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Abstract

A key opportunity to make mathematical information more easily
accessible is creating search engines that leverage relationships
between visual and semantic formula representations. In this pa-
per we introduce a formula retrieval model where visual and se-
mantic embeddings are queried separately, but trained jointly. Em-
beddings are produced using two Relational Graph Convolutional
Neural Networks (R-GCNs), which are jointly optimized using a
self-supervised training task with a contrastive loss, where pairs
of visual and semantic formula nodes are classified as being from
the same formula or different formulas. To avoid information loss,
we use node embeddings to retrieve visual and semantic formula
graphs, with each scored separately using a greedy alignment be-
tween query and candidate nodes in the manner of CoIBERT. We ex-
plore combining and selecting visual and semantic relevance scores
in different ways. We present results for two math formula retrieval
benchmarks, ARQMath and NTCIR-12. Results show comparable
results against the state-of-the-art and significant improvement
when combining visual and semantic information from formulas.
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1 Introduction

Math-aware search has been of growing interest for the academic
community due to its application in many fields of science and
technology [6, 7, 14, 23]. Existing commercial search engines such
as DuckDuckGo, Google and Bing lack effective access to math
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(a) Symbol Layout Tree

(b) Operator Tree

Figure 1: Symbol Layout Tree (SLT) and Operator Tree (OPT)
for the formula x%Y + 1. N!, V!, O!, and U! in node labels give
symbols types as (N)umbers, (V)ariables, (O)rdered operators,
and (U)nordered operators.

formulas since these are treated as plain text, which loses struc-
tural information. To address this issue, math-aware search engines
have been built where formulas are handled differently than plain
text. Formulas are naturally represented by trees rather than token
sequences. Formula appearance is represented by the placement of
symbols on writing lines using Symbol Layout Trees (SLTs), while
the represented mathematical operations are captured in Operator
Trees (OPTs). Examples of these are shown in Figure 1 for the for-
mula x2Y + 1. In the SLT, the root of the tree is the left-most symbol
with edges identifying spatial relationships between symbols, while
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Table 1: Formula node & Symbol Layout Tree edge types.

Example Example

Node Type | Label Exp. SLT Edge | Label Exp.
number (N) | N!2 2x next (n) x next+  x+
const. (C) Cloo /02 above (a) | e above x ¢€*
var. (V) Vix 2x below (b) | x below i x;
func. (F) Flsin  sinx over (0) X over — %
text (T) Tlval x+val || under (u) | yover — %
group (M) | M!() (3) pre-a.(c) | xpre-a.i ‘x
unord. (U) U+ a+b pre-b.(d) | x pre-b.i ;x
ord. (O) O!c ACB || elem. (e) a elem. b 7)

within (w) | x within  /x

the OPT gives a hierarchy of operations with variable and number
arguments at the leaves, and edges numbered to show the order
of operands for operations. In practice, the choice of representing
formulas by SLTs or OPTs depends upon the intended task: for
retrieval both have been used.

For the SLT and OPT representations used in this paper, nodes are
defined using pairs of the form (type!value), except for operator
symbols in SLTs, where operators have only a single symbol (e.g.,
for ‘+’ in Figure 1). The different node types and types of SLT edges
are shown in Table 1. Edges in the Operator Tree define the order of
operands in an expression. In Figure 1, for the ordered superscript
operation representing exponentiation (O!SUP), node 0 is the base
(x) and node 1 is the exponent (2y). If an operator has unordered
arguments, such as for commutative operations like addition and
multiplication, all edges to arguments are labeled with 0.

