. These metrics reported below were com-

puted using ARQMath visually unique formulas (around 9.8 million)

and the ARQMath-3 topics (76 formula queries). The system used

was an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, with 256 GB

RAM, NVIDIA A40 GPU, and 2TB SSD disk.

Training time: around 6 hours per epoch.

Embedding (inference) time for indexing: around 3 hours using

an embedding space of 100 dimensions. A sub-process for

loading embedded formula batches into the indexing tool

Table 2: Retrieval results using different node pair augmen-
tations. Significant differences vs. baseline SLG shown using
† (Bonferroni corrected t-tests, 𝑝 < 0.05).

ARQMath-3 (76) NTCIR-12 (20)

Model NDCG’ MAP’ P’@10 Bpref p. Bpref f.
Single representation
SLG 0.649 0.446 0.547 0.611 0.534

OPG 0.682 0.476 0.587 0.642 0.547

Combined SLG + OPG relevance scores
SLG+OPG MAX 0.690 0.498 0.591 0.647 0.572
Inner MAX 0.694† 0.497† 0.600 0.646 0.555

Outer MAX 0.693† 0.496† 0.599 0.602 0.562

Inner + Outer:

MAX 0.701† 0.505† 0.597 0.636 0.535

AVG 0.684
†

0.486
†

0.581 0.639 0.526

F1 0.670 0.475 0.576 0.635 0.532

RRF 0.678 0.485 0.599 0.623 0.523

(Qdrant) runs concurrently, and so inference may be faster

than reported here.

Indexing time: After all embedded node vectors are loaded in

Qdrant, it takes around 24 hours for the index to be ready

(green state) for retrieval. This includes creating the HNSW

index data structures. It is important to note that we create 2

indexes: one for Symbol Layout Graph embeddings, and one

for Operator Graph embeddings. The two indexes together

contain around 400 million vectors for 9.8 millions formulas.

Retrieval time: around 2 minutes for top k=1000 retrieval for the

76 test queries. This is around 1.6 seconds per query. This

includes querying the 2 indexes mentioned above.

RQ1 and RQ2: Effect of combining visual and semantic
information. Table 2 shows a comparison of the different train-

ing variations in terms of how graph pairs are used to generate

node pairs for classification. Also shown is the effect of using dif-

ferent combination functions for SLG and OPG retrieval scores:

max, average, F1 and RRF. We selected the SLG-only model as

our baseline to evaluate how our proposed method of combining

both sources of information performs. We identified statistically

significant differences using a multiple comparison t-test with a

Bonferroni correction and a p-value of 0.05.

For the ARQMath collection, we can see a significant improve-

ment against the baseline SLG for models where both semantic

and visual information are used. This suggests that combining in-

formation at the node level enriches representations. We also ran

multiple comparison t-tests (w. Bonferroni correction) against the

base OPG model, but no significant differences were found. This

suggests that this representation may be sufficient on its own. It

is worth noting that a number of state-of-the-art models use only

semantic information to perform retrieval. Nevertheless, we see an

improvement in terms of deep metrics when representations are

combined, in NCCG’ and MAP’. For NTCIR-12, we did not observe

significant differences between graph pairing conditions, possibly

because of the small number of queries (20).
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Table 3 shows results for two test queries from ARQMath-3. We

show the top 5 formulas returned with an associated relevance

rating in the qrels file. For the first query, the top 10 formulas with

assessments are all of High or Medium relevance, giving a P’@10

of 100%, and NDCG’@1000 is 81.46%. We can attribute the success

of our model in this query to the granular interaction: we can see

that sub-expressions of the query appear in the retrieved formulas.

We have a similar behavior (not shown) for query B.394:

∀𝜖 > 0, ∃𝛿 < 0, |𝑥 − 𝑎 | < 𝛿 =⇒ |𝑓 (𝑥) − 𝑓 (𝑎) | < 𝜖

where we observe 90% for P’@10, and 92.83% NDCG’@1000. Again,

the granular interaction allows the models to retrieve formulas that

contain sub-expressions of the query.

Table 3 also shows the top 5 (evaluated) results for query B.400.

This is the second worst performing query for P’@10 with 10%

(just 1 of the top 10 results is relevant), and an NDCG’@1000 of

56.5%. Note that the top hit just differs in 2 symbols with the query.

Looking at the formula in isolation, we might be tempted to argue

that this is a relevant hit – however, this was annotated as not rele-

vant by accessors in ARQMath based on the Math Stack Exchange

posts where the query and retrieved formulas appeared. Since we

do not consider any context in our model, our results are penalized

in these cases. In the future, we plan to incorporate the surrounding

content for formulas.

RQ3: Comparison against existingmodels. Table 4 compares

our system with Approach0 [25], a state-of-the-art formula search

model that uses sparse retrieval and dynamic-programming based

structural alignment for re-ranking. Leaf-root paths from OPTs are

used for the sparse first-stage retrieval. We obtain stronger ‘deep’

metrics (NDCG’ and MAP’), and the difference in P‘@10 is less

than 2%. This suggests that our approach is promising for isolated

formula retrieval. Table 4 also shows models that implement con-

textualization of formulas by adding its surrounding text as an

extra source of information. This is particularly important for the

ARQMath dataset, where exact matches for certain queries may be

irrelevant because their contexts are different. This explain why

combining ColBERT with Approach0 performs slightly better.