Zanibbi et al. [24] categorize formula retrieval models according
to the representation(s) and models used for retrieval: text, tree,
embedding, visual-spatial, or their combination. We center our
attention on embedding models that work from tree-based formula
representations. Embedding models use statistical machine learning
to represent formula similarity by end-point or angular distances
between vectors in a euclidean space. Dense retrieval models that
use embeddings address some limitations of sparse retrieval models
that use fixed pattern vocabularies for lookup, e.g., in an inverted
index. The vocabulary problem faced by sparse retrieval systems
arises due to exact matching of graphs, nodes, edges, or paths: if
a formula has tokens that are not in the vocabulary, they cannot
be used for retrieval without additional processing. In contrast, in
embedding models context is used to embed patterns in euclidean
space even when a particular pattern (e.g., symbol) is unseen during
training. To fully leverage the structural information of formulas
represented as OPTs and SLTs, in our model we have used Graph
Neural Networks (GNNs), which have been used widely to learn
information from graphs [5, 21].

Due to a scarcity of relevance assessment data for formula re-
trieval, dense retrieval models for formulas are primarily trained
using self-supervised learning. A widely used technique is con-
trastive learning, where we modify embeddings with the goal of
placing equivalent/similar objects closer than distinct objects us-
ing designated ‘positive’ and ‘negative’ examples [8]. When using
contrastive learning with GNNs [20, 26], augmentation/expansion
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methods are needed to produce variations of individual graphs.
These are used both to increase the number of positive examples,
and the variety in negative examples. We adopt this approach, and
leverage the fact that we already have two graph representations
for each formula in our benchmark data sets: SLTs and OPTs.

Motivated by the effectiveness of part-based matching and greedy
alignment of token vectors for ColBERT [9] for text retrieval tasks,
we present a contrastive learning-based retrieval model that oper-
ates at the formula graph node level, and uses the max similarity
from ColBERT. This technique is used at the retrieval stage to per-
form multi-vector retrieval over node embeddings as well. We adopt
the idea of adding backward edges to SLTs and OPTs from Ahmed
et al.[1], and apply contrastive learning to formula retrieval in a
manner similar to Wang et al. [20], but use node-level rather than
formula-level embeddings. The code and model weights for our
model are available online.!

The research questions that we pursue in this paper are:

e RQ1: Do formula representations that combine semantic
and visual information through a contrastive loss improve
retrieval results?

e RQ2: Does combining separate semantic and visual formula
retrieval results using score fusion functions such as average
and reciprocal rank fusion improve performance?

e RQ3: Is formula retrieval using the proposed granular con-
trastive learning framework comparable in effectiveness to
current formula retrieval models?

2 Related Work

Formula Retrieval with GNNs and Contrastive Learning. An
early use of GNNs for formula search is the work of Pfahler and
Morik [16]. They embed math formulas into a single vector using a
Graph Convolutional Network trained by node masking and con-
textual similarity, under the assumption that related expressions
appear in similar contexts. Lin et al. [10] embed logical formula
graphs using a Graph Convolutional Network and perform con-
trastive learning where positive pairs are logically equivalent for-
mulas. The produced embeddings are used for entailment checking
and premise selection. Song and Chen [18] embed OPTs into single
vectors after merging nodes that represent the same symbol. They
presented experiments using three different types of GNNs: Graph
Convolutional Network, Graph SAmple and aggreGatE (Graph-
SAGE), and Graph Isomorphism Network. Models were trained in
a self-supervised way using node masking and context prediction.
Edge features are added to node features at the message passing
step.

Ahmed et al. [1] used a Graph Convolutional Network to encode
formula graphs in a single vector combined with visual features of
formula images using regression. Their formula graphs add back-
ward edges to SLTs and OPTs, which are called Symbol Layout
Graphs (SLGs) and Operator Graphs (OPGs), respectively. Edge and
node features are concatenated at the message passing step. Train-
ing is performed by minimizing a triplet loss over positive and nega-
tive pairs constructed using graph symmetric scores, after which the
learned embeddings are used for isolated formula retrieval. Wang
et al. [20] used graph-based contrastive learning for single vector

1Source code and model weights: https://gitlab.com/ma5339/new_graph_retrieval
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formula retrieval, starting from Tangent-CFT node embeddings for
SLTs and OPTs [13]. They then apply contrastive self-supervised
learning models using graph augmentation to generate positive
and negative pairs. Wang and Tian [19] apply transformer-based
models as enconders over MathML and LaTeX text tokens, and
trained them jointly to produce embeddings for isolated formula
retrieval. Presentation MathML and Content MathML (Symbol Lay-
out Tree and Operator Tree) tokens are first trained jointly using
a single encoder. The second training stage uses the encoder em-
beddings along with a second encoder for the LaTeX tokens. Their
final formula representation is a single vector (i.e. one vector per
formula).

Formula Retrieval Evaluation. Benchmarks for formula re-
trieval include include the NII Testbeds and Community for In-
formation Access Research (NTCIR) (in their 1047, 11" and 12th
editons) and ARQMath (in their 15, 2"? and 3" editions). The
ARQMath data was obtained from Math Stack Exchange (MSE)?,
a popular mathematics question answering forum. Questions and
answers from 2010-2018 are used as the test collection. Topics used
for evaluation (i.e., test queries) are taken from questions appearing
on MSE in 2019, 2020 and 2021 for ARQMath 1, 2 and 3 respec-
tively, ensuring that no test questions appeared in the training set.
The NTCIR-12 dataset for the MathIR task was created using math
tagged documents from Wikipedia.

Some insights gleaned from these benchmarks are that combin-
ing formula appearance and mathematical operations tend to pro-
duce the best retrieval results [22], and sparse tree-based retrieval
models performed best until the recent emergence of strong em-
bedding models [11]. The state-of-the-art for the NTCIR12 dataset
is MathBERT+Approach0 [15] , which trains a BERT model on
Content MathML (OPT) and KIgX tokens along with surrounding
text, and results from this are combined with results from a sparse
retrieval model using leaf-root tree paths extracted from OPTs (Ap-
proach0). The state-of-the-art model for ARQMath-3 Task 2 dataset
is Approach0+CoIBERT [25], which includes the surrounding text
of formulas to contextualize formula representations.

Existing formula retrieval systems perform single vector re-
trieval, which we believe degrades performance: aggregating sym-
bols and relationships in formulas into a single vector loses infor-
mation. We address this by applying multi-vector retrieval similar
to ColBERT.

3 Visual and Semantic Graph Embeddings

To produce effective embeddings for retrieval, both the visual and
semantic information present in SLTs and OPTs must be taken into
consideration. Formula relevance for some queries may depend
more on formula appearance (e.g., to find a specific formula), or
more on underlying operations (e.g., to find semantically equivalent
formulas for theorem proving). For some queries, both visual and
semantic elements may come into play (e.g., when browsing for
formulas ‘similar’ to a query formula).

Formula graphs with reverse edges (SLG and OPG). Math
formulas are commonly represented in the web using KIgX or
MathML, and for MathML most commonly Presentation MathML
(i.e., ‘visual’ SLT representations described in Section 1). We parse

Zhttps://math.stackexchange.com/
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MathML using the Tangent-S code base [4], producing Symbol Lay-
out Trees (SLTs) from Presentation MathML and Operator Trees
(OPTs) from Content MathML provided in the benchmarks used,
where Content MathML was previously produced offline from
IATEX 3

We start with SLTs and OPTs, and adopt the idea of adding back-
ward edges to them as proposed in Ahmad et al. [1]. This prevents
nodes whose in-degree is 0 from never being updated during graph
network training. These new edges contain a new label for reversed
versions of the original edge. We define the resulting representa-
tions as Symbol Layout Graph (SLG) and Operator Graph (OPG),
as shown in Figure 2.

R-GCN Embedding Architecture. To leverage graph struc-
ture in our formulas, we encode them using the Relational Graph
Convolutional Network (R-GCN) proposed by Schlichtkrull et al.
[17]. R-GCN extends grid convolution from Convolutional Neural
Networks to graphs, and leverages edge types. Normally GNNs are
trained using message passing, where each node state n; is updated
by receiving messages from its neighbors Nj. In R-GCN, messages
are filtered by edge type, and each node is updated by aggregat-
ing neighbors separately for each relation (edge type). We apply
this model because we expect the edge labels to carry important
information. Similar GNN models for formula retrieval concatenate
or add edge features to node features, which can decrease their
influence.