Table 5 compares existing graph-based embedding systems for

isolated formula retrieval in the NTCIR-12 dataset. In this case,

we retrain our model from scratch using only roughly 250,000

visually unique formulas from the NCTIR-12 test collection. As

mentioned earlier, the NTCIR-12 ‘concrete’ formula evaluation is

limited because of its low number of queries (20). However, this

dataset has been widely used to evaluate isolated formula retrieval

models, so we keep these results for the record. Note that with

additional training data, we expect to obtain stronger results (e.g.,

closer to those for ARQMath-3).

Regarding transformers/LLMs for formula retrieval, Peng and

Yuan [15] proposed a model calledMathBERT. They included LaTeX

and Operator Tree tokens in a text token sequence, and then used

BERT to embed formulas and perform retrieval. This was evaluated

on NTCIR-12 dataset. and their results are shown in Table 5. Their

approach improves partial relevance matches over state-of-the-art

graph-based formula search modes, but they obtain lower full Bpref

than the EARN model. We believe that with the usage of text, we

can match, or even exceed the performance of MathBERT.

Table 3: ARQMath-3 Formula Search Task Top-5 hits with
assessments returned by the Inner + Outer MAX model for
two queries.

Topic B.308: 𝜁 (𝑠) = ∑∞
𝑛=1

1

𝑛𝑠 = 1

Γ (𝑠 )
∫ ∞
0

𝑥𝑠−1
𝑒𝑥−1𝑑𝑥

1. 𝜁 (𝑠) = ∑∞
𝑛=1

1

𝑛𝑠 = 1

Γ (𝑠 )
∫ ∞
0

𝑥𝑠−1
𝑒𝑥−1𝑑𝑥 3 - High

2. Γ(𝑠) = ∑∞
𝑛=1

𝜇 (𝑛)
𝑛𝑠

∫ ∞
0

𝑥𝑠−1
𝑒𝑥−1𝑑𝑥 . 3 - High

3. (1 − 2
1−𝑧)𝜁 (𝑧) =

∞∑
𝑠=1

(−1)𝑠
𝑠𝑧 = 1

Γ (𝑧 )

∞∫
0

𝑡𝑧−1

𝑒𝑡+1𝑑𝑡 3 - High

4. 𝜁 (𝑠) = 1

Γ (𝑠 )
∫ ∞
0

𝑥𝑠−1
𝑒𝑥−1𝑑𝑥. 3 - High

5. 𝜁 (𝑠) = 1

Γ (𝑠 )
∫ ∞
0

𝑥𝑠−1
𝑒𝑥−1𝑑𝑥, 𝑠 > 1. 3 - High

Topic B.400:
(

1

2
𝑛−2

)
2

1.
1

2
(𝑛−1)2 0 - Non-Rel.

2.
1

2
𝑛−2 ≤ 1 0 - Non-Rel.

3.

(
1+𝑖
2

)
2
𝑛

= 1

2
2
𝑛−1 0 - Non-Rel.

4. 1/2𝑛−2 2 - Med.

5.

1

2
𝑛−2 1 - Low

Table 4: ARQMath-3 Formula Search Task Results (76 Test
Queries). Approach0 is a state-of-the-art formula retrieval
model. Text + formula search results are shown for context.

Model NDCG’ MAP’ P’@10
Formula search
Approach0 [25] 0.639 0.501 0.615
In.+Out (ours) 0.701 0.505 0.597

Text + formula search
Approach0 + ColBERT [25] 0.720 0.568 0.688
TanCFT MathAMR [12] 0.640 0.388 0.478

More generally, in our model we currently treat all formula

nodes equally. As a result, we may miss that some nodes are more

important than others, whichmay in turn hurt performance in exact

matching. In future work, we will explore attention mechanisms

and similar strategies to address this.

6 Conclusion and Future Work
We have presented a new graph-based dense retrieval model for

math formulas. The model uses a granular node-level training with

self-supervised contrastive learning on visual and semantic formula

representations. Two Relational Graph Convolution Networks (R-

GCNs) are used to produce node embeddings for Symbol Layout

Graphs (SLGs) and Operator Graphs (OPGs). The embeddings are
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Table 5: NTCIR12 Formula Search Results for Queries With-
out Wildcards (20 Test Queries)

Model Bpref partial Bpref full
Graph-based formula search
EARN [1] 0.673 0.694
GraphEmb [18] 0.540 0.630

SLG+OPG (ours) 0.647 0.572

Text + formula search
MathBERT + Approach0 [15] 0.736 0.613

trained using contrastive learning to classify nodes as being from

the same or different formulas, both within SLG and OPG repre-

senations, and between them. Retrieval is performed at the node

level, using a ColBERT-style max similarity alignment between

formulas to produce relevance scores. Our experiments show that

our approach is competitive with state-of-the-art isolated formula

retrieval models, and that combining representations produces bet-

ter results, particularly for partial matches as seen in deep metrics

(NDCG’ and MAP’).

In the future, we will extend our model to a multi-modal (for-

mula+text) retrieval pipeline, and explore newways of using symbol

pairs in training. We also want to explore attention mechanisms

or similar strategies to emphasize salient regions in formulas dur-

ing retrieval. Our approach is general, and could be used for other

graph-based retrieval tasks, such as searching for molecules and

chemical reactions. Such a system might be used by chemists to

assist with literature searches and reaction planning.
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