The updating function of this model is given by Equation 1:

h”“)i:o(z > _iw,”)hj.lhwo“)hl?” (1)

c
reRjeN] Lr

where hé“ is the updated vector for node i. [ is the number of the
current layer. R is the set of relations of node i. N] denotes the set
of neighbors of node i under the relation r. ¢; » is a normalization
factor set to [N]|. o is an activation function (ReLU in our case).
W, represents the learning parameters for the relation r.

Training: Node Pair Classification & Sub-expressions. To
leverage both visual and semantic representation and preserve
granular interactions, we propose a self-supervised contrastive
training at the node level. The granular interaction in this context
comes from pairing nodes across a pair of graphs. For a given pair
of graphs, we pair each node from the first graph with the node
from the second graph with the maximum cosine similarity (in the
maxsim manner of ColBERT). In the positive pairs, both graphs
correspond to the same formula. Negative pairs are created using
graphs from different formulas within a training batch.

The core learning task will be to classify pairs of nodes as be-
ing from the same formula (positive pair), or two different formu-
las (negative pairs). However, we will make use of formulas both
within and across SLG and OPG representations. In addition, we
include SLG and OPG subexpressions, deciding ‘positive’ or ‘nega-
tive’ based on whether or not the subexpressions are taken from the
same original formula in SLG or OPG form. Figure 2c and 2d show
sub-expressions for the formula x?¥ + 1 after removing the node
[+] from the SLG and the corresponding node [U!plus] from the
OPG. We use this subexpression strategy for augmentation rather
than traditional graph augmentation techniques (add/remove edges,

3For an overview of known limitations in such a conversion, see Zanibbi et al. [24].
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Formula Graphs for x%Y + 1

k) g1

(a) Symbol Layout Graph (SLG)

(b) Operator Graph (OPG)

SLG and OPG Subexpressions after Removing Add Operator (+ / Ulplus)

(c) SLG sub-expression

NI2 Vly

(d) OPG sub-expression

Figure 2: Example formula graphs for x?¥ + 1. Shown are the visual SLG (a), semantic OPG (b) and example sub-expressions
from these (c,d). Both sub-expressions are obtained by removing the addition node in the SLG and OPG ([+] and [U!plus]).

feature perturbation, etc) because they may produce nonsensical
formulas. By utilizing subexpressions, we hope to improve the
ability both to retrieve formulas by parts (i.e., similar shared subex-
pressions), and to capture a larger variety of contexts for nodes and
symbols for a single formula graph.

To select a sub-expression from a formula, we randomly remove
an internal node from the graph (SLG or OPG) and select the largest
connected component that remains after the removal. We do not
remove leaf nodes because in OPTs these are operands, and may
carry important information essential for retrieval. For instance, if
we have a greek letter that appears very few times in the dataset
and input a query formula that contains it, the retrieval of related

formulas may be largely determined by this symbol.# This reasoning
does not apply for SLTs, but use the same strategy for simplicity and
consistency between representations. This sub-expression selection
is made at every epoch to improve generalization.

We use two formula graphs to produce the positive and nega-
tive node classification pairs used in our contrastive learning. We
have six different ways to produce these graph pairs, which use
four graph types: SLG, OPG, SLG sub-expression and OPG sub-
expression. Note that a pair of graphs is not commutative; the first
graph is the reference point for matching nodes across graphs by
maximum cosine similarity. Note also that each graph type pairing
may come from the same formula (producing positive node pairs)

4This is related to TF-IDF models, where rarer symbols have a higher impact on
relevance scores, on the assumption that rarer terms carry more information.
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Figure 3: Training with contrastive learning across SLG and OPG nodes using the Outer set of graph augmentations. Positive
and negative node pairs are created by maxsim alignment of nodes from the first to second type in each graph pairing. This
occurs both for complete formulas (i.e., whole OPGs/SLGs), and for complete formulas in one representation vs. sub-expressions
in the other representation (e.g., (SLG, OPG-sub). The final loss is averaged across the four graph type pairings.

or a different formula within the training batch (producing negative
node pairs). The six approaches used to produce graph pairs and
then positive/negative node pairs are listed below.

(1) SLG: Visual information only: (SLG, SLG-sub)

(2) OPG: Semantic information only: (OPG, OPG-sub)

(3) SLG+OPG: Complete formula graphs across visual/semantic
representations: (SLG, OPG) and (OPG, SLG)

(4) Inner (1 U 2 U 3): Sub-expressions within representation
types and complete graphs across representation types:
(SLG, SLG-sub), (OPG, OPG-sub), (SLG, OPG) and (OPG,
SLG).

(5) Outer: Complete formulas and sub-expression pairs across
representations:

(SLG, OPG), (OPG, SLG), (SLG, OPG-sub), (OPG, SLG-sub).

(6) Inner+Outer (4 U 5): All six graph pairing types above:
(SLG, SLG-sub), (OPG, OPG-sub),

(SLG, OPG-sub), (OPG, SLG-sub),
(SLG, OPG) and (OPG, SLG).

Figure 3 illustrates the training process for augmentation con-
dition 5 (Outer). In a given batch we generate embeddings for
four graph types: SLT, OPG, SLG sub-expression and OPG sub-
expression, using two R-GCNs: one for OPGs, and one for SLGs.
Once we have these embeddings, we build our node pairs for train-
ing using the maxsim alignment described earlier. For instance, the
most similar nodes in Figure 2a and Figure 2d would form positive
pairs of the type (SLG, OPG sub-expression), with Figure 2a acting
as the reference or ‘query’ graph when computing similarities.

We used as loss function for a node i a variation of the formula
presented by Chen et al. [2] showed in Equation 2:

exp (sim(z;, z;f)/r)

t;=—lo
T SN Texp (sim(zin 2 /7)

@

where N is the total number of formulas in a batch, 7 is a parameter
that controls the smoothness of the distribution (set to 0.1 after a
grid search), z; is the embedding for the current node, z7 is the
embedding of its positive partner and z,_ is the embedding for the

k" negative partner; each node has 1 positive example and N — 1

negative examples. The final loss is given by Equation 3:

1|1 M 1 M
L5 \aa 2w 240 ®

where M! is total number of nodes for all SLGs in the batch and
M?P represents total of nodes in all OPGs.

4 Indexing and Retrieval Model

We implement indexing and retrieval using the vector database
Qdrant 3, which uses the Hierarchical Navigable Small Worlds
(HNSW) for search and provides an implementation of max simi-
larity alignment for scoring candidates. As in ColBERT, HNSW is
used to retrieve a first set of candidates by running a query per each
node vector in the query graph, and later re-rank the candidate
list using max sim alignment to produce the final results. We use a
value of k = 20 (i.e. 20 neighbors in HNSW algorithm) for initial
retrieval of graph nodes to obtain formula candidates.

Retrieval is performed separately for visual and semantic graphs
using node embeddings, with separate SLG and OPG node embed-
ding indexes. The resulting retrieval scores are then combined to
produce the final retrieval result. In each case, we measure visual or
semantic similarity by using multiple node vectors for each query
and candidate.

We employ the greedy alignment proposed for ColBERT by Khat-
tab et al. [9]. Similarity between query and candidate node vectors
is obtained from the sum of maximum cosine similarities between
node pairs. Given a query graph Q and candidate graph C, we com-
pute node embeddings for each of them, producing the matrices
Eg and Ec. Each matrix has rows for nodes, and the number of
columns is given by the embedding size. We denote the size of each
graph in nodes using |Eg| and |Ec|, and enumerate query graph
nodes using i and candidate graph nodes using j. The similarity S
is then given by Equation 4:

S= max Eo. - EL @
ie{l,“Z;le}jE{l,,__,|EC|} Qi " E¢;

Shttps://qdrant.tech/
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Since we have embeddings for both SLG and OPG, we use this
ensemble to score similarity using Equation 4 separately for each
representation. We then fuse the similarity scores using static com-
bination functions of different types, including Mmax, MEAN, F1 and
RRF (Reciprocal Rank Fusion [3]).

5 Results

Datasets. We present results on ARQMath-3 Formula Retrieval
Task (Task 2) and NTCIR12 MathIR Task. For ARQMath-3 [11],
participants return the top 1000 formulas given a formula query
taken from a test question post. Returned formulas from all par-
ticipants where then pooled and evaluated for relevance by math
undergraduate and graduate students, taking the context of the post
containing a retrieved formula into account. The full ARQMath
dataset contains around 28 million formulas; approximately 9.3
million formulas are visually unique. The test collection contains
76 formulas queries (topics) with human-annotated assessments
using a relevance scale of 0 to 3 (0 non-relevant, 3 high relevance).
For binary metrics, 2 and 3 are considered relevant and the others
not relevant. We make usage of the official metrics for the com-
petitions: NDCG’@1000, MAP’@1000 and P’@10. Here, prime ()
indicates that only evaluated hits are considered when computing
the metrics. This insures that models are compared using the same
pool of formulas with known relevance, whether they participate
in the original task or run an evaluation afterward.

The NTCIR12 MathIR Wikipedia corpus contains 319,689 articles
from English Wikipedia and contains around 590,000 formulas in
the corpus [22]. There are around 250,000 visual unique formulas
in this dataset. The task is to return top 1000 formulas for a given
formula query chosen by the organizers. The test collection consists
of 40 formula queries (topics) which results were human-annotated
in a relevance scale of 0 to 4 (0 not relevant, 4 high relevance). For
binary metrics, 3 and 4 are considered relevant and the others not
relevant. We only use the first 20 queries because the remaining
queries contain wildcards, and have been usually omitted when
reporting NTCIR-12 results. Official metrics are Partial Binary Pref-
erence (Bpref@1000 full) and Full Binary Preference (Bpref@1000
full). Additional details about these test collections and evaluation
metrics are available elsewhere [24].

Training Data. We trained our models using the visually unique
formulas from the ARQMath-3 and NTCIR-12 test collections sepa-
rately. This means that results shown in Tables 2 — 4 for ARQMath
were produced with models trained using approximately 9.3 million
visual unique formulas from ARQMath. However, results in Tables
2 and 5 for NTCIR-12 were produced using only about 250,000
visually unique formulas from NTCIR-12. As mentioned in Section
3, the training procedure is entirely self-supervised.

Efficiency Metrics. These metrics reported below were com-
puted using ARQMath visually unique formulas (around 9.8 million)
and the ARQMath-3 topics (76 formula queries). The system used
was an Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz, with 256 GB
RAM, NVIDIA A40 GPU, and 2TB SSD disk.

Training time: around 6 hours per epoch.

Embedding (inference) time for indexing: around 3 hours using
an embedding space of 100 dimensions. A sub-process for
loading embedded formula batches into the indexing tool
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Table 2: Retrieval results using different node pair augmen-
tations. Significant differences vs. baseline SLG shown using
1 (Bonferroni corrected t-tests, p < 0.05).

ARQMath-3 (76) NTCIR-12 (20)

Model NDCG’ | MAP’ | P’@10 || Bpref p. | Bpreff.
Single representation

SLG 0.649 0.446 0.547 0.611 0.534

OPG 0.682 0.476 0.587 0.642 0.547

Combined SLG + OPG relevance scores

SLG+OPG MAX | 0.690 0.498 | 0.591 0.647 0.572
Inner MAX | 0.694T | 0.497T | 0.600 0.646 0.555
Outer  MAX | 0.6937 | 0.4967 | 0599 0.602 0.562

Inner + Outer:

MAX 0.701" | 0.505" | 0.597 0.636 0.535
AVG 0.6847 | 0.486" | 0.581 0.639 0.526
F1 0.670 0475 | 0.576 0.635 0.532
RRF 0.678 0.485 | 0.599 0.623 0.523

(Qdrant) runs concurrently, and so inference may be faster
than reported here.

Indexing time: After all embedded node vectors are loaded in
Qdrant, it takes around 24 hours for the index to be ready
(green state) for retrieval. This includes creating the HNSW
index data structures. It is important to note that we create 2
indexes: one for Symbol Layout Graph embeddings, and one
for Operator Graph embeddings. The two indexes together
contain around 400 million vectors for 9.8 millions formulas.

Retrieval time: around 2 minutes for top k=1000 retrieval for the
76 test queries. This is around 1.6 seconds per query. This
includes querying the 2 indexes mentioned above.

RQ1 and RQ2: Effect of combining visual and semantic
information. Table 2 shows a comparison of the different train-
ing variations in terms of how graph pairs are used to generate
node pairs for classification. Also shown is the effect of using dif-
ferent combination functions for SLG and OPG retrieval scores:
max, average, F1 and RRF. We selected the SLG-only model as
our baseline to evaluate how our proposed method of combining
both sources of information performs. We identified statistically
significant differences using a multiple comparison t-test with a
Bonferroni correction and a p-value of 0.05.

For the ARQMath collection, we can see a significant improve-
ment against the baseline SLG for models where both semantic
and visual information are used. This suggests that combining in-
formation at the node level enriches representations. We also ran
multiple comparison t-tests (w. Bonferroni correction) against the
base OPG model, but no significant differences were found. This
suggests that this representation may be sufficient on its own. It
is worth noting that a number of state-of-the-art models use only
semantic information to perform retrieval. Nevertheless, we see an
improvement in terms of deep metrics when representations are
combined, in NCCG’ and MAP’. For NTCIR-12, we did not observe
significant differences between graph pairing conditions, possibly
because of the small number of queries (20).
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Table 3 shows results for two test queries from ARQMath-3. We
show the top 5 formulas returned with an associated relevance
rating in the grels file. For the first query, the top 10 formulas with
assessments are all of High or Medium relevance, giving a P’@10
of 100%, and NDCG’@1000 is 81.46%. We can attribute the success
of our model in this query to the granular interaction: we can see
that sub-expressions of the query appear in the retrieved formulas.
We have a similar behavior (not shown) for query B.394:

Ve>0,35<0,|x—al <6 = [f(x)-f(a)| <e

where we observe 90% for P’@10, and 92.83% NDCG’@1000. Again,
the granular interaction allows the models to retrieve formulas that
contain sub-expressions of the query.

Table 3 also shows the top 5 (evaluated) results for query B.400.
This is the second worst performing query for P’@10 with 10%
(just 1 of the top 10 results is relevant), and an NDCG’@1000 of
56.5%. Note that the top hit just differs in 2 symbols with the query.
Looking at the formula in isolation, we might be tempted to argue
that this is a relevant hit - however, this was annotated as not rele-
vant by accessors in ARQMath based on the Math Stack Exchange
posts where the query and retrieved formulas appeared. Since we
do not consider any context in our model, our results are penalized
in these cases. In the future, we plan to incorporate the surrounding
content for formulas.

RQ3: Comparison against existing models. Table 4 compares
our system with Approach0 [25], a state-of-the-art formula search
model that uses sparse retrieval and dynamic-programming based
structural alignment for re-ranking. Leaf-root paths from OPTs are
used for the sparse first-stage retrieval. We obtain stronger ‘deep’
metrics (NDCG’ and MAP’), and the difference in P‘@10 is less
than 2%. This suggests that our approach is promising for isolated
formula retrieval. Table 4 also shows models that implement con-
textualization of formulas by adding its surrounding text as an
extra source of information. This is particularly important for the
ARQMath dataset, where exact matches for certain queries may be
irrelevant because their contexts are different. This explain why
combining ColBERT with Approach0 performs slightly better.

Table 5 compares existing graph-based embedding systems for
isolated formula retrieval in the NTCIR-12 dataset. In this case,
we retrain our model from scratch using only roughly 250,000
visually unique formulas from the NCTIR-12 test collection. As
mentioned earlier, the NTCIR-12 ‘concrete’ formula evaluation is
limited because of its low number of queries (20). However, this
dataset has been widely used to evaluate isolated formula retrieval
models, so we keep these results for the record. Note that with
additional training data, we expect to obtain stronger results (e.g.,
closer to those for ARQMath-3).

Regarding transformers/LLMs for formula retrieval, Peng and
Yuan [15] proposed a model called MathBERT. They included LaTeX
and Operator Tree tokens in a text token sequence, and then used
BERT to embed formulas and perform retrieval. This was evaluated
on NTCIR-12 dataset. and their results are shown in Table 5. Their
approach improves partial relevance matches over state-of-the-art
graph-based formula search modes, but they obtain lower full Bpref
than the EARN model. We believe that with the usage of text, we
can match, or even exceed the performance of MathBERT.
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Table 3: ARQMath-3 Formula Search Task Top-5 hits with
assessments returned by the Inner + Outer MAX model for
two queries.

ooxsl

Topic B.308: {(s) = X0, 75 = r(s) /0 =1

%) s—1 .
L {=%2 %=r(s)f0 X dx 3 - High
2. T(s)=3o, in /0 - 3 - High
x z-1 .
3. (1—21 3 (z) = Z (G r(lz)/ﬁdt 3 - High
0
00 45—1 .
4. {(s)= ﬁfo r—qdx. 3 - High
5. {(s)= F(s)/o g 1dx s> 1. 3 - High
2
Topic B.400: (2,1%2)
1. 2("+1)z 0 - Non-Rel.
2. sz <1 0 - Non-Rel.
2"
1 __1
3. (%) = gt 0 - Non-Rel.
4. 1/2"72 2 - Med.
1
5. 1-Low
on—2

Table 4: ARQMath-3 Formula Search Task Results (76 Test
Queries). Approach0 is a state-of-the-art formula retrieval
model. Text + formula search results are shown for context.

Model NDCG’ | MAP’ | PP@10
Formula search

Approacho [25] 0.639 0.501 | 0.615

In.+Out (ours) 0.701 | 0.505 | 0.597

Text + formula search
Approach0 + ColBERT [25] | 0.720 | 0.568 | 0.688
TanCFT MathAMR [12] 0.640 0.388 0.478

More generally, in our model we currently treat all formula
nodes equally. As a result, we may miss that some nodes are more
important than others, which may in turn hurt performance in exact
matching. In future work, we will explore attention mechanisms
and similar strategies to address this.

6 Conclusion and Future Work

We have presented a new graph-based dense retrieval model for
math formulas. The model uses a granular node-level training with
self-supervised contrastive learning on visual and semantic formula
representations. Two Relational Graph Convolution Networks (R-
GCNis) are used to produce node embeddings for Symbol Layout
Graphs (SLGs) and Operator Graphs (OPGs). The embeddings are
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Table 5: NTCIR12 Formula Search Results for Queries With-
out Wildcards (20 Test Queries)

Model Bpref partial | Bpref full
Graph-based formula search

EARN [1] 0.673 0.694
GraphEmb [18] 0.540 0.630
SLG+OPG (ours) 0.647 0.572
Text + formula search

MathBERT + Approach0 [15] 0.736 0.613

trained using contrastive learning to classify nodes as being from
the same or different formulas, both within SLG and OPG repre-
senations, and between them. Retrieval is performed at the node
level, using a ColBERT-style max similarity alignment between
formulas to produce relevance scores. Our experiments show that
our approach is competitive with state-of-the-art isolated formula
retrieval models, and that combining representations produces bet-
ter results, particularly for partial matches as seen in deep metrics
(NDCG’ and MAP’).

In the future, we will extend our model to a multi-modal (for-
mula+text) retrieval pipeline, and explore new ways of using symbol
pairs in training. We also want to explore attention mechanisms
or similar strategies to emphasize salient regions in formulas dur-
ing retrieval. Our approach is general, and could be used for other
graph-based retrieval tasks, such as searching for molecules and
chemical reactions. Such a system might be used by chemists to
assist with literature searches and reaction planning.
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